
Cool Code Compression for Hot RISC
Advanced VLSI Computer Architecture Term Project Proposal

Mark Hampton and Michael Zhang
MIT Laboratory for Computer Science, Cambridge, MA 02139

fmhampton|rzhang g@lcs.mit.edu

1 Introduction and Background

Over the next few years, more than half of the processor market will be for cost-sensitive, low-power em-
bedded processors. Embedded processors are highly constrained by cost, power, and size, thus code size has
become a very important constraint for software designers targeting embedded applications. Even though
microprocessors employing RISC instruction sets benefit from its simplicity in decoding logic, low code
density has frequently limited its instruction cache bandwidth, often resulting in lowered performance. High
performance systems can also benefit from smaller code size due to the reduction in instruction cache miss
rate. The metric for a good code compression algorithm is measured by compression ratio, shown in Equa-
tion 1, while other parameters also need to be considered such as speed and simplicity of decoding.

compressionratio =
compressedsize

originalsize
(1)

Traditionally, there are two kinds of compression methods:statisticalanddictionary. Statistical com-
pression looks at the entire program and replaces more frequently appeared text patterns with shorter code-
words. A good example is the Huffman encoding algorithm. Dictionary compression, on the other hand,
uses fixed length codeword to act as index into the dictionary table. It is obvious that statistical compression
will be able to achieve better compression ratio, but dictionary compression will give simpler and faster
decoding.

2 Related Work and Our Proposal

There has been extended research done for code compression, mostly focusing on compression ratio. One
category of compression concentrates on improving the RISC instruction set such as Thumb and MIPS16.
These techniques bare the entire compression task to compilers and usually obtain good compression ratio.
They need to execute more instructions but achieve a higher instruction fetch bandwidth.

Another kind of compression technique involves hardware decoders which decodes compressed instruc-
tion at run-time. The compressed code RISC Processor (CCRP) is such an example. No hardware or in-
struction set modifications is necessary. However, this method does not improve instruction fetch bandwidth
since decoding is done on the cache side.

In our project, we would like to explore new ways to encoding programs We will first investigate some
of the existing compression algorithms. Based on current techniques, we will examine how compilers can
generate more compression-friendly code such that the compression algorithm will find more opportunities
to compress the code. We will also examine how simple, fast, and low-power run-time decoding can be
done, most likely in hardware. We do not intend to modify the RISC instruction set for simplicity reasons.

1


