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What are NIDs ?

A formalism for decision#making that distinguishes 
between agents% models of each other.

NIDs can represent players%  

• inconsistent and/or incorrect beliefs !that are not 
represented by a joint probability distribution"

• &I believe that you believe...' type reasoning. 

• irrational behavior !choosing a non#optimal 
strategy"

NIDs provide algorithms for 

• computing equilibrium given agents% beliefs

• learning parameters

Division of Engineering and Applied Sciences
Harvard University

Rock#paper#scissors 
Tournament )Billings 2002*

Automatic agents competed against each other for 
multiple rounds.

Nash Equilibrium players received expected outcome 
of zero.

Opponent modelers did much better.

Straightforward prediction failed # opponents disguise 
their strategy and attempt to counter model you !meta 
deliberators".
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 John%s Reasoning

P=paper

Strategy for
John

Strategy for
Mary

BR!P" =scissors

BR!BR!P""=rock

BR!BR!BR!P"""=paper

BR!BR!BR!BR!P""""=scissors
BR!..!P"..""=rock

Mary and John are playing rounds of rock#paper#scissors. 
Suppose there exists a  predictor P that depends on prior history
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For John to win...

• must learn correct distribution over

• predictor P

• Mary%s meta strategies !one, two or three levels of 
meta reasoning"
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Learning to Negotiate with 

People

• People%s strategies in strategic settings deviate from 
game theoretic predictions. 

• People are a(ected by social factors !e.g., 
competitiveness, altruism" and dependency 
relationships !e.g., who needs whom"

• People vary in the way they are a(ected by social 
factors. 

• Can we build a computation model for negotiation 
with people that will outperform game theoretic 
models ?



A take#it#or#leave#it Colored 
Trails Game

Proposal Phase : the proposer player must 
make an o(er to the responder player

A take#it#or#leave#it Colored 
Trails Game

Response Phase : the proposer player must 
wait for a the responder%s reply

A take#it#or#leave#it Colored 
Trails Game

Movement phase: both players are moved as 
close as possible to the goal square, given the 

result of the negotiation
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Social Preferences in CT

Responder%s preferences for a potential trade are 
function of

• sel+shness : individual bene+t from trade

• social welfare : aggregate gains from trade for both 
players

• inequality : di(erence in gains of trade 

Given a trade, social utility for deliberator is a weighted 
summation of its social preferences
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Using the CT NID to make a 
proposal 

• select the o(er that maximizes proposer%s score given 
its beliefs about types of responders.

• learn the distribution over responder%s types, as well 
as the weights for each type, by observing history of 
interaction.
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Data Collection

32 subjects 

192 di(erent instances

Each instance consisted of game description, proposals, 
and response

Up to 256 possible proposals in each game

Games performance determined payment for subjects
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Types of Proposers

Our learned social agent

Nash equilibrium

• choose proposal that maxinizes proposer%s bene+t 
and minimizes responder%s bene+t

Nash bargaining solution

• choose proposal that maximizes product of 
bene+ts from trade to both players

Humans
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Model Evaluation

We used two groups, each consisting of 5 human 
subjects and 3 computer players
We played 21 di(erent games
Each game was played 4 times: 

• proposer was one of four types
• responder was human

We aggregated the rewards of each type of proposer
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Results

Model Total Score
Exchanges 
Accepted

Exchanges 
Declined

No O(er

Learned 
Agent

2880 16 5 0

Nash Eq. 
Player

2100 13 8 0

Nash Barg. 
Player

2400 14 2 5

Human 2440 16 1 4

Example

Model Proposer%s score Responder%s score

No Negotiation 
Alternative 75 150

Learned Agent 170 170
Nash Equilibrium 

Player 180 160
Nash Bargaining 

Player 150 190

, Nash Equilibrium o(er was declined

, NB o(er resulted in lower proposer utility
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Conclusion

A language for representing agents% beliefs and decision 
making processes.

• captures uncertainty about what model is used to 
make decisions.

• de+ne an equilibrium that allows agents to behave 
irrationally.

• can learn model parameters through observations.
• More natural and compact then traditional game 

theoretic models.


