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ABSTRACT
While most consumer microprocessors have used recent ad-
vances in computer architecture to improve performance,
some applications, including portable computing, require
lower power. We explore methods for programs to dynami-
cally change the performance of a processor, allowing parts
of programs that do not require the maximum performance
of a processor to bypass complex issue logic for a low-power
mode with decreased performance.

1. INTRODUCTION
Much of the thrust of recent computer architecture work
has been in the direction of increased performance. Devel-
opments such as out-of-order issue and multiple-issue ma-
chines have led to performance increases in line with the
prediction of Moore’s Law. As performance has improved,
software applications have in turn grown to take advantage
of it. “Modern” programs will only run slowly, if at all, on
the processors of 5 or 10 years ago.

Not all computer systems can afford the power requirements
this improved performance brings. Laptop computers, for
example, are limited by their battery life. While some re-
search has gone into low-power architectures, these have
largely gone into embedded systems where the expected per-
formance is significantly lower.

For most interactive software applications, the vast majority
of the computer’s time is spent waiting for the user. Addi-
tionally, while some computations need the processor’s full
power to finish in reasonable time, others might only need to
run fast enough to keep up with the user. It should then be
possible for a program to tell the processor its performance
requirements, and for the processor to then dynamically re-
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configure itself to an appropriate mode to either maximize
performance or minimize power usage.[2]

One major power drain is an out-of-order processor’s issue
logic. Every clock cycle, every instruction in the issue queue
must be checked to see if it can be dispatched. This results
in broadcasts of data on long bit lines. Some processors,
such as the Alpha 21264, use queue compaction to simplify
the search for a ready instruction, but this process requires
even more energy. In the 21264, between 18 and 46 percent
of the total power consumed by the processor goes to the
issue logic.[7]

Some research has already been done in this direction. Much
of it focuses on disabling sections of the processor’s instruc-
tion or data cache to save power.[1] In a superscalar pro-
cessor, issue and dispatch logic also takes up a significant
fraction of the processor’s total power usage. We therefore
focus on techniquies to bypass the normal instruction issue
logic to minimize power at the cost of performance.

2. METHODOLOGY
Our work targets the MIPS family of processors. MIPS his-
torically has been a relatively straightforward architecture,
and there are a number of tools that support simulations of
it. Additionally, a number of real computer systems, includ-
ing Silicon Graphics’ workstations, have been built around
a MIPS core.

A number of different tools support power and performance
simulations of processors. One popular tool for performance
simulations of is SimpleScalar.[4] SimpleScalar has an inter-
nal architecture, and performs performance simulations on
this architecture. It has been used as the base for a num-
ber of other performance simulation projects. However, it
does not provide any power usage statistics on the simulator
processor.

The majority of our simulations were done with David Brooks’
Wattch tool.[5] Watch is based on SimpleScalar. In addition
to SimpleScalar’s performance results, however, Wattch also
performs power simulation, and returns the amount of power
used by different parts of the processor core.

2.1 Power and Performance



Table 1: Issue Width and Power
Issue Width 1 2 4
IPC 0.57 0.64 1.39
Issue Power 1.75 2.06 6.12
Total Power 6.83 7.10 14.71
Issue Power % 25.59 29.04 41.61
IPC/Power 0.083 0.090 0.094
IPC/Issue Power 0.32 0.31 0.23

Table 2: Issue Window and Power
Issue Width 4 4 4 4
Window Size 32 16 8 4
IPC 1.41 1.39 1.23 0.89
Issue Power 7.47 6.12 4.75 3.14
Total Power 16.83 14.71 12.43 9.28
Issue Power % 44.35 41.61 38.24 33.83
IPC/Power 0.084 0.094 0.099 0.095
IPC/Issue Power 0.032 0.033 0.032 0.026

Running Wattch on its default model provides some inter-
esting insight into the effects of varying issue width and in-
struction window width. Table 1 shows a processor’s power
consumption using issue widths of 1, 2, and 4 instructions.
The “IPC/Power” line is most important: it indicates how
much processing power is available for each unit of electri-
cal power spent. These results suggest that, while the total
power consumed by a single-issue processor is significantly
lower than that consumed by a multiple-issue processor, the
four-issue processor is more efficient in terms of power us-
age.1

Varying the size of the issue window provides more inter-
esting results; these are summarized in Table 2. Again, the
“IPC/Power” line indicates the amount of processing power
available per unit of power consumed. While larger issue
widths unambiguously lead to better IPC, there is not sig-
nificant improvement in the performance of a 32-instruction
window over the performance of a 16-instruction window.
Note that an 8-instruction window gets IPC/Power of 0.099;
this seems to be a near-optimal configuration in terms of
power-efficient execution.

3. TECHNIQUES
Processors will have at least two modes: a high-performance
mode, a low-power mode, and possibly a number of inter-
mediate modes. Processors will have explicit instructions
to switch from one mode to another. The switch may take
significant time; consequently, we expect that applications
or operating systems will only switch modes occasionally.
It is nevertheless desirable to minimize the time and effort
required to switch modes.

3.1 Side-by-side Cores
A simple technique for having a high-performance mode and
a low-power mode is to have two completely separate pro-
cessor cores. In high-performance mode, a superscalar core

1The in-order processors (single- and double-issue) are
poorly modelled. We believe the IPC figures for these pro-
cessors to be too low, and their power consumption too high.

runs. For low power, a simple pipelined machine is placed
alongside.

One disadvantage of this approach is the significant time
required to switch modes. The switching involves complet-
ing the remainder of the instructions in either the pipeline
or the superscalar issue window, and then transferring the
contents of the register file from one processor to the other.
There are additional complications involved with register re-
naming in the superscalar core. A straightforward approach
is to ask the first processor to dump its register file to mem-
ory, switch to the second processor, and then restore it to
memory, but this can be a very expensive operation.

3.2 Disabling Issue Logic
If the superscalar issue logic is disabled, a superscalar core
can effectively become an in-order processor. The switching
cost of this approach is low: we only need to wait for all
outstanding instructions to finish. Aside from the disabled
issue logic, all of the remaining parts of the processor are
still useful.

3.3 Dynamically Varying Issue Width
The approaches discussed so far have taken an “all-or-nothing”
approach: a processor is either in a high-performance mode
or a low-power mode, with no middle ground. Power con-
sumption varies significantly with a processor’s issue width.
By allowing varying issue widths, we can allow an interme-
diate level of performance with a very low switching cost.
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