
1

Saving Power through Explicit 
Mechanisms

Dave Maze, Edwin Olson

6.893, Fall 2000

The Power/Performance 
Dilemma

• Mainstream architectures focusing on high 
performance

• Some applications require low power

• Usage patterns of some devices call for 
short periods of high performance and long 
periods of low-power performance.

Our Solution

• Build a machine which can yield adequate 
performance, but can switch to a low power mode.

• Turn functional units and capabilities on or off 
depending on performance/power needs.

• Have the compiler make as many decisions as 
possible (minimize hardware profiling required)

• Explicit instructions for coarse granularity, extra 
bits in instructions for fine granularity.

Areas that can be optimized

• Turn off sections of cache to reflect size of 
“working set”

• Put functional units into a “coma” mode

• Turn on/off out-of-order/speculative issue 
logic (resulting in an in-order 
microprocessor)

Things to worry about…

• Existing work exists. Try not to duplicate. 
Try to do something novel.

• Code density – perhaps we’ll ignore code 
density for this phase of research.

• Compiler hacking – perhaps we can 
sidestep the issue by doing some assembly 
hacking to get approximate results.

Execution Plan

• Begin by testing ideas/profiling benchmarks to 
determine effectiveness of particular ideas.

• Select an idea, hack together an approach, and 
measure results. (Checkpoint 1, Oct. 19)

• Refine, extend, automate optimization 
(Checkpoint 2, Nov. 9)

• Tools: SyCHOSis, MIPS ISA simulator


