
Correlation Between State and Control Signals in
Out-of-Order Issue Logic

Kenneth Barr and Kenneth Conley
Massachusetts Institute of Technology

Advanced VLSI Computer Architecture, Fall 2000

{kbarr, conley}@mit.edu

ABSTRACT
Current out-of-order control logic is optimized for per-
formance rather than low-energy operation. Key out-
of-order logic structures, including register renaming
logic and superscalar issue logic, are examined for pat-
terns and correlation between state and asserted con-
trol signals. We study the behavior of a register re-
naming scheme, showing potential to increase instances
of reused renaming tags. We demonstrate that an is-
sue logic prediction scheme would be successful and
could be used to reduce wakeup window size. We esti-
mate accuracy for such a scheme to exceed 80% accu-
racy in cases where it can be applied successfully and
we suggest an explanation for cases in which it fails.
By exploiting high correlation, predictive or memoiza-
tion techniques could be implemented in the issue logic
to eliminate redundant work and increase energy effi-
ciency.

Keywords
Out-of-Order, Power consumption, prediction, control
logic

1. INTRODUCTION
When manufacturers tout their latest superscalar pro-
cessor designs, high performance often overshadows en-
ergy efficiency. Yet, the logical structures responsible
for extracting performance-enhancing ILP are some of
the most complex in a superscalar processor in terms of
delay, scaling, and power. With predictive and memoiz-
ing structures dominating the front-end of most modern
superscalar pipelines, it was logical to wonder whether
these structures could be leveraged to project predic-

This paper describes a project undertaken by Kenneth Barr, Kenneth Conley,
and Serhii Zhak as part of MIT’s Course 6.893: Advanced VLSI Computer
Architecture. c©2000

tions further down the pipeline to eliminate the need
to exercise complex out-of-order issue logic on each cy-
cle. Specifically, this paper analyzes the relationship
between out-of-order issue logic and the current pro-
gram counter to see if the two are correlated. The reg-
ularity of the register renaming logic is also examined,
motivated the increasing need to rename multiple in-
structions at a time. This paper explains a set of corre-
lation statistics, explains how they were gathered, and
suggests how the positive measured results can serve
two power-saving goals. First, high correlation allows
bypassing of pipeline stages similar to traditional and
novel trace cache processors. In addition, the wakeup-
window issue logic (one of the limiting factors in VLSI
design) could be decreased in depth.

2. RELATED WORK
In dynamically scheduled superscalar processors, the
size (and thus delay and power consumption) of the
issue logic depends quadratically on the product of in-
struction issue width and instruction window size. This
delay is mainly due to the associative search required
by the issue logic [2] and performance-centric design
philosophies [3]. The power consumption of such logic
was measured at 18-46% by the designers of the Al-
pha 21264 [5] and studied in a recent paper [4] which
modeled an out-of-order superscalar processor at the
level of functional blocks. This study found that the
renaming table, instruction queue, and reorder buffer,
all necessary for extracting instruction level parallelism,
are responsible for an average of 53% of the total power
consumed by a processor. In addition, each of these
three units considered individually consumes more en-
ergy than any other part of the processor (e.g., cache,
branch predictor, functional units, and I/O). To address
the power consumption of the instruction queue, the au-
thors proposed a dynamically resized queue which saved
57% of the power consumed by the queue and reduced
the total power consumption of the processor by about
15%.

Other authors have attempted reduce power usage in



the issue logic. Hiraki et al. [6] proposed a decoded
instruction buffer that memoized control signals for ex-
ecution with power savings of 40% for loops in an in-
order processor; Wang and Roy [13] proposed a new
encoding scheme for storing control signals in micro-
programmed control units and claimed 4.8%-16.5% re-
duction in switching activity. Complexity effective de-
sign was surveyed in a paper by Palacharla, Jouppi, and
Smith. [9]. Reducing delay by eliminating the associate
search through the instruction window motivates their
proposed organization of a wakeup window made up of
just the heads of dependency-based issue queues. The
issue prediction logic presented in section 3.3 can be
used to achieve the same goal.

A renaming scheme relying on a modified ISA and com-
piler hints can be used to reduce the number of read
ports in a register as shown by Sprangle and Patt in [11].
Jourdan [7] proposed physical register reuse in a value-
identity detection scheme to improve performance. De-
spite this work, there remains great potential to reuse
physical register mappings. If such potential could be
exploited, a structure such as Vajapeyam’s trace cache
[12] (which stores register renaming tags) could be used
to reduce the need to use power-intensive structures to
rename multiple registers at once.

Research has also been done at the circuit level for sav-
ing power in control logic [8], but such results are be-
yond the scope of this paper.

3. METHODOLOGY AND RESULTS
The SimpleScalar microarchitectural simulator [1] has
been extended to provide detailed per-instruction statis-
tics that explore trends in register renaming. In ad-
dition SimpleScalar pipetrace output is analyzed with
custom parsers. Through the use of an oracle in the
Fetch stage of the pipeline that, through prediction, al-
lows complex issue logic to be disabled, we attempt to
quantify the upper bounds of correlation between pro-
cessor state and asserted control signals.

3.1 Pipetracing
Profile statistics were collected using programs from the
SPECint95 benchmark suite with scaled-down datasets
(Table 1). The first five million instructions of each
programs were skipped to avoid initialization routines.
To warm up the cache and predictors, an additional six
million instructions were allowed to commit using the
SimpleScalar default, cycle-accurate, out-of-order pro-
cessor described in Table 2. At this point the pipeline
tracer was activated to capture the state of the ma-
chine until an additional 250,000 instructions had been
committed. While this represents a tiny portion of
the program’s execution, it was necessary due to disk
space constraints. For the analysis, 250,000 instructions

Program Input Data

cc1 jump.i
compress95 bigtest.in
go 50 21 9stone21.in
ijpeg penguin.ppm
li *.lsp
m88ksim ctrl.in
perl scrabbl.pl
vortex vortex.in

Table 1: Benchmarks and Inputs (from “refer-
ence” set).

Item Size

Instruction fetch queue size (in insts) 4
Issue width 4
Commit width 4
Register Update Unit (window) size 16
Load/Store Queue (window) size 8

Table 2: Default simulator configuration

were sufficient to saturate the issue and renaming logic
(which holds only 24 active physical destination reg-
isters at a time). Also, the instantaneous wakeup-set
statistics (section 3.1.1) are gathered by static dataset
analysis even though a hardware scheme would likely
operate dynamically. This small dataset approximates
the gains that could be achieved in a hardware structure
of reasonable size. It does so better than measuring the
performance of a predictor trained over several million
instructions, over which the program state has much
greater variance. Furthermore, it was not the goal of
this paper to present estimated performance benefits, so
a workload representing the complete execution would
not have added to our analysis.

Two types of profile statistics were collected using Sim-
pleScalar. We termed these ”instantaneous” and ”in-
struction consistency” statistics. For both types of pro-
file statistics, cache misses, TLB misses, and branch
mispredicts were ignored as actual hardware would avoid
training against this worst-case behavior.

3.1.1 Instantaneous Statistics
Our instantaneous statistics examine the correlation be-
tween a cycle’s Fetch program counter (fetchPC) and
the instructions issued to functional units in that cy-
cle. Figure 1 shows how often one could predict a set of
dispatched instructions by predicting the window seen
most frequently with the current fetchPC. The dual pre-
dictor bar shows improvement gained by keeping track
of the two most popular wakeup sets for a particular
fetchPC. The highest frequency correlation determines

2



0
10
20
30
40
50
60
70
80
90

100

cc
1

co
mpr

es
s go

ijp
eg li

m88
ks

im pe
rl

vo
rte

x

av
er

ag
e

A
cc

ur
ac

y 
(%

)
Single Predictor

Dual Predictor

Figure 1: Issue Window Prediction Accuracy

0

10

20

30

40

50

60

70

80

90

100

ijpeg m88ksim perl

P
er

ce
nt

overall consistency

latency to ex consistency

Figure 2: Latency to EX Consistency

a lower bound on the success rate of an issue logic pre-
diction mechanism, assuming that a predictor can be
properly trained. With the SPECint95 benchmarks this
lower bound would be between 49.3% and 77.0% with
the average lower bound being approximately 66%. Im-
proving on this lower bound is discussed in sections 3.1.2
and 3.3.

3.1.2 Instruction Consistency Statistics
Another type of profile statistic that was collected stud-
ied the consistency of an individual instruction’s path
through the stages of the pipeline. We define a consis-
tent instruction to be one that spends the same amount
of time in each stage of the pipeline every time it exe-
cutes. Figure 2 shows that instructions are consistent
roughly 65%-80% of the time. This percentage grows to
75-85% when restricting the definition of consistency to
measure only the time it takes an instruction to move

from Fetch to Execute stages of the pipeline.

The instruction consistency statistics tend to indicate
a high amount of instruction interdependence in deter-
mining the issue windows. Probabilistically, the issue
windows would only have a correlation of 0.754 = 31.6%
if each of the instructions in the issue window was in-
dependently determined with a consistency rate of 75%
(the minimum latency-to-Execute consistency shown in
Figure 2). We found this correlation to be much higher,
which shows that instructions tend to be issued with the
same instructions for a given fetchPC.

Furthermore, the instantaneous statistics found a cor-
relation of roughly 50-75% between the fetchPC and is-
sued instructions, and a narrower 70-75% for the three
sample benchmarks (ijpeg, m88ksim, perl). Given that
cache and TLB misses are filtered out, we found that
the instruction consistency data bounds functional unit
and data dependencies between 15-25% (the opposite of
the latency-to-Execute consistency) for the three bench-
marks. Comparing this bound with the equivalent in-
stantaneous statistics, it was expected that the majority
of the inaccuracy in the instantaneous statistics is due
to functional unit and data dependencies, not errors in
branch prediction. However, other factors that may also
affect instruction consistency, such as buffer sizes in the
Fetch and Dispatch stages, were not accounted for.

Unlike the instataneous statistics, the data for the three
sample benchmarks were collected for instruction traces
that ran for several million cycles. Due to the volume of
data we had to process, SimpleScalar’s pipetrace facility
had to be re-written to produce binary pipetraces, and
the output had to be separated into multiple traces of
one million instructions. Summary data from the sep-
arate traces was then aggregated in the final statistics.
Although the data from the traces were not necessarily
independent, as the same PC may have been present in
multiple traces, the traces were sufficiently long to re-
flect what a processor would view before retraining its
data set.

Statistics for all eight SPECint95 benchmarks were not
collected because, unlike the instantaneous statistics,
we did not envision an actual power-saving prediction
scheme that correlated well with this concept of instruc-
tion consistency. An analysis using these three bench-
marks was sufficient for our needs and is validated by
the results presented in section 3.3.

3.2 Renaming
The SimpleScalar RUU scheme [10] ties renaming to all
aspects of out-of-order execution. Each RUU serves as
a physical destination register for renaming as well as
a reservation station and part of the reorder buffer and

3



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Cycles

C
um

m
ul

at
iv

e 
P

er
ce

nt
ag

e

Figure 3: Register Mapping Reservation Dura-
tion

wakeup window. Unfortunately, this makes it difficult
to quantify the independent effects of register renaming
or to see how renaming effects other aspects of out-of-
order control. Nevertheless, we were able to extended
SimpleScalar to manage a ”free list” of physical registers
and added extensive per-instruction renaming statistics
including minimum, maximum, and average length of
time a logical destination register stays mapped to par-
ticular physical register; number of dynamic instances
of an instruction; and the number of times an register
is renamed to its initial mapping.

Initial results were compiled by examining these statis-
tics after running 500,000 instructions of a Perl bench-
mark on a default SimpleScalar configuration (with 16
RUUs). Figure 3 shows that every instruction needs a
physical register for at least three cycles, but 80% re-
linquish their mapping within seven cycles. This gives
hope that a scheme could quickly reassign a mapping.

Figure 4 quantifies this hope. We run all eight spec
benchmarks using reduced datasets shown in Table 1.
Each benchmark was run for 50 million instructions.
Just before a logical register is assigned an RUU, we
check to see if its original RUU is available. In 59%-
77% of the cases, the original RUU available. Despite
this, less than 10% of renamed registers map to their
original mapping.

To finalize the upper bound we forced this remapping
to occur if the physical register first used for this in-
struction was free. The results are also displayed in
Figure 4. Examining the average case, one sees that
45% of instructions can be renamed to their original
physical register when such a renaming is forced. Inter-
estingly, this is less than the 67% potential shown in the

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cc
1

co
mpr

es
s go

ijp
eg li

m88 pe
rl

vo
rte

x
av

g

F
ra

ct
io

n

Could Map to Original Mapping 

Mapped to Original Mapping

Mapped to Original Mapping when forced

Figure 4: Register Renaming Behavior

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cc
1

co
mpr

es
s go

ijp
eg li

m88 pe
rl

vo
rte

x
av

g

R
em

ap
 F

ra
ct

io
n

8 RUU 4 LSQ

16 RUU 8 LSQ

32 RUU 16 LSQ

Figure 5: Registers Remapped When Forced

first bar. We attribute this difference to the occasional
“stealing” of a mapping desired by a future instruction.
Fortunately, as explained earlier, mappings are reserved
for a very short period of time, so the impact is obvious
but not severe.

Intuition suggests that fewer choices of physical reg-
isters would lead to higher correlation at the expense
of performance. Surprisingly we found the number of
RUUs (which correspond to available physical registers)
to play a very minor role in the remapping frequency.
Testing various configurations yields Figure 5.

Since modern superscalar processors will rely increas-
ingly on renaming multiple registers at a time [12], the
results we have gathered suggest there is lots of po-
tential to improve the register renaming structures in
an out-of-order machine. If the logical structures could

4



coax registers into using their original mapping with
high accuracy (greater than the 45% that naturally oc-
curs), one could attempt to speculate the rename pro-
cess, checking its correctness in parallel. This would
allow for a physical register file with fewer ports sav-
ing both power and performance. Currently, if such a
speculation scheme were implemented to save power,
it would fail 55% of the time and require a very fast
recovery scheme to justify the lost performance.

3.3 Issue Oracle
As discussed previously (section 3.1.1), the fetchPC-
versus-issue window correlation statistics provide a lower
bound for the prediction success rate of a properly trained
issue window predictor. However, this lower bound can
be improved upon because the correlation statistics do
not differentiate between genuine mispredicts and false
mispredicts. We implement an oracle that simulates a
hardware prediction scheme residing in the Fetch stage
of an out-of-order microprocessor that sends predicted
issue instructions directly into the wakeup window. The
oracle is an ideal predictor trained with profile data
from previous executions of an instruction trace. In a
non-ideal hardware realization of this scheme, the Dis-
patch stage (broadcast and select) would be disabled
when possible, allowing for a shorter “hot pipeline.”

3.3.1 Background
A genuine mispredict may either be a branch mispre-
dict, where the oracle prediction does not correspond
with the instruction path chosen by current branch di-
rection; or a synchronization mispredict, which occurs
when an instruction the oracle is predicting has already
been issued prior to the oracle turning on. We define
a false mispredict to be one where the oracle is pre-
dicting along the correct branch path and the predicted
instruction has not yet issued, but the predicted issue
window does not match the instructions that are actu-
ally issued. We call this a false mispredict because this
type of mispredict would generally be caused by func-
tional unit dependencies and can be resolved through
the dynamic wakeup window logic. Thus, this type of
mispredict does not affect the performance of the ora-
cle, though it causes the wakeup window size to increase
temporarily while the dependency is being resolved.

If an issue window prediction scheme were implemented,
a true lower bound on the prediction success rate would
be one without false mispredicts. In a loop with a
large number of executions, the false mispredicts will
dominate the genuine mispredicts once a predictor suc-
cessfully synchronizes with the processor. Thus, the
lower bound should be higher than was found in sec-
tion 3.1.1. In section 3.1.2 we estimate that this im-
provement should be around 15-25%.

The instantaneous correlation statistics do not concern
themselves with bounding the number of consecutive
cycles a prediction scheme can be expected to run. This
statistic must necessarily be high in order to amortize
the costs of switching into a prediction mode. We pro-
vide measurements of the oracle average run length in
section 3.3.3. The results of the oracle experiment pro-
vides better bounds on this type of data, and helps es-
timate the power-savings possible by predicting issue
windows.

3.3.2 Implementation Notes
In the oracle prediction logic we have implemented, the
dispatch stage is not disabled, but the oracle only allows
predicted instructions to enter the issue wakeup window.
SimpleScalar does not have a distinct issue wakeup win-
dow, so, in order to simulate the effects on wakeup win-
dow size with an issue oracle, an issue wakeup window
was implemented.

The oracle is designed to measure prediction accuracy,
run length, and wakeup window size of an ideal predic-
tion scheme. Performance costs of mode switching are
assumed to be zero, because reasonable design targets
for these costs can be estimated from the other data.
However, we do speculate that the performance cost can
be kept reasonably small. Assuming that predictions
are sent directly from the Fetch stage to the wakeup
window, then only instructions in the functional units
and wakeup window, as well as some instructions in
the reorder buffer, will have to be squashed. The extra
cycles saved by this shorter pipeline, versus a branch
mispredict in the full pipeline, could be used for the
more complex cleanup the reorder buffer may require.

3.3.2.1 Wakeup Window
We chose to implement an oracle that simulates utiliz-
ing dynamic wakeup window logic. However, it would
also be possible to implement an oracle that uses no
issue wakeup window, which would correspond to even
further power savings and eliminate another stage in
the microprocessor pipeline. Such a scheme, though,
can be less desirable because it makes the oracle pre-
dictions more sensitive to functional unit dependencies,
thus causing false mispredictions. From the instruction
consistency measurements of the latency to the Exe-
cute stage (section 3.1.2), we believe that a bound on
these dependencies could range from 15-25% in certain
benchmarks. In the event of a false mispredict, the or-
acle must either stall the entire frontend to wait for the
dependency to be resolved, or it must stop predicting.

In an oracle scheme that utilizes an issue wakeup win-
dow, these data and functional unit dependencies will
only cause the issue wakeup window usage to grow tem-
porarily, and will eventually be resolved by the dynamic

5



wakeup window logic. Furthermore, the oracle does not
have to resolve which functional unit the instruction is
issued to, which decreases the occurrence of these de-
pendencies.

3.3.2.2 Oracle Datasets
Storing out-of-order data with in-order data requires
consistent traces for the oracle dataset. To have a cor-
rect dataset for an oracle to predict from, all of the
in-order instructions must eventually be predicted to
be issued by the oracle. Otherwise, a non-predicted in-
struction would eventually cause the pipeline to stall
due to data dependencies. It would also cause instruc-
tions to fill up the wakeup window, which is counter to
the goal of power-saving.

Using the fetchPC as the index, the oracle dataset was
filled with “consistent” traces. The requirements for
a consistent trace were very stringent. We examined
fetchPCs and their issue windows from the previous
data collection. Using this data, a consistent trace can
be collected by examining each fetchPC in the Sim-
pleScalar pipetrace. If two consecutive occurrences of a
fetchPC match in their issue window, then this data is
deemed to be part of a “consistent trace” and is stored
in the oracle dataset. In our implementation of this al-
gorithm we chose the simplifying assumption that the
dataset would be trained off of the first instance of the
fetchPC rather than using the mode found in the full
profile statistics.

While a consistent trace does not perfectly ensure that
non-predictions are prevented, it is a likely indicator
they will not occur. However, we found even this non-
perfect requirement to be too stringent. For ijpeg, which
only had 100 unique fetch PCs out of the 250,000 com-
mitted instructions, this algorithm only returned one
fetchPC for the dataset. Other benchmarks reported
better results, but the average cycle coverage still was
still only 24%, even though the majority of the bench-
marks had less than 700 unique fetchPCs. The cycle
coverage is defined to be the ratio of the number of cy-
cles the fetchPC occurs to to the total number of cycles.
It is an indication of the number of cycles during which
an oracle could make a prediction during the trace. We
sought to improve the cycle coverage of the dataset by
relaxing the dataset algorithm to allow for a dual pre-
dictor oracle.

Instead of requiring the second occurrence of the fetchPC
have the same issue window mode as the first occur-
rence, we extended our dataset collection to also look
at the third occurrence. If the third occurrence matched
and the second occurrence did not, then the second oc-
currence was stored as an alternate prediction. These
requirements would have met the need to have a con-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cc
1

co
mpr

es
s9

5 go
ijp

eg li

m88
ks

im pe
rl

vo
rte

x

C
ov

er
ag

e 
F

ra
ct

io
n

Cycle Coverage (Single)
PC Coverage (Single)
Cycle Coverage (Dual)
PC Coverage (Dual)

Figure 6: Oracle Dataset Coverage

sistent trace, but also allow for some variance between
consecutive loop executions. Further, the issue win-
dow correlation statistics show that the mode of the
issue windows generally represented more 65% of all is-
sue windows, so with high probability we expected that
two out of the three occurrences would match.

Even this dual predictor scheme, though, did not signif-
icantly expand the dataset. The dual predictor datasets
did not expand the cycle coverage of any of the datasets
by more than 5%, at what would be double the storage
cost and increased complexity in a hardware implemen-
tation. However, this does not indicate that a dual pre-
dictor scheme is not without merit; rather, it suggests
that the presented algorithm for gathering a consistent
trace requires improvement in order to collect larger,
high-coverage datasets.

Because the dual predictor scheme did not significantly
increase the size of the datasets, we chose to calculate
our results using a single predictor scheme. Figure 6
shows how many of the fetchPCs were included in a
consistent trace. These coverage statistics were com-
pared with the number of unique fetchPCs seen in a
trace to give more relevant, normalized coverage data.
The

3.3.3 Oracle Prediction Results
The prediction success rate (along with the mispredic-
tion and no prediction rate) is shown in Figure 7. For
several of the benchmarks, cc1, compress95, and li in
particular, the success rate is much higher than the
lower bound found in section 3.1.1. In section 3.1.2, our
analysis showed that we could expect the rate of false
mispredicts to range between 15-25% for ijpeg, perl,
and m88ksim. In the actual oracle prediction data,

6



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

cc
1

co
mpr

es
s9

5 go
ijp

eg li

m88
ks

im pe
rl

vo
rte

x

F
ra

ct
io

n
Predict Success Rate

No Predict Rate

Figure 7: Oracle Prediction Statistics

this rate appeared to be even higher for some of the
SPECint95 benchmarks. li had a success rate of 94.9%,
which is nearly 40% higher than the single predictor
lower bound given by the instantaneous issue statistics
discussed in section 3.1.1. However, our lower bound
was not verified for all benchmarks because ijpeg and
m88ksim both showed inconsistent results. The results
for ijpeg were understandable given that the dataset
only had a single fetchPC. However, the extremely small
size of this dataset and the abysmal predict success rate
of m88ksim (43%) were surprising considering the loop-
oriented nature of both benchmarks. The oracle predic-
tions were expected to be especially accurate for these
types of benchmarks.

The run length of the oracle is the number of consecu-
tive cycles during which it attempted a prediction. Fig-
ure 8 shows a table of the average run lengths com-
pared to the maximum run length for each of the bench-
marks. The average run length of the oracle was much
lower than we anticipated. Even instructions with fairly
high prediction success rates, such as cc1, had average
run lengths below five, with most having average run
lengths between one and three. However, we believe
that both the short average run length and high mis-
predict rate for certain benchmarks may be due to the
attempt to apply the oracle to very long data runs. For
a much shorter run of cc1, we were able to find an aver-
age run length of 18.76 cycles over 41 uses of the oracle.
While this may be a spurious result, it may also indicate
much more positive results for an oracle implemented
with dynamic retraining.

The dominant reason for the oracle runs ending was
lack of an available prediction. We do not believe that
the this indicates the program is moving to a different

0

5

10

15

20

25

30

35

40

45

cc
1

co
mpr

es
s9

5 go
ijp

eg li

m88
ks

im pe
rl

vo
rte

x

C
yc

le
s

Average Run Length

Max Run Length

Figure 8: Oracle Average and Maximum Run
Length

path of execution due to a branch, as this statistic might
suggest, because the average run length of the oracle is
too short. Furthermore, we ran a simple “Hello World”
type program that executed a simple loop with no other
branches; this loop had a similarly high exit rate due to
no predictions. While this may indicate problems with
the dataset collection, we also believe that this may
indicate a problem with our oracle implementation in
SimpleScalar. Because our implementation of the oracle
sits on top of the SimpleScalar model, it is possible that
this high “no predict” rate is being caused by second-
order effects, such as fetch buffer saturation, that may
not be properly handled.

3.3.4 Wakeup Window Usage Statistics
The wakeup window is not emptied when the oracle
initiates in order to show the size of the wakeup win-
dow over time once the oracle begins prediction. It is
assumed that the wakeup window size during the first
cycle of oracle execution is a good representation of the
initial wakeup window state. Figure 9 shows the length
of the wakeup window queue over time. Time “zero”
is when the oracle begins execution. As expected, once
the oracle starts, the wakeup window usage quickly de-
creases over time until it approaches actual average or-
acle utilization, which is appears to be less than two.
The oracle is able to achieve this low utilization because
it does not have to place instructions into the wakeup
window until they are predicted to be issued. Thus, the
oracle will insert instructions at a rate much closer to
the IPC of the program, which is generally below two,
rather than use the full dispatch bandwidth.

Future implementations may want to examine the ef-
fect of squashing the entire wakeup window when the

7



0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

Time Since Oracle Start (Cycles)

W
ak

eu
p 

W
in

do
w

 U
sa

ge
 

(I
ns

tr
uc

tio
ns

)
cc1
compress95
go3
li
perl2
vortex

Figure 9: Wakeup Window Usage

oracle begins predicting. Squashing the entire wakeup
window is beneficial because it immediately reduces the
size of the wakeup window utilization and allows power-
savings to be realized as soon as the oracle starts pre-
dicting. However, there are two opposing effects that
would also need to be measured. It is possible that the
current wakeup window contains instructions that need
to be issued before the oracle begins predicting in order
to prevent the oracle from halting prematurely due to
data dependencies. Although this is essentially a mis-
prediction by the oracle, it is one that could be resolved
by the wakeup window logic. On the other hand, it is
also possible that by not squashing the current wakeup
window, an instruction may be issued before it is pre-
dicted to, leading to a later mispredict. Both of these
effects would have to be measured to determine which
is a more desirable implementation.

3.4 Oracle Coverage
The oracle coverage (the ratio number of cycles of ora-
cle prediction to the total number of cycles) was below
1% for all eight benchmarks Although the oracle does
not predict if it is seeing a PC for the first time, we
expected that the oracle coverage would still be close
to the cycle coverage. The dataset collection issues and
buffer saturation effects discussed in section 3.3.3 may
be the cause of this low coverage, as it could be the
high “no predict” rates that are causing the oracle to
prematurely exit.

Assuming that the ISA is not specifically extended to
enable issue logic prediction, hardware for training the
predictors would most likely be running every cycle.
Even if the oracle coverage matched the cycle coverage
rate, this would most likely be too low to amortize the
power consumption costs of the training hardware. In

order for power savings to be realized, better algorithms
for training the dataset would need to be found.

4. HARDWARE IMPLICATIONS
The issue window oracle presented in this paper resem-
bles a simple branch predictor in that a fetchPC is used
to index an array of predictions. While this scheme may
have its merits, we also believe that a trace cache-style
microprocessor could be modified to include issue logic
prediction at minimal marginal cost of hardware and
power. Modifying a trace cache-style system, however,
requires that the issue of storing in-order and out-of-
order data be resolved. One potential scheme we envi-
sion a would be to store decode instruction data in out-
of-order, with four to five-bit virtual reorder tags stored
with the instruction to allow the instruction trace to be
correctly reassembled into the reorder buffer. The order
in the trace cache would correspond to the issue window
order, with stop bits denoting the beginning and end of
a predicted issue window.

The additional hardware cost of this implementation
would be minimal because it would only require an ad-
ditional five to six bits per instruction to store the stop
and reorder bits. Trace caches are designed to maxi-
mize the fetch bandwidth for a superscalar processor.
However, because a issue logic prediction scheme effec-
tively throttles the introduction of instructions to the
IPC rate, we envision that this extra fetch bandwidth
could instead be used to amortize the cost of the extra
bit storage. This additional bandwidth could be used
to fetch multiple issue window predictions, which would
allow the trace cache fetch to be disabled the next cy-
cle(s).

As our difficulties with collecting appropriate oracle data-
sets have shown, backend logic for filling the trace cache
lines is likely to be much more sophisticated, and thus
more power-consuming, then traditional trace cache tech-
niques. Further research is necessary to investigate a
scheme that provides both good predictions as well as
good coverage in order to make a trace cache issue logic
predictor scheme worthwhile.

Due to the low register remapping rate we found in our
results, we currently do not envision an issue prediction
scheme that would allow static renaming, which would
be necessary if renaming logic were integrated into an
issue prediction scheme. As shown in section 4, a cir-
cular register renaming allocation scheme is not able to
achieve a high remapping rate, and a different scheme
would be necessary to realize effective renaming pre-
diction. If such a scheme were created, it would allow
further power savings by allowing the register renaming
units to be powered off.

8



5. CONCLUSION
Increasing complexity in superscalar processors demands
increasing attention to low-energy designs. We have
shown that there is opportunity to improve the regu-
larity of register renaming which may lead to physical
register files with fewer read ports or allow the imple-
mentation of speculative and/or static renaming which
could be tied into a trace cache processor. We mea-
sured a high correlation between the fetchPC and issue
window; and we implemented a single-predictor issue
window oracle to verify that an architectural model can
take advantage of this high correlation. The issue win-
dow oracle used a static prediction scheme based on pro-
file statistics for 250,000-instruction sequences of code.
Our results suggest that the issue window statistics do
indeed give a lower bound on a issue logic prediction
scheme for most instruction traces, although we have
not resolved why we were unable to gather sufficient
datasets for m88ksim and ijpeg. We also find that while
our issue prediction scheme has poor coverage, it can be
successful for a majority of benchmarks when used over
short regions of code. We believe a dynamic prediction
scheme could provide the predictor with timely and con-
sistent data and could greatly improve upon our results.
Finally, we found that use of an issue window predictor
can allow for dynamic reducing the size of the wakeup
window to reduce power consumption. It is suggested
that the extra power required by incorporating an is-
sue window predictor in an already-existing front-end
speculation structure would be more than offset by the
savings in the complex issue logic.

6. CODE
All tables, figures, and performance results included in
this paper were generated by code produced by Kenneth
Barr, Kenneth Conley, or Serhii Zhak and are available
upon request.

7. ACKNOWLEDGEMENTS
We thank our partner, Serhii Zhak, for his initial re-
search and direction on the subject of memoizing con-
trol logic, for helping to generate the Issue Window Pre-
diction Accuracy figure, and for his contributions to the
hardware implications section of this paper. We also
appreciate the help of Professor Krste Asanovic who
provided insightful direction throughout the evolution
of the project.

8. REFERENCES
[1] D. Burger and T. Austin. The simplescalar tool
set, version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[2] R. Canal and A. Gonzalez. A low-complexity issue
logic. In Proceedings of the 14th International Con-
ference on Supercomputing (ICS-00), May 2000.

[3] J. A. Farrell and T. C. Fischer. Issue logic for
a 600-Mhz out-of-order execution microprocessor.
IEEE Journal of Solid-State Circuits, 33(5):707–
712, May 1998.

[4] D. Folegnani and A. Gonzalez. Reducing power
consumption of the issue logic. In Workshop on
Complexity Effective Design held in conjunction
with ISCA 27, June 2000.

[5] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
considerations in the design of the Alpha 21264 mi-
croprocessor. In 35th Annual Conference on Design
Automation, pages 726–731, June 1998.

[6] M. Hiraki, R. Bajwa, H. Kojima, D. Gorny,
K. Nitta, A. Shridhar, K. Sasaki, and K. Seki.
Stage-skip pipeline: A low power processor archi-
tecture using a decoded instruction buffer. In Pro-
ceedings of the 1996 International Symposium on
Low Power Electronics and Design, pages 353–358,
1996.

[7] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar,
and A. Yoaz. A novel renaming scheme to ex-
ploit value temporal locality through physical
register reuse and unification. In 31st annual
ACM/IEEE International Symposium on Microar-
chitecture, 1998.

[8] U. Ko, A. Hill, and P. Balsara. Design techniques
for high-performance, energy-efficient control logic.
In International Symposium on Low Power Elec-
tronics and Design, 1996.

[9] S. Palacharla, N. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In
Proceedings 24th International Symposium on
Computer Architecture, pages 206–218, June 1997.

[10] G. Sohi. Instruction issue logic for high-
performance, interruptible, multiple functional
unit, pipelined computers. IEEE Transactions on
Computers, 39(3), March 1990.

[11] E. Sprangle and Y. Patt. Facilitating superscalar
processing via a combined static/dynamic regis-
ter renaming scheme. In 27th Annual International
Symposium on Microarchitecture, 1994.

[12] S. Vajapeyam and T. Mitra. Improving superscalar
dispatch and issue by exploiting dynamic code se-
quences. In 24th Annual International Symposium
on Computer Architecture, June 1997.

[13] C. Wang and K. Roy. An activity-driven encod-
ing scheme for power optimization in micropro-
grammed control unit. IEEE Transactions on VLSI
Systems, Vol 7(1), March 1999.

9


