Conformity, Consistency and Cultural Heterogeneity

Jenna Bednar Aaron Bramson Andrea Jones-Roy Jennifer Miller Scott Page

January 27, 2006

Overview

Culture:

Behavior, Beliefs, Roles, Categories, Values, Artifacts, Networks

GameS Theory

Agents evolve automata to play multiple games The automata exhibit something like culture consistency within an individual (nice) consistency across people within group behavioral stickiness contextual effects suboptimal behavior

Simplest Model

N agents

M attributes.

A values per attributes

 $(a_1, a_2, \dots a_M)$ agent

Rules

External Coordination Rule (Voter Model, Axelrod's Culture Model: The first paired agent randomly chooses an attribute and sets the value of that attribute equal to the value that the other agent assigns to that attribute.

(0,0,0,0,1) meets (1,1,0,0,1) and becomes (1,0,0,0,1)

Internal Consistency Rule: The agent randomly chooses two random distinct attributes and changes the value of the first attribute to match the value of the second.

(0,0,0,1,1) looks internally and becomes (0,0,0,0,1)

Consistent Coordination Rule CC(p): An agent is chosen at random and with probability p the internal consistency rule is chosen and with probability (1 - p) the external coordination rule is chosen.

Claim 1 Consider a population of N agents with M binary attributes, and an agent whose first x attributes take value $e \ 0$. Let S_i equal the number of other agents in the population who have value 0 on attribute i, the probability that x increases by one equals

$$p\frac{x(M-x)}{M(M-1)} + (1-p)\frac{1}{M}\sum_{i=x+1}^{M}\frac{S_i}{N-1}$$

and the probability that x decreases by one equals

$$p\frac{x(M-x)}{M(M-1)} + (1-p)\frac{1}{M}\sum_{i=1}^{x}\frac{N-1-S_i}{N-1}$$

States of System

State	Agents	Prob
Coordinated &	(a,a)	
Consistent $(C\&C)$	(a,a)	$\frac{1}{8}$
Consistent Not	(a,a)	
Coordinated (CON)	(b,b)	$\frac{1}{8}$
Coordinated Not	(a,b)	
Consistent (CRD)	(a,b)	$\frac{1}{8}$
Off By	(a,b)	
One (OBO)	(a,a)	$\frac{1}{2}$
Not Coordinated	(a,b)	
Not Consistent (NOT)	(b,a)	$\frac{1}{8}$

Consistency Model

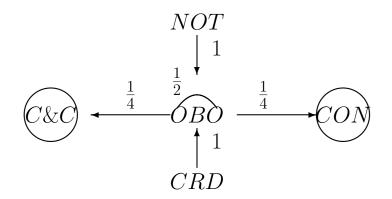


Figure 1: The Dynamics of the Internal Consistency Rule

Claim 2 The expected time to equilibrium for the Internal Consistency Rule equals $1\frac{3}{4}$.

Coordination Model

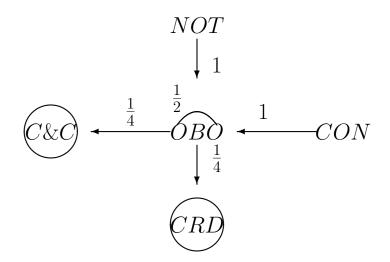


Figure 2: The Dynamics of the External Coordination Rule

Claim 3 The expected time to equilibrium for the External Coordination Rule equals $1\frac{3}{4}$.

CC(p) Model

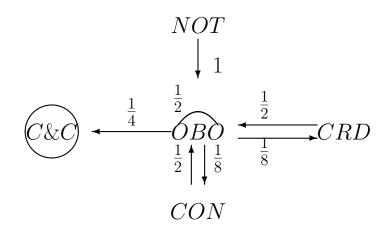


Figure 3: The Dynamics $CC(\frac{1}{2})$

Claim 4 The expected time to equilibrium for the CC(p) Rule equals $1\frac{7}{8} + \frac{1}{p(1-p)}$

Note 1: $p = \frac{1}{2}$ this gives $5\frac{7}{8}$

Note 2: time to convergence minimized at $\frac{1}{2}$

1+1 = 3: Equilibrium Distributions with Noise

 ϵ probability of random flip

Consistency Model

T/T + 1	CNS	OBO	NCN
\overline{CNS}	$1-\epsilon$	ϵ	0
OBO	$\frac{1}{2}$	$\frac{1-\epsilon}{2}$	$\frac{\epsilon}{2}$
NCN	0	1	0

$$P_{CNS} = \frac{1}{1+2\epsilon+\epsilon^2}$$
$$P_{OBO} = \frac{2\epsilon}{1+2\epsilon+\epsilon^2}$$
$$P_{NCN} = \frac{\epsilon^2}{1+2\epsilon+\epsilon^2}$$

Coordination Model

$$P_{CDC} = \frac{1}{1+2\epsilon+\epsilon^2}$$
$$P_{OBO} = \frac{2\epsilon}{1+2\epsilon+\epsilon^2}$$
$$P_{NCD} = \frac{\epsilon^2}{1+2\epsilon+\epsilon^2}$$

CC(p) Model

T/T+1	C&C	OBO	CRD	CON	NOT
C&C	$1-\epsilon$	ϵ	0	0	0
OBO	$\frac{1}{4}$	$\frac{(1-\epsilon)}{2}$	$\frac{p+\epsilon-\epsilon p}{4}$	$\frac{1-p-\epsilon p}{4}$	$\frac{\epsilon}{4}$
CRD	0	$1 - p + \epsilon p$	$p - \epsilon p$	0	0
CON	0	$p + \epsilon + \epsilon p$	0	$1 - p - \epsilon + \epsilon p$	0
NOT	0	1	0	0	0

 $P_{C\&C} = \frac{1}{1+4\epsilon+\epsilon^2+\alpha\epsilon+\alpha^{-1}\epsilon}$ $P_{OBO} = \frac{4\epsilon}{1+4\epsilon+\epsilon^2+\alpha\epsilon+\alpha^{-1}\epsilon}$ $P_{CRD} = \frac{\alpha\epsilon}{1+4\epsilon+\epsilon^2+\alpha\epsilon+\alpha^{-1}\epsilon}$ $P_{CON} = \frac{\alpha^{-1}\epsilon}{1+4\epsilon+\epsilon^2+\alpha\epsilon+\alpha^{-1}\epsilon}$ $P_{NOT} = \frac{\epsilon^2}{1+4\epsilon+\epsilon^2+\alpha\epsilon+\alpha^{-1}\epsilon}$ $\alpha = \frac{(p+\epsilon-\epsilon p)}{(1-p+\epsilon p)}$

Numerical Experiments

External Coordination Rule: Time to Convergence

Number of	Number of Attribute Values			
Dimensions	2	3	4	5
4	35.10 (1.20)	61.34 (2.08)	127.60 (9.02)	237.88 (14.88)
5	34.60 (0.99)	68.86 (3.49)	132.76 (8.40)	223.32(15.02)

Internal Consistency Rule: Time to Convergence

Number of	Number of Attribute Values			
Dimensions	2	3	4	5
4	7.52 (0.11)	16.92 (0.26)	31.04 (0.54)	49.68 (0.77)
5	8.32 (0.17)	18.96 (0.33)	$34.56\ (0.59)$	53.72(0.74)

$CC(\frac{1}{2})$ Rule: Time to Convergence

Number of	Number of Attribute Values			
Dimensions	2	3	4	5
4	70.78 (3.26)	168.80 (9.72)	394.78 (27.66)	869.56 (54.75)
5	72.62 (2.88)	195.18(10.55)	426.82 (30.00)	851.72 (57.31)

Observations

Heterogeneity consistent with forces for convergence

If 1+1 = 3, does 1+1+1 = 4,6, or 9?

Heterogeneity