
   
Abstract�A growing need for computational power in mobile 
devices has spawned increased interest in low-power 
microprocessors. Some low-power applications require very 
high performance, such as real-time video decoding on 
Personal Digital Assistants. A growing body of work has 
examined how to provide this high performance when needed, 
while throttling performance so that power consumption can 
drop to very low levels when performance is not required.  
Observing that the issue logic in an out-of-order 
microprocessor consumes a significant amount of power, 
several groups have attempted to modify this part of the 
processor so that it can dynamically enter a low-power mode. 
We have revisited these topics and our work shows that simple 
approaches to modifying issue logic fail to reduce the average 
energy per instruction.   We also look at the possibility of 
including a low-power single-issue processor on the same die as 
a high-performance multiple-issue processor.  Swapping 
between these two processors allows a dynamic tradeoff 
between power and performance, but we show that this 
approach also struggles to reduce the average energy per 
instruction in the low-power mode. 
 
Index terms�Issue Window, Issue Logic, Out-of-Order, Low 
Power, Power/Performance Throttling 

I. INTRODUCTION 
 
Much of the thrust of recent computer architecture work has 
been in search of increased performance.  As transistor 
budgets have increased, more and more technologies from 
mainframes were incorporated in microprocessor designs. 
The product of this evolution was high performance 
microprocessors that sacrificed power consumption to 
maximize performance. With the emerging importance of 
low-power markets, these speed demons have been 
retrofitted to consume less power by incorporating clock 
gating, voltage scaling, and more recently, dynamic resizing 
of key architectural features such as the issue window.  
 
Many existing techniques for reducing power are well 
established and extremely effective, including dynamically 
reconfiguring the cache[1] and voltage scaling[2]. Reducing 
the supply voltage of a microprocessor has a roughly linear 
effect on performance (due to weaker electric fields) but a 
squared effect on power dissipation (since power 
consumption is proportional to ½*frequency*CV2). 
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Voltage scaling must be taken into account when comparing 
two architectures for power efficiency. It is tempting to use 
a metric such as energy/instruction or the power delay 
product, however, one must also take into account the 
required performance level. A processor with seemingly 
poor energy/instruction characteristics that has more 
performance than required can be run at a lower voltage 
thus reducing performance and reducing the 
energy/instruction.  
 
While voltage scaling is a very good way of providing 
additional power/performance modes, it has its limits. When 
operating voltage approaches the threshold voltage of the 
transistors, the performance of the transistors begins 
dropping off much faster than linearly. As threshold 
voltages are reduced, leakage currents increase, which, in 
turn, increases power consumption. The Semiconductor 
Industry Association predicts that in the year 2005, supply 
voltages for low power applications will be 0.9-1.2V  [3], 
compared to a typical modern supply of 1.2V for a low-
power processor like the Transmeta Crusoe. This implies a 
very limited ability for processors to exploit voltage scaling 
dynamically in order to scale power/performance. Clearly 
there is a need for additional power/performance throttling 
mechanisms.  Other mechanisms for throttling performance, 
such as disabling portions of the cache, also have 
drawbacks; if the cache is made too small, the increasing 
miss rate will cause more power to be consumed by 
requiring main memory accesses. 
 
It has been observed that one major power drain in modern 
out-of-order processors is the issue logic; every clock cycle, 
each instruction in the issue queue must be checked to see if 
it can be dispatched.  Retired instructions broadcast the 
availability of new operands on long bit lines across the 
entire issue window. Some processors, such as the Alpha 
21264, compact the issue queue in order to implement an 
oldest-first priority algorithm, and this process requires even 
more energy. In the 21264, between 18 and 46 percent of 
the total power of the processor is consumed by the issue 
logic [4]. 
 
In light of this, methods of scaling back the size of the issue 
window and the number of instructions issued each cycle 
have been proposed in order to reduce power consumption 
at the cost of reduced performance.[5,6]  These methods are 
compatible with cache disabling and voltage scaling; for 
maximum reduction in power consumption the power 
management software could simultaneously reduce the 
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voltage to the lowest possible level, disable parts of the 
cache, and reduce the issue window size, or it could find 
intermediate power/performance points by doing only one 
or two of these optimizations, possibly by analyzing the 
type of code that is running to determine how much cache it 
needs or how much its performance would benefit from a 
large issue window.  We also consider an alternate scheme 
of bypassing complex issue logic completely. We propose 
to do this by placing an in-order, single-issue core alongside 
the out-of-order multiple-issue core, with the OS able to 
swap between them, thus avoiding the complex out-of-order 
issue logic completely.  
 
Several studies have shown that relatively simple 
modifications can allow an operating system to do 
performance throttling without spending an excessive 
amount of time profiling the code being executed, [7] and 
that relatively simple hardware structures can also monitor 
performance needs [5]. Thus, the power overhead required 
for dynamic throttling is minimal, which is necessary for it 
to be useful. Any overhead necessary to implement the 
strategies described in this paper is ignored from a power 
perspective; we assume that dynamic reconfigurations are 
perfectly efficient. Since we will demonstrate that these 
strategies do not reduce power, the omission of the 
overhead energy would only make the strategies even more 
unappealing. 

II. METHODOLOGY 
 
In order to conduct our study, we needed to measure the 
impact of changing architectural resource sizes, such as the 
number of slots in the issue window, on both power and 
performance. The SimpleScalar toolset provides detailed 
performance simulators [4]. SimpleScalar provides a 
performance simulator using a relatively unique 
microarchitecture built around a �Register Update Unit�, an 
architectural resource combining the functions of the issue 
window and the register renaming unit. This is somewhat 
unfortunate, since it does not correlate well to actual chip 
designs.  
 
However, the results we receive from these studies can still 
yield insight into the effects of scaling architectural features, 
and the relative results are still meaningful. Many other 
architectural studies have also used SimpleScalar, so our 
results can be directly compared with those. Future work 
may involve repeating our studies with a model more 
closely resembling commercially successful architectures. 
 
SimpleScalar does not provide a mechanism for directly 
simulating power usage. However, several research groups 
have added power models to SimpleScalar, such as 
SimplePower [9], Wattch [10], and the Cai-Lim models 
[11].  Wattch's models are better suited to our study because 
its models are heavily parameterized and are therefore 
capable of reflecting various changes in configuration 

without needing to create SPICE models for each variation. 
We used version 1.02 of the Wattch power.c model. 
 
Power estimation tools like Wattch and the Cai-Lim models 
have recently been the subject of considerable scrutiny [12]. 
Ghiasi, Grunwald and others have shown that not only are 
direct comparisons of energy measurements hopeless due to 
large differences in the energy predictions, but even relative 
comparisons often fail to agree. A key problem rests in the 
fact that an architectural description simply doesn't contain 
an adequate amount of information to properly estimate 
power, and even reasonable parameterized models quickly 
become unrealistic when the parameters are adjusted 
beyond a limited range. For example, the Wattch CAM 
model used for the RUU structure is a reasonable model for 
a 16 entry structure, but if the structure had 256 entries, it 
would have been implemented in a completely different way 
(multiple banks, perhaps). Therefore, we have limited our 
study to modifying parameters by relatively small factors, to 
minimize these effects. 
 
We consider 4 issue and 8 issue processors with varying 
RUU sizes. The other characteristics of our processors are 
listed in Table 1. SimpleScalar allows many parameters to 
be adjusted, but we only changed a few. Table 1 is a list of 
non-default settings we used for the 4 and 8 issue 
architectures we studied. 
 
Table 1. 
 4 issue 8 issue 
Decode Width 4 8 
Commit Width 4 8 
Load Store Queue Size 8 8 
Integer ALUs 4 6 
Integer Multipliers 1 2 
FP ALUs 4 4 
FP Mul/Div 1 2 
Memory Ports 2 4 
 
Our benchmarks are derived from the SpecInt95 suite. Due 
to the limited speed of the SimpleScalar simulator (about 
90k instructions per second), it was impractical to run the 
entire suite, or even an entire single benchmark. Instead, as 
is the common practice in the simulator field, reduced input 
sets were used. These input sets take substantially less time 
to test, but still exercise the processor in ways similar to the 
official input sets. Therefore, the performance data we 
generated cannot be compared to actual SpecInt scores, but 
this is not an issue, as we are primarily interested in the 
relative performances of our various models. 
 
Table 2. 
Benchmark Input 
Li Nqueens 6 
Perl test.in 
compress95 5000 q 2131 
mk88sim ctl.dhry [50M instructions] 



For all of these benchmarks, the kernel of the program, 
rather than initialization code, dominated the runtime. In 
addition, the simulator is completely deterministic, so there 
is no need to repeat simulations and average scores. 
  

III. DETERMINING OPTIMAL RUU CAPACITY 
 
Understanding the optimal size for the Register Update Unit 
is extremely important when determining what sizes to 
model. Several factors influence this optimal size. The goal 
of the RUU is to always have enough instructions ready to 
feed the available functional units. As the number of 
functional units increases, the size of the RUU should 
intuitively increase to provide more candidate instructions. 
However, due to data dependencies, it is often the case that 
the number of instructions that can be fetched is greater than 
the number that can be issued. In addition, we want the 
RUU to hold a certain �surplus� of instructions so that when 
an instruction miss occurs and fetch rate drops to zero, the 
functional units can be kept busy, but there is no reason to 
make the RUU unreasonably large, since once it reaches a 
certain size the inherent parallelism of the code will limit 
how many instructions can be issued, rather than any 
constraint on how many are in the window.  

A. Bounds on RUU Usage 
Our first experiment�s goal was to determine an absolute 
upper bound on the size of the RUU. We configured 
SimpleScalar to use an extremely large RUU (128 entries) 
and made modifications to SimpleScalar to collect statistics 
on the size of the RUU every cycle. The resulting structure 
could hold enough instructions to keep the functional units 
busy for dozens of cycles, and is therefore excessive. 
However, it does provide an upper bound on the size of the 
RUU. 
 
Figure 1. 
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Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 shows that for all four benchmarks, the RUU 
almost never contains more than 32 instructions at either 
issue width. Thus, making an RUU any larger than 32 
would serve no function; the entries would be empty almost 
all the time.  Figure 2 shows the results for the 8-issue case; 
they are almost.  However, it still appears that 32 entries is 
sufficient. 
 
When the RUU�s physical size is bounded, the RUU usage 
closely mirrors the unlimited case, except that the RUU will  
�saturate�. In figure 3, we show the cumulative occupancy 
statistics for a large RUU and a 16 entry RUU.  We see that 
a 16 entry RUU has almost exactly the same occupancy 
characteristics when occupancy is between 0 and 15. The 16 
entry RUU is fully occupied about as often as the unlimited 
RUU has 16 or more entries. This is as would be expected, 
and though Figure 3 uses the mk88sim benchmark, the other 
benchmarks demonstrate the same behavior, as does the 4-
issue machine. 
 
Figure 3. 
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B. IPC vs. RUU size 
 
The important question now is: if the RUU capacity is 
limited beyond the ideal case, what happens to 
performance? We measured performance in terms of 
Instructions Per Cycle (IPC), since we cannot accurately 
determine changes in clock period from within 
SimpleScalar.  If the length of all the pipeline stages are 
well-balanced, it�s likely that dynamically reducing the size 
(and therefore delay) of the issue window would probably 
not allow the whole processor to be clocked faster. 
  
Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the performance of the processor, in terms 
of IPC, versus the capacity of the RUU. We notice 
immediately that the performance of the processor for 
compress and perl is very similar for RUU capacities of 16 
and 32 for a 4-issue processor. There�s a small increase for 
li. As we expected, there is almost no benefit in scaling the 
RUU beyond 32. 
 
If we consider an 8-issue machine, we would expect the 
performance of the processor to drop off more rapidly than 
the 4-issue with decreasing RUU capacity. This is because 
the RUU could be depleted (potentially) twice as quickly, 
and the processor is therefore more likely to be unable to 
keep its functional units busy. We see precisely this 
behavior in Figure 5; there is a noticeable performance 
difference for both li and perl between RUU capacities of 
16 and 32.  
 
Some research groups have proposed dynamically varying 
the issue window capacity [5]. It is obvious that a 
parameterized model of an RUU is likely to predict 
substantially greater power consumption for a 32-entry 
RUU than a 16-entry RUU. We must resist the temptation to 
declare that throttling the RUU capacity between 16 and 32 
is an effective way of throttling power/performance;  there 
is very little performance difference between RUUs in that 
range, but there is a significant difference in power 
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consumption. A power-conscious architect is unlikely to 
make the RUU so much larger for such a miniscule return.  

C. Relationship between energy and RUU size 
 
However, an interesting question still remains. What 
happens to energy per instruction statistics as we decrease 
the RUU well into the region of decreased performance? It 
might be a good idea to allow a processor to dynamically 
decrease its RUU size, for example from 16 to 8, if the 
decrease in power more than offsets the decrease in 
performance. 
 
Using the Wattch tool, we measured the power consumption 
of the processors and calculated the average energy per 
instruction assuming realistic clock gating (Wattch�s cc3 
models). 
 
Table 3. 
Structure 4x4 4x8 4x16 4x32 4x64 
Energy/Inst 
(li) 

15.8 13.0 11.8 12.8 14.1 

Energy/Inst 
(perl) 

16.5 14.3 13.6 14.7 16.1 
 

Energy/inst 
(compress) 

14.4 11.5 10.6 11.3 12.5 

Energy/inst 
(m88ksim) 

14.7 12.2 11.4 12.4 13.6 

 
Table 3 shows the average energy per instruction for each 
benchmark, for various RUU capacities of a 4-issue 
processor.  We already expected the 4x32 and 4x64 
configurations to be suboptimal, since the RUU is 
essentially oversized. It�s interesting, however, that the cost 
of executing instructions actually increases when the RUU 
is shrunk below 16 entries. While the power consumption of 
the issue logic is going down with decreasing RUU 
capacity, the performance is dropping super-linearly, due to 
the smaller amount of parallelism that the processor is 
finding. 
 
We can also see that we�re spending more energy per 
instruction on codes with less inherent parallelism (perl in 
particular). This makes sense since there are a lot of 
hardware resources in an out-of-order superscalar processor 
looking for parallelism to exploit, but there�s simply very 
little parallelism to be found. This overhead cost is being 
amortized over very few issued instructions every cycle, and 
thus the average energy per instruction is higher. 
 
We�ll also note that we don�t trust the power numbers for 
the extreme configurations of RUU (x4 and x64) since they 
comprise a significant factor of deviation from Wattch�s 
baseline capacity.   
 
The breakdown of power consumption is shown in figure 6. 
The patterns of power consumption are similar for all four 
benchmarks, so we show only the li case. One component 

that is consuming conspicuously more power as the RUU 
size is increased is the RUU itself (denoted as �window�). 
Somewhat unexpected are the increases in energy in other 
areas of the chip. As discussed earlier, when the RUU size 
is increased, the total number of instructions (committed + 
speculated) executed increases 12-23%, depending on the 
benchmark. This causes increased activity in almost all of 
the major functional blocks. In addition to the window 
energy, we see significant increases in the clocking energy, 
the load store queue, and the result bus.    
 
Figure 6. 

Power Consumption Breakdowns for 4 issue on 
li

0

5

10

15

20

25

30

4x4 li 4x8 li 4x16 li 4x32 li 4x64 li

Configuration
Po

w
er

 (W
)

clock

resultbus

alu

dcache2

dcache

icache

regfile

lsq

window

bpred

rename

 
 
In Table 4, we have energy per instruction statistics for an 8 
issue processor. We see very similar trends as in the 4-issue 
processor.  As with the 4-issue case, we observe that the 16-
entry RUU is the minimum energy per instruction point. 
 
Table 4. 
Structure 8x8 8x16 8x32 8x64 
Energy/Inst 
(li) 

13.8 12.5 13.4 14.9 

Energy/Inst 
(perl) 

15.1 14.7 15.8 17.6 

Energy/inst 
(compress) 

12.4 11.4 11.9 13.3 

Energy/inst 
(mk88sim 

13.0 12.1 12.9 14.4 

 

IV. OTHER LOW-POWER MODIFICATIONS TO COMPLEX 
PROCESSORS 
 
It seems as though scaling a processor�s issue window will 
not provide the power/performance throttling we would 
like; the optimal energy per instruction point is near the 
optimal performance, so there is little to be gained from 
scaling it. There are many potential functional units that can 
be targeted for energy reduction, but other difficulties arise. 
  
We see from Figure 6 that the register file consumes a 
significant percentage of power. SimpleScalar�s RUU 
structure works in its favor for minimizing the complexity 



of the register file by incorporating the renamed registers 
within the issue window and maintaining a separate (and 
smaller) architectural register file, whereas in a mainstream 
design the register file often contains both the renaming and 
architectural registers. In the latter case, the register file is 
both physically larger and may have additional ports, 
consuming even more power. A low-power mode might use 
a smaller set of renaming registers, or turn off register 
renaming completely. We do not consider any of these 
additional optimizations here. 

V. LOBOTOMIZING AN OUT-OF-ORDER PROCESSOR 
Our group considered several mechanisms for dynamically 
�lobotomizing� an out-of-order processor in order to 
provide new power/performance points. Our initial 
approaches mirrored those of other groups�dynamically 
resizing issue logic, but our study of the effects of RUU 
sizing discussed previously in this paper made this seem 
problematic. 
 
Our second idea was to disable most of the logic 
accompanying the out-of-order issue logic, essentially 
causing instructions to be issued in-order. We modeled this 
in SimpleScalar by disabling out of order execution and 
speculative execution, then reducing the size of the RUU to 
one.  We expected extremely poor performance based on 
our previous experiments in RUU sizing. We measured an 
effective IPC of 0.57. The power numbers returned by 
Wattch are not reported here since their accuracy with the 
oddly-sized models cannot be relied upon. The major cause 
of the poor performance is the very high latency of an out-
of-order processor (compared to a simple pipelined 
machine) that causes many stalls when dependent series of 
instructions are run. An out-of-order machine spends a lot 
of time in order to find and exploit parallelism, and 
dramatically reducing the RUU�s capacity causes most of 
this work to be wasted since it eliminates the possibility of 
having many instructions executing simultaneously.  
Moreover, the out of order machine still consumes excess 
power in structures designed to support out-of-order 
execution, for example the many-ported register file. 
 
This led us to another idea-- completely bypassing the 
complicated issue logic of the microprocessor.  If the 
renaming logic and issue window were bypassed 
completely�if a single instruction was passed immediately 
from the instruction fetch stage to the register file read 
stage�the latency of instructions would be substantially 
shorter and the performance would increase substantially. It 
would be tempting to use a banked register file as well, so 
that when register renaming was turned off, access to the 
register file would all come from a smaller �architectural 
register� register file. However, unless a completely 
separate register file was used for the low-power mode of 
operation, each bank of the register file would likely have 
far more ports than would be necessary for a single-issue 
processor, and this would put a bound on the amount of 
power savings that could be achieved. It would be 

worthwhile to build an accurate model of this and simulate 
it in detail in the future.  

VI.  USING A COMPLETELY SEPARATE CORE 
Since simply scaling back the size of the issue window does 
not seem to be an obvious win, we also considered 
eliminating it altogether.  A large, complex, out-of-order 
core could be used when high performance was required, or 
a small, simple, in-order pipelined core could be used when 
low-power operation was needed. Our intuition suggested 
that a simpler core would likely have much lower 
energy/instruction given the same technology, given its lack 
of issue and renaming logic, its smaller register file, and so 
on. Also, since the cores are completely separate, each can 
be optimized separately; the in-order one being optimized 
for minimum energy use and the out-of-order one being 
more aggressively targeted at performance. If the on-die 
caches and other circuits could be used for both cores, the 
overhead in die area for a small in-order core would be very 
small, since it would require fewer functional units and 
much simpler.  
 
We wished to get the most accurate data possible, and the 
Wattch and SimpleScalar models are not designed to 
support power modeling of in-order architectures, so rather 
than using them, we opted to conduct a survey of 
commercially available processors, looking for processor 
families where there is both an in-order and an out-of-order 
implementation of the same ISA in the same technology, 
and of processors that support some other form of 
power/performance tradeoff, for a comparison.   
 
IBM�s PowerPC line includes the model 440 CPU, a dual-
issue, out-of-order machine, and the 405 CPU, a single-
issue, 5-stage pipeline machine, both implemented in the 
same .18 micron copper process [15,16].  The 440, 
operating at 550MHz, consumes approximately 1.0W of 
power, and performs at 1000mips on the Dhrystone 2.1 
benchmark, while the 405 operating at 266MHz consumes 
approximately 0.5W of power while performing 375mips on 
the same benchmark.  Thus, the energy used per instruction 
on the 440 is actually lower than that of the 405.  This is a 
very disappointing result; the faster processor is actually 
using less energy per instruction, so clearly you would 
benefit more from an approach like voltage scaling to 
reduce total energy used across a calculation, or even just 
use the faster processor until the calculation is finished and 
then put it into a sleep mode, both of which also avoid the 
significant area overhead of the dual processor approach. 
 
A comparison of AMD�s K6-2 line of 6-issue out-of-order 
processors and its AM5x86 line of in-order processors is 
slightly more hopeful; the 5x86 consumes slightly less 
power per instruction despite being implemented in an older 
technology. [15,16]  However, a pair of recent processors 
from  Intel and Transmeta demonstrate much more 
impressive results through voltage scaling and also 
demonstrate that cycling in and out of sleep mode can give a 



linear power/performance tradeoff all the way down to 
nearly zero power. 
 
The Intel Pentium III mobile versions utilize voltage scaling 
from 1.6V to 1.3V to achieve a more than 50% reduction in 
power consumption while still achieving 70% of the 
performance.  Unfortunately, they only support a single high 
performance mode and a single low-power mode, with no 
intermediate modes.  Intel�s Xscale line of StrongARM-
compatable chips uses voltage scaling at a much finer 
granularity to go from consuming 450mW at 800MHz to 
only 40mW at 150MHz[17], for a significantly better than 
linear tradeoff.  The Transmeta corporation�s Crusoe line of 
chips use dynamic voltage and frequency scaling from 600 
MHz at 1.6V to 300MHz at 1.2V, achieving a significantly 
better than linear drop in power consumption for a linear 
drop in speed [18].  It also supports a sleep mode which 
consumes virtually no power, and which it can rapidly cycle 
into and out of, which allows it to continue throttling back 
performance for power savings all the way down to zero 
performance at almost zero power.  This demonstrates that 
in mainstream processors with today�s technology, voltage 
scaling and sleep modes are still the best approach to 
power/performance throttling; the methods we have 
proposed don�t achieve any better results, and have 
significant complexity costs. 

VII. CONCLUSIONS 
 
While the bulk of recent computer architecture research has 
focused on increasing performance, many modern 
applications require both high performance and low power.  
Techniques such as voltage scaling and clock gating are 
well established as ways to reduce power consumption 
without adversely affecting performance.  In this paper, we 
considered two techniques for switching between a high-
performance mode and a lower-power, low-performance 
mode.  Dynamically changing the processor's issue width 
seemed promising initially but yielded poor results when 
considering the power consumed per instruction. Installing a 
small in-order core alongside the out-of-order core also 
appeared promising, but making comparisons of energy 
usage between modern processors shows that this too fails 
to yield an overall benefit in terms of power used. 
 
On a high-performance processor such as the Digital Alpha 
21264, between 18 and 46 percent of the total power 
consumed by the processor goes to the issue logic.  This 
suggests bypassing or reducing the issue logic as a route to 
minimizing power consumption if performance is not a 
concern.  Using Wattch and SimpleScalar, we first 
determined that there is a maximum size for the 
SimpleScalar register update unit, or RUU.  Increasing the 
size of this structure, roughly analagous to a real 
microprocessor's register renaming logic and issue window, 
yields no performance gains if this maximum size is 
exceeded.  We then examined the power used by the RUU, 
and found that the performance of the processor drops faster 

than its power requirements when the RUU size is 
decreased.  Thus, the power per instruction has a minimum, 
and we determined that the optimal size is at 16 for the 4 
and 8 issue version we studied, at the point where 
performance gains begin to drop off rapidly. 
 
Because of this result, changing the size of the issue 
window on an actual microprocessor would not be 
beneficial in terms of power consumed.  Real-time 
applications require a certain number of instructions to be 
executed in a particular time frame.  Our results show that 
the minimal power is used by doing this computation using 
the full power of the microprocessor, and then switching to 
a very low power sleep mode in which no instructions are 
executed for the remainder of the time period.  Attempting 
to change the issue width would result in more power being 
used per instruction; since in this scenario the number of 
instructions executed per unit time is constant, this results in 
more power used per unit time.  This approach does require 
rapid switching into and out of sleep mode, and a near zero 
expenditure of energy in the sleep mode, but modern 
processors have demonstrated that this is possible. 
 
Given these discouraging results, we also considered the 
possibility of including a completely separate in-order core 
on the die of a larger microprocessor.  We hoped that the in-
order core would be small enough to fit into a modern 
superscalar machine without significantly impacting the 
layout.  While the in-order machine would have much lower 
performance, it ideally would have had a much lower power 
usage since it lacked the expensive register renaming and 
instruction reordering logic present on the out-of-order 
machine. 
 
A survey of real processors suggests that this unfortunately 
is not the case; the power savings from the in-order core 
would be minimal at best, and in some cases the out of 
order core used less energy.   Other modern processors 
make good use of other approaches which do a better job, 
and research papers have proposed several additional 
approaches which also appear to be more promising. 
 
In this paper, we have shown that neither modifying a 
processor's issue width nor adding a separate in-order core 
offers a possibility for a low-power mode as an alternative 
to a high-performance mode.  We hope to be able to use 
better simulation tools to examine some of the options 
presented here, including completely bypassing the issue 
logic, using a separate register file for in-order execution, 
and including a separate in-order core on chip.  However, 
current widely-used techniques, such as voltage scaling and 
clock gating, appear to offer the best power savings 
currently available for low-power applications. 
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