
Correlation Between State and Control Signals
in Out-of-Order Issue Logic

Kenneth Barr Kenneth Conley Serhii Zhak
Advanced VLSI Computer Architecture -- MIT 6.893 Fall 2000

{kbarr, conley, zhak}@mit.edu

Abstract
Current out-of-order control logic is optimized for
performance and does not take advantage of energy-
saving techniques. Key out-of-order logic structures,
including register renaming logic and superscalar
issue logic, will be examined for correlation between
state and asserted control signals. By exploiting
correlation, predictive or memoization techniques
could be implemented in the issue logic to eliminate
redundant work and increase energy efficiency. We
suggest hardware structures to take advantage of the
correlation between these signals.

1 Introduction

2 Related Work

In dynamically scheduled superscalar processors, the
size (and thus delay and power consumption) of the
issue logic depends quadratically on the product of
instruction issue width and instruction window size.
This delay is mainly due to the associative search
required by the issue logic [3].

A recent paper [6] modeled the power consumption
of an out-of-order superscalar processor at the level
of functional blocks. It found that the renaming
table, instruction queue, and reorder buffer, all
necessary for extracting instruction level parallelism,
are responsible for an average of 53% of the total
power consumed by a processor. In addition, each of
these three units considered individually consumes
more energy than any other part of the processor
(e.g., cache, branch predictor, functional units, and
I/O). To address the power consumption of the
instruction queue, the authors proposed a
dynamically resized queue which saved 57% of the
power consumed by the queue and reduced the total
power consumption of the processor by about 15%.

Hiraki [7] proposed a decoded instruction buffer that
memoized control signals for execution with power
savings of 40% and Wang [16] proposed a new
encoding scheme for storing control signals in
microprogrammed control units and claimed 4.8%-
16.5% reduction in switching activity.

Our study, motivated by such measurements and
proposals, will investigate the possibility of
bypassing broadcast and select mechanisms in the
issue/renaming logic. Since it is typically designed
with performance in mind [5], this logic may
consume lots of unnecessary power.

Potential for modified renaming schemes has been
shown in [14], but we hope to suggest a scheme that
works without compiler assistance. Jourdan [8]
proposed physical register reuse in a value-identity
detection scheme to improve performance, but we
hope to reuse mappings of logical registers to
physical registers in order to reduce energy, perhaps
expanding on Vajapeyam’s renamed trace cache [15].
We also plan to consider the potential of hardware
memoization in the control unit. This technique has
been shown to both reduce power and improve
performance of various microprocessor structures [4]
[11], avoiding penalties associated with
misprediction.

Research has also been done at the circuit level for
saving power in control logic [9], but these results are
not applicable to our research.

3 Methodology and Results

The Simplescalar microarchitectural simulator [1] has
been extended to provide detailed per-instruction
statistics that explore trends in register renaming. In
addition Simplescalar pipetrace output is analyzed
with custom parsers.

Through the use of an Oracle in the issue stage of the
pipeline, we attempt to quantify the upper bounds of
correlation between processor state and asserted
control signals. As we propose modifications to
baseline architecture, it will become necessary to
consider the effect of misspeculating control signals.

3.1 Pipetracing

Two types of profile statistics were collected using
Simplescalar. We termed these “vertical” and
“horizontal” statistics, imagining the famili ar

Patterson and Hennesey [12] diagram of a pipelined
processor.

Profile statistics were collected using the SpecINT95
benchmark suite with scaled-down datasets [table].
Statistics were collected from the perl, ijpeg, and
m88ksim benchmarks. Attempts were made to collect
statistics from the other benchmarks, but
Simplescalar would not provide pipetraces for the
requested instruction counts. For both types of
profile statistics, cache misses, TLB misses, and
branch mispredicts were ignored as we would not
want to memoize this worst-case behavior.

Due to the volume of data we had to process,
Simplescalar’s pipetrace facil ity had to be re-written
to produce binary pipetraces, and the output had to be
separated into multiple traces of one milli on
instructions. Furthermore, Simplescalar was also
inconsistent in outputting pipetraces for long
instruction counts. Summary data from the separate
traces was then aggregated in the final statistics.
Although the data from the traces were not
necessarily independent, as the same PC may have
been present in multiple traces, the traces were
sufficiently long to reflect what a processor would
view before retraining its data set.

3.1.1 Horizontal Statistics

The first type of profile statistic studied the
consistency of an individual instruction’s path
through the stages of the pipeline. We define a
consistent trace as one in which a given instruction
spends the same amount of time in each stage of the
pipeline every time it is dynamically executed.
Figure 1 shows that instructions are consistent 65%-
80% of the time. This figure grows when restricting
the definition of consistency to measure only the time
it takes an instruction to move from Fetch to Dispatch
stages of the pipeline.

3.1.2 Vertical Statistics

Our vertical statistics examine the correlation
between a cycle’s fetch program counter (fetch_PC)
and the instructions dispatched to execution in that
cycle. The highest frequency correlation determines
a lower bound on the success rate of an issue logic
prediction mechanism. Data from this profile
statistic was also used as a data set for prediction
logic discussed later section 3.3.3.

Instruction Consistency

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

i jpeg2 m 88ksim perl2

Benchmark

P
er

ce
n

t

overall c ons is tency

latency to ex cons is tenc y

Figure 1

0.00

20.00

40.00

60.00

80.00

100.00

perl average ijpeg average m 88k s im average

Be nchm a rk

Pe
rc

en
t A

cc
ur

ac
y

P redic tor A c c urac y S ing le P redic tor A c c urac y B im oda l

Figure 2

3.2 Renaming

The Simplescalar RUU scheme [13] ties renaming to
all aspects of out-of-order execution. Unfortunately,
this makes it difficult to quantify the effects of
register renaming or to see how renaming effects
other aspects of out-of-order control.

We hope to add a decoupled, parameterized renaming
structure or modify the existing Simplescalar scheme.
Tests with varying rename structures and policies
may reveal helpful trends in asserted logic. Intuition
suggests that fewer choices of physical registers
would lead to higher correlation at the expense of

performance. Perhaps performance would take less
of a hit i f alternative schemes for determining a
mapping were implemented.

Currently we extend Simplescalar to manage a “ free
list” of physical registers. Also, we have added
extensive per-instruction renaming statistics
including minimum, maximum, and average length
of time a register stays renamed; number of dynamic
instances of an instruction; and the number of times
an register is renamed to its initial renaming.

Initial results were compiled by examining these
statistics after running 500K instructions of a Perl
benchmark on a default Simplescalar configuration
(with 16 RUU_stations). Figure 3 shows that every
instruction needs a physical register for at least 3
cycles, but 80% relinquish their mapping within 7
cycles. This gives hope that a scheme could quickly
reassign a mapping.

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Mapping reserved (< cycles)

C
u

m
m

u
la

ti
ve

 P
er

ce
n

ta
g

e

Figure 3

Figure 4 quantifies this hope. We run all 8 spec
benchmarks for 50 Milli on instructions. Just before a
logical register is assigned an RUU, we check to see
if its original RUU is available. In 59%-77% of the
cases, it is.

To finalize the upper bound we will force this
remapping to occur. We anticipate each benchmark’s
bar to converge around 60%. As remapping occurs
more frequently (the short bar approaches the limit
shown by the tall bar), we may be stealing a mapping
desired by a future instruction (but as we have

shown, mappings are reserved for a very short period
of time, so the impact should be minor).

0.00

0.10
0.20

0.30

0.40
0.50

0.60
0.70
0.80

0.90

cc
1

co
m

pr
es

s go

ijp
eg

li
m

88 pe
rl

vo
rte

x

B en ch mark

Fr
ac

tio
n Map p e d to

O rig inal Map p ing

C o uld Map to
O rig inal Map p ing

Figure 4

3.3 Issue Oracle

We have to create an “oracle” that acts as ideal issue
control prediction logic. The oracle uses the issue
statistics collected from previous execution of the
instruction stream to predict the instructions to
dispatch as a function of the current fetch PC. We
hope that the use of the fetch PC to make issue logic
predictions will allow the oracle to make predictions
along both directions of a branch. The predictions
use the most frequent instruction window associated
with a given fetch PC. Predictions based on other
elements of the processor state, including load-store
queue state, functional unit state, and cache misses,
have been considered but not yet implemented. The
oracle also does not include results from the
renaming research.

The oracle is implemented within Simplescalar and
makes use of its existing RUU scheme. Using the
RUU logic ensures that the oracle does not interfere
with the Writeback and Commit stages and also
allows the oracle to check data dependencies. This
oracle implementation does not correspond well to an
actual hardware implementation, as power-saving
issue prediction logic would most likely turn off the
other OOO logic. Nevertheless, it allows analysis of
the success rate of issue prediction logic.

Performance counters have been put in Simplescalar
to measure the success and stall rates of the oracle
prediction logic. If the oracle cannot issue the
predicted instructions because of data dependencies,
the oracle stalls the front-end of the processor until

data dependencies are met. If a predicted instruction
is quashed due to mis-speculation, the oracle attempts
to execute for one more cycle before failing. The
oracle prediction logic can fail i n several other
situations. During startup, if the instruction it wishes
to issue was already issued, the oracle will not issue
any instructions.

Also, if the predictions fail to account for all of the
instructions currently in the dispatch queue,
dependencies will quickly force the oracle to fail . In
both situations, the oracle is turned off and the
normal issue logic is allowed to execute for several
cycles.

4 Application1

One must keep the Figure 5 (* todo: add cc1 data*) in mind along with Amdahl’s Law when considering changes to
the architecture based on prediction. When an instruction repeats more than 10 times, it is like to repeat many times;
these are the instances during which we hope to save power. However, almost half the instructions in our
benchmarks only execute once. This represents a potential for disaster if we are not careful to make this common
case no worse than it is currently

0 .00

0 .10

0 .20

0 .30

0 .40

0 .50

0 .60

1 2 10 15 20 50 10
0

10
00

10
00

0
M

or
e

Times R epeated

F
ra

ct
io

n
of

 T
ot

al
D

yn
am

ic
 In

st
ru

ct
io

ns com press

go

ijpeg

li

m 88

perl

vortex

1 Or, “whoop-dee-do. What does it all mean, Basil?”

Figure 5

4.1 Suggested hardware structures

5 Conclusions

References

[1] D. Burger and T. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison. June 1997.

[2] G. Cai. Architectural Level Power/Performance Optimization and Dynamic Power Estimation. In
Proceedings of the CoolChips tutorial, 32nd Annual International Syumposium on Microarchitecture, 1999.

[3] R. Canal and A. Gonzalez. A Low-Complexity Issue Logic. In Proceedings of the 14th International
Conference on Supercomputing (ICS-00), May 8-11, 2000.

[4] D. Citron, D. Feitelson and L. Rudolph. Accelerating Multi-Media Processing by Implementing Memoing
in Multiplication and Division Units. ASPLOS VIII, October 1998.

[5] J. Farrell and T. Fischer. Issue Logic for a 600-MHz Out-of-Order Execution Microprocessor. IEEE
Journal of Solid State Circuits. May 1998.

[6] D. Folegnani and A. Gonzalez. Reducing Power Consumption of the Issue Logic. ISCA-2000 workshop?

[7] M. Hiraki, R. Bajwa, H. Kojima, D. Gorny, K. Nitta, A. Shridhar, K. Sasaki, and K. Seki. Stage-Skip
Pipeline: A Low Power Processor Architecture Using a Decoded Instruction Buffer. ISLPED, 1996.

[8] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz. A novel renaming scheme to exploit value
temporal locali ty through physical register reuse and unification. In Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture, 1998.

[9] U. Ko, A. Hill , and P. Balsara. Design Techniques for High-Performance, Energy-Efficient Control Logic.
ISLPED, 1996.

[10] P. Landman and J. Rabaey. Activity-Sensitive Architectural Power Analysis for the Control Path. ISLPED,
1996.

[11]

� � � � � � � � � � � � � � � 	
 � � � � � � � 	 � � � � � � � � � � � � � � � �
 Instruction Caches.

MIT, 2000.

[12] Patterson and Hennessy. Computer Architecure; A Quantative Approach. Morgan Kaufman, 1996.

[13] G. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit, Pipelined
Computers. IEEE Transactions on Computers, March 1990.

[14] E. Sprangle and Y. Patt. Facil itating superscalar processing via a combined static/dynamic register
renaming scheme. In Proceedings of the 27th annual international symposium on microarchitecture, 1994.

[15] S. Vajapeyam and T. Mitra. Improving Superscalar Dispatch and Issue by Exploiting Dynamic Code
Sequences. In Proceedings of the 24th Annual International Symposium on Computer Architecture. June 1997.

[16] C. Wang and K. Roy. An Activity-Driven Encoding Scheme for Power Optimization in Microprogrammed
Control Unit. IEEE Transactions on VLSI Systems, Vol 7, No. 1, March 1999.

[new] B. Black and J.P. Shen. Turboscalar: A High Frequency High IPC Microarchitecture. ???

Code

All tables, figures, and performance results included in this paper were generated by code produced by the authors.
The renaming code, extensions to the Simplescalar simulator, lives on CAG LCS machines in ~kbarr/6.893/ken.
The pipetrace parser is in ~conley/893.

