Correlation Between State and Control Signals
in Out-of-Order IssueLogic

Kenneth Barr

Kenneth Conley

Serhii Zhak

Advanced VLSI Computer Architedure -- MIT 6.893Fall 2000

{kbarr, conl ey,

Abstract

Current out-of-order control logic is optimized for
performance and dces not take advantage of energy-
saving techniques. Key out-of-order logic structures,
including register renaming logic and superscdar
issue logic, will be examined for correlation between
state and asserted control signals. By exploiting
correlation, predictive or memoizaion techniques
could be implemented in the issue logic to eliminate
redundant work and increase energy efficiency. We
suggest hardware structures to take alvantage of the
correlation between these signals.

1 Introduction

2 Related Work

In dynamicaly scheduled superscdar processors, the
size (and thus delay and power consumption) of the
issue logic depends quadraticdly on the product of
instruction issue width and instruction window size
This delay is mainly due to the aciative seach
required by the issue logic [3].

A recent paper [6] modeled the power consumption
of an aut-of-order superscdar processor at the level
of functional blocks. It found that the renaming
table, instruction queue, and reorder buffer, all
necessary for extrading instruction level parall elism,
are responsible for an average of 53% of the total
power consumed by a processor. |n addition, ead of
these three units considered individually consumes
more energy than any other part of the processor
(e.g., cadhe, branch predictor, functional units, and
[/0). To address the power consumption of the
instruction queue, the aithors proposed a
dynamicdly resized queue which saved 576 of the
power consumed by the queue and reduced the total
power consumption of the procesor by about 15%.

Hiraki [7] proposed a deaoded instruction buffer that
memoized control signals for exeaution with power
savings of 40% and Wang [16] proposed a new
encoding scheme for storing control signals in
microprogrammed control units and claimed 4.8%-
16.5% reduction in switching adivity.

zhak} @ t. edu

Our study, motivated by such measurements and
proposals, will investigate the posdgbility of
bypassing broadcast and seled mechanisms in the
issue/renaming logic. Since it is typicdly designed
with performance in mind [5], this logic may
consume lots of unnecessary power.

Potential for modified renaming schemes has been
shown in [14], but we hope to suggest a scheme that
works without compiler asdstance Jourdan [8]
proposed physicd register reuse in a value-identity
detedion scheme to improve performance, but we
hope to reuse mappings of logicd registers to
physicd registers in order to reduce energy, perhaps
expanding on Vajapeyam'’ s renamed trace cahe [15].
We dso plan to consider the potential of hardware
memoization in the cntrol unit. This technique has
been shown to bah reduce power and improve
performance of various microprocessor structures [4]
[11], avoiding pendties associated with
misprediction.

Reseach has also been done at the drcuit level for
saving power in control logic [9], but these results are
not applicable to our reseach.

3 Methodology and Results

The Simplescalar microarchitecural simulator [1] has
been extended to provide detailed per-instruction
statistics that explore trends in register renaming. In
addition Simplescdar pipetrace output is analyzed
with custom parsers.

Throughthe use of an Orade in the isaue stage of the
pipeline, we d@tempt to quantify the upper bounds of
correlation between processor state and asserted
control signals. As we propcse modificaions to
baseline achitedure, it will become necessry to
consider the effed of misspeculating control signals.

3.1 Pipetracing

Two types of profile statistics were olleded using
Simplescdar. We termed these ‘“verticd” and
“horizontal” dtatistics, imagining the familiar

Patterson and Hennesey [12] diagram of a pipelined
processor.

Profile statistics were olleded using the SpedNT95
benchmark suite with scded-down datasets [table].
Statistics were wlleded from the perl, ijpeg, and
m88ksim benchmarks. Attempts were made to colled
dtatistics from the other benchmarks, but
Simplescdar would not provide pipetraces for the
requested instruction counts. For both types of
profile statistics, cache misses, TLB misss, and
branch mispredicts were ignored as we would not
want to memoizethis worst-case behavior.

Due to the volume of data we had to process
Simplescdar’s pipetracefadlity had to be re-written
to produce binary pipetraces, and the output had to be
separated into multiple traces of one million
instructions. Furthermore, Simplescdar was also
inconsistent in outputting pdpetraces for long
instruction counts. Summary data from the separate
traces was then aggregated in the fina datistics.
Although the data from the traces were not
necessarily independent, as the same PC may have
been present in multiple traces, the traces were
sufficiently long to reflead what a processor would
view before retraining its data set.

3.1.1 Horizontal Statistics

The first type of profile datistic studied the
consistency of an individual instruction's path
through the stages of the pipeline. We define a
congsistent trace & one in which a given instruction
spends the same anount of time in each stage of the
pipeline every time it is dynamicdly executed.
Figure 1 shows that instructions are mnsistent 65%-
80% of the time. This figure grows when restricting
the definition of consistency to measure only the time
it takes an instruction to move from Fetch to Dispatch
stages of the pipeline.

3.1.2 Vertical Statistics

Our verticd oatistics examine the rrelation
between a cycle's fetch program counter (fetch_PC)
and the instructions dispatched to exeaution in that
cycle. The highest frequency correlation determines
a lower bound on the success rate of an issue logic
prediction mechanism. Data from this profile
statistic was also used as a data set for prediction
logic discus=d later sedion 3.3.3.

Instruction Consistency

90 -
80 -
70 A

50 1
40 ~
30 A
20 -
10 ~

Percent

ijpeg2 m88ksim perl2

Ooverall consistency

M latency to ex consistency

Figurel

mPredictor Accuracy Single mPredictor Accuracy Bimodal

100.00

80.00

60.00 +—

40.00 +—

20.00 +—

Percent Accuracy

0.00 ‘
perl average ijpeg average m88ksim average

Benchmark

Figure2
3.2 Renaming

The Simplescdar RUU scheme [13] ties renaming to
all aspeds of out-of-order exeaution. Unfortunately,
this makes it difficult to quantify the effects of
register renaming or to see how renaming effeds
other aspeds of out-of-order control.

We hope to add a dewupled, parameterized renaming
structure or modify the existing Simplescdar scheme.
Tests with varying rename structures and pdicies
may reved helpful trends in asserted logic. Intuition
suggests that fewer choices of physicd registers
would lead to higher correlation at the expense of

performance. Perhaps performance would take less
of a hit if aternative schemes for determining a
mapping were implemented.

Currently we extend Simplescdar to manage a“free
list” of physicd registers. Also, we have alded
extensive per-instruction renaming statistics
including minimum, maximum, and average length
of time aregister stays renamed; number of dynamic
instances of an instruction; and the number of times
an register is renamed to itsinitial renaming.

Initial results were compiled by examining these
statistics after running 500K instructions of a Perl
benchmark on a default Simplescdar configuration
(with 16 RUU_stations). Figure 3 shows that every
instruction neeads a physical register for at least 3
cycles, but 80% relinquish their mapping within 7
cycles. This gives hope that a scheme could quickly
resssgn a mapping.

o M
90.00% /"“o-oﬂ
80.00% /
70.00%
@
g /
S 60.00%
o
B T
o
o 50.00%
=
E /
=}
2 40.00%
£
3
O 30.00% f
20.00%/
10.00%
00% &——F—"+"7——————
3 5 7 9 11 13 1517 19 21 23 25 27 29 31 33 35 37
Mapping reserved (<cycles)
Figure3

Figure 4 quantifies this hope. We run all 8 spec
benchmarks for 50 Milli on instructions. Just before a
logicd register is asigned an RUU, we ched to see
if its original RUU is available. In 5%%-77% of the
cases, it is.

To findlize the upper bound we will force this
remapping to occur. We anticipate eaty benchmark’s
bar to converge aound 6(0%. As remapping occurs
more frequently (the short bar approaches the limit
shown by the tall bar), we may be steding a mapping
desired by a future instruction (but as we have

shown, mappings are reserved for a very short period
of time, so the impaa should be minor).

O Mapped to
Original Mapping

Fraction

E Could Map to
Original Mapping

Benchmark

Figure4

3.3 IssueOracle

We have to crede an “orade” that ads as ided issue
control prediction logic. The orade uses the issue
statistics colleded from previous execution of the
instruction stream to predict the instructions to
dispatch as a function of the current fetch PC. We
hope that the use of the fetch PC to make issue logic
predictions will alow the orade to make predictions
along both diredions of a branch. The predictions
use the most frequent instruction window associated
with a given fetch PC. Predictions based on other
elements of the procesor state, including load-store
gueue state, functional unit state, and cache misses,
have been considered but not yet implemented. The
orade dso dees not include results from the
renaming reseach.

The orade is implemented within Simplescdar and
makes use of its existing RUU scheme. Using the
RUU logic ensures that the orade does not interfere
with the Writebadk and Commit stages and also
allows the orade to ched data dependencies. This
orade implementation does not correspond well to an
adua hardware implementation, as power-saving
issue prediction logic would most likely turn off the
other OOOlogic. Nevertheless it allows analysis of
the success rate of issue prediction logic.

Performance munters have been put in Simplescalar
to measure the success and stall rates of the orade
prediction logic. If the orade cawnot issue the
predicted instructions because of data dependencies,
the orade stalls the front-end of the procesor urtil

data dependencies are met. |If a predicted instruction
is quashed due to mis-speaulation, the orade atempts
to exeaute for one more cycle before failing. The
orade prediction logic can fall in several other
situations. During startup, if the instruction it wishes
to issue was arealy issued, the orade will not issue
any instructions.

4 Application®

Also, if the predictions fail to account for al of the
instructions currently in the dispatch queue,
dependencies will quickly forcethe oradeto fail. In
both situations, the orade is turned off and the
normal issue logic is allowed to execute for severa
cycles.

One must keep the Figure 5 (*toda add ccl data*) in mind along with Amdahl’s Law when considering changes to
the achitedure based on prediction. When an instruction repeas more than 10times, it is like to repea many times;
these ae the instances during which we hope to save power. However, almost half the instructions in our
benchmarks only exeaute once. This represents a potential for disaster if we ae not careful to make this common

case no worse than it is currently

0.20 i

Fraction of Total
Dynamic Instructions

0.10 -

0.00 -

! ==

TS eSS SsSSSe
'\,,s%

Times Repeated

Figure5

4.1 Suggested hardware structures

5 Conclusions

1 Or, “whoop-deedo. What doesit all mean, Basil ?’

dcompress

mgo
Oijpeg
Oli
Em8s
Dperl
Hvortex

References

[1] D. Burger and T. Austin. The SimpleScalar todl set, version 2.0. Technical Report CS- TR-97-1342,
University of Wisconsin, Madison. June 1997.

[2] G. Cai. Architedural Level Power/Performance Optimization and Dynamic Power Estimation. In
Proceedings of the Cool Chipstutorial, 32nd Annual International Syumposium on Microarchitecture, 199.

[3] R. Canal and A. Gonzdez A Low-Complexity Issue Logic. In Proceedings of the 14th International
Conference on Supercomputing (ICS-00), May 8-11, 2000.

[4] D. Citron, D. Feitelson and L. Rudolph. Accderating Multi-Media Processng by Implementing Memoing
in Multiplication and Division Units. ASPLOS VIII, October 1998

[5] J. Farrell and T. Fischer. Isaue Logic for a600-MHz Out-of-Order Exeaution Microprocesor. |EEE
Journal of Solid State Circuits. May 1998

(6] D. Folegnani and A. Gonzdez. Reducing Power Consumption of the Issue Logic. |SCA-2000 workshop?

[7] M. Hiraki, R. Bgjwa, H. Kojima, D. Gorny, K. Nitta, A. Shridhar, K. Sasaki, and K. Seki. Stage-Skip
Pipeline: A Low Power Processor Architedure Using a Deaded Instruction Buffer. ISLPED, 1996.

[8] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz A novel renaming scheme to exploit value
temporal locdity through physicd register reuse and unification. In Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture, 1998

[9] U. Ko, A. Hill, and P. Balsara. Design Techniques for High-Performance, Energy-Efficient Control Logic.
ISLPED, 1996.

[10] P. Landman and J. Rabaey. Activity-Sensitive Architedural Power Analysis for the Control Path. IS_LPED,
1996

[17] A. Ma, M. Zhang, and K. Asanovi¢. Way Memoization to Reduce Fetch Energy in Instruction Caches.
MIT, 2000

[12] Patterson and Hennessgy. Computer Architecure; A Quantative Approach. Morgan Kaufman, 1996

[13] G. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multi ple Functional Unit, Pipelined
Computers. |EEE Transactions on Computers, March 199Q

[14] E. Sprangle and Y. Patt. Fadlitating superscdar processng via a @mbined static/dynamic register
renaming scheme. In Proceedings of the 27th annual international symposium on microarchitecture, 199.

[15] S. Vajapeyam and T. Mitra. Improving Superscdar Dispatch and Issue by Exploiting Dynamic Code
Sequences. In Proceadings of the 24™ Annual I nternational Symposium on Computer Architedure. June 1997.

[16] C. Wangand K. Roy. An Activity-Driven Encoding Scheme for Power Optimizaion in Microprogrammed
Control Unit. 1EEE Transactionson VLS Systems, Vol 7, No. 1, March 1999,

[new] B. Blad and J.P. Shen. Turbaoscdar: A High Frequency High IPC Microarchitedure. ???

Code

All tables, figures, and performanceresultsincluded in this paper were generated by code produced by the authors.
The renaming code, extensions to the Simplescdar simulator, lives on CAG LCS machines in ~kbarr/6.893/ken.
The pipetraceparser isin ~conley/893

