
Correlation Between State and Control Signals
in Out-of-Order Issue Logic

Kenneth Barr              Kenneth Conley                Serhii Zhak
Advanced VLSI Computer Architecture -- MIT 6.893 Fall 2000

{kbarr, conley, zhak}@mit.edu

Abstract
Current out-of-order control logic is optimized for
performance and does not take advantage of energy-
saving techniques. Key out-of-order logic structures,
including register renaming logic and superscalar
issue logic, will be examined for correlation between
state and asserted control signals. Logical structures
will also be modified to increase the correlation
between these signals. By exploiting correlation,
predictive or memoization techniques could be
implemented in the issue logic to eliminate redundant
work and increase energy efficiency. Time
permitting, the benefit of these techniques will be
analyzed.

1  Introduction

2  Related Work

In dynamically scheduled superscalar processors, the
size (and thus delay and power consumption) of the
issue logic depends quadratically on the product of
instruction issue width and instruction window size.
This delay is mainly due to the associative search
required by the issue logic [3].

A recent paper [6] modeled the power consumption
of an out-of-order superscalar processor at the level
of functional blocks.  It found that the renaming
table, instruction queue, and reorder buffer, all
necessary for extracting instruction level parallelism,
are responsible for an average of 53% of the total
power consumed by a processor.  In addition, each of
these three units considered individually consumes
more energy than any other part of the processor
(e.g., cache, branch predictor, functional units, and
I/O).  To address the power consumption of the
instruction queue, the authors proposed a
dynamically resized queue which saved 57% of the
power consumed by the queue and reduced the total
power consumption of the processor by about 15%.

Hiraki [7] proposed a decoded instruction buffer that
memoized control signals for execution with power
savings of 40% and Wang [14] proposed a new
encoding scheme for storing control signals in

microprogrammed control units and claimed 4.8%-
16.5% reduction in switching activity.

Our study, motivated by such measurements and
proposals, will investigate the possibility of
bypassing broadcast and select mechanisms in the
issue/renaming logic. Since it is typically designed
with performance in mind [5], this logic may
consume lots of unnecessary power.

Potential for modified renaming schemes has been
shown in [13], but we hope to suggest a scheme that
works entirely dynamically.  Jourdan [8] proposed
physical register reuse in a value-identity detection
scheme to improve performance, but we hope to
reuse mappings of logical registers to physical
registers in order to reduce energy.  We also plan to
consider the potential of hardware memoization in
the control unit. This technique has been shown to
both reduce power and improve performance of
various microprocessor structures [4] [11].

Research has also been done at the circuit level for
saving power in control logic [9], but these results are
not applicable to our research.

3  Methodology and Results

The Simplescalar microarchitectural simulator [1] has
been extended to provide detailed per-instruction
statistics that explore trends in register renaming.  In
addition a Java parser was written to condense
Simplescalar pipetrace output for ease of analysis.
This condensed output may be sorted and filtered
with supporting scripts as appropriate.

We have begun our research with an attempt to
quantify the upper bounds of correlation between
processor state and asserted control signals.  As we
propose modifications to baseline architecture, it will
become necessary to consider the effect of
mispeculating control signals.

3.1  Pipetracing

We define a consistent trace as one in which a given
instruction spends the same amount of time in each



stage of the pipeline every time it is dynamically
executed. Initial analysis of pipetraces show
consistency to be disappointingly low (44-72%, with
most around 50%).

One source of variation is cold versus warm memory
hits.   Cold accesses to memory seem to contribute
exactly two bad traces to most of the instructions -- a
phenomena we have yet to explain. Surprisingly,
filtering out cache misses, TLB misses, and branch
mispredicts, gives only a 1% improvement in general.

The low consistency may be due to the fact that a lot
of the benchmarks have a bimodal distribution, i.e.
there are two instruction paths/timings that are
dominating dynamic execution.  These are so equally
balanced in some cases that it’s uncanny.  We have
built a compiler to target the simulator, and hope to
determine the cause of this behavior using
handwritten test cases as opposed to the pre-compiled
Spec benchmarks.  If the dual nature of instructions
is coincidental, perhaps we can restructure the
machine or control logic to force a single trace
character for these bimodal instructions so that
control logic does not have to make decisions when it
sees them.

3.2  Renaming

The Simplescalar RUU scheme [11] ties renaming to
all aspects of out-of-order execution.  Unfortunately,
this makes it difficult to quantify the effects of
register renaming or to see how renaming effects
other aspects of out-of-order control.

We hope to add a decoupled, parameterized renaming
structure or modify the existing Simplescalar scheme.
Tests with varying rename structures and policies
may reveal helpful trends in asserted logic.  Intuition

suggests that fewer choices of physical registers
would lead to higher correlation at the expense of
performance.  Perhaps performance would take less
of a hit if alternative schemes for determining a
mapping were implemented.

Currently we extend Simplescalar to manage a “ free
list”  of physical registers.  Also, we have added
extensive per-instruction renaming statistics
including minimum, maximum, and average length
of time a register stays renamed; number of dynamic
instances of an instruction; and the number of times
an register is renamed to its initial renaming.

Initial results were compiled by examining these
statistics after running 500K instructions of a Perl
benchmark on a default Simplescalar configuration
(with 16 RUU_stations).  Figure 1 shows  that every
instruction needs a physical register for at least 3
cycles, but  80% relinquish their mapping within 7
cycles.  This gives hope that a scheme could quickly
reassign a mapping.  We plan to compare this with
average CPI to see if instructions can wait this long
to have their registers renamed.

The “remap rate”  is defined as the number of times a
destination register is mapped to its initial mapping
divided by the number of times that instruction is
repeated.  Figure 2 shows the discouraging results,
but there is some good news: we consider a “remap”
has occurred only when mappings match the first
mapping.  Perhaps a two-bit-counter-style or
confidence mechanism could enhance this so a
system would assign a mapping based on the
majority of previous mappings or only guess if
confidence for a remap is high.

4  Conclusions

Figure 1 Figure 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.00 0.20 0.40 0.60 0.80 1.00

Remap Rate

F
re

q
u
en

cy

.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

Mapping reserved (< cycles)

C
u

m
m

u
la

ti
ve

 P
er

ce
n

ta
g

e



References

[1] D. Burger and T. Austin.  The SimpleScalar tool set, version 2.0.  Technical Report CS-TR-97-1342,
University of Wisconsin, Madison.  June 1997.

[2] G. Cai. Architectural Level Power/Performance Optimization and Dynamic Power Estimation. In
Proceedings of the CoolChips tutorial, 32nd Annual International Syumposium on Microarchitecture, 1999.

[3] R. Canal and A. Gonzalez. A Low-Complexity Issue Logic.  In Proceedings of the 14th International
Conference on Supercomputing (ICS-00), May 8-11, 2000.

[4] D. Citron, D. Feitelson and L. Rudolph. Accelerating Multi-Media Processing by Implementing Memoing
in Multiplication and Division Units. ASPLOS VIII, October 1998.

[5] J. Farrell and T. Fischer.  Issue Logic for a 600-MHz Out-of-Order Execution Microprocessor.  IEEE
Journal of Solid State Circuits.  May 1998.

[6] D. Folegnani and A. Gonzalez.  Reducing Power Consumption of the Issue Logic.  ISCA-2000 workshop?

[7] M. Hiraki, R. Bajwa, H. Kojima, D. Gorny, K. Nitta, A. Shridhar, K. Sasaki, and K. Seki. Stage-Skip
Pipeline: A Low Power Processor Architecture Using a Decoded Instruction Buffer. ISLPED, 1996.

[8] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz.  A novel renaming scheme to exploit value
temporal locality through physical register reuse and unification. In Proceedings of the 31st annual ACM/IEEE
international symposium on Microarchitecture, 1998.

[9] U. Ko, A. Hill, and P. Balsara. Design Techniques for High-Performance, Energy-Efficient Control Logic.
ISLPED, 1996.

[10] P. Landman and J. Rabaey. Activity-Sensitive Architectural Power Analysis for the Control Path. ISLPED,
1996.

[11] A. Ma, M. Zhang, and K. 
���������
	�� �

. Way Memoization to Reduce Fetch Energy in Instruction Caches.
MIT, 2000.

[12] G. Sohi. Instruction Issue Logic for High-Performance, Interruptible, Multiple Functional Unit, Pipelined
Computers. IEEE Transactions on Computers, March 1990.

[13] E. Sprangle and Y. Patt. Facilitating superscalar processing via a combined static/dynamic register
renaming scheme.  In Proceedings of the 27th annual international symposium on microarchitecture, 1994.

[14] C. Wang and K. Roy.  An Activity-Driven Encoding Scheme for Power Optimization in Microprogrammed
Control Unit.  IEEE Transactions on VLSI Systems, Vol 7, No. 1, March 1999.

Code

All tables, figures, and performance results included in this paper were generated by code produced by the authors.
The renaming code, extensions to the Simplescalar simulator, lives on CAG LCS machines in ~kbarr/6.893/ken.
The pipetrace parser is in ~conley/893.


