Learning with infinite relational models

Charles Kemp, MIT Josh Tenenbaum, MIT Tom Griffiths, Brown U.

What we want to understand

- Structure of belief networks
- Structure of social networks
- Their interactions
 - Beliefs about social systems
 - How social systems govern the development of belief systems

A common motif

Network structure is based on (i) a division of nodes into classes (categories, groups), and (ii) regularities about how nodes in different classes tend to be connected to each other. A computational framework for learning relational systems

- Input
 - Data on how specific nodes (objects, people) relate to each other.
- Output
 - Which nodes cluster together (including number of classes).
 - How nodes in different classes are likely to be connected.
- Target applications
 - Exploratory analysis and predictive modeling of sparsely observed, real-world belief networks or social networks.
 - Modeling how people learn and modify belief networks on the basis of experience.

Learning relational systems

"x defers to y"

Different kinds of relational systems

Learning relational systems

Learning relational systems

A theory: magnetic nonmagnetic • Classes magnet object • magnet magnet imagnetic • magnet magnetic imagnetic • magnetic object magnetic imagnetic • nonmagnetic object nonmagnetic imagnetic • nonmagnetic object nonmagnetic imagnetic • Relational regularities imagnetic imagnetic

- magnets interact with each other.
- magnets and magnetic objects interact.
- *magnetic objects* do not interact with each other.
- nonmagnetic objects interact with nothing.

Infinite relational model (IRM)

 $z \sim \mathsf{CRP}(\alpha)$

Infinite relational model (IRM)

 $z \sim \mathsf{CRP}(\alpha)$

Generating η and z

• Independent symmetric beta priors on η :

 $\eta_{ij} \sim \text{Beta}(\beta, \beta)$

- Chinese Restaurant Process over z: $P(z_n = C \mid z_1, \dots, z_{n-1}) = \begin{cases} \frac{n_C}{n+\alpha} & n_C > 0\\ \frac{\alpha}{n+\alpha} & C \text{ is a new class} \end{cases}$
- Goal:
 - Infer $p(z, \eta | O)$
 - Infer p(z | O) (integrating out η to reduce space of unknowns)

Global-local search process

Iteration 1

Iteration 2

Iteration 3

Iteration 4

lteration 5

Iteration 6

Learning social networks

Global terror networks (Atran, Sageman, et al.)

Learning social networks

Alyawarra tribe (Central Australia)

Learning social networks

- Data collected by Denham (1973)
- 104 members of Alyawarra tribe in central Australia
- 27 relational terms supplied by participants
- 3 attributes (not used in learning model)
 - kinship class
 - sex
 - age

Clusters are defined simultaneously over all kinship relations:

Adiadya

Adiadya

Anowadya

Documents

Documents

Documents

Words

Documents

Documents

Words

Documents

Authors

Example: machine learning papers

M West	mont
R Neal	carlo
R Kass	gibb
	sampler
	mcmc

Documents

Words

Author

Documents

Features

Authors

Learning belief networks: Joint clustering of entities & attributes

features

- 48 animals: {antelope, beaver, bat, chihuahua ...}
- 85 attributes: {swims, nocturnal, smart, tough skin...}

- 48 animals: {antelope, beaver, bat, chihuahua ...}
- 85 attributes: {swims, nocturnal, smart, tough skin...}

Attributes

Animals

Species clusters

- antelope, horse, giraffe, zebra, deer
- chimp, monkey, gorilla
- killer whale, humpback whale, blue whale, walrus, dolphin, seal
- hippopotamus, elephant, rhinoceros
- dalmatian, persian cat, siamese cat, chihuahua, collie

Attribute clusters

- hooves, long neck, horns, grazer
- hands, bipedal, tree, jungle
- flippers, swims, arctic, ocean, coastal, water
- fast, active, agility
- pads, claws, nocturnal, stalker, hibernate
- walks, quadrapedal, ground

Attributes

Ecological knowledge

features

Joint modeling of belief systems and social systems

plant

helps(plant,animal,person judging)

Data from Atran and Medin

animal

Ladinos

Itza

Towards richer models

Structural forms

Probabilistic graph grammars

Learning structural forms

Conclusions

- A probabilistic model for unsupervised learning of relational systems of concepts.
 - Belief networks
 - Social networks
 - Joint networks of beliefs and social structures
- Useful for both cognitive modeling and exploratory data analysis.
 - Allows arbitrary collection of types and relations
 - Automatically discovers appropriate complexity

Future directions

- Richer representations of network structure
- Richer interactions between social networks and belief networks
- Modeling of network evolution and development
- Scalable online learning
- Testing behavioral predictions in learning experiments