Circuits and Interconnects In Aggressively Scaled CMOS

Mark Horowitz Computer Systems Laboratory Stanford University horowitz@stanford.edu

1

The Buzz is VLSI Wires are Bad

- A lot of talk about VLSI wires being a problem:
 - Delay
 - Noise coupling
- And scaled transistors are not great either
 - Leakage
 - Matching
 - Current

A very popular figure

How Will Scaling Change Design?

To answer this question:

- First look at what changes when technology scales
 - Surprisingly less changes than you might think
 - Components get faster (both wires and gates)
 - Mostly it allows one to build more complex devices
- Then look at how computing devices use silicon technology
 - How architects and circuit designers use the transistors
 - What are the looming problems with scaling
 - What can be done to help
- Let's start by looking at scaling CMOS technology

Predicting the Future (without making a fool of yourself)

- Is very difficult
 - The only guarantee is:
 - The future will happen, and you will be wrong
- Two approaches
 - Think about limitations
 - SIA 1994 Roadmap
 - Limited oxide thickness, small clock frequency growth, etc.
 - Industry hit points above the curve
 - Project from current trends
 - SIA 1997 Roadmap
 - Allow miracles to occur, continue trends
 - Project clock rates higher than physically possible
- So use a range of technology scalings
 - Better chance of covering the correct answer

Device Scaling

In digital CMOS design:

- Only two circuit forms matter
 - (maybe three)
- Static CMOS, and Dynamic CMOS

These forms are used because:

- They don't demand much from devices
 - So they work with crummy transistors
 - Robust, especially static circuits

Logic Gate Speed

- How does the speed of a gate depend on technology?
- Use a Fanout of 4 inverter metric

- Measure the delay of an inverter with $C_{out}/C_{in} = 4$
- Divide speed of a circuit by speed of FO4 inverter
 - Get delay of circuit in measured in FO4 inverters
 - Metric pretty stable, over process, temp, and voltage

FO4 Inverter Delay Under Scaling

- Device performance will scale
 - FO4 delay has been linear with tech

Approximately 0.36 nS/ μ m*L_{drawn} at TT

 $(0.5nS/\mu m$ under worst-case conditions)

- Easy to predict gate performance
 - We can measure them
 - Labs have built 0.04µm devices
 - Key issue is voltage scaling

Voltage Scaling

- Circuits performance depends on the Vdd to Vth ratio
 - Ideally both should scale together

Tech	0.8	0.5	0.35	0.25	0.18	0.13	0.10
Vdd	5	5	3.3	2.5	1.8	1.3	1.0
Vth	0.8	0.8	0.5	0.35	??	??	??

- If Vth scales leakage scales
- If Vth does not scale, gates get slower,
 of Vdd can't scale as fast and power goes up
- Leakage is easier to deal with than power, transistors will leak

MAH

Circuit Power

- Is very much tied to voltage scaling
- If the power supply scales with technology
 - For a fixed complexity circuit
 - Power scales down as α^3 if you run as same frequency
 - Power scales down as α^2 if you run it 1/ α times faster
- Power scaling is a problem because
 - Freq has been scaling at faster than 1/ α
 - Complexity of machine has been growing
- This will continue to be an issue in future chips
- Remember scaling the technology makes a chip lower power!

Wire Scaling

- More uncertainty than transistor scaling
 - Many options with complex trade-offs
- For each metal layer
 - Need to set H, T_T, T_B, ϵ_1 , ϵ_2 , conductivity of the metal

Scaling Global Wires

• R gets quite a bit worse with scaling; C basically constant

Semi-global wire resistance, 1mm long

Semi-global wire capacitance, 1mm long

Scaling Module Wires

• R is basically constant, and C falls linearly with scaling

Semi-global wire resistance, scaled length

Semi-global wire capacitance, scaled length

Module Wires

These wires scale fairly well:

Scaled wire delays stay pretty constant relative to gates

• Not a very big change

Global Wire Scaling

Now we examine global wire delay relative to gate delay

Fixed-length wires, relative to gates, worsen by 2x per generation

• This is a big problem

Designer Responses

- Use wider wires, since much of the capacitance is fringe
- Circuit solution -- use repeaters
 - Break the wire into segments
 - Delay becomes linear with length
 - Signal velocity = k (FO4 $R_w C_w$)^{1/2}
 - Pretty constant with scaling (does not track cycle time)

VLSI Scaling

Complexity

- Wires are not getting worse, they just are not getting better
- The real issue is complexity
 - With scaling the # of gates on a chip is growing exponentially

Computer Architect's Job

- Convert transistors to performance
- Use transistors to
 - Exploit parallelism
 - Or create it (speculate)
- Processor generations
 - Simple machine
 - Reuse hardware
 - Pipelined
 - Separate hardware for each stage
 - Super-scalar
 - Multiple port mems, function units
 - Out-of-order
 - Mega-ports, complex scheduling
 - Speculation
- Each design has more logic to accomplish same task (but faster)

Architecture Scaling

- Plot of IPC
 - Compiler + IPC
 - 1.5x / generation
- What next?
 - Wider machines
 - Threads
 - Speculation
 - Guess answers to create parallelism
 - Have high wire costs
 - Won't be easy

Clock Frequency

- Most of performance comes from clock scaling
 - Clock frequency double each generation
- Two factors contribute: technology (1.4x/gen), circuit design

Gates Per Clock

- Clock speed has been scaling faster than base technology
- Number of FO4 delays in a cycle has been falling

- Number of gates decrease
 1.4x each generation
- Caused by:
 - Faster circuit families (dynamic logic)
 - Better optimization
- Approaching a limit:
 - <16 FO4 is hard</p>
 - < 8 FO4 is very hard</p>

Approaching a Discontinuity

Current GP architectures are not sustainable:

- Still based on the free communication model
 - Maintaining a global shared resource model
 - Large, complex communication needed
- Poor modularity
 - Large design teams required
 - Huge design and verification costs

The Answer: Modular Computers

The Question:

How do you make a useful modular computer?

(Useful => Efficient -- cost, power)

Slow Process

Need to change the way people think at all levels

- Hardware design
 - Function centric, write functions in Verilog
 - Wires are implicit, through variables
- Programs are even worse
 - All communication is through variables
 - Memories are great communication boxes
 - Any part of the program can read your output
- Algorithm design
 - Today focus is on efficient computation
 - Need to focus on efficient communication

Conclusions

At a module level, the wire problem is getting bigger (not harder)

- Back-end CAD tools need to deal with more and more wires
- Their capability to deal with long wires must improve

At a global level, the problem is worse

- The span of a cycle is a constant number of gates
 - As chips grow in complexity, communication costs grow
- Designs (designers) must deal with these communication costs
 - Free global resources don't exist
 - Need to design partitioned architectures for this new world