
Energy Efficient Program Control
6.893 Project Proposal

Ronny Krashinsky and Mike Sung
MIT Laboratory for Computer Science, Cambridge, MA 02139

fronny|darkman g@mit.edu

9-26-2000

At an abstract level, programs consist of computation, data ac-
cess, and control. The program control directs the flow of in-
structions during the execution of a program. Control flow in-
structions typically consist of conditional branches, jumps, and
procedure calls and returns. Program control adds overhead to
both the performance and energy usage of a program. In this
project, we propose to investigate energy efficient program con-
trol mechanisms.

Initially, we will investigate program control in RISC proces-
sors. In a standard RISC processor, each instruction causes a
flurry of micro-architectural operations. RISC ISAs have tradi-
tionally been optimized for performance; thus, they are designed
to maximize the work performed by each instruction, as long as
this work can be hidden in a pipelined implementation. This de-
sign goal is contrary to energy efficient implementations since in
this case the work performed should be minimized.

Consider the following C code:

for(i = 0; i < x; i++)
j += i <<1;

This is converted by the compiler to MIPS RISC code like:

L: addu $ri $ri 1
addu $rj $rj $rs
slt $rc $ri $rx
bne $rc $r0 L
sll $rs $ri 1

For the above code, we see that program control for the loop
consists of aslt instruction to set the condition, followed by
a bne instruction to branch to a program location based on that
condition. Theslt requires two 32-bit register file reads, a 32-
bit ALU comparison, and a 32-bit register file write to set the
comparison result. Thebne requires two 32-bit register reads,
another 32-bit ALU comparison, and a 32-bit branch target cal-
culation.

As we can see, the program control for this sequence is ex-
tremely inefficient. 32-bit registers are used to store the true/false
condition flag, and two 32-bit comparisons are performed. Many
RISC architectures avoid this energy overhead by using condi-
tion codes to determine branches. Condition codes usually are
set as a side-affect of arithmetic operations. Another alternative
is to define a set of 1-bit condition registers which can be used
as destinations for comparison instructions. In this case, boolean
operations could also be performed using these registers. Another

advantage of condition codes/registers is that they allow for very
early branch resolution, potentially improving performance.

Another inefficiency in the above code is that the branch tar-
get address is calculated during every iteration of the loop. This
could be avoided by including a branch target register (BTR) in
the architectural state of the microprocessor. The compiler would
set the BTR to the loop target before entering the loop (via a spe-
cial load address instruction). Then the affect of the branch would
be to set the program counter to the value of the BTR; there would
be no need to recalculate the same branch target during every it-
eration of the loop. Additionally, the branch could be encoded
using fewer bits, potentially leading to more energy savings.

With our proposed changes, the above code can be changed to:

la $btr L
L: addu $ri $ri 1

addu $rj $rj $rs
sltb $c1 $ri $rx
bbz $c1 (btr)
sll $rs $ri 1

This code is potentially much more energy efficient in its pro-
gram control. Now the modifiedslt instruction (sltb) only
writes a single bit for the comparison set. The modified branch
instruction (bbz) only reads a single bit to determine the branch
condition, and the branch target does not have to be calculated
inside the loop.

In this project, we propose to evaluate the energy efficiency
of alternative control mechanisms for RISC architectures. We
plan to look into the mechanisms mentioned above, and we may
also look into others such as auto-decrement instructions for loop
control and predication to eliminate branches. If time permits
we would also like to evaluate the energy efficiency of program
control in other architectures such as vector, data flow, and VLIW.

Our plan is to:

� Profile benchmarks to determine commonly used control
patterns (ISA simulator)

� Develop ISA extensions for alternative control mechanisms

� Modify compiler or assembly code to support ISA exten-
sions

� Implement micro-architectural changes (SyCHOSys)

� Simulate energy usage (SyCHOSys)

� Analyze and iterate

