
The CAE Architecture: Decoupled Program Control for
Complexity-Effective Performance.

Ronny Krashinsky and Mike Sung
6.893 Project Report (checkpoint 1)

MIT Laboratory for Computer Science, Cambridge, MA 02139
fronny,darkman g@mit.edu

Abstract

Monolithic superscalar architectures will not scale into
the next era of computer architecture. Their design is based
on structures with a high degree of connectivity that will
not be available in future chips in which a clock cycle cov-
ers a tiny fraction of the area. Their performance is based
on reckless speculation that will not be tolerated in future
complexity-effective designs. The processor of the future
is composed of many decoupled elements working inde-
pendently but in collaboration. As went the supercomput-
ers, so will the superprocessors.

A promising next-generation architecture has been
demonstrated in decoupled access/execute machines.
These processors have split apart the memory access and
execution portions of a program, and thus have immedi-
ately exposed a large amount of ILP. By allowing these
streams to slip relative to each other, these machines enjoy
the benefits of out-of-order execution and memory latency
hiding with very little overhead. Additionally, the queues
which connect these decoupled elements together provide
the benefits of register renaming without the complexity
required in superscalar architectures.

This work presents decoupled control flow, the next step
which will enable processors of the future to reach new lev-
els of performance. In a decoupled control/access/execute
(CAE) machine, a control processor runs ahead and feeds
directives to the memory access processor and the main
execution processor; the directives are in the form of com-
mands to execute basic blocks. The execution engine is
then responsible for processing streams of valid instruc-
tions and data values, obtained without the overhead of
speculation. This is a fundamental departure from the
model in which an execution engine must actively fetch
instructions and data values, or speculate to hide latency.
As a result, new levels of performance are obtainable.

1 Introduction

2 CAE Architecture (TRS)

2.1 Queue Communication

2.2 Control Processor

2.3 Access Processor

2.4 Execute Processor

2.4.1 Caches/Queues for Streaming Instructions

2.4.2 Fast Streaming Engines

3 CAE Programming

4 CAE Performance

4.1 Livermore Loops

4.2 Streaming Media

5 CAE Analysis

5.1 Complexity

5.2 Comparison to Superscalar

5.3 Comparison to DSPs

6 CAE Extendibility

6.1 Tiled CAE processors

7 Conclusion

1



References

[1] Wm. A.Wulf. Evaluation of the WM computer architecture.
journal, 0.

[2] Wm. A.Wulf. The WM computer architecture.Computer
Architecture News, 16(1):???, March 1988.

[3] E. Rotenberget. al. A study of control independence in
superscalar processors.journal, 0.

[4] E. Rotenberget. al. Trace processors.journal, 0.

[5] James E. Smithet. al.The astronautics zs-1 processor.jour-
nal, 0.

[6] M. Farrens, P. Ng, and P. Nico. A comparison of superscalar
and decoupled access/execute architectures.journal, 0.

[7] L. Gwennap. Mips r10000 uses decoupled architecture.
journal, 0.

[8] P. T. Hulina, L. Kurian, E. B. John, and L. D. Coraor. De-
sign and vlsi implementation of an access processor for a
decoupled architecture.journal, 0.

[9] L. K. John, A. Subramanian, P. T. Hulina, and L. D. Coraor.
Improving the parallelism and concurrency in decoupled ar-
chitectures.journal, 0.

[10] L. Kurian, P. T. Hulina, and L. D. Coraor. Memory latency
effects in decoupled architectures.journal, 0.

[11] J. E. Smith. Dynamic instruction scheduling and the astro-
nautics zs-1.IEEE Computer, 22(7):21–35, July 1989.

[12] James E. Smith. Decoupled access/execute computer archi-
tecture. InISCA 9, 1982.

[13] J. Tubella and A. Gonzalez. Control speculation in multi-
threaded processors through dynamic loop detection.jour-
nal, 0.

[14] G. Tyson and M. Farrens. Code scheduling for multiple
instruction stream architectures.journal, 0.

[15] G. Tyson, M. Farrens, and A. Pleszkun. Misc: A multiple
instruction stream computer.journal, 0.

2


