The End of Conventional Microprocessors

Edwin Olson

9/21/2000

Two Ways to Achieve Performance

- Braniacs: High IPC, lower clock-rate (higher FO4 delay) processors like PA-RISC
- Speed Demons: Low IPC, high clock-rate (lower FO4 delay) processors like Alpha.
- Today's designs have benefited from both approaches, which exemplifies the headroom available today in both strategies.

Transistor Scaling

- Good News! Switching delay of transistor proportional to λ. τ => ατ
- FO4 delay empirically estimated by
 - $-360*2\lambda$ ps (2 λ is minimum gate length)
 - 0.250 : 90ps
 - 0.035nm: 12.6ps
- This is a 7.1x speed improvement.

	С	lapac	it	y a	nd	P	ipel	ine S	So	caling	g		
		250em		-	130	ees.	1 Minut	70mm	_	Sinn		15mm	
	Structure	Just Jallera	1.0	Solera.	Jus' 10	JSYA .	Inelle Ter	$4 \int dx' f \phi' f \phi'$	114	hollo lettera	J18	To'TSYA	
	Bearsch prod.	13.2		393	20	2	3.93	23.9		3.94		23/4	
	818	1.071		1/22	1.0	2	1/2/2	1.0.9	10.9	1/23 1/23		13.9	
	Roonder huffer	1.0/1		1/2/2	1.0	2	1/2/2	10.9					
	Issue window	1.0/1		1/2/2	1.0	12	1/2/2	10.9	1/23		10.5		
	Integer RF	1.2.9	122		10.2		122	10.2		123		10.9	
	FP RF	13/1	123 252 243 161812 292 393		10	2	1/2/2	13/2	1/23		13/9		
	L1H0ste	23/2			23	0	253	23/4	23/4	243		245	
	LI D-Ciche	24/2			249 1101/07 23/9 23/9		2/44	245	24/5 12/34/39	3/5/7 13/3449		58/7	
	L2 Catho	11/21/11					1129/29	12/34/3			15	193852	
	1-11.8	23/2					2.93	23.4		2/94		23.4	
	0.0.8	23/2					2.93	234		3/94		23/4	
	100-							100 1810		and stress date			
	250nm	190nm		1108	10 A	100han		2014		Stran		35660	
Stradure	fuelte fina	In Sector.	4	14.76	fita_	518	JEGITA	D#701	Α		4	1.00%	ejita —
DPtol	SEC WESSEL	3K ₀ /1K ₀ /1K	4	4K ₂ 9K ₂ 056 ₁		44,44,946,2		46,46,28	ία –	4K1/4Kg/250g		4KL/4Kg/512g	
BTB	1K1/1K2/5121	5120/5120/4	Ка –	5121/512g/3Kg		\$12 ₁ /513 ₂ /513 ₂		5121/5128/12	/128g 2561/2562/51		12g 256L/296g/312g		Hg/512g
808	29610122/138L	1380/1382/88	128u/128g/8Kg		138L/128g/3Kg		1282/1292	128,1138,2/28	128,2/138,2/26,2		÷.	64L/64g/236g	
1W.	512 ₄ /012 ₈ /128 ₆	640/94g/8Kg		641/64g/2Kg		64,948,949		64,1649/28	164g/1Kg 64g/120		p 64,/84g/250g		4g/256g
Int. 317	2561 (2588) 1281	296103689/031		128 ₉ /128 ₉ /512 ₈		1381/1289/1289		1381/1283/64	1381/1289/648 1381/1		1299/1299		28g/128g
TP RF	256105621061	29610562/2	29610562/031		1252/1252/5122		1212/1212	1281/1282/64	÷2	1251/1252/1252		125_/12	28g/128g
1118	296Kg/94Kg/196Kg	2564.g/64K.g/6	es.	256K2/6K3/16K3		256K2/64K2/64K2		128Kg/64Kg/1	18Kg/02Kg/0		35.4	128Kg/32Kg/32Kg	
11.08	14Ka735Ka/64Ka	64Ka/16Ka/3	14Ka/16Ka/32Ka		84Ka/16Ka/2Ka		106.31166.3	0484/3084/4	464/1063/463 3264		5562/882/864		8.3 10.4
Line	2M/296K/1M	2M/296K/19	2M/296K/TM		104250K/104		586/2568	1902546/120	960128K 512K/258K4p/1		36.15	K45 512K/25HK48/12HK4	
FILE	3/2Kg/312g/32Kg	32Kg/312g/4	N8	126g/01	/512g/4Kg		Stipites	108.8512.64	4K4 16Kg/296g/1		4	14 16Kg/256g/1Kg	
0-11.8	35Kg/312g/32Kg	32Kg/312g/4	Ng -	328g/01	19-10 g	106.9	Dilg/IKg	184_2512_2/4	5.j	186g/29ig/1	£.,	106.9/2	20g/184

Ca	Capacity and Pipeline Scaling Performance												
	Scaling	Clock Rate	250nm	180nm	130nm	100nm	70nm	50nm	35nm				
		f16	1.25	1.16	1.15	1.15	1.17	1.08	1.06				
	Pipeline	fa	0.77	0.73	0.72	0.72	0.71	0.64	0.63				
		f _{SIA}	1.18	0.89	0.83	0.73	0.62	0.49	0.48				
		f16	1.63	1.55	1.48	1.48	1.46	1.30	1.30				
	Capacity	f8	0.89	0.82	0.81	0.81	0.80	0.68	0.63				

Table 7: Geometric mean of IPC for each technology across the SPEC95 benchmarks.

0.69

1.03

1.52

fsix

0.45

0.49

0.86

0.50

Scaling	Clock Rate	250nm	180nm	130nm	100nm	70nm	50nm	35nm	Speedup
	f ₁₆	0.87	1.11	1.54	2.01	2.90	3.73	5.25	6.04
Pipeline	fa	1.07	1.41	1.93	2.49	3.54	4.44	6.23	7.16
	f _{SIA}	0.89	1.11	1.74	2.58	3.70	4.85	6.49	7.46
	f ₁₆	1.12	1.49	1.98	2.58	3.63	4.50	6.42	7.38
Capacity	fa	1.24	1.58	2.18	2.81	3.99	4.71	6.28	7.21
	f _{SIA}	1.14	1.28	1.44	3.02	2.92	4.97	6.04	6.95

