

Abstract�A growing need for computational power in mobile
devices has spawned increased interest in low-power
microprocessors. Some low-power applications require very
high performance, such as real-time video decoding on
Personal Digital Assistants. A growing body of work has
examined how to provide this high performance when needed,
while throttling performance so that power consumption can
drop to very low levels when performance is not required.
Observing that the issue logic in an out-of-order
microprocessor consumes a significant amount of power,
several groups have attempted to modify this part of the
processor so that it can dynamically enter a low-power mode.
We have revisited these topics and our work shows that simple
approaches to modifying issue logic fail to reduce the average
energy per instruction. We also look at the possibility of
including a low-power single-issue processor on the same die as
a high-performance multiple-issue processor. Swapping
between these two processors allows a dynamic tradeoff
between power and performance, but we show that this
approach also struggles to reduce the average energy per
instruction in the low-power mode.

Index terms�Issue Window, Issue Logic, Out-of-Order, Low
Power, Power/Performance Throttling

I. INTRODUCTION

Much of the thrust of recent computer architecture work has
been in search of increased performance. As transistor
budgets have increased, more and more technologies from
mainframes were incorporated in microprocessor designs.
The product of this evolution was high performance
microprocessors that sacrificed power consumption to
maximize performance. With the emerging importance of
low-power markets, these speed demons have been
retrofitted to consume less power by incorporating clock
gating, voltage scaling, and more recently, dynamic resizing
of key architectural features such as the issue window.

Many existing techniques for reducing power are well
established and extremely effective, including dynamically
reconfiguring the cache[1] and voltage scaling[2]. Reducing
the supply voltage of a microprocessor has a roughly linear
effect on performance (due to weaker electric fields) but a
squared effect on power dissipation (since power
consumption is proportional to ½*frequency*CV2).

 The authors are graduate students at the Massachusetts Institute of
Technology, Cambridge, MA.

Voltage scaling must be taken into account when comparing
two architectures for power efficiency. It is tempting to use
a metric such as energy/instruction or the power delay
product, however, one must also take into account the
required performance level. A processor with seemingly
poor energy/instruction characteristics that has more
performance than required can be run at a lower voltage
thus reducing performance and reducing the
energy/instruction.

While voltage scaling is a very good way of providing
additional power/performance modes, it has its limits. When
operating voltage approaches the threshold voltage of the
transistors, the performance of the transistors begins
dropping off much faster than linearly. As threshold
voltages are reduced, leakage currents increase, which, in
turn, increases power consumption. The Semiconductor
Industry Association predicts that in the year 2005, supply
voltages for low power applications will be 0.9-1.2V [3],
compared to a typical modern supply of 1.2V for a low-
power processor like the Transmeta Crusoe. This implies a
very limited ability for processors to exploit voltage scaling
dynamically in order to scale power/performance. Clearly
there is a need for additional power/performance throttling
mechanisms. Other mechanisms for throttling performance,
such as disabling portions of the cache, also have
drawbacks; if the cache is made too small, the increasing
miss rate will cause more power to be consumed by
requiring main memory accesses.

It has been observed that one major power drain in modern
out-of-order processors is the issue logic; every clock cycle,
each instruction in the issue queue must be checked to see if
it can be dispatched. Retired instructions broadcast the
availability of new operands on long bit lines across the
entire issue window. Some processors, such as the Alpha
21264, compact the issue queue in order to implement an
oldest-first priority algorithm, and this process requires even
more energy. In the 21264, between 18 and 46 percent of
the total power of the processor is consumed by the issue
logic [4].

In light of this, methods of scaling back the size of the issue
window and the number of instructions issued each cycle
have been proposed in order to reduce power consumption
at the cost of reduced performance.[5,6] These methods are
compatible with cache disabling and voltage scaling; for
maximum reduction in power consumption the power
management software could simultaneously reduce the

Issue Logic and Power/Performance Tradeoffs
Edwin Olson eolson@mit.edu, Andrew Menard armenard@mit.edu

voltage to the lowest possible level, disable parts of the
cache, and reduce the issue window size, or it could find
intermediate power/performance points by doing only one
or two of these optimizations, possibly by analyzing the
type of code that is running to determine how much cache it
needs or how much its performance would benefit from a
large issue window. We also consider an alternate scheme
of bypassing complex issue logic completely. We propose
to do this by placing an in-order, single-issue core alongside
the out-of-order multiple-issue core, with the OS able to
swap between them, thus avoiding the complex out-of-order
issue logic completely.

Several studies have shown that relatively simple
modifications can allow an operating system to do
performance throttling without spending an excessive
amount of time profiling the code being executed, [7] and
that relatively simple hardware structures can also monitor
performance needs [5]. Thus, the power overhead required
for dynamic throttling is minimal, which is necessary for it
to be useful. Any overhead necessary to implement the
strategies described in this paper is ignored from a power
perspective; we assume that dynamic reconfigurations are
perfectly efficient. Since we will demonstrate that these
strategies do not reduce power, the omission of the
overhead energy would only make the strategies even more
unappealing.

II. METHODOLOGY

In order to conduct our study, we needed to measure the
impact of changing architectural resource sizes, such as the
number of slots in the issue window, on both power and
performance. The SimpleScalar toolset provides detailed
performance simulators [4]. SimpleScalar provides a
performance simulator using a relatively unique
microarchitecture built around a �Register Update Unit�, an
architectural resource combining the functions of the issue
window and the register renaming unit. This is somewhat
unfortunate, since it does not correlate well to actual chip
designs.

However, the results we receive from these studies can still
yield insight into the effects of scaling architectural features,
and the relative results are still meaningful. Many other
architectural studies have also used SimpleScalar, so our
results can be directly compared with those. Future work
may involve repeating our studies with a model more
closely resembling commercially successful architectures.

SimpleScalar does not provide a mechanism for directly
simulating power usage. However, several research groups
have added power models to SimpleScalar, such as
SimplePower [9], Wattch [10], and the Cai-Lim models
[11]. Wattch's models are better suited to our study because
its models are heavily parameterized and are therefore
capable of reflecting various changes in configuration

without needing to create SPICE models for each variation.
We used version 1.02 of the Wattch power.c model.

Power estimation tools like Wattch and the Cai-Lim models
have recently been the subject of considerable scrutiny [12].
Ghiasi, Grunwald and others have shown that not only are
direct comparisons of energy measurements hopeless due to
large differences in the energy predictions, but even relative
comparisons often fail to agree. A key problem rests in the
fact that an architectural description simply doesn't contain
an adequate amount of information to properly estimate
power, and even reasonable parameterized models quickly
become unrealistic when the parameters are adjusted
beyond a limited range. For example, the Wattch CAM
model used for the RUU structure is a reasonable model for
a 16 entry structure, but if the structure had 256 entries, it
would have been implemented in a completely different way
(multiple banks, perhaps). Therefore, we have limited our
study to modifying parameters by relatively small factors, to
minimize these effects.

We consider 4 issue and 8 issue processors with varying
RUU sizes. The other characteristics of our processors are
listed in Table 1. SimpleScalar allows many parameters to
be adjusted, but we only changed a few. Table 1 is a list of
non-default settings we used for the 4 and 8 issue
architectures we studied.

Table 1.
 4 issue 8 issue
Decode Width 4 8
Commit Width 4 8
Load Store Queue Size 8 8
Integer ALUs 4 6
Integer Multipliers 1 2
FP ALUs 4 4
FP Mul/Div 1 2
Memory Ports 2 4

Our benchmarks are derived from the SpecInt95 suite. Due
to the limited speed of the SimpleScalar simulator (about
90k instructions per second), it was impractical to run the
entire suite, or even an entire single benchmark. Instead, as
is the common practice in the simulator field, reduced input
sets were used. These input sets take substantially less time
to test, but still exercise the processor in ways similar to the
official input sets. Therefore, the performance data we
generated cannot be compared to actual SpecInt scores, but
this is not an issue, as we are primarily interested in the
relative performances of our various models.

Table 2.
Benchmark Input
Li Nqueens 6
Perl test.in
compress95 5000 q 2131
mk88sim ctl.dhry [50M instructions]

For all of these benchmarks, the kernel of the program,
rather than initialization code, dominated the runtime. In
addition, the simulator is completely deterministic, so there
is no need to repeat simulations and average scores.

III. DETERMINING OPTIMAL RUU CAPACITY

Understanding the optimal size for the Register Update Unit
is extremely important when determining what sizes to
model. Several factors influence this optimal size. The goal
of the RUU is to always have enough instructions ready to
feed the available functional units. As the number of
functional units increases, the size of the RUU should
intuitively increase to provide more candidate instructions.
However, due to data dependencies, it is often the case that
the number of instructions that can be fetched is greater than
the number that can be issued. In addition, we want the
RUU to hold a certain �surplus� of instructions so that when
an instruction miss occurs and fetch rate drops to zero, the
functional units can be kept busy, but there is no reason to
make the RUU unreasonably large, since once it reaches a
certain size the inherent parallelism of the code will limit
how many instructions can be issued, rather than any
constraint on how many are in the window.

A. Bounds on RUU Usage
Our first experiment�s goal was to determine an absolute
upper bound on the size of the RUU. We configured
SimpleScalar to use an extremely large RUU (128 entries)
and made modifications to SimpleScalar to collect statistics
on the size of the RUU every cycle. The resulting structure
could hold enough instructions to keep the functional units
busy for dozens of cycles, and is therefore excessive.
However, it does provide an upper bound on the size of the
RUU.

Figure 1.

RUU Usage

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64
RUU Occupancy

Fr
ac

tio
n

of
 C

yc
le

s li
perl
compress
mk88sim

Figure 2.

Figure 1 shows that for all four benchmarks, the RUU
almost never contains more than 32 instructions at either
issue width. Thus, making an RUU any larger than 32
would serve no function; the entries would be empty almost
all the time. Figure 2 shows the results for the 8-issue case;
they are almost. However, it still appears that 32 entries is
sufficient.

When the RUU�s physical size is bounded, the RUU usage
closely mirrors the unlimited case, except that the RUU will
�saturate�. In figure 3, we show the cumulative occupancy
statistics for a large RUU and a 16 entry RUU. We see that
a 16 entry RUU has almost exactly the same occupancy
characteristics when occupancy is between 0 and 15. The 16
entry RUU is fully occupied about as often as the unlimited
RUU has 16 or more entries. This is as would be expected,
and though Figure 3 uses the mk88sim benchmark, the other
benchmarks demonstrate the same behavior, as does the 4-
issue machine.

Figure 3.

0

0.2

0.4

0.6

0.8

1

1.2

0 16 32 48 64

RUU Occupancy

Fr
ac

tio
n

of
 C

yc
le

s

li
perl
compress
mk88sim

mk88sim on 8-issue

0

0.2

0.4

0.6

0.8

1

1.2

0 8 1 2 3 4 4 5 6

RUU Size

Fr
ac

tio
n

of
 c

yc
le

s

8 16 32 64

B. IPC vs. RUU size

The important question now is: if the RUU capacity is
limited beyond the ideal case, what happens to
performance? We measured performance in terms of
Instructions Per Cycle (IPC), since we cannot accurately
determine changes in clock period from within
SimpleScalar. If the length of all the pipeline stages are
well-balanced, it�s likely that dynamically reducing the size
(and therefore delay) of the issue window would probably
not allow the whole processor to be clocked faster.

Figure 4.

Figure 5.

Figure 4 shows the performance of the processor, in terms
of IPC, versus the capacity of the RUU. We notice
immediately that the performance of the processor for
compress and perl is very similar for RUU capacities of 16
and 32 for a 4-issue processor. There�s a small increase for
li. As we expected, there is almost no benefit in scaling the
RUU beyond 32.

If we consider an 8-issue machine, we would expect the
performance of the processor to drop off more rapidly than
the 4-issue with decreasing RUU capacity. This is because
the RUU could be depleted (potentially) twice as quickly,
and the processor is therefore more likely to be unable to
keep its functional units busy. We see precisely this
behavior in Figure 5; there is a noticeable performance
difference for both li and perl between RUU capacities of
16 and 32.

Some research groups have proposed dynamically varying
the issue window capacity [5]. It is obvious that a
parameterized model of an RUU is likely to predict
substantially greater power consumption for a 32-entry
RUU than a 16-entry RUU. We must resist the temptation to
declare that throttling the RUU capacity between 16 and 32
is an effective way of throttling power/performance; there
is very little performance difference between RUUs in that
range, but there is a significant difference in power

IPC vs RUU size for 4-issue

0

0.2
0.4

0.6

0.8
1

1.2
1.4

1.6

1.8

2

0 8 16 24 32 40 48 56 64

RUU Capaci t y

li

perl

compress

m88ksim

IPC vs RUU size for 8-issue

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

0 8 16 24 32 40 48 56 64

R U U C ap aci t y

li
perl
compress
m88ksim

consumption. A power-conscious architect is unlikely to
make the RUU so much larger for such a miniscule return.

C. Relationship between energy and RUU size

However, an interesting question still remains. What
happens to energy per instruction statistics as we decrease
the RUU well into the region of decreased performance? It
might be a good idea to allow a processor to dynamically
decrease its RUU size, for example from 16 to 8, if the
decrease in power more than offsets the decrease in
performance.

Using the Wattch tool, we measured the power consumption
of the processors and calculated the average energy per
instruction assuming realistic clock gating (Wattch�s cc3
models).

Table 3.
Structure 4x4 4x8 4x16 4x32 4x64
Energy/Inst
(li)

15.8 13.0 11.8 12.8 14.1

Energy/Inst
(perl)

16.5 14.3 13.6 14.7 16.1

Energy/inst
(compress)

14.4 11.5 10.6 11.3 12.5

Energy/inst
(m88ksim)

14.7 12.2 11.4 12.4 13.6

Table 3 shows the average energy per instruction for each
benchmark, for various RUU capacities of a 4-issue
processor. We already expected the 4x32 and 4x64
configurations to be suboptimal, since the RUU is
essentially oversized. It�s interesting, however, that the cost
of executing instructions actually increases when the RUU
is shrunk below 16 entries. While the power consumption of
the issue logic is going down with decreasing RUU
capacity, the performance is dropping super-linearly, due to
the smaller amount of parallelism that the processor is
finding.

We can also see that we�re spending more energy per
instruction on codes with less inherent parallelism (perl in
particular). This makes sense since there are a lot of
hardware resources in an out-of-order superscalar processor
looking for parallelism to exploit, but there�s simply very
little parallelism to be found. This overhead cost is being
amortized over very few issued instructions every cycle, and
thus the average energy per instruction is higher.

We�ll also note that we don�t trust the power numbers for
the extreme configurations of RUU (x4 and x64) since they
comprise a significant factor of deviation from Wattch�s
baseline capacity.

The breakdown of power consumption is shown in figure 6.
The patterns of power consumption are similar for all four
benchmarks, so we show only the li case. One component

that is consuming conspicuously more power as the RUU
size is increased is the RUU itself (denoted as �window�).
Somewhat unexpected are the increases in energy in other
areas of the chip. As discussed earlier, when the RUU size
is increased, the total number of instructions (committed +
speculated) executed increases 12-23%, depending on the
benchmark. This causes increased activity in almost all of
the major functional blocks. In addition to the window
energy, we see significant increases in the clocking energy,
the load store queue, and the result bus.

Figure 6.

Power Consumption Breakdowns for 4 issue on
li

0

5

10

15

20

25

30

4x4 li 4x8 li 4x16 li 4x32 li 4x64 li

Configuration
Po

w
er

 (W
)

clock

resultbus

alu

dcache2

dcache

icache

regfile

lsq

window

bpred

rename

In Table 4, we have energy per instruction statistics for an 8
issue processor. We see very similar trends as in the 4-issue
processor. As with the 4-issue case, we observe that the 16-
entry RUU is the minimum energy per instruction point.

Table 4.
Structure 8x8 8x16 8x32 8x64
Energy/Inst
(li)

13.8 12.5 13.4 14.9

Energy/Inst
(perl)

15.1 14.7 15.8 17.6

Energy/inst
(compress)

12.4 11.4 11.9 13.3

Energy/inst
(mk88sim

13.0 12.1 12.9 14.4

IV. OTHER LOW-POWER MODIFICATIONS TO COMPLEX
PROCESSORS

It seems as though scaling a processor�s issue window will
not provide the power/performance throttling we would
like; the optimal energy per instruction point is near the
optimal performance, so there is little to be gained from
scaling it. There are many potential functional units that can
be targeted for energy reduction, but other difficulties arise.

We see from Figure 6 that the register file consumes a
significant percentage of power. SimpleScalar�s RUU
structure works in its favor for minimizing the complexity

of the register file by incorporating the renamed registers
within the issue window and maintaining a separate (and
smaller) architectural register file, whereas in a mainstream
design the register file often contains both the renaming and
architectural registers. In the latter case, the register file is
both physically larger and may have additional ports,
consuming even more power. A low-power mode might use
a smaller set of renaming registers, or turn off register
renaming completely. We do not consider any of these
additional optimizations here.

V. LOBOTOMIZING AN OUT-OF-ORDER PROCESSOR
Our group considered several mechanisms for dynamically
�lobotomizing� an out-of-order processor in order to
provide new power/performance points. Our initial
approaches mirrored those of other groups�dynamically
resizing issue logic, but our study of the effects of RUU
sizing discussed previously in this paper made this seem
problematic.

Our second idea was to disable most of the logic
accompanying the out-of-order issue logic, essentially
causing instructions to be issued in-order. We modeled this
in SimpleScalar by disabling out of order execution and
speculative execution, then reducing the size of the RUU to
one. We expected extremely poor performance based on
our previous experiments in RUU sizing. We measured an
effective IPC of 0.57. The power numbers returned by
Wattch are not reported here since their accuracy with the
oddly-sized models cannot be relied upon. The major cause
of the poor performance is the very high latency of an out-
of-order processor (compared to a simple pipelined
machine) that causes many stalls when dependent series of
instructions are run. An out-of-order machine spends a lot
of time in order to find and exploit parallelism, and
dramatically reducing the RUU�s capacity causes most of
this work to be wasted since it eliminates the possibility of
having many instructions executing simultaneously.
Moreover, the out of order machine still consumes excess
power in structures designed to support out-of-order
execution, for example the many-ported register file.

This led us to another idea-- completely bypassing the
complicated issue logic of the microprocessor. If the
renaming logic and issue window were bypassed
completely�if a single instruction was passed immediately
from the instruction fetch stage to the register file read
stage�the latency of instructions would be substantially
shorter and the performance would increase substantially. It
would be tempting to use a banked register file as well, so
that when register renaming was turned off, access to the
register file would all come from a smaller �architectural
register� register file. However, unless a completely
separate register file was used for the low-power mode of
operation, each bank of the register file would likely have
far more ports than would be necessary for a single-issue
processor, and this would put a bound on the amount of
power savings that could be achieved. It would be

worthwhile to build an accurate model of this and simulate
it in detail in the future.

VI. USING A COMPLETELY SEPARATE CORE
Since simply scaling back the size of the issue window does
not seem to be an obvious win, we also considered
eliminating it altogether. A large, complex, out-of-order
core could be used when high performance was required, or
a small, simple, in-order pipelined core could be used when
low-power operation was needed. Our intuition suggested
that a simpler core would likely have much lower
energy/instruction given the same technology, given its lack
of issue and renaming logic, its smaller register file, and so
on. Also, since the cores are completely separate, each can
be optimized separately; the in-order one being optimized
for minimum energy use and the out-of-order one being
more aggressively targeted at performance. If the on-die
caches and other circuits could be used for both cores, the
overhead in die area for a small in-order core would be very
small, since it would require fewer functional units and
much simpler.

We wished to get the most accurate data possible, and the
Wattch and SimpleScalar models are not designed to
support power modeling of in-order architectures, so rather
than using them, we opted to conduct a survey of
commercially available processors, looking for processor
families where there is both an in-order and an out-of-order
implementation of the same ISA in the same technology,
and of processors that support some other form of
power/performance tradeoff, for a comparison.

IBM�s PowerPC line includes the model 440 CPU, a dual-
issue, out-of-order machine, and the 405 CPU, a single-
issue, 5-stage pipeline machine, both implemented in the
same .18 micron copper process [15,16]. The 440,
operating at 550MHz, consumes approximately 1.0W of
power, and performs at 1000mips on the Dhrystone 2.1
benchmark, while the 405 operating at 266MHz consumes
approximately 0.5W of power while performing 375mips on
the same benchmark. Thus, the energy used per instruction
on the 440 is actually lower than that of the 405. This is a
very disappointing result; the faster processor is actually
using less energy per instruction, so clearly you would
benefit more from an approach like voltage scaling to
reduce total energy used across a calculation, or even just
use the faster processor until the calculation is finished and
then put it into a sleep mode, both of which also avoid the
significant area overhead of the dual processor approach.

A comparison of AMD�s K6-2 line of 6-issue out-of-order
processors and its AM5x86 line of in-order processors is
slightly more hopeful; the 5x86 consumes slightly less
power per instruction despite being implemented in an older
technology. [15,16] However, a pair of recent processors
from Intel and Transmeta demonstrate much more
impressive results through voltage scaling and also
demonstrate that cycling in and out of sleep mode can give a

linear power/performance tradeoff all the way down to
nearly zero power.

The Intel Pentium III mobile versions utilize voltage scaling
from 1.6V to 1.3V to achieve a more than 50% reduction in
power consumption while still achieving 70% of the
performance. Unfortunately, they only support a single high
performance mode and a single low-power mode, with no
intermediate modes. Intel�s Xscale line of StrongARM-
compatable chips uses voltage scaling at a much finer
granularity to go from consuming 450mW at 800MHz to
only 40mW at 150MHz[17], for a significantly better than
linear tradeoff. The Transmeta corporation�s Crusoe line of
chips use dynamic voltage and frequency scaling from 600
MHz at 1.6V to 300MHz at 1.2V, achieving a significantly
better than linear drop in power consumption for a linear
drop in speed [18]. It also supports a sleep mode which
consumes virtually no power, and which it can rapidly cycle
into and out of, which allows it to continue throttling back
performance for power savings all the way down to zero
performance at almost zero power. This demonstrates that
in mainstream processors with today�s technology, voltage
scaling and sleep modes are still the best approach to
power/performance throttling; the methods we have
proposed don�t achieve any better results, and have
significant complexity costs.

VII. CONCLUSIONS

While the bulk of recent computer architecture research has
focused on increasing performance, many modern
applications require both high performance and low power.
Techniques such as voltage scaling and clock gating are
well established as ways to reduce power consumption
without adversely affecting performance. In this paper, we
considered two techniques for switching between a high-
performance mode and a lower-power, low-performance
mode. Dynamically changing the processor's issue width
seemed promising initially but yielded poor results when
considering the power consumed per instruction. Installing a
small in-order core alongside the out-of-order core also
appeared promising, but making comparisons of energy
usage between modern processors shows that this too fails
to yield an overall benefit in terms of power used.

On a high-performance processor such as the Digital Alpha
21264, between 18 and 46 percent of the total power
consumed by the processor goes to the issue logic. This
suggests bypassing or reducing the issue logic as a route to
minimizing power consumption if performance is not a
concern. Using Wattch and SimpleScalar, we first
determined that there is a maximum size for the
SimpleScalar register update unit, or RUU. Increasing the
size of this structure, roughly analagous to a real
microprocessor's register renaming logic and issue window,
yields no performance gains if this maximum size is
exceeded. We then examined the power used by the RUU,
and found that the performance of the processor drops faster

than its power requirements when the RUU size is
decreased. Thus, the power per instruction has a minimum,
and we determined that the optimal size is at 16 for the 4
and 8 issue version we studied, at the point where
performance gains begin to drop off rapidly.

Because of this result, changing the size of the issue
window on an actual microprocessor would not be
beneficial in terms of power consumed. Real-time
applications require a certain number of instructions to be
executed in a particular time frame. Our results show that
the minimal power is used by doing this computation using
the full power of the microprocessor, and then switching to
a very low power sleep mode in which no instructions are
executed for the remainder of the time period. Attempting
to change the issue width would result in more power being
used per instruction; since in this scenario the number of
instructions executed per unit time is constant, this results in
more power used per unit time. This approach does require
rapid switching into and out of sleep mode, and a near zero
expenditure of energy in the sleep mode, but modern
processors have demonstrated that this is possible.

Given these discouraging results, we also considered the
possibility of including a completely separate in-order core
on the die of a larger microprocessor. We hoped that the in-
order core would be small enough to fit into a modern
superscalar machine without significantly impacting the
layout. While the in-order machine would have much lower
performance, it ideally would have had a much lower power
usage since it lacked the expensive register renaming and
instruction reordering logic present on the out-of-order
machine.

A survey of real processors suggests that this unfortunately
is not the case; the power savings from the in-order core
would be minimal at best, and in some cases the out of
order core used less energy. Other modern processors
make good use of other approaches which do a better job,
and research papers have proposed several additional
approaches which also appear to be more promising.

In this paper, we have shown that neither modifying a
processor's issue width nor adding a separate in-order core
offers a possibility for a low-power mode as an alternative
to a high-performance mode. We hope to be able to use
better simulation tools to examine some of the options
presented here, including completely bypassing the issue
logic, using a separate register file for in-order execution,
and including a separate in-order core on chip. However,
current widely-used techniques, such as voltage scaling and
clock gating, appear to offer the best power savings
currently available for low-power applications.

VIII. REFERENCES
[1] David H. Albonesi, �Dynamic IPC/Clock Rate Optimization,�

25th International Symposium on Computer Architecture, 282--292,
June, 1998

[2] T. Pering and T. Burd and R. Broderson, �Dynamic Voltage
Scaling and the Design of a Low-Power Microprocessor System,�
1998 Power-Driven Microarchitecture Workshop, held at the 25th
International Symposium on Computer Architecture, 107--112, June,
1998

[3] Silicon Industry Association, �International Technology Roadmap
for Semiconductors, 1999 Edition�,
http://public.irirs.net/files/1999_SIA_Roadmap/Home.htm

[4] Michael K. Gowan and Larry L. Biro and Daniel B. Jackson,
�Power considerations in the design of the {Alpha} 21264
microprocessor, �35th Annual Conference on Design Automation�,
726--731, June, 1998

[5] Roberto Maro, Yu Bai, and R. Iris Bahar, �Dynamically
Reconfiguring Processor Resources to Reduce Power Consumption
in High-Performance Processors�

[6] Alper Buyutosunoglu, Stanley Schuster, David Brooks, Pradip
Bose, Peter Cook, and David Albonesi, �An Adaptive Issue Queue
for Reduced Power at High Performance�.

[7] L. Benini and A. Bogliolo and S. Cavallucci and B. Ricco,
�Monitoring System Activity for OS-Directed Dynamic Power
Management,� International Symposium on Low Power Electronics
and Design, August, 1998

[8] Doug Berger and Todd M. Austin, �The SimpleScalar Tool Set,
Version 2.0,� June, 1997

[9] W. Ye and N. Vijaykrishnan and M. Kandemir and M. J. Irwin,
�The Design and Use of SimplePower: A Cycle-Accurate Energy
Estimation Tool,� 37th Design Automation Conference, 340--345,
June 2000

[10] David Brooks and Vivek Tewari and Margaret Martonosi,
�Wattch: a framework for architectural-level power analysis and
optimizations,� 27th Annual International Symposium on Computer
Architecture, 83--94, June, 2000

[11] G. Cai and C. H. Lim, �Architectural level power/performance
optimization and dynamic power estimation,� MICRO32,
November, 1999

[12] Soraya Ghiasi and Dirk Grunwald, �A Comparison of Two
Architectural Power Models,� Ninth International Conference on
Architectural Support for Programming Languages and Operating
Systems, November, 2000

[13] IBM Product Datasheet for the PowerPC 440 Core
[14] IBM Product Datasheet for the PowerPC 405 Core
[15] Enhanced AM5x86 Processor Family Datasheet

http://www.amd.com/products/cpg/techdocs/datasheets/19715.pdf
[16] K6-2 Family Datasheet

http://www.amd.com/products/cpg/techdocs/datasheets/18522.pdf
[17] Intel Xscale Microarchitecture Technical Summary

http://developer.intel.com/design/intelxscale/XScaleDatasheet4.htm
[18] Marc Fleishmann, �Crusoe Power Management,� HotChips 12
[19]
[20] David H. Albonesi, �The Inherent Energy Efficiency of

Complexity-Adaptive Processors,� 1998 Power-Driven
Microarchitecture Workshop, held at the 25th International
Symposium on Computer Architecture, 107--112}, June, 1998

[21] R. Y. Chen and M. J. Irwin, �An Architectural Level Power
Simulator,� 25th International Symposium on Computer
Architecture,� June, 1998

[22] Vivek Tiwari and Deo Singh and Suresh Rajgopal and Gaurav
Mehta and Rakes Patel and Franklin Baez, �Reducing Power in
High-performance Microprocessors,� 35th Annual Conference on
Design Automation, June, 1998

