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Abstract

Recent studies in spatial navigation by Stankiewicz, Legge, Mansfield and
Schlicht (2006) investigated human navigation efficiency in indoor virtual re-
ality (VR) environments when participants were uncertain about their cur-
rent state in the environment (i.e., they were disoriented or “lost”). These
studies used quantized actions (i.e., rotate-left or right by 90'and translate
forward a specific distance) and lacked vestibular and proprioceptive cues
as participants navigated through the virtual spaces. The current studies
investigated whether the results from these studies generalize to more real-
istic conditions in which participants move continuously through space and
have proprioceptive and vestibular information available to them. The re-
sults suggest that for large-scale way-finding tasks, desktop VR may provide
a valid way to examine human navigation with uncertainty.

Introduction

Spatial navigation is a behavior that is used hundreds if not thousands of times each
and every day of our lives. We use it when we are going from our living room to our
kitchen in our home, and we use it when we are traveling across the city from our home to
the grocery store. In addition to being able to readily and rapidly navigate through these
large-scale spaces, we can also rapidly acquire useful knowledge about novel environments.
Once we have acquired this internal representation of a large-scale space, we can use this
representation to easily navigate from one location to another within that space. This
internal representation of an external large-scale space is typically referred to as a cognitive
map (Tolman, 1948) or a cognitive collage (Tversky, 1993).

These internal representations are useful when we know our current state (position
and orientation) in the environment in that they allow us to move from one state (e.g., our
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office) to another (e.g., our home) with relative ease. Furthermore, they can be used to
plan routes between two known locations in which we have never traveled directly between
before (e.g., we may have traveled from our home to the grocery store, and from our home
to our office, but we may have never travelled from our office to the grocery store).

In addition to planning and traveling between known states within the environment,
this internal representation is also useful for localizing ourselves within a familiar environ-
ment after becoming disoriented or “lost”. When one is lost in a familiar environment,
one can represent this as a case of state uncertainty. That is, the observer has a certain
amount of uncertainty about which position and orientation (state) that they are in within
the large-scale space (such as a city or a complex building). By making observations within
the environment (e.g., identifying buildings in a city, or seeing a painting in a building) and
making actions (translating and rotating) observers can gather and integrate this informa-
tion to reduce their uncertainty until there is none remaining.

Previous studies by Stankiewicz, Legge, Mansfield, and Schlicht (2006) have inves-
tigated human navigation efficiency when participants are lost in virtual environments.
Stankiewicz et al. (2006) investigated human navigation efficiency under a number of
conditions to try and determine how efficiently participants performed and determine the
cognitive limitation that prevented participants from navigating optimally. To measure hu-
man navigation efficiency, Stankiewicz et al. (2006) developed an ideal navigator that was
based upon a Partially Observable Markov Decision Process (POMDP) (Cassandra, Kael-
bling, & Littman, 1994; Cassandra, 1998; Kaelbling, Cassandra, & Kurien, 1996; Kaelbling,
Littman, & Cassandra, 1998; Sondik, 1971). The Stankiewicz et al. (2006) experiments
were conducted using desktop virtual reality. In these studies, participants observed
the environment from a first person perspective (see Figure 1 as an example of the type
of display used in these studies), but remained sitting and made button presses to move
through the environment. In these studies participants did not have access to any egothetic
cues! that are typically available when navigating in the “real world”. Furthermore, partic-
ipants moved by using quantized actions in the Stankiewicz et al. (2006) studies. In these
studies they rotated left by 90°or right by 90°or moved forward a prescribed distance by
making specific button presses. These quantized actions are not typical in the “real world”.
Instead we move through space in a continuous manner. The studies described here in-
vestigated whether human efficiency changes as a function of whether participants have
access to egothetic cues or not and whether they move discretely or continuously through
the environment.

The results from Stankiewicz et al. (2006) suggest that the cognitive limitation in effi-
ciently solving these tasks was in the participant’s inability to accurately update and main-
tain the set of states (positions and orientations) that they would be within the large-scale
space, given their previous actions and observations. The experiments described here inves-
tigated whether these effects generalize to more realistic conditions — specifically, whether
performance will change with the addition of proprioceptive and vestibular information and
the use of continuous movements instead of discrete movements ( as used in the Stankiewicz
et al. (2006) studies). To investigate this question we conducted a series of experiments that
used the same paradigm as Stankiewicz et al. (2006) but had participants navigate through

!Egothetic cues are internal cues that provide information about the changes in position and orientation
due to changes in the vestibular system and proprioceptive cues from movement of the legs.
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Figure 1. An image from the studies conducted by Stankiewiewicz et al. 2006. These studies
used indoor virtual environments in which participants navigated using key presses to move through
the environment. The environments were visually sparse to produce a certain amount of state
uncertainty within the task.

the environments using immersive technology in which participants navigated through the
virtual space using a head-mounted display in which their position and orientation was
also tracked. This provided the participants with proprioceptive information that was not
available to them in the desktop virtual reality environments.

Using VR to Study Human Navigation Ability

Over the last few decades, virtual reality (VR) has been increasingly popular in
psychological applications. (e.g., see, Mallot & Gillner, 2000; Gillner & Mallot, 1998; R.
Ruddle, Payne, & Jones, 1997; Steck & Mallot, 2000; Scholkopf & Mallot, 1995; Gillner
& Mallot, 1998; Franz, Scholkopf, Mallot, & Biilthoff, 1998; Chance, Gaunet, Beall, &
Loomis, 1998; Stankiewicz et al., 2006; Fajen & Warren, 2003). Psychologists have been
attracted to the ease of natural interaction with an environment without actually having to
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construct it, which can save a great amount of time and money. In addition, the possibility
of manipulating the environment precisely and systematically now exists in a way that was
never possible before.

An issue that persists with virtual environments is whether the results obtained in
VR environments are applicable to how people navigate in real environments. It appears
that under some conditions, the results obtained in virtual environments do not generalize
to real environments but, under other conditions, the results do generalize.

For example, one question that begins to address this issue is whether the knowl-
edge acquired in a virtual environment transfers to the corresponding real environment.
The argument is, that if the information transfers then this suggests that the underlying
representation extracted in the VR environments simulates those that are generated in real
environments. A number of researchers have investigated the transfer of knowledge from VR
to real environments (e.g., see Darken & Banker, 1998; Koh, Wiegand, Garnett, Durlach, &
Shinn-Cunningham, 1999; R. A. Ruddle & Jones, 2001; R. Ruddle et al., 1997; Thorndyke
& Hayes-Roth, 1982; Waller, Hunt, & Knapp, 1998; Witmer, Bailey, & Kerr, 1996). For
example, Witmer et al. (1996) investigated how well the knowledge acquired in virtual en-
vironments would transfer to real environments. In these studies, participants were trained
in either the real building, the virtual environment, or by using verbal directions and pho-
tographs from the real building. The virtual environment was rendered with high fidelity
(the researchers carefully modeled the structure of the building along with the collection of
object landmarks within the building). participants were trained on a specific route in one
of these conditions and then were instructed to take the same route in the real environment.
They found that participants made fewer wrong turns and took less time to travel a complex
route when they were trained in the real environment than when they were trained in the
immersive virtual environment. However the number of wrong turns (immersive=3.3 versus
Real=1.1) was small comparatively to the number of potential wrong turns (over 100).

In another study by Koh et al. (1999) participants were given a 10-minute training
session in either the real building, an immersive VR display, or a desktop VR display.
The immersive VR display consisted of a head-mounted display where movements through
the environment were controlled by a joystick. The virtual environments were rendered
with high fidelity (the structure of the building was generated from architectural plans of
the building and the walls were texture wrapped with photographs taken from the real
environment). Koh et al. (1999) had participants estimate the direction and distance
from one location to another unobservable location within the environment. They found
that participants performed just as well when they were trained in the VR conditions
(either immersive or desktop) as they did in the real environment. This result suggests the
possibility of generating an accurate spatial representation using virtual reality.

Waller et al. (1998) also conducted a series of studies investigating how well par-
ticipants transferred spatial knowledge about an environment when trained in the real
environment, a map, desktop virtual reality, immersive virtual reality (two minute expo-
sures to the VR environment) and long-immersive virtual reality (five-minute exposures to
the VR environment). In these studies, participants were trained by moving through the
environment using one of these formats (or in the control condition participants were not
given any training). After each training session, the participants were blindfolded and taken
to a “real” version of the environment. Participants were instructed to touch a series of
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landmarks within the environment while blindfolded (these landmarks were shown in the
training session). Waller, et al. recorded the time to complete the route blindfolded and
the number of times the participants bumped into the walls. Participants participated in
six training/test sessions. In the first session, participants who were trained in the real
environment performed significantly better than the participants who were trained in the
other conditions. By the sixth session, performance for participants who were trained in the
long immersive condition was not significantly different than those participants who were
trained in the real condition.

These studies suggest that under certain conditions the representation generated in
a VR environment may transfer to real environments, suggesting that the representations
used in the two different spaces may be similar. However, other studies have shown that
under more specific conditions human performance is different in virtual environment than
they do in real environments. For example, Thompson et al. (2004) had participants judge
distances between two points in virtual and real environments. Participants consistently
underestimated the distances in the virtual environments relative to their measurements
in the real environments. These underestimations occured even when the displays were
photorealistic images. Furthermore (and perhaps more pertinent to the current studies)
Chance et al. (1998) studied the effects of using egothetic cues when doing a dead-reckoning
task. In this task, participants would walk two edges of a triangle and then they were asked
to walk to the starting point. In these studies they manipulated whether participants had
access to their vestibular cues (physical turning) or proprioceptive cues (locomotion). These
cues were redundant with the visual cues that were given in the display. They found that
participants’ performances declined significantly when the vestibular cues were not available
to the participant. However, if the vestibular cues were available, but the proprioceptive
cues were not, then participants performed just as well as if they had both egothetic cues.

Summary: Utility of Using Virtual Reality. In summary, VR can be a powerful tool
for understanding issues associated with spatial navigation behavior. However, one needs
to be careful when generalizing their results from tasks that are conducted in VR to spatial
abilities in real environments. As is made clear by the previous examples, generalization may
or may not be appropriate. The current studies extend the work conducted by Stankiewicz
et al. (2006). The current studies investigate the role of egothetic cues in addition to
quantized actions when re-orienting oneself in a familiar environment.

The effects of egothetic cues and continuous actions

Though there are many differences between the VR spaces used in the Stankiewicz
et al. (2006) study and real environments the current paper focusses on two important
aspects. The first is the fact that participants did not have access to any egothetic cues
while wayfinding in the original studies. Participants sat at a desktop computer and moved
through the virtual space by pressing keys. The visual cues provided sufficient cues to
identify the amount of translation or rotation, but as has been shown in Chance et al.
(1998), visual cues are not necessarily adequate for accurate spatial updating. To investigate
the effects of egothetic cues, we will have participants navigate using immersive technology
in which participants will walk through real space with visual information will be presented
to the participant on a head-mounted display (HMD).
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The immersive condition will add egothetic cues that are not available in the desktop
environment. However, it also changes the types of actions that participants can make.
That is, in the immersive condition participants can move freely through the environment,
or more specifically, their actions are continuous rather than discrete as in Stankiewicz et
al. (2006). To investigate the use of continuous rather than discrete actions, we will also
run participants in a condition in which they will move through the environment using a
joystick. In this condition, participants will not have access to their egothetic cues, but they
will move continuously through the space. Table 1 illustrates the three conditions used in
the current study and whether or not they have egothetic information or use continuous
motion.

Table 1: An illustration of the three conditions used in this study and the specific manipulations
provided by these conditions.

Experiment Conditions

Key Press | Joystick | Immersive
Egothetic | NO NO YES
Continuous | NO YES YES

To address the effect of egothetic cues we will compare performance in the Joystick
condition to that of the Immersive condition. The primary difference when running with
the joystick versus the immersive environment is the egothetic cues. To investigate the
effects of continuous versus discrete actions we will compare performance in the Joystick
versus the Key Press conditions. If quantizing the actions has an effect on human navigation
performance, there should be a change in efficiency in these two conditions.

The Ideal Navigator

In the studies conducted by Stankiewicz et al. (2006) and the current studies, partic-
ipants navigated with a certain degree of uncertainty. In both of these studies, participants
were familiarized with a novel virtual environment?. As illustrated in Figure 1, the environ-
ments are very sparse — that is, they did not contain any object landmarks (e.g., drinking
fountains, pictures, etc.). It should be pointed out that even with perfect perception, most
of the observations within the environment are not unique. Thus, given that the observers
(human and ideal) are starting from a randomly selected state, in most trials they will start
the task with a certain amount of state uncertainty due to the fact that multiple states can
generate the same observation. Stankiewicz et al. (2006) used a POMDP to formalize the
ideal navigator (also ,see Sondik, 1971; ?, 7; Cassandra, 1998; Kaelbling et al., 1996, 1998).
To illustrate the POMDP approach in spatial navigation, we will provide a formal descrip-
tion of the underlying equations and provide an example using a simple environment. The
purpose of this illustration with an example is to provide both an intuitive understanding of
how the model works in addition to a formal understanding of the underlying mathematics.

2Participants explored the environment until they could draw the environment correctly twice in a row
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Figure 2. A simple map to demonstrate how the ideal navigator works. In this map the observer
can be at any one of the green or red squares facing one of the four cardinal directions (N,S,E;W).
The red square defines the “goal state” of that the observer wants to reach in the minimal number
of actions.

For those who already understand the POMDP approach and/or are simply interested in
the empirical results can skip the following section on the Ideal Navigator.

Defining the state and observation space. The ideal observer approach relies on con-
verting a large continuous space into a quantized space. This is illustrated in Figure 2 as
the set of states that the observer could be in. In Figure 2 the observer can only be on one
of the red or green squares facing one of the four cardinal directions (North, South, East or
West). In this environment there are a total of 36 different states that the observer can be
in (9 positions x 4 orientations).

For each of these states we can define the observation that is expected from that
state®. In Table 2 we have provided all of the observations and the states that could have
generated that observation from the environment specified in Figure 2. As can be seen
from this table, only four states (A1-E, C1-W, C3-W and A3-E) have unique views. All of
the other states within the environment generate views that could be generated by at least
one other state. Thus, if one were to be randomly placed within the environment only 4
times out of 36 (11% of the time) will the observer have no uncertainty about their location

3 Although with the current studies and the studies by Stankiewicz et al. (2006) the observations were
deterministic, one can actually model situations when the observations are noisy. That is, given a particular
state the probability of an observation is 1.0 for one observation and 0.0 for all others. However, one might
have observation noise such that the probabilities are not 1.0 and 0.0 (for more see, Cassandra et al., 1994;
Cassandra, 1998; Kaelbling et al., 1996, 1998; Sondik, 1971)
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Table 2: The set of observations and the states that could generate that observation in the environ-
ment shown in Figure 2.

Observation States

Wall A1-[N,S,W]; B1-N; C1-[N,E]; A2-[W,E,S]; B2-[E,W];
C2-[W,E,S]; A3-[N,S,W]; B3-S; C3-[N,S,E]

Hall-RightHall-Hall-RightHall Al-E

Hall-Hall-RightHall/LeftHall B1-S; B3-N

Hall (Dead End) C1-S; B3-[E,W]

Hall-RightHall (Right L-junction) B1-E,A2-N

Hall-LeftHall (Left L-junction) B1-W;C2-N

Hall-LeftHall-Hall C1-W; A3-E

Hall-RightHall/LeftHall (T-junction) | B2-[N,S]

Hall-RightHall-Hall C3-W

within the environment. When deciding what action to generate the observer must take
into account the likelihood that they are in a particular state within the environment.

Later we will use this table to generate the likelihoods that the observer is in a given
state given its previous actions and observations (i.e., Belief Updating).

Defining the transition matrix. In the original Lost in Virtual Space experiments
(Stankiewicz et al., 2006) and the Keyboard condition in the current study, participants
moved through the environment by making one of three actions: Rotate-Left 90°, Rotate-
Right 90’and move Forward one hallway unit. The transition matrix defines the prob-
ability of the resulting state if the observer generates a particular action in a given state
(i.e., p(s'|s,a)). An illustration of the transition matrix is shown in Table 3 and Figure
3. This is a graphical representation of the transition matrix (and only a portion of the
transition matrix for the entire environment shown in Figure 2). As can be seen in Table 3
the transition matrix makes explicit the resulting state given an initial state and a specific

action?.

Belief updating. Given the specifications of the observations and the specifications of
the transition matrix one can begin to generate hypotheses about their current state within
the environment given prior actions and observations. Equation 1 provides the Bayesian
updating rule that computes the likelihood of being in a specific state (s') given the prior
belief, the current observation and the action just generated.

“In the current studies and the studies conducted by Stankiewicz et al. (2006) the actions were determin-
istic. That is, the probability of the resulting state given an action and an initial state was 1.0 for one state
and 0.0 for all other states. One does not need to assume deterministic actions, but instead the resulting
state may be noisy. Modeling noisy actions can be found in Cassandra et al. (1994) and the other POMDP
papers listed.
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Table 3: The complete transition matrix for the environment shown in Figure 2 with the three
actions Rotate-Left, Rotate-Right and Forward. The state on the far left of the table is the starting
state, and the three columns following the starting state specify the resulting state if the observer

were to generate that action.

Initial State | Rotate-Left | Rotate-Right | Forward
Al1-N Al-W Al-E Al1-N
Al-E Al1-N Al-S B1E
Al-S Al-E Al-W A2-S
Al-W Al-S Al1-N Al-W
B1-N B1-W B1-E B1-N
B1-E B1-N B1-S Cl-E
B1-S B1-E B1-W B2-S
B1-W B1-S B1-N Al-W
C1-N C1-W Cl-E C1-N
Cl-E C1-N C1-S Cl1-E
C1-S Cl-E C1-wW C2-S
C1-W C1-S C1-N B1-W
A2-N A2-W A2-E Al1-N
A2-E A2-N A2-S A2-E
A2-S A2-E A2-W A2-S
A2-W A2-S A2-N A2-W
B2-N B2-W B2-E B1-N
B2-E B2-N B2-S B2-E
B2-S B2-E B2-W B3-S
B2-W B2-S B2-N B2-W
C2-N C2-W C2-E C1-N
C2-E C2-N C2-S C2-E
C2-S C2-E C2-W C2-S
C2-W C2-S C2-N C2-W
A3-N A3-W A3-E A3-N
A3-E A3-N A3-S B3-E
A3-S A3-E A3-W A3-S
A3-W A3-S A3-N A3-W
B3-N B3-W B3-E B2-N
B3-E B3-N B3-S C3-E
B3-S B3-E B3-W B3-S
B3-W B3-S B3-N A3-W
C3-N C3-W C3-E C3-N
C3-E C3-N C3-S C3-E
C3-S C3-E C3-W ¢3-S
C3-W C3-S C3-N B3-W
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Figure 3. A graphical representation of a part of the transition matrix for the environment shown
in Figure 2. The arrows specify the resulting state if the observer was in one of the states and
generated one of the three actions (Rotate-Left, Rotate-Right and move Forward). This transition
matrix is only for a portion of the environment shown in Figure 2.

plols’, b, ap(s'|b,a)) "

p(ob, a)

b is the probability that the observer is in a state given the prior observations and
actions. For this example, the likelihood of being in any given state is initially uniform (i.e.,
p(s’) =1/36 = 0.0277).

Let us assume that the initial observation (o) is 'Hall-RightHall/LeftHall’ (a T-
junction) from the environment in Figure 2. The probability of getting that observation
given a specific state and the prior probabilities (p(o|s’,b)) is 0.0 for all of the states with
the exception of B2-N and B2-S. The value of p(o|s’,b) for these two states is 1.0.

The probability of being in s’ given the prior probabilities is the prior probability of
being in that state (i.e., p(s’'|b) = 0.0277). Finally, the probability of getting the observation
given the prior belief (p(o|b)) is 0.055 or 2/36 (two states out of the 36 states give this same
observation).

p(s'|b,0,a) =

1.0 % 0.2
p(B2 — N|'Hall — RightHall/Le ftHall') %;77 @
= 0.5 (3)
1.0 % 0.2
p(B2 — S|'Hall — RightHall/Le ftHall') = %

= 05
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We can extend this equation to give us the transition between beliefs after an action
is generated. That is 7 provides us with the likelihood of the resulting belief vector given
our current belief vector and a specific action. (see fig. 4)

7(b,a,b') = Z p(ola, b) (4)

0€0|p(s'|b,0,a)

To illustrate the belief updating, we will use Equation (4) in addition to Table 3. For
this example, let us assume that the observer generated the “Forward” action after its initial
observation and that after this action the observer’s observation is a “Wall”. For 21 of the
states the probability of seeing a wall is 1.0 (i.e., p(o|s’,b,0) = 1.0). The probability of being
in a particular state given the prior belief (B2-N=B2-S=0.5) and the action is 0.0 for all of
the states with the exception of B3-S and B1-N. This can be shown by looking at Table 3
and looking at the intersection of the “Forward” column (a=“Forward”) and the B2-N and
B2-S rows. This cell represents the resulting state given the action and initial state. Thus
p(B1 — N|b, ‘Forward) = p(Bl1 — N|b,‘Forward') = 0.5. The p(o|b,a) = 1.0. That is,
given the current belief and a forward action, the probability of getting the observation of
‘Wall’ is 1.0. Equation 5 makes this updating function more explicit.

1.0 x 0.5

p(B3 — N|b, Wall', Forward') = EETIE (5)
= 0.5
1. .
p(B1 — S|b, Wall',*Forward) = %
= 0.5

Now let us imagine that the observer’s next action is ‘Rotate-Right’ and following this
observation it receives an observation of ‘Hall-RightHall’. Given the prior belief and the
action ‘Rotate-Right’, there are only two possible resulting states: B1-E and B3-W. The
observation expected from B1-E is ‘Hall-RightHall’ while the observation expected from
B3-W is ‘Hall’ (see Table 2). The probability of observing ‘Hall-RightHall’ from B1-E is
1.0, while the probability of getting this observation from B3-W is 0.0. Furthermore, the
probability of making either one of these two observations (p(olb,a)) is 0.5. As can be seen
in Equation 6 the probability of being in B1-E is now 1.0 and the probability of being in
B3-W is 0.0.

p(Bl = Elb,‘Hall — RightHall',* Rotate — Right') = ———=— ©)
— 10

p(B3 — W|b,‘Hall — RightHall',*Rotate — Right') = 0'00X5O :
= 00

With this observation we can see that all of the probabilities collapse onto the state
B1-E — that is the observer has completely disambiguated itself within the environment.
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Reward structure. Equation 1 formalizes how one would update their belief about
their current state given their previous actions, observations and prior probabilities. How-
ever, it does not specify which action that the observer should take. In order to specify the
optimal action one must specify a Reward Structure for the problem. A reward structure
specifies the expected value (both positive and negative rewards) for generating an action
in a particular state. For example, in Stankiewicz et al. (2006) the reward for generating a
“Forward”, “Roate-Left” and “Rotate-Right” action was the same (-1.0). This reward was
the same for all of the states that the observer could be in.

However, for the experiments described here and the experiments in Stankiewicz et
al. (2006) there was a goal state that the observers were attempting to reach. In the
environment in Figure 2 the goal is C2-[N,S,E,W]. That is, the goal is to reach C2 facing in
any particular direction. In order to model this we need to add a new action to the three
shown in Figure 3. We will call this action ‘Declare-Done’. We will assign a reward of 100
when this action is generated and the observer is in C2-[N,S,E;W] and -500 for all of the
other states.

Given an explicit reward structure, one can begin to formalize the optimal action,
given a specific belief about one’s current state in the environment. In the following section,
we will formalize how the optimal action can be selected given the current belief, transition
matrix, and reward structure.

Choosing the optimal action

Using the Transition matrix, Reward Structure and Observation Matrix we can com-
pute the optimal action for any given belief vector that the observer might have®. To
compute the optimal action one must consider the immediate reward for generating a spe-
cific action in a specific state in addition to computing the future expected rewards. The
following equation is the reward for generating a single action given that you have a par-
ticular belief vector (b). Figure 4 illustrates the set of actions that are available to the
observer and the expected immediate rewards for generating each action (the equation for
computing the immediate reward is in Equation 7).

p(b,a) = R(s,a)b(s) (7)
seS

p provides the immediate reward for making the action ¢ and Figure 4 provides an
illustration for the current example. As can be seen in Figure 4, there is no clear choice for
the observer if their choice is myopic — that is, if they only consider the immediate rewards.
If one were to choose the action that maximized the immediate rewards, at best, one would
have to select from the three actions with an immediate reward of -1.

Given the structure of the problem, one can begin to consider the actions to help
differentiate between which of the immediate actions is optimal. Computing the expected
value when one is considering future actions is an iterative process — a process that has
to consider future actions and beliefs. To compute the maximal expected value we want

to compute the rewards that are acquired as the observer is moving through the problem.
That is, the reward will be (Eq. 8):

5 A belief vector is a particular probability distribution across all of the possible states in the environment.
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Open Eyes

all-(LeftHall,RightHall)

p(B2-N)=0.5
p(B2-S)=0.5

\

Declare=-500

Figure 4. The immediate rewards (IR) for the four actions available to the observer given the
current belief state.

R=Y"r(t) (8)
t=0

To compute the optimal action for a given belief vector, one needs to consider all of
the actions (A) that are available to the observer in the current state, the immediate reward
for generating an action (p from Equation 7), and the transition function that specifies the
likelihood that a new belief state will be generated (7) and the expected states that one
could be in given the observations that one could receive. ~ specifies a discount factor
that discounts future rewards relative to immediate rewards. By choosing the action that
maximizes the following function, one can act optimally in the environment (see Eq. 9).

V(b)—max (b,a) +’yz (b,a, b YV (b) (9)
b'eB

Returning to our example, Figures 5 and 6 provide illustrations of the iterative manner

of this problem. In Figure 5 the observer is faced with four different choices: Declare,
Forward, Left (Rotate Left by 90°) and Right (Rotate Right by 90°). This is identical
to Figure 4 with the exception that we have computed the expected value (V) instead
of the immediate reward. The expected value considers the future rewards assuming that
following the selection of the current action the observer will make the choice that maximizes
the expected value. For the current example, given the a belief (p(B2-N=p(B2-S)=0.5) the
expected value for declaring finished (“Declare”) is -500 (see Section ). However, if the
observer moves “Forward” the expected value is 94, while the expected reward for rotating
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left or right is 92. If the observer chooses the action that maximizes its expected value, it
should choose the ‘Forward’ action.

Open Eyes

all-(LeftHall,RightHall)

p(B2-N)=0.5
p(B2-8)=0.5

Declare=-500 Forward=94 Right=92

Figure 5. After the initial observation in our example of “Hall-LeftHall-RightHall” there are two
different locations within the environment that the observer could be located with equal probability:
B2-N and B2-S. The observer can choose between four different actions: Declare, Forward, Rotate
Left by 90" (“Left”) or Rotate Right by 90°(“Right”). Given the current belief state (p(B2-N)=p(B2-
S)=0.5) we have computed the Ezpected Value (V) for generating each action. The expected value
is the ultimate reward that the observer expects to receive if they generate the specific action and,
following each action, they generate the action that has the greatest expected value. We have
illustrated how the expected value is computed for the Forward action in Figure 6.

Figure 5 provides the end result of the expected value computation. We would like
to provide an illustration of how this works with the current example. Figure 6 provides
an illustration of how the value function might be used in Equation 9. In Figure 6 we show
how the expected value of 94 is generated for the ‘Forward’ action. A similar process would
be generated for all of the actions available (i.e., Left, Right, Declare).

There are a number of aspects that need to be pointed out in Figure 6 that illustrate
how the POMDP works. First, note the main branching point in the illustration. This
main branching point in the illustration is where the observer expects to receive one of two
different observations given the current belief vector. When it is equally likely that it is
at B1-N and B3-N the model expects one of two observations after rotating right by 90—
either a ‘Hall’ or a ‘Hall-RightHall’ (Right L-junction). The first thing to note is that given
one observation or the other, the belief vector collapses on one state or the other (as shown
by the new probabilities; p(B3-W)=1.0 if a “Hall” is observed and the probability of B1-E
is 1.0 if a “Hall-RightHall” is observed). Second, note that selecting the action ‘Right’ is
the weighted sum of the expected value of being in one state or the other.
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[Hall-(LeftHall RightHall)

PB2N)=0.5
p(B2:5)=0.5

pBI-N=10

all-RightHall

PBLES=LO

Figure 6. An illustration of how one might compute the expected value (EV) for a given action
(Declare, Forward, Left, Right) given an initial belief vector (p(B2-N)=p(B2-S)=0.5). For each belief
vector we compute the expected value if one were to select a particular action and do everything
optimal following this action. However, if you start at the lowest node (Declare V=100) and work
your way backward through the tree, one can see how these actions can be selected.

A second aspect to note from Figure 6 is that the observer can be in state B1-W in
two different cases. The first is immediately following the ‘Right’ action at the divergent
point mentioned above. The second is where the observer realizes that they started in B2-S,
turns around and reaches that state a number of moves later. The important thing to notice
is that the expected value at this state is the same regardless of how it was reached. One
can take leverage of this property and take advantage of dynamic programming techniques
to develop efficient algorithms for computing the expected values for a specific belief state.

Utility of using ideal observer analysis

Ideal observer analysis has been very useful for understanding specific perceptual
issues that range from understanding the quantum limits of light detection (Hecht, Shlaer, &
Pirenne, 1942) to many forms of visual pattern detection and discrimination (Geisler, 1989),
to reading (Legge, Klitz, & Tjan, 1997; Legge, Hooven, Klitz, Mansfield, & Tjan, 2002)
object recognition (Liu, Knill, & Kersten, 1995; Tjan & Legge, 1998; Tjan, Braje, Legge,
& Kersten, 1995; Braje, Tjan, & Legge, 1995) and also in reaching tasks (Trommershéuser,
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Maloney, & Landy, 2003). The ideal observer provides a benchmark by which human
observers should behave if they are behaving rationally. It should be noted that we are not
arguing in this paper that humans are in fact optimal, but instead we use this technique to
remove the effects of task difficulty from human behavior.

Human performance is going to be a function of both their internal cognitive functions
and the inherent difficulty of the task (task difficulty). This task difficulty is simply the
objective difficulty of the task. For example, imagine that in an experiment one is measuring
the distance traveled to reach a known goal state. If one studies the human observer in
different environments (e.g., ones of different sizes) one would expect that smaller environ-
ments are inherently “easier” than larger environments. That is, if one were to perform
perfectly (i.e., no cognitive limitations), they would have to travel farther in the larger envi-
ronments than the smaller environments. The ideal observer would be sensitive to these task
demands. By comparing human performance to the ideal observer’s performance we can
remove aspects of these task demands to allow us to understand the cognitive limitations
in completing the given task.

In the current studies, we are interested in using the ideal observer analysis because
we are running participants in different environments. The environments are of the same
‘size’, but the degree of uncertainty that the observer may have to deal with may be signifi-
cantly different in one environment over another. Furthermore, each individual trial within
each environment has varying levels of difficulty. Therefore, we will normalize the human
performance in these environments by using the ideal observer’s performance.

Experiment 1

The main objective of these experiments was to determine whether the use of pro-
prioceptive and vestibular information and the quantization of space has an effect on hu-
man navigation performance with uncertainty. In doing so, this experiment also evaluates
whether the results of Stankiewicz et al. (2006) generalizes to more realistic navigation
conditions.

To do this, these studies replicated aspects of the Stankiewicz et al. (2006) studies
with participants in three navigation conditions: Key Press, Joystick, and Immersive. The
Key Press condition replicated the original condition used by Stankiewicz et al. (2006)
in which participants viewed the environment using desktop virtual reality using discrete
actions. In the Joystick condition participants observed the environment using desktop re-
ality, but made continuous movements through the space using a joystick. This condition
included no extra modal information, but allowed the participant continuous movement,
and required the participant to visually control his movements. The Immersive condition
had participants move by walking in an immersive virtual reality system using a head-
mounted display (HMD). This condition replicated the visual information of the original
condition, but also gave the participant access to internal vestibular and proprioceptive
information. The performance of the participant in the task under each of these conditions
was normalized for task difficulty by an ideal observer model. In this way, the only vari-
ables changed between conditions will the two factors observed: action discretization and
egothetic (vestibular and proprioceptive) information.
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Figure 7. Maps of the environments used in the current studies. The triangle indicates the position
in which participants started during the Exploration Phase of the study. The ‘1’ indicates the
goal state for each environment. During the Ezploration Phase an auditory signal was given when
participants walked over the goal state. During the Ezperimental Phase, participants were placed at
a random position and orientation within the environment and instructed to move to the goal state
in the shortest distance possible.

Methods

Apparatus. The experiment was run on an IBM Dell computer with a Virtual Re-
search V8 head mounted display used for viewing the environments. The HMD has a
640x480 resolution display with a 60'diagonal viewing area. In the Immersive condition,
participants were tracked using a WorldViz Precision Point Tracker that tracked the partic-
ipants’ position using video tracking and their orientation using a Intersense InertiaCube2.
In the Key Press condition, the participant moved through the environment by making
key presses that corresponded to a 90°clockwise rotation, a 90’ counter-clockwise rotation
or a forward translation of one hallway unit. After the participant made a key press, the
computer would rotate or translate the virtual “camera” in the virtual space. In the Joy-
stick condition participants moved through the environment using a #+ joystick. In all
conditions, participants viewed the environment using the V8 head mounted display.

Stimuli. Three different environments were used for the study that consisted of envi-
ronments that consisted of twenty to twenty five identical hallway segments that intersected
at 90"angles. The layouts from these environments can be found in Figure 7. All hallways
were three meters high, 0.6 meters wide, and 0.6 meters long, making 1.2 meters between
each intersection. Due to the limit of the room, the environment had to be encapsulated
in a 5 m x 5 m square, making the longest hallway 4 segments or 4.8 meters. Red and
white bars were placed at mid-height on all of the walls in the environment (See Figure 1).
Red bars indicated an intersection while white bars indicated a hallway. This feature was
intended to enhance the participants ability to discern the boundaries of the hallway.

Procedure. The current studies had three phases: Ezxploration, Knowledge Test, and
Ezperimental. The purpose of the first two phases was to familiarize the participants with
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the environment and test their knowledge of the environment. The Experimental phase
was the critical phase in which we tested participant’s performances in these environments.
Participants participated in all three phases in all three conditions (Key Press, Joystick
and Immersive). The order of the conditions was counterbalanced across the six partici-
pants such that each condition occurred first, second and third equally often (twice). Each
environment also appeared in each condition equally often.

Exploration Phase In the Exploration Phase participants explored a maze-like environ-
ment by navigating using either key presses, joystick or walking through the environment.
The mode was dependent upon the current condition. Participants moved through the en-
vironment for a total of 100 meters. After which, their knowledge of the environment was
tested (see Knowledge Test below). During the exploration phase, there was an auditory
signal (in the form of a computer generated female voice announcing “Position One”) when
the participant reached the target location. Participants were informed that they needed to
learn the environment well enough to draw the environment and the location of the target
state. Participants were also informed about the Experimental phase in which they would
start from a random location within the environment and would need to reach the target
location in the minimum distance possible. If the participant needed to participate in the
Exploration Phase more than once, they were always started at the same location within
the environment.

Knowledge Test Phase A graphical user interface (GUI) was used for drawing the map.
Although the Exploration Phase was conducted with the HMD, the Knowledge Test was
completed using a 19-inch computer monitor. The GUI required the user to create the map
from a top-down perspective. A small portion of the map was given consisting of the three
or four hallway segments that the participant could see from their initial position in the Ex-
ploration Phase. Participants drew a map of the environment by selecting and de-selecting
hallway segments until they felt that they had drawn the environment correctly.In addition
to drawing the hallway structure of the building, the participants also specified the location
of the target position. When they were finished, they selected a button indicating that they
were finished. The computer evaluated whether the hallway structure that they generated
matched the hallway structure of the environment that they explored. If participants did
not draw the environment correctly, they returned to the Exploration Phase. They contin-
ued in the cycle of Exploration followed by Knowledge Testing until they could draw the
environment correctly twice in a row.

Experimental Phase In the experimental phase participants started from each position
of the map four times — once in each of the four primary directions. The order of the start
position was randomized by the computer. Participants were instructed to move to the
target location in the shortest distance possible. In the previous studies (Stankiewicz et al.,
2006) participants were instantaneously “transported” to their start state (one advantage of
using virtual reality). However, in the current studies we had people navigating in immersive
spaces where they had to physically walk through the environment (the Immersive Condi-
tion). To get participants to move to their new location within the virtual environment,
participants were “removed” from the maze-like environment and told to move to a large
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virtual arrow and face in the direction of the arrow. When the participants were standing
on the arrow facing in the correct direction, they announced that they were “ready” and
the experimenter pressed a button that made the observer re-appear inside the maze. To
reduce the participant’s ability to use their position within the physical space, the environ-
ment was randomly rotated in one of four different directions. This inter-trial movement
allowed the participant to start from all states in the environment, while also providing
little possibility that the participant was gaining information about their location at the
start of the trial. Though it was possible to avoid this inter-trial movement in the joystick
and key press conditions, it was included in all three conditions to keep the conditions as
similar as possible.

Conditions

Keypress In the keypress condition, participants were confined to movement in between
intersections of the environment. The participants pressed a button to move left and right
by 90°and to move forward by one hallway segment. Participants moved at a constant speed
of 1 meter per second and rotated at a constant speed of 90" per second.

Joystick Participants in the joystick condition were able to use the joystick to move
continuously to every location in the environment. Preliminary measurements in the HMD
environment showed that participants moved at a rate of 0.8 meters per second when walking
at full stride. To match this, when participants pressed forward on the joystick, they
moved forward at a rate between 0 and 0.8 meters per second. The participant moved
at 0.8 meters/sec. when the joystick was fully engaged in the forward direction (slower
speeds could be achieved by reducing the forward displacement on the joystick). When the
participant pressed left or right, the participant would rotate up to a speed of 78 per second.
Participants could not move through the walls of the environment. Unlike the Keypress,
conditions, participants could also move backward in this condition.

Immersive In the Immersive condition, participants wore a V8 HMD. They walked in
a 9-meter x 9-meter space. Though participants were told to avoid walking through the
virtual walls of the environment, it could not be entirely avoided. Trials were removed in
cases where participants moved through a wall to get from from one intersection to another.
Participants were allowed to move backwards.

Participants

Six participants participated in the experiment, performing one session of 70-90 trials
(depending on map size) for each of the conditions. The order of each condition was
counterbalanced across participants. The participants included the two authors on this
paper, two upperclass undergraduate students, and two university employees.

In order to keep the visual information in all of the conditions, participants viewed
the environments using the HMD in all conditions. However, the HMD was only tracked in
the Immersive Condition. Since the HMD was only being used as a monitor in the other two
conditions, the display would not change when the participant moved his/her head. This,
combined with the deliberate lack of peripheral vision, caused many of the participants
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Figure 8. An example of small ”micro-movements within a trial. The participant started at the
upper right, repeatedly turned his head to look down the hallway, then proceeded to node at the
lower left. By quantizing the movement, this trial gets recorded as 2.4 meters even though his actual
accumulated trial distance is approximately triple this distance. allowed us to measure the distance
traveled in all three condition on equal footing.

to become motion sick. Two participants, a graduate student from another lab and a
paid volunteer, could not complete the joystick condition due to their level of uneasiness.
All participants expressed some discomfort in all of the conditions. However, the joystick
condition was found to be the most disturbing. All participants were encouraged to take
5-10 minutes breaks once every 10-15 minutes, according to their discomfort.

Results

Translation Efficiency

The main measurement in this study is the efficiency in which participants were able
to reach the goal state. Efficiency was measured by the ratio of the distance traveled by
the ideal navigator versus the human observer (see Eq. 10).

Distance(Ideal)

B ffici _
} ficiency Distance( Human)

(10)

Measuring the distance in these three different conditions posed a series of challenges.
One challenge was that, in the immersive condition, participants would make small, micro-
movements (the head would move slightly forward and back and to the left and right) to
look back and forth between hallways.

These micro-movements (see Figure 8 ) could not be made in the key press condition
and were not typically made in the joystick condition. A second issue was that, in the
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Figure 9. An illustration of the Nodal Quantization technique used to measure the participants
distance traveled in the environments. A total of 1.2 meters were traveled when the participant left
one node and entered another node within the environment. This allowed us to measure the distance
traveled in all three condition on equal footing.

immersive and the joystick conditions, the participants could “cut the corners” to reduce
the distance that they traveled. Because participants were restricted to traveling down
the center of the hallways, this corner cutting strategy was not available in the key press
condition®.

To place all of the conditions in the same space, we used a Nodal Quantization tech-
nique. This form of quantizing created radii around each intersection that consisted of 40%
of the distance between intersections or 0.48 meters (see Figure 9 for an illustration). A
complete movement would be counted only if the participant left the radii of one node and
moved into the radius of the next node or 60% of the distance of a hallway segment.

Using the Nodal Quantization technique we measured the distance that the partic-
ipant traveled on each trial in each condition. We then computed the optimal distance
traveled using the Nodal Quantization technique and computed the efficiency for each trial
using Equation 10. Figure 10 shows the average efficiency for the six participants in this
study.

To test the effect of egothetic cues on navigation performance we did a planned
comparison two-tailed t-test between the performance in the Immersive and the Joystick
condition and found no reliable difference (t(5)=0.058; p=0.95). To investigate if using
quantized movements had a significant effect on the participant’s navigation performance

SAlthough “cutting corners” and standing very still would allow the participants to be more efficient
(as defined by the task), we are not interested in understanding these aspects of the navigation behavior.
Instead, we are interested in understanding the role of egothetic cues in addition to quantization on macro
navigation decisions.
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Figure 10. Left. Average navigation efficiencies for six participants who ran in all three navigation
conditions. These efficiency performances are based upon the raw movements made by the partic-
ipants. Right. Average navigation efficiencies for six participants who ran in all three navigation
conditions. These efficiencies are computed by measuring the distances using the Nodal Quantization
technique.

we did a planned comparison between the Key Press and Joystick Condition. There was
no reliable difference between these two conditions either (t(5)=0.201; p=0.84). Finally,
to see if adding both quantized actions and egothetic cues had any effect on navigation
efficiencies we compared performance in the Key Press and Immersive conditions and again
found no significant differences (t(5)=0.23; p=0.82). Power estimates were computed for all
comparisons, and the number of participants with the same distribution of results that are
needed to produce significance were greater than 1.3x10%. We also computed performance
on the raw distances which are also illustrated in Figure 10.

Learning

The method of interacting with the environment may have an effect on how quickly
the subject is able to learn the environment. As a reminder, in the current study subjects
explored the virtual environment for 100 meters. After the Ezploration Phase, participants
were instructed to draw the environment on a cartesian grid. Participants continued in the
Ezploration phase followed by the Knowledge Test phase until they drew the environment
correctly twice in a row. We calculated the number of Ezploration phase sessions the
participant needed before drawing the first instantiation (of the two correct instantiations
in a row) of the environment. The average number of Ezploration phase sessions in Keypress
condition was 2.667 (SEM=0.8327); Joystick condition was 2.667 (SEM=1.0066) and in the
Immersive condition was 2.667 (SEM=0.5416). The number of Exploration sessions ranged
from one to seven. There was no statistical difference between all three conditions.
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Discussion

Recently there has been an influx of studies investigating how performance may differ
in Virtual Reality versus Reality. For example, the important work by Thompson et al.
(2004) has shown that humans consistently underestimate distances in VR environments
that use photo-realistic renderings of real environments relative to their real environment
counterparts. Work by Creem-Regehr, Willemsen, Gooch, and Thompson (2005) attempt
to localize the cause of this underestimation by investigating whether the restricted field of
view, monocular versus binocular viewing, or the inability to view one’s feet might account
for the compressed distance estimations in the immersive VR environments. However,
none of these factors seem to explain the compression in the distance estimates found by
Thompson et al. (2004)

Chance et al. (1998) showed that in a dead-reckoning task, human performance
declined significantly when the vestibular cues were removed (i.e., rotation information).
However, performance was not affected by removing the proprioceptive cues. These results
suggest that using Desktop VR where participants navigate through an environment while
sitting stationary might have a significant effect on performance.

In the current studies we compare performance in three conditions. The first condi-
tion, the Key Press condition, used Desktop VR in which participants could make quantized
actions through the environment that were limited to rotate-left by 90", rotate-right by 90" or
move forward 1.2 meters (to the next node in the environment). In this condition, in ad-
dition to the Joystick condition which also used Desktop VR, there were no egothetic cues
(vestibular or proprioceptive information). However, these cues were available in the Im-
mersive condition. Results showed that there was no significant difference between the
conditions that used the Desktop VR (Key Press and Joystick) and the Immersive con-
dition. This result suggests that when navigating with uncertainty in structured indoor
environments these cues may not be used, or do not play a significant role.

It should be made clear that these results may be limited to the types of environments
that we are using. That is, participants in the current studies navigated in environments
that were highly structured — they were indoor environments with clear hallway structure.
We believe that the strong visual information that is available in these environments over-
rides any metrical error that might be generated in any path integration system. That is,
participants may be estimating the distance travelled both from the optic flow information
and from landmark based navigation (i.e., piloting to a landmark). There may be a great
deal of uncertainty generated from the path integration system. However, the noise asso-
ciated with the piloting system is most likely very small. Given this small variance, the
navigation system might take a weighted estimate or it may simply ignore the path integra-
tion signal all together and base its estimates on the information from the landmark based
system. In a related study by Foo, Warren, Duchona, and Tarr (2005) in which the authors
pitted landmark knowledge against metric knowledge they found that participants relied
more on landmark knowledge when landmark information was reliable. However, when the
landmark knowledge turned out to be unreliable, the participants were able to use their
internal metric estimations to complete the task.
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The Use of Topology

The work by Foo et al. (2005) and the work here suggest that when navigating in
large environments, humans may use a more “quantized” or topological representation of
space. Recently, the work by Kuipers and his colleagues (B. Kuipers, Modayil, Beeson,
MacMahon, & Savelli, 2004; B. J. Kuipers, Tecuci, & Stankiewicz, 2003; B. Kuipers, 2001,
2000; B. J. Kuipers, 1998) argues for a hierarchical representation of large-scale spaces with
three levels of representation: Control, Causal and Topological. At the very top level of this
theory is the Topological space in which places (e.g., rooms, buildings, etc.) are represented
relative to paths (e.g., halls, roads, rivers, etc.). This space is an abstracted representation
that does not make explicit the metric properties of a large-scale space, but instead makes
explicit the categorical or relational structure of the space. The Causal Level provides an
explicit representation that states if the observer is in a given state S and generates a specific
action A, they will end up in a new state S’. Finally, at the lowest level is the Control Level
that makes explicit the specific micro actions that convert the Actions from the Causal level
into specific physical actions.

We hypothesize that when participants are navigating in an environment in which
there is a clear topological structure, that the participants make use of this information to
easily orient and navigate through the space. We suspect that if the space were less con-
strained, as in open-field navigation, that the results that we found in the current studies
might change significantly. However, with that said, it seems that studying human wayfind-
ing and orienting behavior using desktop VR works just as well as using fully immersive
environments.

A Question of Task

There is no question that VR provides a rich system for testing and understanding
human spatial navigation abilities. Using desktop VR one can study human performance in
very large-scale spaces and manipulate aspects of the environment that would be difficult
to do in real environments (e.g., starting participants from random locations in a large scale
space). However, as can be seen by the different results, VR may be useful for understanding
behaviors in some tasks but not others. It seems from the work of Thompson et al. (2004)
that VR may not be a good medium for studying distance perception. Furthermore, the
work by Chance et al. (1998) suggests that if a task relies on dead reckoning, one should
be wary of using desktop VR. However, for structured large-scale environments, the results
from the current studies suggest that desktop VR is just as good as Immersive VR.

Summary & Conclusions

The current studies set out to understand whether the reduction in efficiency in the
Stankiewicz et al. (2006) generalize to conditions where participants could move contin-
uously and where proprioceptive information was available. To do this, we tested partic-
ipants in three VR environments where they moved through the environment by making
keypresses, using a joystick or using an immersive environment. Using the ideal navigator
algorithm we computed the efficiency of human navigation in these three conditions and
found that there was no difference in performance in these three conditions. Furthermore,
analysis of how many sessions it took participants to learn the environments to criterion
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also showed no reliable difference between the three conditions. These results suggest that
in structured environments, desktop virtual environments can be used to better understand
human wayfinding behavior.
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