
Designing Networked Objects to Achieve Reasonable
Security

by

Zane Alexander Markel

B.S., Computer Science
United States Naval Academy, 2015

Submitted to the Institute for Data, Systems, and Society
in partial fulfillment of the requirements for the degree of

Master of Science in Technology and Policy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Institute for Data, Systems, and Society

May 12, 2017

Certified by. .
David D. Clark

Senior Research Scientist, CSAIL
Thesis Supervisor

Accepted by .
W. A. Coolidge Professor Munther Dahleh

Director, Institute for Data, Systems, and Society

2

Designing Networked Objects to Achieve Reasonable Security

by

Zane Alexander Markel

Submitted to the Institute for Data, Systems, and Society
on May 12, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Technology and Policy

Abstract

To maximize the value of the Internet of Things (IoT), developers need to build
devices that balance security with features, cost, and usability, relative to the threats
that their particular devices will face. However, many IoT devices have thus far
failed to achieve this balance. Various organizations have published copious security
frameworks to help developers. Of these, frameworks that focus on desirable outcome
metrics remain theoretically desirable yet infeasible to use in practice. The other
frameworks, which focus on some aspect of the development process itself, are widely
used despite a lack of methods for determining their utility.

This work introduces six criteria useful for evaluating and comparing these process-
based frameworks. Applying them to multiple security frameworks, we find that these
frameworks often derive from inflexible conceptions of security, limiting the ability of
developers to to vary their security designs. Even when developers are given options,
they lack the tools necessary to balance security with other tradeoffs respective to
the situations their products will be used in. To begin to address these shortcomings,
we propose the Processes for Reasonably Secure Design (PRSD), a novel process-
based security framework that helps developers comprehensively and systematically
consider the security threats an IoT device may introduce to its surroundings, options
for mitigating those threats, and the tradeoffs between those options. To demonstrate
its worth, we apply it in multiple case studies. Further, using the six criteria, we
evaluate PRSD and find that, in addition to providing useful and novel guidance, it
has practical qualities that could make it suitable for many real development efforts.

Thesis Supervisor: David D. Clark
Title: Senior Research Scientist, CSAIL

3

4

Acknowledgments

I would like express my deep gratitude to Dr. David Clark for inspiring my research

direction, keeping me critical and curious with our formative conversations, and keep-

ing me on course throughout these last two years.

Additionally, I would like to thank the many people in the MIT Internet Policy

Research Initiative who I’ve worked with—without your ideas and support, this thesis

never would have been written.

Further thanks go towards the faculty in the Technology and Policy Program,

whose lessons profoundly shaped the perspective that fueled this work, and to all the

staff, who keep everything together.

5

6

Contents

1 Introduction 13

1.1 Internet of What? . 13

1.2 Purpose . 15

2 Background 17

2.1 What is Security? . 17

2.2 The State of the Internet of Things 20

2.2.1 Security by Design . 20

2.2.2 Current Trends in Internet of Things Designs 24

2.2.3 Potential Solutions . 29

2.3 Conclusions . 32

3 Evaluating Security Guidance 35

3.1 Evaluation Criteria . 36

3.1.1 Quality of Guidance . 36

3.1.2 Flexibility . 37

3.1.3 Administrative Costs . 39

3.1.4 Scale and Scope . 40

3.1.5 Incentives . 41

3.1.6 Criteria Summary . 42

3.2 Evaluation of Several Security Frameworks 42

3.2.1 NIST 800–160 . 44

3.2.2 Cyber Independent Testing Lab 48

7

3.2.3 CII Best Practices Badge . 52

3.2.4 Evaluation Discussion . 55

4 A Framework for IoT Security Design 59

4.1 The Processes for Reasonably Secure Design 59

4.1.1 Process Outlines . 61

4.2 Case Studies summary . 67

4.3 Summary . 71

5 Evaluation of PRSD 73

5.1 Quality of Guidance . 73

5.2 Flexibility . 74

5.3 Administrative Costs . 75

5.4 Scale . 76

5.5 Scope . 77

5.6 Incentives . 77

5.6.1 Voluntary Framework . 78

5.6.2 Legislation . 79

5.6.3 Common Law Liability Framework 79

5.6.4 Standardization . 81

5.7 Summary . 82

6 Conclusions 85

6.1 Future work . 87

A Processes For Reasonably Secure Design 101

A.1 Introduction . 101

A.2 Situational Modeling . 104

A.2.1 Dependencies and Output . 104

A.2.2 Process Details . 104

A.3 Threat Modeling . 106

A.3.1 Dependencies and Output . 106

8

A.3.2 Process Details . 106

A.4 Security Option Enumeration . 108

A.4.1 Dependencies and Output . 108

A.4.2 Process Details . 109

A.5 Architectural Synthesis . 111

A.5.1 Dependencies and Output . 111

A.5.2 Process Details . 111

A.6 Tradeoff Resolution . 112

A.6.1 Dependencies and Output . 112

A.6.2 Process Details . 112

A.7 Component Updates and Maintenance 113

A.7.1 Dependencies and Output . 113

A.7.2 Process Details . 113

A.8 Maintaining the Framework . 114

B Case Studies 117

B.1 Smart Door Lock . 118

B.1.1 Given . 118

B.1.2 Situational Modeling . 120

B.1.3 Threat Modeling . 121

B.1.4 Security Option Enumeration 125

B.1.5 Architectural Synthesis . 131

B.1.6 Tradeoff Resolution . 132

B.1.7 Security Sub-option Enumeration 133

B.1.8 Architectural Synthesis on Sub-options 137

B.1.9 Sub-option Tradeoff Resolution 137

B.1.10 Discussion . 138

B.2 Updating for Airbnb Integration . 140

B.2.1 Given . 140

B.2.2 Situational Modeling . 141

9

B.2.3 Threat Modeling . 142

B.2.4 Security Option Enumeration 146

B.2.5 Architectural Synthesis . 149

B.2.6 Tradeoff Resolution . 149

B.2.7 Discussion . 150

B.3 Voice-controlled Hub . 151

B.3.1 Given . 151

B.3.2 Situational Modeling . 153

B.3.3 Threat Modeling . 155

B.3.4 Security Option Enumeration 159

B.3.5 Architectural Synthesis . 166

B.3.6 Tradeoff Resolution . 167

B.3.7 Discussion . 170

B.4 Robot Vacuum . 172

B.4.1 Given . 172

B.4.2 Situational Modeling . 173

B.4.3 Threat Modeling . 174

B.4.4 Security Option Enumeration 178

B.4.5 Architectural Synthesis . 185

B.4.6 Tradeoff Resolution . 186

B.4.7 Discussion . 189

10

List of Figures

4-1 Diagram of the Framework . 68

A-1 Diagram of the Framework . 113

11

12

Chapter 1

Introduction

1.1 Internet of What?

Developers everywhere are producing objects embedded with network connectivity.

This Internet of Things (IoT), which includes network-connected1 objects that are

not traditionally conceptualized as computers, could lead to devices with the ability

to generate, transfer, and act upon data with minimal human interaction through-

out all facets of life [45]. These abilities could enable widespread automation and

coordination, from self-driving cars that coordinate to get through traffic efficiently

to home devices that take care of household chores while the homeowners are away.

Expectations are high: Currently, over 4.5 million people are working as developers

in this space [13], and projections estimate that the world could house up to 100

billion Internet connected devices by 2025 [44], which, by one projection, could have

an economic impact of $3.9 to $11.1 trillion per year [58].

Although experts have made a wide variety of predictions about how the Internet

of Things will yield that added value, there is widespread consensus that security

should be of the utmost concern throughout the development of these networked de-

vices. Groups ranging from the Internet Society [45], to the Department of Homeland

Security [88], to a diverse panel of business, academic, and legal experts put together
1Despite the name, not all IoT devices must be part of the public, globally accessible Internet.

IoT could comprise multiple partitioned networks.

13

by the FTC [26] have all publicly raised grave security concerns about IoT devices.

Weak security could lead to serious widespread harm. For instance, hacked coordinat-

ing automated cars could cause fatal collisions, and seemingly innocuous chore-doing

devices could be leveraged to get into a connected door lock, leaving people’s homes

open to burglary. If security is bad enough, it could lead to a collapse in consumer

trust of IoT, which could ruin businesses and deny many people an increased quality

of life.

The IoT devices that have been produced thus far have not done much to dispel

these concerns. In fall 2016, malware named Mirai spread to at least 493,000 devices

spanning at least 164 countries [92, 57]. Together, these infected devices launched

several of the most disruptive distributed denial-of-service (DDoS) attacks in his-

tory. The attacks even temporarily shut down Dyn, a major DNS provider for the

United States’ east coast [90]. Later analysis discovered that most of the “bots”, or

infected machines, compromised by Mirai were home IoT devices like web cameras

and DVRs [92]. Thus, the IoT has already made traditional computer security attacks

more powerful.

Additionally, researchers have shown that existing IoT devices have enabled at-

tacks that are not even possible through traditional computers. For instance, in

2015, security researchers Charlie Miller and Chris Valasek showed that they could

scan for, identify, and exploit Jeep Cherokees, even while they are driving at full

speed. Through this exploit, the researchers were able to take control of critical

systems like braking and steering [59]. Likewise, Runa Sandvik and Michael Auger

demonstrated at BlackHat 2015 how they found a way to remotely take control of

an automatically-aiming IoT rifle in order to simply brick2 it or to change the target

that the rifle aims at [73]. As it stands, there is little reason to think that future IoT

products will buck this trend of insecurity.
2A “bricked” device has been attacked so badly that it has been rendered more or less permanently

unusable.

14

1.2 Purpose

The IoT space is advancing rapidly, and there is not much time before standards lock

in and norms for design patterns take shape. In order to ensure that these standards

and norms facilitate secure outcomes, it is imperative to explore the IoT security space

now. This thesis contributes to that search by addressing the following question: Is

there a procedure that developers can follow to design the Internet of Things with

reasonable security?

This thesis answers that question in the affirmative by proposing the Processes for

Reasonably Secure Design (PRSD), a framework that enables developers of home IoT

products implementing the communication specifications of the Open Connectivity

Foundation to systematically identify and weigh security considerations and their

tradeoffs in an effective, flexible, cost effective, and scalable way.

In the process of unpacking that question and supporting PRSD as an answer,

this thesis makes the following contributions:

1. It explores the concept of “reasonable security” and derives criteria that a pro-

cedure must meet in order to help developers best achieve it through their work.

2. It demonstrates systematic errors in current security guidance available to home

IoT developers, including both standalone guidance and guidance derived from

standardized architectures.

3. It proposes PRSD, a novel framework which developers can rely on to mitigate

some of the systematic shortcomings in security guidance they face and can

adapt to changes in the IoT space over time.

The remainder of this thesis is organized as follows. Chapter 2 explores the back-

ground material, establishing a definition of “reasonable security”, going into more

detail about the current state of the Internet of Things, and outlining some of the

existing security design guidance. Next, Chapter 3 derives criteria for evaluating se-

curity design guidance and applies them in a high-level evaluation of the guidance

15

referenced in the previous chapter. After that, Chapter 4 introduces PRSD, summa-

rizing the framework and its application in a case study. The complete framework

and case studies are presented in full in the appendices. Following that, Chapter 5

evaluates PRSD using the same criteria previously applied to existing security design

guidance. To do so, the chapter uses conclusions drawn from the case studies and

analyses economic and legal factors of using PRSD. Finally, Chapter 6 draws final

conclusions and notes promising potential future work.

16

Chapter 2

Background

2.1 What is Security?

In the Internet of Things, as with most things, perfect security is neither feasible

nor desirable. People take risks every day, because either the risks are unavoidable

or they believe that the potential benefits outweigh the risks. Internet of Things

security is no different—the only way to achieve perfect IoT security is to avoid the

IoT altogether. Ideally, stakeholders will want maximum utility from an IoT system.

Security helps to deliver this utility by mitigating the risks faced in the operation of

the system. However, it’s possible that security measures, while mitigating risks, will

inadvertently limit the benefits of an IoT system. These limitations occur when the

security measures constrain the systems’ functional capabilities, costs stakeholders

time or resources, or makes the system more cumbersome to use. Optimal security,

then, should mitigate risk just to the point of maximizing overall system value. We

term this optimum reasonable security.

More specifically, given an IoT device or network, a stakeholder1 of that device

or network, assets of the stakeholder affected by the device or network, and potential

risks to those assets stemming from the device or network,2 the device or network

is reasonably secure when those risks are minimized so as to maximize the overall
1A stakeholder is any person or group with an interest in or is affected by something [29]. In

IoT, this includes, among others, owners, users, producers, and even attackers.
2Security particularly focuses on risks that result from adversarial intent.

17

expected value of the device or network to the stakeholder. From this definition, we

can immediately see that reasonable security varies with the perspective of the partic-

ular stakeholder, that stakeholder’s assets, and the environment that the IoT system

and those assets operate within. Since the IoT, like networks in general, inherently

involves interactions between different agents, misalignments in their interests can

lead to different or even conflicting states of reasonable security.3 Furthermore, more

valuable assets and a more adversarial environment justify more expensive or onerous

security measures. Thus, reasonable security is only a coherent construct when it is

gauged with respect to these three varying factors.

Any attempt to distill a single “objective” metric or standard of security is actu-

ally just a single non-universal perspective of security, which may be reasonable or

unreasonable. Nevertheless, many sources traditionally define security this way. For

instance, ISO standards define security in terms of rigid adherence to the standard

pillars of confidentiality, integrity, availability [49]. While these three are often laud-

able security goals, treating them as isolated and absolute goals ignores the tradeoffs

between them, other security goals (such as accountability), non-security design goals

(such as cost), and the perspectives and assets of other stakeholders. Likewise, a va-

riety of the security literature puts the onus on design specifications, more or less

stating that a system is secure if and only if it adheres to specification for all inputs

(for example, see [39, 63].) From this perspective, developers are told to specify, or

formally articulate, the intended proper behavior of their proposed product for all

possible inputs; if the realized product adheres to these specifications, it is secure.

This framing of security is not helpful, as it presumes that there is a single, known

specification that achieves reasonable security for all stakeholders, assets, and en-

vironments; however, stakeholders’ needs vary, and there often exist security risks

that developers never thought of during specification. More generally, these “objec-

tive” security concepts can be useful as heuristics that help to estimate and strive for

reasonable security, but they should not be conflated with it.

Even at times where there is public or expert consensus that one feature or an-
3Clark and Blumenthal make this argument for the Internet in general [18].

18

other is always good and warranted, it may be that there exists various stakeholder

assets and contexts that demand differing security measures. For example, imagine

an Internet-connected “smart plug” that serves as an intermediary between a power

source and a device that relies on power from that source to operate. This smart plug

would allow or disallow power through the source to the device according to com-

mands sent over the network. Consider what security measures would be appropriate

to protect the smart plug when its used to power a lamp in a person’s home versus a

nuclear Intercontinental Ballistic Missile launch tube. In the former situation, even

having to type in a password to turn the light on and off may impose an unreasonable

burden on the homeowner; in the latter, if the smart plug could be justified at all,

a military would likely demand stringent protections that require input from multi-

ple authorities. Between these situations, frequently-given security advice (“always

use random, strong, and unique passwords” [30]) can be misleading for seemingly

innocuous IoT devices.4

More generally, there is a body of literature that argues that common expert

security advice is often inappropriate. For instance, Cormac Herley demonstrated

that adhering to common password strength rules, reading URLs to detect phishing,

and simply heeding certificate error warnings are almost always economically irra-

tional [41]. It follows from this that devices that put these responsibilities on users

are not reasonably secure. Moreover, another study points out that the common pass-

word advice to only use random, strong, and unique passwords is actually infeasible

for people to follow properly, so rationality cannot even be considered [30]. Anne

Adams and Angela Sasse showed that users often deal with impracticable advice and

policies by finding ways to circumvent them [3]. Generalizing further, Ross Anderson

has made a career out of arguing that perverse incentives are at least as much at

the root of information insecurity as technical shortcomings, demonstrating his case

by pointing out common microeconomic problems that have plagued information se-

curity, such as moral hazard, asymmetric information, and adverse selection [6]. To
4It also happens that there are actual smart plugs that one can buy today, and at least one model

is incredibly insecure [34].

19

summarize, this literature argues that, when designing for security, developers need

to weigh the anticipated benefits and costs of their options, choosing the options that

result in the most reasonable security for the stakeholders they care about. Advice

from security experts that is divorced of any consideration of stakeholders, assets,

and context is therefore not useful for thinking rationally about reasonable security.

Instead, developers need tools that help guide them through the process of weighing

the benefits and costs of security options.

2.2 The State of the Internet of Things

2.2.1 Security by Design

A key aspect of weighing security benefits and costs is security design, which com-

prises the security policy and selection of security mechanisms intended to enforce

the security policy. The security policy for an IoT system describes what agents,

which includes stakeholders (benign and malicious) and their devices, are allowed

and not allowed to do in the system, including the actions they can take and the ob-

jects those actions can target.5 In other words, it is the plan for acceptable behavior

that developers try to achieve in order to manage risk to stakeholder assets. Security

mechanisms, then, include any processes or machinery, technical or otherwise, put in

place to enforce the security policy. To be clear, while security itself is relative to

a particular stakeholder, assets, and environment, the security policy and the secu-

rity mechanisms of an IoT device are intrinsic properties of that device. Whether

explicitly formalized or implicitly understood, the developers and administrators’ in-

tents when they design and configure a device reflect its security policy. Likewise,

the actual mechanisms that result from that design and configuration are the device’s

security mechanisms. The challenge of security design, then, is to choose a security

policy and security mechanisms that make the security of a product or system as
5Both benign and malicious actors must be included in the security policy, because both types

of actors need permissions and restrictions.

20

reasonable as possible across all valued stakeholders, assets, and environments.6

Currently, security design is particularly challenging for the Internet of Things.

Since it combines physical sensing and actuation with all the elements of traditional

computing and networking, the IoT is inherently more complex than the traditional

Internet. As a result, developers have a harder time anticipating how individual ac-

tions will impact a system, so it is tougher to devise a smart security policy or to

choose appropriate security mechanisms. Additionally, the highly uncertain future

of the IoT makes security design even more difficult; when designing a product, it is

difficult to anticipate what other devices and services the product might eventually

interact with, so it is difficult to estimate threats appropriately (neither wasting re-

sources to protect against threats that would never materialize nor failing to protect

against those that do.) Compounding this problem further, many current IoT devel-

opers may be coming from industries where they never had to consider information

security before, leaving them ill-equipped to make these decisions smartly.

Poor security design enabled some of the biggest IoT attacks that have occurred.

Mirai, the malware responsible for some of the most disruptive DDoS attacks in

history, operated by taking advantage of common security design mistakes. Namely,

the devices it infected ran SSH or Telnet—services that enable remote login and

operation of the underlying operating system—and used known default usernames

and passwords for the administrator accounts. Mirai takes advantage of this by

scanning the Internet for devices listening with SSH or Telnet, trying to log in with a

small list of known default usernames and passwords, and then installing itself onto

any machine it gets on to [92]. There are no software bugs involved in this process;

Mirai takes advantage of a flawed security design. The developers of vulnerable

devices do not consider how an attacker might find their default passwords and take

advantage of listening SSH and Telnet services in order to harm stakeholder assets.

In the case of Mirai, the assets harmed are the targets of DDoS attacks, and the

stakeholders to those assets are the users and owners of those targets. However, such
6It is up to developers to decide the relative weights of various stakeholders and assets. Such

determinations are outside the scope of this work.

21

an attack could easily, among other things, steal sensitive data or simply brick the

device (in either case, harming the asset of the device’s owners and users.) Even

if the device developers only care about their own assets, the bad reputation—and

resulting damage to the bottom line—is surely something they would want to avoid.

All it would take to stop Mirai would be to not run SSH and Telnet, which are

not necessary to these devices’ operations, anyway. Turning off these services would

have significantly mitigated risk to the public and the producer’s reputations with

negligible downsides. Consequently, the devices would have more reasonable security

from the perspective of the public and the producers.

The security design of the original TrackingPoint Rifle was also problematic. Re-

searchers found that the rifle has an unpublished administrative application pro-

gramming interface (API) with functions that, among other things, grant full access

to the operating system over SSH (password required) and allow an external source

to modify parameters like wind, temperature, and ballistics information that the rifle

uses to aim at a target. Any device on the same network as the rifle can send it

commands through this API, and, aside from the SSH login command, the rifle will

accept them without any verification or authentication. Separately, the rifle accepts

software updates that are signed with one of two GPG keys. The security researchers

found that one of these keys is unchanging and hard-coded locally on every Track-

ingPoint rifle, and they were able to lift it from one that they owned. With it, one

can send any arbitrary software update to a TrackingPoint Rifle. With knowledge

of either the unpublished administrative API or the GPG key, along with network

access to a TrackingPoint Rifle, the researchers demonstrated that an attacker can

make the rifle miss its target (or hit another one), incorporate it into a botnet, or

simply brick it [73]. These vulnerabilities put lives at risk. TrackingPoint’s business

depends heavily on a reputation for reliability, so they would have a strong interest in

preventing these critical vulnerabilities even if they only care about their own assets.

Furthermore, there are security mechanisms that could largely mitigate these risks

with little sacrifice in cost, functionality, or usability. Thus, from the perspective

of either the users or the TrackingPoint, the security design of these rifles clearly

22

fell short of reasonable security. While it is not clear exactly what led the develop-

ers to make these design mistakes, a better procedure of systematically identifying

security threats (including their likelihood and the resources that attackers might

expend to pull off attacks), potential mitigating security mechanisms, and balancing

the mechanisms against tradeoffs would have greatly diminished the likelihood that

the developers would have made these mistakes.

The 2014 Jeep Cherokee also resulted from poor security design. Modern Jeep

Cherokees are somewhat complex IoT systems in themselves; they connect to the

Sprint cellular network and have many interoperating sub-components. Communica-

tion between processes running within the car, from the media player to braking, is

handled by a process called D-Bus. The sub-components of the car fully trust D-Bus

commands, obeying them without any sort of verification. This may have been a rea-

sonable assumption before Jeep started connecting their cars to the Sprint network,

but it no longer holds: D-Bus has an IP address accessible to the entire Sprint net-

work, and anything on that network can connect to it over port 6667. Further, D-Bus

itself trusts any external communications without authentication. The researchers

were able to exploit this misplaced trust to gain control over many critical systems,

like braking and steering [59]. Lone individuals and hacktivist organizations would

not have a hard time causing real damage by carrying out this exploit. Although the

likelihood of such an attack is somewhat low (relative to DDoS attacks, spam, and

identity theft operations), Jeep could have put security mechanisms in place to pre-

vent this exploit for virtually no cost or sacrifice in functionality or usability. Indeed,

Jeep eventually patched this particular vulnerability simply by blocking traffic over

port 6667 on the Sprint network [59]. It’s difficult to imagine that the Cherokee’s

designers intentionally put this security design in place; they probably either falsely

assumed that arbitrary connections over the Sprint network were impossible or mis-

understood the chain of trust the 2014 Jeep Cherokee’s components implicitly relied

upon. If the teams designing the vehicle had explicitly laid out the capabilities of the

systems they developed and merely brainstormed about how an attacker could take

advantage of those capabilities through the systems’ interfaces, the vulnerabilities

23

would have been obvious. However, it takes careful organization of a system’s designs

to see these things. As it is, this case demonstrates how uncertainty and complexity

in IoT systems makes it particularly difficult to gauge the impact of design decisions

on overall security.

Certainly, there are other aspects to security besides design, but they are not

the primary focus of this thesis. Traditionally, many security vulnerabilities arise

from implementation bugs. These vulnerabilities arise from a discrepancy between

developer intentions and the resulting code that attackers can exploit. (For contrast,

vulnerabilities in security design occur when an attacker can harm stakeholder assets

while operating within the bounds of the developer intentions [40].7) While imple-

mentation bugs will certainly be a problem, it’s not yet clear if or how IoT-specific

implementation bug vulnerabilities differ from traditional implementation bug vulner-

abilities. Additionally, human factor weaknesses are also a major security weakness

in many computing systems. Human factor attacks rely on social engineering, such

as phishing attacks, to exploit a system (see, for example, [7].) Human factors are

related to security design in that smart security design will account for actual human

behavior, although there are aspects of human factor attacks that fall outside the

scope of an IoT device’s security design. Regardless, since IoT is characterized in

large part by automated interactions between machines with minimal human involve-

ment, human factors may be less problematic for IoT security than for traditional

computing. While implementation bugs and human factors may actually turn into

important research subfields of IoT security, there is less reason to give them as much

priority as security design at this time.

2.2.2 Current Trends in Internet of Things Designs

The Internet of Things is new and immature, and it is uncertain what security designs

will come to dominate. Perhaps unsurprisingly, the millions of people working on IoT
7Isolation, which involves separating components of a system to minimize the ability of vulner-

abilities in one to propagate through another, spans both design and implementation. There are
probably many unique isolation challenges that IoT developers will face. The remainder of this
thesis will consider isolation as needed.

24

development are employed by a wide variety of companies and organizations, each

with their own vision about how the Internet of Things should operate and how to

secure it. The home IoT, by itself, is no exception. Headline-grabbing products like

the Nest thermostat, a smart thermostat produced by the eponymous startup [62],

and products marketed by tech giants like the Echo, a smart speaker produced by

Amazon [5], capture most of the IoT analysis and zeitgeist. However, the tens of

thousands of products that contributed to the Mirai botnet demonstrate that many

of the IoT products actually leaving the shelves are from the long tail of lesser known

IoT devices.

Devices currently in production generally all follow their own proprietary proce-

dures for communicating with other networked entities. While they may use standard

low-level communications technology (such as ZigBee [93], CoAP [19], Bluetooth, and

WiFi), their application programming interfaces are not always designed to be inter-

operable. Indeed, many IoT devices can only be operated by a smartphone app

designed to operate just that device. For instance, Fitbit [28] and Garmin [33],

Sonos [81] and Ultimate Ears [86], and OnStar [64] and Tesla [84] each have their

own mutually incompatible systems for communicating with IoT watches, speakers,

and cars, respectively. As it stands, the Internet of Things is not as inter-networked

as the name suggests. This isolation is socially suboptimal, as many of the potential

benefits of the Internet of Things require interoperability. Moreover, for the purposes

of this work, it makes it difficult to reason about security designs beyond individual

point cases.

There are a wide variety of efforts aimed to make devices from different brands

interoperable, each with their own security implications. Amazon has garnered the

most attention lately with Alexa, a voice-operated cloud service that acts like a per-

sonal assistant [5]. While initially limited to powering the Amazon Echo, Amazon

has allowed other developers to create “Skills” that allow Alexa to interact with other

cloud services and IoT devices. For instance, an IoT washing machine developer could

design Alexa Skills so that a homeowner could operate her washing machine through

voice commands to an Amazon Echo. Additionally, Amazon now allows other devices

25

to run Alexa themselves. Many companies have taken advantage of this opportunity.

The 2017 Consumer Electronics Show featured IoT prototypes across many brands

and functions that either ran Alexa or were designed to have Alexa Skills [50]. It’s

unclear how secure an Alexa-controlled world would be. Amazon does not advertise

security policies heavily, and it could easily change security features at its own whims.

Indeed, Amazon quietly removed encryption from their products in 2016 [31].

Google and Apple are each developing their own answers to Amazon’s services.

Recently, Google released the Google Home, an smart speaker similar to the Amazon

Echo [36]. The Google Home runs the Google Assistant, an AI personal assistant

in the vein of Alexa, which supports third party “Actions” that are much like Alexa

Skills [35]. Google is more clear about security than Amazon: they claim Google Home

data is “protected by one of the world’s most advanced security infrastructures”8 and

uses “encryption by default” [24]. Unlike Amazon and Google, Apple is taking a less

AI-focused approach to IoT with Homekit, a service that provides a common interface

between household IoT devices and iOS devices like iPhones and Apple TVs [9].

Apple is offers some details about Homekit security. Homeowners are responsible for

determining what objects to trust, and all users of a given Homekit network are given

full access to all services on all connected Homekit devices. Communication between

devices is end-to-end encrypted [10, 8].

Other efforts are bringing together a wide variety of stakeholders in order to

bolster interoperability between IoT devices. The Internet Engineering Task Force

(IETF), the standard-setting organization responsible for many fundamental Internet

standards like TCP/IP [79], has held multiple workshops about IoT interoperability

and security [11, 90], and are in the process of developing IoT standards. However,

nothing is finalized.

In a separate initiative, the Open Connectivity Foundation is a coalition of pri-

vate firms pursuing a common communications architecture to allow interoperability

between all compliant devices. There are over 300 member organizations (and count-

ing), including Cisco, Intel, and Microsoft, and they have released a draft of their
8For more information on the security design of Google’s infrastructure, see [37].

26

communications standard [69, 67]. Furthermore, a few devices have been certified to

be compatible with these standards [65]. Since the OCF standard is currently the

open IoT communications architecture with the greatest industry support, we will

examine the security implications of this architecture in more detail throughout the

remainder of the thesis.

The Open Connectivity Foundation Communications Architecture

The Open Connectivity Foundation communications architecture comprises

a middleware communication protocol and a data model to facilitate commu-

nications between IoT devices, applications, and services. The communication

protocol is technology-neutral, abstracting away the particulars of the hardware,

operating systems, and networking protocols (which could encompass multiple

layers, including TCP/IP, Wi-Fi, ZigBee, CoAP, and others.) The idea is that

any two OCF endpoints, or OCF-compliant entities, on the same network should

be able to seamlessly communicate with each other without any special config-

uration to each other, regardless of differences in hardware, operating system,

or application. This is comparable to how, through the World Wide Web, any

compatible device can easily communicate with any web server.

To accomplish this, the OCF specification has endpoints represent their ex-

posed physical elements and data as “resources.” Endpoints can access resources

through a RESTful request-response communication model.a Anything making a

request for a resource is termed an “OCF client”, and anything that responds to

a request—usually the endpoint that controls the requested resource—is termed

an “OCF server.” If necessary, “OCF intermediaries” act as routers to deliver

traffic between OCF clients and servers that are not directly connected. Any

endpoint can be an OCF client, server, or intermediary at any time, depending

on their role in sending, routing, or responding to requests. Since all operations

are RESTful, each interaction contains all the necessary context; in other words,

no state is maintained. Furthermore, all operations derive from five generic op-

erations: Create, Read, Update, Delete, and Notify. For instance, an OCF air

27

conditioner might want to check an OCF thermostat’s temperature reading; in

this case, the air conditioner would act as an OCF client, sending a Read re-

quest for the thermostat’s temperature resource. Assuming proper routing from

an OCF intermediary, the thermostat would receive this request. Acting as the

OCF server, the thermostat would respond to the air conditioner with the data

referred to by its temperature resource.

To further standardize the way that entities are represented as resources, the

OCF maintains a Common Data Model that defines base schema for all OCF

resources and specifically defines requirements and structures for some particu-

lar OCF ecosystems. Currently, the Resource Type Specification models “key

use cases” that include “Device Control, Notification, Environment Sensing and

Control, Energy Management and Energy Saving” [66]. Additionally, the Smart

Home Specification discusses aspects of designing products for the home IoT,

including mandatory resources for certain kinds of devices [68].

Connecting endpoints takes several steps. First, a new device must undergo

“onboarding” to join an OCF network. This process involves joining a network and

having a designated “Onboarding Tool” discover the device and perform “Owner-

ship Transfer”, which involves setting the device up with proper security creden-

tials and configurations. (The specification does not describe how guest devices

might temporarily join a network when they are owned by another network.)

Once on the network, there are several protocols that allow endpoints to discover

each other. From there, an endpoint can request another’s designated discovery

resource in order to discover what other resources that endpoint has.

To secure resources, devices authenticate with each other using their security

credentials. OCF uses discretionary access control in the form of access control

lists (ACLs) to determine what operations an endpoint can perform on a given

resource. To secure the communication channel, the OCF relies on the Datagram

Transport Layer Security (DTLS) protocol. However, the OCF architecture does

not define how to manage credentials or access control lists. It does state that

28

a credential management service (CMS) can be used to create, delete, refresh,

issue, or revoke credentials, but the structure and interfaces of CMSs are never

defined. Likewise, ACL management is not defined in any detail (although the

specification notes that future versions will include more information on ACL

management.)
aSee Roy Fielding’s thesis for details on RESTful interactions [27].

Addressing poor security design is especially important at this early stage in the

development of the Internet of Things. As industries settle on standardizing archi-

tectures and protocols, it is likely that new products will need to continue to adhere

to the standards in order to remain interoperable with existing IoT devices. At

some point, it becomes financially infeasible to switch to another standard, even if

consumers and firms may prefer another technology. At this point of “lock in”, the

IoT will be stuck with whatever security-related requirements and guidelines those

standards have [23].9 Likewise, successful home IoT devices produced now will be

emulated in the future, and it’s possible that certain design patterns will normal-

ize. Even without technical lock in, design norms will have a significant influence on

the security design of future products.10 Both for technical lock in and design norms,

locking in and normalizing forward-thinking security requirements and guidelines now

could positively benefit the security of millions of future IoT devices.

2.2.3 Potential Solutions

Many organizations have put forth a variety of solutions to help developers make IoT

devices more secure (through improved security design or otherwise.) Historically, the

field of Systems Security Engineering (SSE) was meant to address these shortcomings.

SSE as a field aims to “prevent the introduction of vulnerabilities prior to release,

rather than patching vulnerabilities afterwards.” In recent years, the SSE field has
9This has occurred with numerous Internet standards. For instance, people are more or less

locked in to trusting the certificates issued by Certificate Authorities, which validate the identities
of web sites, despite myriad security problems with the Certificate Authority system [17].

10For comparison, many applications use personal questions for password recovery, even though
many of these systems are less secure than the passwords themselves.

29

grown in popularity as engineers have found both that testing and patching alone

are insufficient and that investing in security, especially early in the design phase,

can provide major returns on investment later on [39]. However, as evidenced by

rampant existing IoT vulnerabilities, either SSE processes have not been as helpful as

hoped, or developers have not employed them. For example, the National Institute of

Standards and Technology (NIST) recently published the NIST Special Publication

800–160, meant to serve as a foundation for engineers in firms wanting to carry out

SSE [63]. Largely motivated by recent security breaches, this publication draws from

ISO, IEC, and IEEE standards, as well as relevant academic literature, in an attempt

to provide engineers with a timely guide to incorporating SSE into their work.

Other groups have eschewed formal engineering processes in favor of publishing

checklists of so-called best practices meant to help developers avoid the most common

pitfalls in software and IoT development. For example, the Department of Homeland

Security has published broad “Strategic Principles” that gives IoT stakeholders a

variety of security practices to consider when developing, manufacturing, and admin-

istering IoT devices [88]. Separately, the Linux Foundation has released their own

list of best security practices through the Core Infrastructure Initiative’s Best Prac-

tices Badge Program. This program applies to all Free/Libre Open Source Software

(FLOSS), including FLOSS IoT projects, and provides a wide variety of development

practices to meet in order to earn the project a Best Practices Badge [20].

The Cyber Independent Testing Lab (CITL) is developing a new approach to

helping developers test software and IoT security. Instead of providing guidelines for

developers and organizations to follow in the process of developing an IoT product,

they aim to use quantitative metrics to produce a normalized security score for bina-

ries on a particular platform. These scores will ideally allow consumers to consider

security when choosing between products (simiarly to how Consumer Reports helps

car buyers consider vehicle reliability.) In turn, vendors will have an incentive to seek

to maximize their CITL score by designing their product to perform well under the

CITL testing system [91].

All of the aforementioned solutions are “process-based”, meaning that they ideally

30

help developers to design more secure products by somehow guiding or structuring

the process of developing the product. SSE processes lay out the high level tasks for

developers to accomplish. Checklists posit best practices and encourage developers

to complete some or all of the relevant ones. CITL’s tests encourage developers to

tailor their designs to maximize the indicators of security that CITL tests measure.

Thus, all of these solutions aim to help by focusing or guiding the use of developers’

time.

A series of informal interviews have found that these process-based frameworks

have caught on among Chief Information Security Officers (CISOs) as they convince

other executives to invest in security.11 However, it’s not clear how much these

frameworks actually help. Since the benefits and costs of these processes are never

estimated, it is difficult to compare them, or even to determine whether they are

doing any good at all [61].

“Outcome-based” solutions present a theoretical alternative to process-based so-

lutions. These sorts of solutions measure outcomes related to security to guide de-

cision making. For instance, they may try to estimate return on investment (ROI)

on investments in security, or they may rely on some sort of cost-benefit analysis

(CBA) when weighing decisions about aspects of security. However, this approach is

currently infeasible to use in practice. Information and computer security risk is no-

toriously hard to estimate, and predicting how much a given security mechanism will

affect risk is even more difficult [38, 61]. Researchers have proposed highly theoretic

frameworks [43], others have proposed somewhat more practical frameworks [12], and

others have demonstrated the approach in single applications [70], but there none

have overcome the difficulties of estimating risk and risk mitigation in any general

and practical way. As a result, there is no outcome-based solution in widespread

use [61].

It is beyond the scope of this work to survey the field of existing security guidance
11Technically, the interviews focused on firms intending to manage risk rather than firms develop-

ing products. Despite these differences in domains, the underlying motivation to structure a team’s
approach to security is similar for both infrastructure risk management and product security design.

31

comprehensively,12 but it has covered some of the most currently prominent examples.

The field of systems security engineering as a whole is surely the most formal body

of literature relevant to guiding developers through security design.13 Beyond that,

there are many varieties of best-practices checklists published by government agencies,

industry organizations, and even ad hoc blog posts written by individuals. The Cyber

Independent Testing Lab represents a new style of process-based security guidance

focused on automated binary testing that is meant to mirror Consumer Reports safety

ratings. While it is possible that these frameworks are all helpful, all these process-

based approaches are hindered by the current lack of an ability to estimate how helpful

(or counterproductive) they actually are. At the other extreme, attempts to quantify

the effects of various security mechanisms have been theoretically proposed but have

proven difficult to practice at scale.

2.3 Conclusions

IoT security should be reasonable, ideally minimizing risk so as to maximize the

overall value of a system. This ideal varies with context, as different stakeholders

will perceive risk and value differently, the value of relevant assets determines the

appropriate levels of defense investment, and the environment surrounding an IoT

system defines the potential threats to those assets. Inevitably, tradeoffs between

security mitigation and product features, costs, and usability arise, and the optimal

balance of these tradeoffs varies greatly with these situational factors. The singular,

universal, or nominally objective ways in which security is traditionally defined are

thus incorrect. While these incorrect definitions are occasionally useful as heuristics,

a substantial literature exists that demonstrates the perils of ultimately prioritizing

security folk wisdom over careful consideration of costs and benefits in context.

Improving security design lies at the heart of making the IoT more reasonably
12Security researcher and writer Bruce Schneier has started such a survey with a collection of IoT

security and privacy guidelines that he posted on his blog [77].
13The technical security field is, of course, larger. However, academic technical security papers

in themselves generally deal with narrow single points and are not usually meant as guidance for
developers in themselves.

32

secure. As current exploits show, the high complexity and uncertainty inherent to

designing IoT products makes IoT security design stand apart from traditional secu-

rity design. Although there are other aspects of IoT security, there is little indication

that they are as pressing at this time as security design. That architectural stan-

dardization and design normalization have not yet occurred makes improving IoT

security design even more urgent, as standards and norms could prove to be key av-

enues through which to bolster (or hamper) the security designs of millions of future

IoT devices.

Many organizations have put forth frameworks to aid developers as they create

IoT security designs, but they do not appear to help enough. Process-based security

frameworks are commonly used, but there is no standard with which to compare them,

let alone determine their actual impact on IoT security. Outcome-based security

frameworks theoretically measure their own impact, but they remain impractical for

real-world use. To make clear forward progress towards reasonable security for the

IoT, then, the field must develop methods of gauging the impact of process-based

security frameworks.

33

34

Chapter 3

Evaluating Security Guidance

In Chapter 2, we discussed how there is no established way to rigorously gauge the

value added by process-based security frameworks. While a precise model for es-

timating the impact of a given framework on the bottom line—for either a single

stakeholder or for society—remains elusive, this chapter derives the criteria that are

relevant to this evaluation from first principles. Further, it demonstrates the utility

of these criteria through the evaluations of several prominent security frameworks.

To be precise, process-based security frameworks include any structured guidance

with the goal of improving developers’ abilities to design or implement1 information

processing systems with reasonable security. These frameworks must focus on partic-

ular aspects of a product’s security design or on the process of developing a security

design itself. To qualify as “structured guidance”, a process must be written with

the clear purpose of actually helping to guide developers.2 Although they do not

explicitly measure security outcomes, the goal of process-based security frameworks

is still ultimately to add value by enabling or encouraging developers to settle upon
1Although this thesis emphasizes the importance of security design, these criteria do not require

an exclusive focus on design. Not all security frameworks draw this same distinction between design
and implementation, and there is no immediately obvious benefit to distinguishing between the two
for the purposes of this criteria.

2For contrast, outcome-based approaches focus on some metric of value added by security; partic-
ular security policies, mechanisms, and development processes do not contribute to outcome-based
approaches aside from their ultimate effect on the measurement on added value. Likewise, an aca-
demic research paper proposing a new technical security mechanism typically is not written directly
for developers, so it would not count as a process-based security framework.

35

or implement more reasonable security designs at a worthwhile cost.

3.1 Evaluation Criteria

The added value of these frameworks can be gauged from two perspectives. First, a

framework can be evaluated in its benefits and costs within a single application of the

framework, whether in general expectation or in the case of a particular development

team’s use of a framework. Second, the benefits and costs of a framework can be

extrapolated to estimate its overall effect on society. This section identifies criteria

for gauging both perspectives: three criteria capture the expected benefits, versatility

of those benefits, and the costs of individual applications of a framework, and three

more criteria capture the dimensions relevant to determining the potential domain of

a framework as well as the likelihood that endeavors within that domain will actually

use it. For each criteria, in addition to examining the criteria itself, we discuss

strategies for measuring or evaluating it.

3.1.1 Quality of Guidance

The first and most fundamental criteria to look at is the quality of guidance itself.

This criteria answers the question, “To what degree does the content of the guidance

improve (or hinder) the development of reasonable security designs?” Relevant factors

to consider when addressing this question include:

1. Correctness : how factually accurate the guidance in the framework is.

2. Reasonableness : how well the guidance encourages more reasonable security

mechanisms over less reasonable ones in a given situation. Alternatively, if

the framework focuses on development practices instead of particular security

mechanisms, then this factor covers how well the guidance encourages practices

that foster more reasonable security over practices that do not.

3. Timeliness : how relevant the guidance is in the current time. To gauge time-

liness, it may also be worth noting any systems in place that will adapt a

36

framework to new information over time.

4. Completeness : how comprehensively the framework covers guidance within its

scope.

5. Imbalance: how a framework leads developers to neglect important aspects of

security. For example, a framework could be correct, reasonable, timely, and

complete for the guidance in its scope, yet ultimately lead to flawed security

designs by giving the impression that out-of-scope aspects of security are not

worth consideration.

Evaluation of quality of guidance requires information security expertise and the

use of the latest methods in the information security field. Further, it must be per-

formed according to the security situations that experts have identified. This field is

large and dynamic, yet, in a sense, its purpose is to determine the quality of security

guidance. It would be infeasible to try to reduce the entire field to a single metric for

estimating quality of guidance; even if it could be done at a point in time, the metric

would have to change every time a new security paper moves the field forward.

3.1.2 Flexibility

The next criteria is flexibility, which captures the degree to which developers can

tailor the framework to their particular situation. Frameworks fall into a spectrum

that ranges from the complete flexibility of no guidance to the complete rigidity, or

lack of flexibility, of having to develop a product a certain way, without any options

given to developers. Care is necessary to extract realized flexibility from intended

flexibility; if a framework states that it can be adapted to situational needs but does

not provide the necessary resources and guidance for nontrivial adaptations, then it

is not flexible. Between quality of guidance and flexibility, these first two criteria

comprise the benefits that a framework can bring about; the former criteria reflects

current expected (or measured) benefits to well-understood situations,3 and the latter
3For new and poorly understood situations, a quality of guidance evaluation could not be more

than unjustified speculation.

37

reflects how effectively a framework can adapt to changes and uncertainty.

There exists tradeoffs between flexibility and rigidity that must be balanced. Flex-

ibility gives developers agency to cater their product to the particular stakeholders,

assets, and environments that they anticipate, and it grants them the freedom to

choose the security mechanisms that they predict is best. Flexibility allows devel-

opers to optimize for reasonable security in a variety of situations. However, it also

puts the onus on the developers to spend time and resources weighing security mech-

anisms, leaving room for errors in judgement. Rigidity has the opposite advantages

and disadvantages. Rigidity alleviates the burden on developers to weigh potential

security mechanisms and decreases room for errors in judgement. However, guidance

has limits of specificity; it is not practical to anticipate any and every product that a

developer could want to build and specify a perfectly reasonable security design for

it. A framework that is too rigid may suboptimally fit a product that it is applied to.

Thus, the ideal amount of flexibility adapts to unanticipated products and situations

and minimizes developer ignorance and error.

The right balance between flexibility and rigidity depends on the stability of the

domain to which a framework is being applied. Loosely speaking, a domain is “sta-

ble” when systems in it tend not to significantly differ in their designs from existing

systems, and the environments those systems operate in tend to be well-understood

and slowly changing.4 Products developed in fields of high uncertainty call for more

flexibility, and, as a field stabilizes, greater rigidity is justified. When there is high

uncertainty, there is low likelihood that existing evidence and reasoning about rea-

sonable security will generalize well to new situations, so developers will need to take

on more of the burden identifying and weighing prospective security mechanisms. As

a field stabilizes and uncertainty decreases, the balance shifts as individual ignorance

and errors in judgement become a greater security concern than poorly fitting evi-

dence and reasoning. We hypothesize that the home Internet of Things is currently in

a highly uncertain, complex, and dynamic state, and that more flexible frameworks
4For instance, the phone market in 2017 is significantly more stable than it was just after the

release of the iPhone, whereas the advent of deep learning has probably made the field of artificial
intelligence become less stable over the same time period.

38

are currently appropriate. As the industry stabilizes, security frameworks for home

IoT should be able to accommodate more rigid guidance.

We are not aware of other literature that investigates the flexibility-rigidity trade-

off for security frameworks. In addition to proposing this tradeoff, this work demon-

strates the qualitative flexibility evaluation of multiple prominent existing security

frameworks in Section 3.2. Additionally, it qualitatively evaluates the flexibility of

PRSD, the novel security framework proposed in this work, in Chapter 5. These ex-

amples show that qualitative evaluation of flexibility can lead to useful insights. It’s

possible that more precise concepts and quantified methods of evaluating flexibility

and stability could lead to even more beneficial insights. Such methods should be

explored in future work.

3.1.3 Administrative Costs

If quality of guidance and flexibility comprise the dimensions of a framework’s ben-

efits, then administrative costs comprises the costs of using it. This criteria is the

overhead cost of applying a given security framework to a project less the cost of

developing the product without the framework. No matter how high quality and

appropriately flexible a security framework is, it is not useful if it is unaffordable or

if it costs more than the value it produces.5

Evaluation metrics can be designed with existing economic concepts. The general

approach is to break down the potential costs of a framework into all the distinct

categories through which those costs are manifested. These categories include, for in-

stance, the cost of preparing the overhead documentation required by the framework,

the research and development costs of actually carrying out the tasks required by the

framework, the costs of hiring and training the developers or other employees who will

carry out the framework, certification costs, and the foregone revenues that are esti-

mated to result from a longer development cycle. For each of these categories, the cost
5Depending on one’s perspective of economic fairness, there is a case to be made that a security

framework that provides marginal benefits to users of the finished product could still be worthwhile
even if the aggregate benefit is less than the cost to the company of practicing the security framework.
Considering this case, while important, is outside the scope of this work.

39

should be estimated or measured for both the application of the framework and not

using a framework. The total administrative costs, then, is the sum of the differences

between the framework costs and no-frameworks costs across all cost categories.6

Generalizing the administrative costs of a given framework beyond any individual

project requires estimating these costs with respect to an arbitrary IoT product. For

instance, one might estimate that the certification costs required by a framework are

a certain relatively constant cost regardless of the project but that the documentation

required throughout development becomes exorbitantly expensive for more complex

projects. Such estimations are currently neither trivial nor precisely quantifiable, yet

they can still occasionally be valuable. In Section 3.2, we draw conclusions from esti-

mating the administrative costs of multiple existing frameworks. Further, Chapter 5

qualitatively evaluates the administrative costs of PRSD, comparing these estimates

to the estimations for the existing frameworks. While these sections show the use

of qualitative administrative cost estimation, future work making these evaluations

more rigorous could lead to more useful insights.

3.1.4 Scale and Scope

The fourth and fifth evaluation criteria, scale and scope, relate to aggregate societal

value. Scale is the range of project sizes to which a security framework can be

effectively applied. While some frameworks may work equally well for projects of all

sizes, others may grow exponentially more complex with the size of a project and

thus be unsuitable for large projects, while others still may have too much required

overhead to be useful for smaller projects.

To estimate scale, one must gauge how the work required by a framework varies

with the size of a project. Project size itself is a loose concept, incorporating het-

erogeneous concepts such as team size, lines of code, budget, and system complexity.

Different project sizes will make different demands of a given sort of framework; the

framework fits a project’s scale if and only if it meets all those demands in a way that
6Technically, a framework could have negative administrative costs by reducing the work it takes

to develop a given product.

40

is feasible for the relevant teams to carry out.

Scope, on the other hand, refers to the domain of product functions and situations

to which the security framework applies. For instance, a security framework with a

small scope may only apply to implementing a particular technology into a product or

to building a certain kind of home IoT product, whereas a security framework meant

to apply to every aspect of the IoT as a whole would have an enormous scope.

Scope is often trivial to evaluate, as it is usually explicitly advertised within a

framework’s documentation. To be sure, evaluators should take care to ensure that

a framework actually follows through on its advertised scope. However, frameworks

that do not do so can be handled on a case by case basis. In these situations,

evaluators should distinguish between poor quality guidance, in which the guidance

is simply incorrect or incomplete, inappropriate flexibility, in which the guidance

does not extend to a new or uncertain situation well, and fraudulent scope, in which

a framework simply does not cover territory that it claims to cover.

3.1.5 Incentives

The final evaluation criteria, incentives, comprises the motivating factors that firms

face to use or not use a given process-based security framework. For comparison, while

scale and scope evaluations reflect how many projects a framework could potentially

be applied to, incentives evaluation helps to estimate how many development teams

might actually choose to use a given framework. Put another way, incentives reflects

the likelihood that an arbitrary development team whose project falls within the

scale and scope of a security framework will choose to use it, given knowledge that

the framework exists.

Many factors can incentivize a firm one way or the other. If a firm believes that a

framework will provide a worthwhile return on investment,7 that in itself could provide
7A firm can have a return on security investments by preventing attacks that it would be liable for

or that would tarnish its reputation and hurt future sales. Recent research has found that about 11%
of customers stop doing business with a firm after a security breach [1]. Furthermore, Kwon found
that, after several security breaches, people are even willing to switch healthcare providers [53]. Ad-
ditionally, a lawsuit filed in the wake of the Target security breach has introduced the real possibility
that shareholders could hold corporate management personally liable for security breaches [54].

41

enough incentive to use a security framework. Additionally, an attractive standard

could require adherence to a security framework, so the benefits of adhering to the

standard could entice developers to use a framework.8 Moreover, a law requiring the

use of a security framework could greatly incentivize its use. Even without being

explicitly required by law, a firm may still want to use a security framework to avoid

legal liability.9

For the most part, one can evaluate the incentives that firms face with exist-

ing economic tools. Ross Anderson and Tyler Moore have surveyed the economics

of information security [60], which will likely be relevant to many security frame-

works. Additionally, one may consider how firms may want to advertise their use of

a framework as a market signal [82]. In addition to these tools, current law and legal

precedent should be considered.

3.1.6 Criteria Summary

Table 3.1 contains a brief summary of each of the six criteria.

3.2 Evaluation of Several Security Frameworks

To demonstrate the use of these criteria, we use them to evaluate multiple process-

based security frameworks, including the NIST 800–160, the Cyber Independent Test-

ing Lab (CITL), and the CII Best Practices Badge Program. As these demonstrations

show, although the metrics for evaluating for each criteria are not formally standard-

ized, the criteria are still useful for comparing vastly different frameworks.
8Knieps has written a useful introduction to the economics of standardization, which covers this

topic [51].
9Ever since the FTC successfully brought Wyndham Worldwide Corporation to court for having

“deficient cybersecurity” [87], there has been a precedent for the FTC to bring similar administrative
action against other firms. Firms may believe that using a framework will help them avoid an FTC
complaint.

42

Table 3.1: Criteria for evaluating process-based security frameworks

Criteria Description Evaluation procedure

Quality of guidance Expected or measured ben-
efits of framework to well-
understood situations

Information security exper-
tise

Flexibility Appropriate adaptability of
a framework to changes and
uncertainty

Qualitative evaluation with
respect to stability of frame-
work’s domain

Administrative costs The costs of using a frame-
work over the costs of using
no framework

Summing of the differences
between framework costs
and no-framework costs
across all cost categories

Scale Range of project sizes to
which a framework can be
effectively applied

Estimation of work required
by framework as function
of various factors of project
size

Scope Domain of product func-
tions and situations to
which framework applies

Check framework documen-
tation

Incentives Motivating factors for a firm
to use or not use the frame-
work

Existing tools from eco-
nomics and law

43

3.2.1 NIST 800–160

3.2.1.1 Introduction

HI In 2016, the National Institute for Standards and Technology published Special

Publication 800–160 Systems Security Engineering: Considerations for a Multidis-

ciplinary Approach in the Engineering of Trustworthy Secure Systems [63]. This

publication serves as a “collection of related processes” (page xi) to aid in engineering

any general system for security throughout its entire life cycle. First, the publication

discusses its motivation and conceptual framework, laying out definitions for concepts

such as trustworthiness, security, etc. Next, the publication details each of its thirty

processes intended to aid in security engineering. NIST 800–160 is “intended to be

extremely flexible” and is emphatically not meant to prescribe exactly how every

organization must perform security engineering (page x). The publication describes

how each process could theoretically be tailored to meet the needs of the organiza-

tion applying the process, although hardly any guidance for actually tailoring the

processes is provided.

Several concept definitions from the publication are worth mentioning here. To

start, it notes that trustworthiness is the state of being “worthy of being trusted to

fulfill . . . critical requirements” of the system. It goes to assert that “measures of trust-

worthiness are meaningful only to the extent that the requirements are sufficiently

complete and well-defined, and can be accurately assessed” (page 1). Later, it further

assumes that there is an objective and universal way to determine trustworthiness,

and that a system can in fact be “trustworthy in general” (page 8).10

The publication defines security as the “freedom from those conditions” that could

cause harm to stakeholder assets (page 2). Moreover, it argues that security engi-

neering should strive for adequate security, a concept similar to this work’s reasonable

security, as it entails deciding on a “reasoned sum” of security mechanisms that bal-

ance the needs of all stakeholders (page 16).
10As described in Section 2, these assumptions are incorrect, because trustworthiness only makes

sense when it is respective of a specific stakeholder’s perspective.

44

After laying out the groundwork, each of the thirty processes are detailed. Each

process comprises a description of that processes’ purpose, the outcomes, including the

results and deliverables, that the execution of a process produces, and the activities

or tasks that the process entails performing. The descriptions of activities and tasks

includes details on what the process entails, but provides little guidance for how to

actually carry them out. They also include references to relevant standards (usually

ISO standards). No technical how-to guides are referenced, as this publication is

intended for systems in general.

Taken together, the processes lead development teams through several overarching

tasks. First, developers identify all stakeholder requirements and determine which

ones to deem “security requirements”, which abstractly detail what stakeholders will

want to get out of the system. Then, developers determine how to translate those

stakeholder requirements into “system security requirements”, which detail particular

aspects of the system that will fulfill those stakeholder security requirements. Next,

developers and engineers actually make the system. After (or during) the process

of building the system, the development team performs validation and verification to

make sure that the right system was built and that the system was built right. Finally,

other processes such as “Human Resource Management” and “Quality Assurance”

support these tasks one way or another.

The publication at times briefly acknowledges that tradeoffs between stakeholder

or system requirements may exist, but it does not deal with managing those tradeoffs.

Likewise, it briefly notes at the end of its last appendix that its possible for security

features or even the execution of the processes in the publication to cost more than

the benefit they provide. It does not explain in any detail how to deal with this

possibility.

3.2.1.2 Evaluation

Since the purpose of NIST 800–160 is to help development teams organize and sys-

tematically cover all security-relevant aspects of engineering for a system, its quality

of guidance rests on the effect it has on the structure of an organization as well as

45

how thorough it is in systematically covering its subject.

As a result, the overall benefit of this publication is bounded by the security ex-

pertise of the development team using it, as the publication does nothing to augment

security expertise in itself. That said, because the thirty processes cover so many as-

pects of security engineering, teams that follow these processes are likely to examine

aspects of security engineering that they would not otherwise consider, so it is useful

in that regard.

It does have some correctness issues. Section 2 discusses how security is relative to

particulars of stakeholder perspective, assets, and environmental context, so the pub-

lication’s assertion that trustworthiness can be universal and objective is unfounded.

Conclusions based on this assumption throughout the publication may likewise be

false.

This publication almost precludes reasonableness. Despite acknowledging that

tradeoffs exist, its requirements-based structure and processes leave very little room

for dealing with them. Making developers determine security requirements from the

outset entails making nearly arbitrary judgements about what security mechanisms

to include or not include, so there is no room to weigh competing requirements and

rejected requirements against each other throughout product development. Tailoring

the processes to incorporate weighing between tradeoffs would entail fundamental re-

structuring. Thus, this publication relies on the development team identifying stake-

holder and system requirements from the outset that happen to lead to reasonable

security.

NIST 800–160 is also a bit imbalanced, as the processes do not lead developers to

account for interactions with parts of the system that are unforeseeable and outside

the development team’s control. This is particularly detrimental to home IoT net-

works; coordinated automation—one of the key potential benefits of the IoT—relies

upon interoperability between arbitrary products that may be designed by different

firms. While not technically in error, the guidance in this publication may lead devel-

opment teams to plan for such situations poorly, as it often assumes that the engineers

have full control over the system.

46

This publication is timely. It was released in late 2016 and refers to the latest

literature. It likely will not go out of date quickly.

In all, NIST 800–160 has some positive benefits but also some serious shortcomings

in its guidance, so its overall quality of guidance is mixed.

NIST 800–160 is intended to be highly flexible, although its realized flexibility

is mixed. While all processes could theoretically be tailored, it may not be clear

how to best tailor a process to a firm’s needs, especially because not all processes

clearly justify why they are structured the way that they are structured. There are

also aspects of this framework’s design that are highly rigid. Perhaps most notably,

many of its processes rest upon a requirements-based approach that make it difficult

to consider competing tradeoffs throughout the design process. Requirements entail

drawing a sometimes-arbitrary binary line between what is needed and what is not.

Yet, there may be some desirable features that do not make the cut as requirements

and thus are not considered later, and other requirements may subsequently be given

more priority and effort than they deserve. This approach might be fine for some

stable systems, but it does not suit engineering for highly uncertain and unstable

systems like the IoT. Thus, NIST 800–160 is probably too inflexible for many IoT

systems.

It’s difficult to predict this framework’s administrative costs, as it has not been

applied in practice, so there is no empirical evidence one way or the other. Many

processes do require analysis and documentation that clearly take considerable effort,

but it is not clear how much of that effort firms already tend to do in the first place.

Turning to aggregate criteria, we first consider the NIST framework’s potential

scale. The highly tailorable processes contained in this framework could apply to a

large range of project sizes. That said, many of its processes (e.g., “Portfolio Man-

agement”) really only apply to larger projects with more complicated bureaucracies

to support them, so larger projects may benefit most from this framework as a whole.

Thus, NIST 800–160 probably scales somewhat well, but is best suited for larger

undertakings.

As for scope, this publication explicitly covers any system that security engineering

47

may apply to. A quick look through its contents clearly shows how committed NIST

was to this generality. For these systems, the publication focuses on structuring how

the organization deals with security.

An organization’s incentive to use this framework rests entirely upon whether or

not its managers believe its benefits are worth its administrative costs. It seems that

many organizations will try it; as an institution, NIST is widely respected, and many

CISOs rely on another NIST framework to justify cyber security investments. CISOs

tend to share information with each other, so the publication will likely develop a

reputation over time [61]. Thus, as with administrative costs, uncertainty over the

incentives to use this framework may be too large to justify a concrete prediction at

this time.

To summarize, NIST 800–160 has a mixed quality of guidance, too little flexibil-

ity for the home IoT, and highly uncertain administrative costs. Its scale covers a

huge variety of project sizes, and its scope includes organizational structuring for any

systems security engineering endeavor, but it is too early to say whether or not the

incentives are there to get organizations to use this security framework.

Even though the evaluations for administrative costs and incentives are too early

to complete at this time, the mechanisms identified in the evaluations bound what

the results could be and provide indicators that will help to complete the evaluation

in the future. In these ways, their evaluation is still helpful.

3.2.2 Cyber Independent Testing Lab

3.2.2.1 Introduction

The Cyber Independent Testing Lab, run by infamous hackers Peiter and Sarah Zatko,

is developing and using a software tool that, given a batch of executable binaries for

a particular platform11, will assign security scores to each of the binaries on the

platform. These scores are normalized relative only to other tested files on the same

platform [91]. This tool reflects a definition of security based on the difficulty of
11Thus far, desktop operating systems are the only supported platforms. IoT platforms will be

supported in the future. Security scores for binaries on different platforms are not comparable.

48

finding exploits that enable privilege escalation or program disruption. Accordingly,

the security scores indicate a relative prediction of that difficulty between binaries on

a platform.

The authors explicitly have a narrow security scope; they do not include, among

other things, application configuration, “past history” of a binary, interpreted scripts,

and corporate policies like update policies. Additionally, they also implicitly exclude

many security design flaws and human factor vulnerabilities. Rather, they focus

almost exclusively on implementation bug vulnerabilities.

The CITL tool currently focuses on several factors gleaned from static analysis of

binaries.12 Many of these factors have been informally publicized, and CITL plans to

formally publicize them all when they are finalized. Additionally, future versions of

the tool will incorporate factors from dynamic analysis into security scores. The tool

only needs executable binaries of applications to measure scores; CITL is interested

in the actual programs, not the intended ones. The tool is low cost; the Zatkos claim

that it can analyze about 100,000 binaries in 4 days.

CITL will operate on a business model akin to Consumer Reports. They want to

publish security estimations so that allow customers to make informed decisions about

product security when choosing between applications. CITL is a 501(c)3 organization.

3.2.2.2 Evaluation

CITL looks at difficulty of gaining privilege escalation or disrupting program execu-

tion by exploiting implementation bugs, so its quality of guidance reflects how well it

can lead developers to implement more reasonably secure products. Its guidance is

the indicators of security that it measures.

The Zatkos are renowned technical security experts with decades of experience,

so they have an immense understanding of indicators of security. While they will

probably use this experience to design their tests well, their work has yet to be

published and analyzed for correctness.
12Static analysis is analysis of the binary contents and metadata of an executable, whereas dynamic

analysis is any analysis of an executable while it executes.

49

CITL gives the burden of determining reasonableness to consumers. The security

concept it measures deals with predicted difficulty to exploit a binary; while it does

chastise programs for having lower security scores, it is up to users to determine how

reasonable the tradeoffs between this aspect of security and other factors are. This is

comparable to Consumer Reports, where it’s expected that consumers will weigh the

reliability of a car against its price and other desirable features on their own. It is

unclear how well equipped consumers are to understand the security risks they take

and the results of CITL tests when they make their purchasing decisions.

CITL is timely, as it is currently under constant development to keep it up to date

with relevant platforms and security threats.

If CITL grows large enough, it could potentially push companies towards think-

ing that implementation bugs, and specifically the aspects of bugs that CITL tests

measure, are the only important aspects of security. This imbalance could cause de-

velopers to try to game CITL at the expense of other factors of security. As currently

presented, CITL as an organization is clear about its limitations, so this caution

is merely a warning of what to watch out for in the future rather than a current

shortcoming.

CITL as a tool is highly rigid and inflexible. Given a platform and some executa-

bles, the resulting security scores are deterministic, so organizations cannot tailor it

for their needs. This is intentional. The factors that CITL measures are proven indi-

cators of vulnerability that are unlikely to change quickly, so this rigidity is justified

for the currently supported platforms. It is currently unclear how IoT implementa-

tion bugs might differ for home IoT from traditional desktop applications, but there is

currently little reason to expect much to change. Further, CITL could quickly adapt

its IoT platform tests if unique IoT attack vectors are found. Thus, CITL currently

has justifiably low flexibility.

The administrative costs of CITL testing is minimal, as the lab can automatically

run many thousands of tests per day, and any person could easily run these tests

themselves to verify the results. Furthermore, the lab’s security experts take on the

responsibility of broadly interpreting test results for the public. Interpretation takes

50

much more manual labor than the automated tests, but there is no reason to doubt

that they will be able to scale up to the level of Consumer Reports.

For developers looking to use CITL for guidance, the added costs of designing

for these factors is completely optional—organizations are free to choose how much

time and energy to spend learning about the CITL test indicators and tuning their

products to score well on them. As a result, while attaining a nearly perfect security

score may be out of reach for some products, all organizations can choose to use CITL

guidance as much as their budget allows.

Moving to the aggregate criteria, we examine the scale of CITL testing. It’s

rather trivial to see that CITL applies equally well to projects of all sizes. Any

project with executable binaries can quickly be tested, no matter how much work

goes into producing those binaries.

Separately, CITL has a large yet limited scope. It currently only applies to ex-

ecutable binaries on Linux, Mac, and Windows. “IoT” will eventually be included,

but it is unclear how they will categorize IoT platforms or how comprehensive those

platforms will be.

The actual incentives for CITL can be split between those performing the tests

and those using the tests. The lab itself does the testing, and they have a strong

incentive to test as many programs as possible, because tests are cheap and they

want to serve the largest possible customer base. Additionally, the people in the lab

have a strong incentive to design and run trustworthy tests, as their entire business

rests on building a strong reputation and earning consumer and industry trust.

At this time, it is unclear what incentives will motivate developers to use (or not

use) the CITL security indicators for guidance. It is possible that the CITL framework

could earn a strong reputation as a signal for security. Consumers may start to make

purchasing decisions that incorporate CITL security scores, which would incentivize

developers to write programs that achieve higher security scores. If this signal never

materializes, then the incentive will simply reflect the existing incentive to make

secure products, combined with the developers’ faith in the CITL test’s guidance.

To put it shortly, CITL has a high but narrow quality of guidance, has justifiably

51

low flexibility, and has minimal mandatory administrative costs. Its scale covers

projects of all sizes, and its scope covers many traditional computing applications,

but it is unclear how much of the home IoT it will cover. The lab’s team has a strong

incentive to produce great tests, but it will only incentivize better security practices

if consumers start demanding high security scores from vendors.

3.2.3 CII Best Practices Badge

3.2.3.1 Introduction

Sponsored by the Linux Foundation, the Core Infrastructures Initiative (CII) Best

Practices Badge Program is a system for FLOSS projects to self-certify that they

follow a variety of security best practices that have been identified by the CII [20].

CII also provides a web application for projects to publish evidence that they meet

some or all of the best practices in the list. Upon showing that they meet a sufficient

amount of the criteria, projects can receive a badge they can publicly display that

shows how well they meet the criteria.

The purposes of this project are to encourage projects to follow the best practices,

help new projects learn what these best practices are, and enable users to make

more informed decisions about how well various FLOSS projects conform to the best

practices, which ideally indicates better-written, more secure code.

Currently, participating projects either have the badge or not; eventually, CII in-

tends to release more advanced badges that can be attained by conforming to more

stringent best practices requirements. With these more advanced badges, more ad-

vanced projects can demonstrate that they go above and beyond the minimum best

practices requirements.

It’s not entirely transparent why some badge criteria are chosen and formulated the

way they are. Some criteria include explanatory rationale, but others are presented

as truisms without justification. Further, the authors acknowledge that no set of

best practices are guaranteed to lead to perfect security, and they do not strive for

this. They merely want to encourage general practices that, if followed, would almost

52

always elevate a project to more reasonable security.

CII aims to help as many projects as possible. While there are some more ad-

vanced optional best practices that are only feasible for larger projects, all the ones

required to earn a badge are restricted to activities that would be feasible for a single-

person project to carry out. Furthermore, care is taken to have best practices that

are as general as possible. They never require, among other things, any particular

technology, platform, or programming language. By sticking to these principles, CII

hopes to have this program remain relevant even as technologies and development

patterns change.

3.2.3.2 Evaluation

To judge the quality of guidance of this Best Practices Program, one needs to discern

the degree to which following these best practices will lead to more reasonable security

than ad hoc development.

Currently, it appears that all of the best practices listed are correct insofar as

they are not factually incorrect or outright counterproductive. The guidance is also

timely, as the project is actively maintained and is designed to be independent of any

sort of technology that could go obsolete in the foreseeable future.

This guidance has some reasonableness problems. Most of these best practices are

chosen because they are the “lowest common denominators” that are almost always

smart practices, so following them will often lead to more reasonable security. That

said, there is very little guidance about why best practices are good practices or

situations where they may be counterproductive.13

Completeness is the largest shortcoming here. While the best practices touch

on many important aspects of security, they are rarely comprehensive. Further, in

trying to cater to the lowest common denominator, there are many practices that are

only occasionally beneficial that the authors explicitly decide not to mention.14 They
13For example, their HTTPS advice is dangerously absolute. Troy Hunt, a Microsoft Regional

Director, has discussed the problems with this specific kind of advice [85].
14For instance, one of the talk pages discusses how “automated regression test suite includes at

least one check for rejection of invalid data for each input field” is not included because it would be
a “tough burden” that might not be “worth it” for many projects [22]. However, by not including it,

53

certainly do not include more cutting-edge security techniques that could be helpful

but are not as proven.15 This lack of completeness is not inherently problematic;

savvy developers certainly are not stopped from practicing other helpful practices

that are not listed. However, it will be difficult for the developers that most need

this guidance to know what they are missing. As a result, the guidance in the CII

Best Practices Badge Program is usually good about what it does have to say, but

developers need to be careful about determining what it does not say.

The structure of this framework also makes it less flexible than it should be. Most

of the required practices are beneficial most of the time; in this regard, it is usually

appropriately rigid.16 However, the merely suggested and optional practices are not

always completely justified, leaving developers little indication about how important

it may or may not be to follow said practice. To generalize, by making it difficult

for non-experts to judge the importance of various criteria, developers have little

ability to cater the guidance in this framework to their project’s needs. Although

this program attempts to be adaptable to future demands through its technology-

agnosticism, this guidance is not adaptable to how future technologies could shift the

tradeoffs between aspects of security and other considerations.

This program has manageable administrative costs for most projects. While carry-

ing out these best practices certainly takes time, the overhead in actually participating

in the best practices badge program is tiny. These low costs are evidenced by the

number and variety of projects that have perfect scores in this program: there are

dozens of finished projects, including major FLOSS works like Xen, LibreOffice, and

dpkg [21].

Turning to aggregate criteria, we first note that the Best Practice Badge Program

has a very high scale—all of its best practices are carefully designed to apply to any

size of FLOSS project, and, as previously discussed, there are many large and small

the projects for which this practice could be worthwhile will not receive the guidance.
15For instance, while the framework does say that projects “SHOULD” use perfect forward secrecy

where applicable, they never mention, say, homomorphic encryption.
16It would be ideal if practices that are always required always had rationale for why they are re-

quired, so that advanced developers operating in the corner cases could adjust accordingly. However
these situations are probably few and far between.

54

projects that are fulling passing in this program. Furthermore, it has a limited but

large scope, as it only applies to FLOSS projects,17 but it otherwise applies to them

without reservation.

Incentives with FLOSS projects are complicated, because their developers do not

have a profit motive. Instead, they tend to be motivated by status, especially if the

status can signal ability to potential employers. However, if this badge program either

became enviable or expected by the FLOSS community, then developers might want

to earn their project a Best Practices badge to either earn respect or avoid contempt,

respectively [56].

Overall, then, the CII Best Practices Badge Program can provide a positive quality

of guidance for careful developers, yet it is not flexible enough to adapt to many

projects optimally. That said, it has very low administrative costs. It has a high scale

and scope—applying well to any FLOSS project—although it has yet to develop a

strong incentive for developers to use it.

3.2.4 Evaluation Discussion

Table 3.2 summarizes the evaluation of these three frameworks.

As this table illustrates, these criteria allow one to compare and contrast vastly

different process-based security frameworks, even when more information is needed:

One can see that NIST 800–160 may not be worth using for home IoT, even if its

administrative costs end up low; CITL, once finished will likely prove valuable to

developers and consumers, although it covers only small part of security; the CII Best

Practices Badge Program provides some helpful guidance at a low price to FLOSS

programs, but it is far from a complete solution.

These criteria also reveal gaps in the guidance available to developers. Most

importantly, no framework provides guidance that helps developers weigh tradeoffs as

they create and modify security designs. In other words, developers have no assistance

in actually making security reasonable. This gap extends beyond the three frameworks
17Many of these best practices could potentially help projects that are not free or open source,

but such projects are ineligible for badges.

55

Table 3.2: Summary of evaluations of security frameworks

Criteria NIST 800–160 CITL CII Best Prac-
tices

Quality of
guidance

mixed high medium-high

Flexibility too little appropriately
none

too little

Administrative
costs

uncertain minimal
requireda

very little

Scale highb maximum high

Scope organizational
structure of
all systems
security

traditional
executables
binariesc

all FLOSS
projects

Incentives uncertain uncertain for
developersd

uncertain

aAdditionally, manageable for testers
bBiased towards large projects
cThere are plans to include IoT in the future
dAdditionally, strong for testers

56

discussed in detail here—we could not find any process-based security frameworks for

the Internet of Things that adequately helps developers weigh the benefits and costs of

competing security designs. The academic literature relevant to this weighing has not

been translated to a form that is practical for developers to use. Because reasonable

security design is such a critical and unique aspect of IoT security, this gap should

not be ignored.

These criteria also serve as a foundation for further discussion about how to com-

pare process-based security frameworks. While the criteria and evaluation procedures

are useful, further work to make evaluations more precise and standardized would

likely lead to even stronger insights.

57

58

Chapter 4

A Framework for IoT Security Design

4.1 The Processes for Reasonably Secure Design

In order to deal with the high uncertainty and complexity of Internet of Things se-

curity, developers need assistance weighing their options when creating their security

designs. Few process-based security frameworks provide room to vary security de-

signs based on the expected stakeholder perspectives, assets, and environments that

a device could be used in. Of those that do, we are aware of none that provide the

tools that developers need to determine what security designs will be most reasonable

for the situations their devices will face.

Here, we propose the Processes for Reasonably Secure Design (PRSD) process-

based security framework to help fulfill this need for home IoT devices1 as they

incorporate the Open Connectivity Foundation standards into their designs.2 This

framework helps developers comprehensively and systematically identify and consider

the security threats a prospective or existing device may introduce, options for appro-

priately mitigating those threats, and the tradeoffs between those options. Without

undermining their responsibility to use their own judgement to weigh tradeoffs and

ultimately determine security designs, PRSD offers them a coherent approach to iden-
1We focus on the home IoT space, because it is among the most rapidly developing IoT domains

yet suffers from high rates of security vulnerabilities.
2We focus on the OCF standards, because they are the open communications standard with the

most widespread industry support.

59

tifying and prioritizing the information pertinent to carrying out that responsibility.

In support of this goal, PRSD is flexible enough to adapt to the changing needs

of developers using it while still providing sufficient structure to help avoid errors,

and to entail as few overhead tasks as possible. As a result, applying this framework

should help developers design their OCF-compliant home IoT products with more

reasonable security.

While the complete framework is described in Appendix A, this section describes

the most notable features of its design.

PRSD operates on existing external information and results in security decisions,

which are security mechanisms that the developers have decided to include in the

design of a product. More specifically, the processes that comprise PRSD are separate

but linked analysis operations that apply to their dependencies, or input information,

and produce conclusions called outputs. To follow the framework, developers should

carry out the analyses of a process whenever its dependencies are prepared. Outputs

to processes are the dependencies of others, so developers can proceed from one

process to the next until they have settled upon security decisions.

Understanding that development teams rarely have a complete and final vision for

a product at its inception [55], all analyses can be performed with whatever level of

detail existing information permits. As changes are introduced, developers can update

the existing analyses accordingly. The analyses in PRSD are explicitly itemized and

linked in order to make it easy to only reconsider the analyses affected by a change.

PRSD is specifically tailored for dealing with security threats enabled by the OCF

architecture on home IoT devices. For instance, PRSD is suited for considering how

to protect the OCF communications of a refrigerator and a new vacuum cleaner as

it is introduced to one’s home OCF network, but it is not suited for reasoning about

the physical security of those products or the OCF communications of a networked

vehicle. This scope is limited so that PRSD is appropriately flexible to its subjects;

more stable aspects of design and market segments deserve more rigid and specific

treatment, and less-understood ones require more flexibility.

Additionally, PRSD is limited to the security design of a product. Implementation,

60

which includes translating designs (security or otherwise) to code, compiling the code

into executable software, and production of the actual devices, is out of scope. PRSD

aims to reveal how a device as intended could be exploited to cause harm, so it

assumes that implementation is correct and follows best practices. This focus is

motivated by the discussion in Chapter 2, where security design was recognized as a

current, critical, and unique problem for the Internet of Things.

Together, the structure of this security framework should enable developers to

realize more reasonable security designs in their OCF-compliant home IoT prod-

ucts. Every process is geared to help developers to rigorously articulate the potential

threats enabled by their prospective products, the security options that may defend

against those threats, and the tradeoffs between those options. In doing so, they

can ultimately weigh their choices more comprehensively and accurately than they

likely could without PRSD. Furthermore, every aspect of the framework is designed

to be highly flexible, as is appropriate when designing for the current home Internet

of Things. Without sacrificing quality or flexibility, each process has been carefully

structured to minimize unnecessary work in order to keep the costs of using this

framework low.

4.1.1 Process Outlines

Here, we briefly outline each of the processes in PRSD. To help illustrate, we provide

snippets of the case study from Appendix B. In this case study, PRSD is applied

by a hypothetical startup called “Lockr” to their plans to build an OCF-connected,

phone-operated door lock called “SuperLock” that is tailored for Airbnb hosts and

their guests.

The first process, Situational Modeling, depends only upon existing external knowl-

edge. Carrying out this process results in outputs that model the potential behavior

of a prospective product and the environments it could act in, including the prod-

uct’s capabilities, environment, and the relevant stakeholders. Capabilities include

any functions that a device can possibly carry out to make sense of or act upon its

61

environment.3 The environment includes any relevant details of the surroundings that

the developers expect their product to be used in. The relevant stakeholders include

any agents that have an interest in or influence over the products besides attackers,

who are separately analyzed in the next process. This process is a necessary first step

through which developers can systematically consider how a product might interact

with the world and what is at stake through those interactions. The outputs of this

process are the necessary foundation to considering potential threats.

Table 4.1 shows the SuperLock capabilities, and Table 4.2 shows its stakeholder

models. Examples of information from its environmental models include that Super-

Locks will be physically accessible indoors and outdoors and that they will guard

items of potentially enormous value.

Table 4.1: SuperLock capabilities

Capability Description

lock lock and unlock mechanism
communication Communication over the home’s OCF network. These

communications are intended to include both lock re-
quests and administration with phones.

update receive Internet updates over a proprietary protocol
physical lock backup physical lock and unlock mechanism
reset reset button restores SuperLock to factory settings

With this model, as well as some general threat expertise, developers may perform

the next process, Threat Modeling, which outputs security threats enabled by the

OCF architecture of the prospective product. These threats include the potential

harms that a product could enable, the attackers who might want to cause those

harms, and the means by which they could cause them to happen through the aspects

of the product relevant to the OCF architecture. The goal of this process is to

help developers create a reasoned threat model, rather than have them rely on their

intuition and limited working memory later.
3Capabilities are separate from a device is meant to do or not do. This exercise intends to help

developers determine what a device could possibly do if an actor, such as an attacker, had complete
control over the device.

62

Table 4.2: SuperLock stakeholder Models

Type Stakeholders Interests and Assets Expertise Resources

Users homeowners,
Airbnb guests

SuperLock, safety, pri-
vacy, valuables, OCF
network, availability

minimal minimal

Admins homeowners SuperLock, safety, pri-
vacy, valuables, OCF
network, availability

minimal low

Developers Lockr engineers company revenue higha full time
job

Support Lockr engineers company revenue higha full time
job

Third parties (none)
Public People who use

the Internet
Internet access, time

aAbove average security expertise, compared to other developers.

Table 4.3, Table 4.4, and Table 4.5 list the harms, attackers, and means from the

SuperLock case study.

Table 4.3: Potential harms resulting from SuperLocks

Harm Description Assets at risk

break in attackers get into the house safety, privacy, valuables,
company revenue

locked out users prevented from get-
ting into home

safety, availability, company
revenue

damaged the lock is damaged safety, privacy, valuables,
company revenue

pivot harm the SuperLock is exploited
and used as a proxy to de-
vices on the OCF network

OCF network, company
revenue

bot the SuperLock is incorpo-
rated into a botnet

Internet access, time, com-
pany revenue

Proceeding through the next process, Security Option Enumeration, involves com-

ing up with security options for combating the threats and explicitly laying out the

tradeoffs between those options. This option walks developers through the process of

considering alternatives for dealing with each means from the threat model, followed

63

Table 4.4: Potential attackers with an interest in SuperLock harms. Exclamation
points after harms indicate relatively higher expected interest in causing that harm,
which in turn indicates a greater willingness to put resources towards causing that
harm.

Attacker Description Harms of interest

thieves criminals wanting to com-
mit burglary

break in (!!), damaged

prankster people looking to cause mis-
chief

break in, locked out,
damaged, pivot harm

government agents of law enforcement or
espionage

break ina, damaged,
pivot harma

quarrelingb users fighting with each
other

locked out

seizureb landlords or other authori-
ties seizing property

locked out

hacktivists activists who make state-
ments through hacking

pivot harm (!), bot (!!)

expansive crime organized crime looking to
steal data or amass botnets

pivot harm (!), bot (!!)

aStates will have an strong interest in causing this harm to certain suspects or activists, but these
cases are extremely rare, and those users will likely know the risks.

bIt’s possible that more harm could result from trying to protect against this attacker.

Table 4.5: Means through which attackers could cause harms by leveraging SuperLock
OCF communications.

Means Description Harms

spoof admin impersonating an adminis-
trator

break in, locked out,
damaged, pivot harm,
bot

admin commands sending commands that en-
tail administrator-level ac-
tions

break in, locked out,
damaged, pivot harm,
bot

spoof user impersonating an autho-
rized user

break in, locked out

user commands sending commands that en-
tail user-level actions

break in, locked out

MITM onboarding man-in-the-middling the
initial onboarding process

break in, locked out,
damaged, pivot harm,
bot

64

by an analysis of their relative merits and disadvantages with regard to security, prod-

uct features, costs, and usability. Security options do not need to be fully specified at

the outset; this process helps developers focus on the most important alternatives first

and return to consider competing details of the chosen options later. This structure

provides the information developers need to weigh their options with increased rigor,

and it feasible to carry out even for complex designs.

For example, some of the security options considered for SuperLock are authen-

tication schemes: auth/password/vendor relies on a single password for all au-

thentication of all SuperLocks, auth/password/user tasks administrators with set-

ting passwords for administrators, normal permanent users, and temporary guests,

auth/crypto/simple has SuperLocks manage authentication by generating and

managing authentication keys based on public key cryptography, auth/crypto/local

relies on another OCF device in each home to generate and manage keys,

auth/crypto/global relies on one global system for key management, and auth/biometric

uses phones’ fingerprint scanners, sending some representation of the fingerprint to

the lock for authentication. Table 4.6 provides a heavily abbreviated summary of their

relative security effects. Other tradeoffs cover, for example, the large support costs

of a global authentication system for auth/crypto/global and the low usability of

passwords compared to the other options.

Next, the Architectural Synthesis process has developers determine how to design

each security option within the OCF specification. In doing so, it may turn out that

some security options are required, others are not allowed, and others have tradeoffs

that are fundamentally altered by the specification. These effects could change which

security options are ultimately included in the product’s security design.

Table 4.7, for example, covers the aspects of the OCF specification relevant to

choosing between the authentication scheme options.

Any competing security options that the architecture does not settle are consid-

ered in Tradeoff Resolution, the process which results in the security decisions. This

analysis involves weighing the expected security benefits (in terms of harms prevented

or mitigated) against the other tradeoffs involved in a security option. The process

65

Table 4.6: Security options for the SuperLock. Dollar signs indicate relatively how
many resources needed to overcome a security option.

Option Means

sp
oo

f
u
se

r

u
se

r
co

m
m

an
d
s

sp
oo

f
ad

m
in

ad
m

in
co

m
m

an
d
s

M
IT

M
on

b
oa

rd
in

g

auth/password/vendor $a $a $a $a $a

auth/password/user $$ $$ $$ $$
auth/crypto/simple $$$$ $$$$ $$$$ $$$$
auth/crypto/local $$$ $$$ $$$ $$$
auth/crypto/global $$$b $$$b $$$b $$$b

auth/biometric $$$ $$$ $$$ $$$

aOne exploit leaves all SuperLocks vulnerable.
bOne exploit leaves all SuperLocks, and potentially many other devices, vulnerable.

Table 4.7: Relevant documentation from the OCF specification and IoTivity, and
a description of their impact on the previously identified security options and their
tradeoffs. All specification documents are from v1.1.0.

Documentation Impact

Security 9.3.6 auth/password options not allowed
Security 9.3 auth/biometric implicitly not allowed
Security 9.3.3 Description of Asymmetric Authentication Key

Credentials, suitable for auth/crypto/simple,
auth/crypto/local, and auth/crypto/global and
supports revocation

Security 9.3.5 Description of Certificate Credentials, suitable for
auth/crypto/local and auth/crypto/global and
supports revocation

Security 5.1.1.2 Access Manager Service for auth/crypto boosts usabil-
ity but decreases security (suitable for consideration as
a sub-option)

Security 12.1 ACL guidance for auth is not specified, but will be in
future versions of the specification

66

helps developers by explaining how each of the outputs of the previous processes

contribute towards this end. Final judgement on security decisions is left to the

developers.4

In the case of the authentication options, we selected auth/crypto/simple as a

security decision for SuperLocks.

Continually affecting all of the other processes, the Updates and Maintenance

process enables developers to quickly incorporate new information, design changes,

and increased design detail into existing analyses and outputs. As dependencies to

processes change, this process describes how to redo relevant analyses in that process

with minimal unnecessary effort. The correctness and efficiency of this process are

of the utmost priority, as modern software—and, by extension, IoT—engineering is

typified by frequently changing requirements and incremental development [55].

For SuperLock, we explored several sub-options of auth/crypto/simple—namely,

selecting strategies for sharing credentials with guest users and approaches to man-

aging the lock’s access control lists—in order to demonstrate how to update analyses

for incremental development.

The relationship between these processes is illustrated in Figure 4-1.

4.2 Case Studies summary

To illustrate how the Processes for Reasonably Secure Design works in practice, Ap-

pendix B describes its application to four case studies. These case studies serve the

dual purpose of providing concrete examples of what PRSD looks like and demon-

strates certain aspects of it that give evidence for the claims made about what it

achieves.

These case studies are limited to hypothetical situations, as there are no actual

certified OCF products to which PRSD could currently be applied, even in hindsight.5

4More rigidity may be warranted as home IoT design patterns stabilize, but this degree of flexi-
bility is appropriate for the current uncertain and dynamic nature of the home IoT.

5There are currently three OCF-certified products [65], but none publish their design details, and
they were not willing to discuss their designs with us.

67

Figure 4-1: Diagram of the Framework

While this does limit the ability of the case studies to demonstrate the efficacy of

PRSD, these hypothetical scenarios still provide ample material from which to draw

conclusions about the usefulness of PRSD.

The first case study covers “SuperLock”, a door lock which can lock or unlock

through OCF communications. It exemplifies an IoT product that has simple behav-

iors but which requires significant security. This case study covers a high level initial

application of PRSD, followed by a reapplication of PRSD to some sub-options of

chosen security decisions.

The next case study starts off where the previous one finished, but with the com-

pany wanting to integrate SuperLocks with Airbnb services to automatically provide

door access to Airbnb guests for the duration of their stays. This case study most

notably exemplifies how to update existing analyses to accommodate changing design

requirements, and it also demonstrates how to apply PRSD at the boundary between

the OCF specification and third party proprietary interfaces.

Third, we look at “Hub”, which takes voice commands and responds with audio

feedback to manage and operate an arbitrary variety of third party devices and cloud

services. This case exemplifies how PRSD adjusts to meet a much more complex

product design with highly uncertain and uncontrollable security risks.

68

Finally, the fourth case study features “Vacubot”, a vacuuming robot that exclu-

sively takes input from arbitrary other OCF devices within the same home network.

This scenario primarily demonstrates how PRSD operates when applied to a device

with relatively small security risks.

Most fundamentally, these case studies demonstrate that, at least in these exam-

ples, PRSD is useful for coming to security decisions. It helps developers consider

threats and appropriate security responses comprehensively and systematically. In

each case, all aspects of analysis in each process proved useful at some point along

the way towards reaching security decisions. Thus, skipping any aspects of the pro-

cesses in the framework would have entailed missing aspects of analysis relevant to

the final security decisions.

Between case studies, differing situations and threat models justify different deci-

sions between similar competing security options. The only common security option

between the case studies is encryption, which is explicitly required by OCF. Thus, as

hypothesized, as tradeoffs vary with respect to situations and threat models, different

security options become more or less reasonable than each other. PRSD helps grapple

with these tradeoffs. A less systematic framework increases the risk that developers

miss a crucial element of analysis, and a more rigid framework would lead to subop-

timal security designs in some or all of the case studies. Based on these observations,

then, it appears that PRSD is appropriately flexible to the current needs of home

IoT.

Architectural Synthesis can do a lot to resolve tradeoffs in general, before devel-

opers have to make the hard choices themselves in Tradeoff Resolution. In these

case studies, the OCF architecture’s constraints often eliminated some security op-

tions, provided guidance for choosing between others, and significantly affected the

tradeoffs between them (mainly by making some options cheaper by providing stan-

dard implementations.) While Architectural Synthesis fell far short of resolving all

tradeoffs—and there will always be some situations where developers should have

some freedom to choose between security options—it is clear that the OCF and other

architectural standards can have an enormous impact on security design.

69

Notwithstanding the help that it did provide, the case studies reveal that the OCF

specification has several crucial gaps. First, it does too little to help developers select,

design, or configure credential management systems, or CMSs.6 While providing a

full specification to all these things would, for good reason, fall outside of the scope

of the OCF specification, standardizing or guiding aspects of CMS interfaces would

help considerably and fall within the purview of the specification. Second, the ACL

management section is explicitly incomplete. Permissions are notoriously difficult

(see Watson et al. [89]); this is not an area that developers should have to figure out

without guidance. Third, there no explicit specification for bringing guest devices

onto an OCF network. The core specification simply assumes away the problem,

even though the OCF architecture is clearly intended to provide such functionality.

Fourth, it would generally increase security—with negligible tradeoffs—and make

analysis more clear and manageable if devices had a way to declare that trust in them

should be limited. However, this is impossible in the OCF architecture. Finally, the

OCF noticeably chooses not to include software updates within its scope. While the

OCF is free to make this decision, updates are a critical aspect of security, and the

OCF specification is well positioned to give developers guidance about how to deliver

updates.

Separately, it is relatively straightforward to update existing analyses to account

for new information. By having a methodical design and explicit links between de-

pendencies, outputs, and processes, PRSD makes it easy to determine which aspects

of analysis are affected by new information and to update them with minimal unnec-

essary effort.

Similarly, PRSD scales well to more complicated projects. The Hub in particular is

a more complex product, with a greater potential attack surface and great uncertainty

in the potential harms. Still, the situational and threat modeling processes lent

themselves to straightforward decompositions. In general, more complex projects

will require more time to analyze, but clustering competing security options and
6CMSs are a construct of the OCF specification [67]. They are never fully specified, either in

structure or in interfaces, but they are generally services that generate, issue, and revoke credentials
for other OCF devices.

70

their sub-options together should prevent analysis from becoming too complicated.

PRSD also works for simple devices that introduce only low-risk threats, such as

the Vacubot vacuuming robot. It may take more effort than ad hoc analysis, but it

provides a system through which to rationally justify rejecting security options that

are more secure but sacrifice too much in their tradeoffs. This could be particularly

helpful if the organization needs to justify their decisions in court. Absent legal

considerations, PRSD could still positively affect the bottom line, producing a low-

risk device by allowing the organization to see that it is reasonable to choose security

options that have more attractive tradeoffs. Having more features and better usability

ideally encourages greater demand from consumers, and lower security costs saves

money. Thus, despite the higher costs than ad hoc analysis, there are several plausible

ways this extra effort could provide a worthwhile return on investment.

4.3 Summary

The Processes for Reasonably Secure Design is a process-based security framework

that helps developers of home IoT products compatible with the Open Connectivity

Foundation communications architecture determine what security designs will be most

reasonable for the situations their devices will face. To accomplish this, it walks

developers through the process of considering potential threats, options for mitigating

those threats, and the analysis of the tradeoffs between those options. Even though

security design is a critical source of problems for the Internet of Things, no other

framework provides this kind of guidance.

In addition to presenting this novel framework, we demonstrate its use with four

illustrative case studies. In doing so, we observe that PRSD fulfills its intended goals

with appropriate flexibility for the subjects within its scope, and it does so with

minimal unnecessary analysis. Additionally, we find that PRSD holds up well for

large and small projects, even as they grow close to the boundaries of its scope.

Separately, our enquiries revealed several notable gaps in the OCF specification.

They lack any guidance or specification for credential management and ACL man-

71

agement services, and they do not specify how to interact with guest devices. Both of

these are major shortcomings that fall at least some degree within the specification’s

scope. Additionally, it would be nice if the specification provided a way that allowed

an endpoint to limit how much others trust it, but this concept is impossible within

the OCF structure. Likewise, the choice to exclude software updates from the scope

of the OCF architecture is suboptimal.

72

Chapter 5

Evaluation of PRSD

5.1 Quality of Guidance

The primary novel contribution of the Processes for Reasonably Secure Design is that

its guidance aims for reasonable security that varies with stakeholder perspective,

assets, and context. Furthermore, it provides system for explicitly identifying and

comparing the tradeoffs between security options. Existing process-based security

frameworks often prescribe rigid security goals, such as the CIA triad, or mechanisms,

such as requiring certain kinds of authentication or encryption, irrespective of the

tradeoffs that may arise from context. Even when frameworks do admit that certain

security mechanisms may not be appropriate for all situations, such as the case with

NIST 800–160 and the CII Best Practices Badge Program, they do not provide any

guidance to help developers actually decide whether or not a security mechanism is

worth its tradeoffs for the product they are making.

The hypothetical case studies in Appendix B concretely demonstrate how PRSD

meets its design goals. It is actually possible to specify situational considerations,

threat models, security options, and the tradeoffs between those options to a great

enough extent that they are useful for making decisions about reasonable security. To

be clear, it does not try to tell developers the “right” way to make security decisions—

such decisions are value judgements that PRSD has no place imposing on developers.

Rather, it simply helps developers identify and organize the information that is rele-

73

vant to making these decisions.

As discussed in previous chapters, this focus on reasonable security and weighing

security option tradeoffs is factually correct and, by definition, reasonable. Addition-

ally, based on its design structure, the PRSD framework is also timely, because none

of it is obsolete, complete, because it fully covers the subjects within its scope, and it

is not misleading, because its documentation is clear that it does not cover all aspects

of security. Thus, for what it tries to do, PRSD appears to have a high quality of

guidance.

5.2 Flexibility

PRSD is designed to be highly flexible; the whole framework is designed to help

developers determine what security options are right for their product given the cir-

cumstances they are operating in. The evaluation here, then, must determine both

whether or not this flexibility goal is appropriate and whether or not it is met.

The case studies demonstrate that different decisions can be made among similar

competing security options, depending on the stakeholder perspectives, assets, and

contexts that developers expect their products to be used in. A more rigid framework

would have led to suboptimal security designs in some or all of the case studies. From

this, we can conclude that PRSD is not too rigid. At the same time, every output of

every process at some point contributed to the final decisions, which were not always

intuitive. As a result, a less comprehensive and methodical framework would make

it more difficult to come to an appropriate security decision, so it is not too flexible.

Thus, PRSD meets its goal and is appropriately flexible.

PRSD is specifically catered for home IoT implementing the OCF specification.

For other verticals or aspects of design, it could be too flexible or too rigid. To

generalize PRSD to other domains, its flexibility should be adjusted accordingly.

74

5.3 Administrative Costs

The administrative costs of using PRSD are probably low and manageable. These

costs arise from three general categories: the useful work needed to actually perform

the analyses, any unnecessary work required by the framework, and any overhead

tasks that do not directly contribute to the analyses. The total administrative costs,

then, are these costs minus the costs that a given organization would spend in those

areas if they did not use PRSD.

Of these categories, the useful work required by PRSD will by far be the most

costly. Using PRSD requires a fair amount of critical thinking, which is inherently

difficult and resource-consuming. Since PRSD helps developers in part by leading

them to consider situations, threats, security options, and tradeoffs that they would

not think of otherwise, this work will usually be greater than what an organization

would put towards security design otherwise.

The case studies contained very little unnecessary effort; all outputs tended to

be useful at some point in the process leading to the security decisions. One might

argue that too much time is spent considering some security options before realizing

that they are not supported by the OCF, such as what occurred with password

authentication options. Admittedly, this kind of analysis is probably unnecessary

in hindsight, but this approach may be worth the cost.1 Besides that, PRSD could

actually help decrease unnecessary analysis over ad hoc analysis. Thus, although it

can introduce a little unnecessary analysis, there are situations where PRSD could

actually help developers avoid unnecessary analysis overall.

The only work that PRSD requires outside of analysis itself is documentation

of the outputs of every process. While small, this documentation is not negligible.
1The alternative is to rely on the OCF specification as the arbiter of security options. While

this might help developers avoid considering forbidden security options in the first place, it also
risks serving as a crutch to coming up with security options. This outcome could lead developers to
discount useful, acceptable options that are not explicitly written into the OCF specification. There
is probably a more ideal compromise between the existing approach and the alternative presented
here, but there is no way to tell what that ideal is until developers start actually using PRSD.
Regardless, as developers become more familiar with the OCF specification, this corner case will
come up less and less frequently.

75

As design details become more and more granular, and documentation is made for

increasingly detailed sub-options to security decisions, this overhead will likely become

particularly noticeable. However, because the framework itself does not specify any

particular kind of formatting for the documentation, companies can produce whatever

documentation suits their needs. For a startup designing a simple product, PRSD

outputs could be scrawled out on a whiteboard. For a large multinational coordinating

security designs and OCF implementations across several complex products, more

elaborate and formal documentation might be in order. This flexibility should ideally

ensure that the extra administrative costs of using this framework always remain

manageable.

By examining the structure of PRSD itself and the case studies, we predict that

PRSD entails low and manageable administrative costs. As with NIST 800–160 in

Section 3.2, empirical evidence is necessary to determine how well these predictions

hold in practice.

5.4 Scale

The case studies in Appendix B demonstrate that PRSD works for simple products

with minimal OCF interactions, as is the case with the smart lock, as well as for more

complex products with an uncertain range of possible OCF interactions, as is the case

with the Hub. Based off of these examples, PRSD appears to scale well to small and

large projects.

To be sure, the more complex projects did entail more complex case studies, but

that is only because more complex projects are, by definition, more complex to design.

As a design-focused security framework, there is no way that PRSD can get around

this.2

2To scale poorly, the marginal amount of analysis that PRSD requires would have to increase
with the complexity of a project. In other words, the work required by PRSD would have to grow
exponentially with the complexity of a project. We predict that the work required by PRSD does
not grow exponentially with complexity. The initial analysis of the Hub did require more effort than
the other case studies, but there is nothing in it to suggest that the difference is exponential. When
delving into sub-options throughout development, the difference in analytical workload between
simple and complex projects is likely to grow. However, since more granular reapplications of PRSD

76

5.5 Scope

The PRSD framework is designed specifically for helping developers arrive at secu-

rity designs for devices intended to be used primarily in homes that are compliant

with the Open Connectivity Foundation architecture. More specifically, it is only

relevant to how the product interfaces with and realizes the OCF specification and

the threats enabled by that realization. Examination of the details of the framework

in Appendix A clearly demonstrate that PRSD adheres to its scope throughout its

structure.

5.6 Incentives

There are four potential future paths for PRSD adoption, and each one brings with

it unique factors affecting the incentives that firms will have to use the framework.

By default, PRSD will remain a standalone voluntary framework, in which firms

designing OCF-compliant home IoT products can choose to use it based on its reputed

quality, flexibility, and costs. Alternatively, some legislating body could enact laws

that require firms to use PRSD when designing in-scope products. As a less strict

alternative, the FTC and U.S. Courts could use PRSD as the basis for building

a common law IoT liability framework. Here, the FTC would work with relevant

stakeholders to build guidelines for designing home IoT products with reasonable

security, and firms would be able to use these guidelines and PRSD as a defense

against legal liability. Finally, the Open Connectivity Foundation itself could require

organizations to use PRSD as part of getting their devices certified. In doing so,

PRSD could become incorporated into the OCF standard. We delve into each of

these paths to assess their plausibility and effects on the incentives to use PRSD.

only consider competing sub-options (instead of all sub-options at once), the analytical complexity
should remain relatively stable and tractable throughout. While we cannot know for sure until
PRSD is used on real products, this reasoning leads us to hypothesize that PRSD will tend to scale
linearly, not exponentially, with complexity.

77

5.6.1 Voluntary Framework

In this situation, an organization’s choice to use PRSD rests solely on their awareness

of the framework and the perceived costs and benefits of using it. On its own, the

administrative costs of using PRSD would disincentive its use. The IoT market is

highly competitive, and vendors are racing to market for the first mover advantage [78,

pp. 29–32]. Developers may eschew security design costs in an attempt to gain this

advantage.

However, PRSD could provide a long term net benefit to organizations by helping

them avoid costly security breaches or convincing them to forego security mechanisms

that require great sacrifices in features and usability (thus lowering value to consumers

and potentially decreasing demand) or cost. If a profit-driven organization became

convinced that the expected benefits of PRSD exceed the short term costs, then they

would have a net incentive to use it.

Whether or not PRSD ever gains a reputation of being worthwhile remains to be

seen. In order to gain a reputation at all, the framework needs to be marketed in

some way to convince organizations to try it. Beyond that, its reputation depends

on word of mouth between CISOs and developers. However, it is unclear who would

market and maintain the PRSD framework, so it is doubtful that PRSD would ever

gain a widespread reputation as a voluntary framework.

It is worth noting that, in this situation, the developers using PRSD determine

what constitutes “reasonable security” by themselves. When the organization is a

profit-driven corporation, it’s possible that some security threats will be ignored if

they would not impact the corporation’s bottom line. A FLOSS project, on the other

hand, would have a different set of incentives. FLOSS developers want to gain a

reputation for contributing to great projects. Thus, they want to build feature-rich

and usable devices to impress their communities, but they also do not want to be

responsible for a product that gains notoriety for insecurity [56].

78

5.6.2 Legislation

To make PRSD significantly more compelling to firms, legislators could pass a law

requiring firms producing OCF-compliant home IoT devices to use a framework like

PRSD throughout development. In this case, the incentives to use the framework

would include the framework’s reputation (as described in the previous section) and

the expected legal penalties for not using PRSD, which would be the probability of

an audit times the magnitude of a fine.3 With a reasonably high risk of audit and

sizable fines, this would be a compelling incentive.

Even ignoring the many difficulties in writing and enforcing such a law effectively,4

there are no stakeholders with both the power and motivation to see this legislation

through. Authority in this path ultimately lies with legislating bodies, whose moti-

vations reflect those of representatives’ constituents and donors. Companies might

have the influence to lobby for these regulations successfully, but most companies

would oppose these regulatory burdens.5 Experts and advocacy groups may want

to have a legal mandate on PRSD use, but they would probably have little clout

to influence legislators on their own. Elected representatives would likely only take

note of experts and advocates if their constituents started demanding it; however,

constituents are unlikely to become aware of PRSD, because it is developer-oriented,

so they are unlikely to call for regulatory action on it. As a result of these misalign-

ments among stakeholders, PRSD is highly unlikely to become mandated through the

formal legislation process.

5.6.3 Common Law Liability Framework

Alternatively, PRSD could become a mechanisms through which firms defend the

reasonableness of the security designs of their products in court. In this situation,

courts would settle upon standards for recognizing the use of PRSD when assessing
3There are also the indirect costs of the bad publicity that would accompany the fine.
4For instance, it would be difficult to update the legislation frequently enough to avoid holding

back security innovations.
5Regulatory capture is not a concern, since PRSD scales well [83].

79

the security designs of products. Firms could then demonstrate the reasonableness

of their security decisions through the outputs of their PRSD analyses. To catalyze

this approach, the Federal Trade Commission could act as a focal point for bring-

ing together relevant stakeholders and establish industry guidelines that would help

companies use PRSD and help courts evaluate the use of PRSD properly.

There is an existing need for courts to set standards for sufficient information

security. The FTC has already demonstrated the ability to bring charges against

IoT companies for having fraudulent security in their case against TRENDnet [32].

While TRENDnet settled this case, the FTC did set the precedent of demonstrating

that failure to achieve adequate security is an “unfair business practice” in its case

against Wyndham Worldwide Corporation [87]. However, there are no clear standards

defining exactly what adequate cybersecurity is. The courts will eventually establish

this standard through precedents set by individual cases, and the FTC, with its

newfound authority to initiate and win these cases, will likely play an active role in

this process.

To do so, it is plausible that the FTC will facilitate the development of a com-

mon law framework for determining reasonable security similar to how it has for

privacy.6 In this scenario, the FTC would regularly hold workshops and forums to

bring together industry, academia, experts, advocacy groups, and regulators to discuss

reasonable approaches to IoT security design. PRSD could serve as useful indepen-

dent analysis towards this end, although these discussions would generalize beyond

the framework’s scope. If court findings support the results of these discussions, the

threat of an FTC complaint would incentivize the use of whatever variation of PRSD
6The FTC has built a framework of privacy standards that is effectively a body of common law,

based on a couple regulations that “establish a floor” and “enforce the minimum” acceptable privacy
standards. From this foundation, the FTC has used its power to take action against “unfair and
deceptive practices” under Section 5 of the FTC Act to build a “patchwork” of regulations and norms
that guide firms as they develop their privacy policies. To do so, the FTC brings together a variety
of stakeholders, including industry, academia experts advocacy groups, and regulators, to determine
any developments relevant to privacy, evaluate existing privacy practices, and ultimately agree upon
changes to the common law framework. Although many aspects of this privacy framework are not
actual law, companies still do generally abide by the guidelines, as doing so keeps the FTC from
enacting more cumbersome compliance-based regulations and also preserves their seats in these
workshops [80, 15].

80

the FTC supports.

5.6.4 Standardization

The Open Connectivity Foundation could provide a large incentive to use PRSD

by requiring its use in home-based OCF-certified products.7 More specifically, the

OCF would take charge of maintaining and improving PRSD, and it would provide

guidance to companies to make the framework easier to use. Certification testers

would enforce proper use of the framework. Any companies wanting to produce

OCF-compliant home devices would thus have to use PRSD in order to gain official

OCF approval.8

If the OCF standard gains widespread adoption—making OCF compliance more

valuable and thus more attractive—the benefits of OCF certification could easily

trump the administrative costs of using PRSD. Furthermore, since OCF would re-

quire all developers of home products to use PRSD, firms would not have to worry

about other OCF-compliant competitors skipping security design to get first mover

advantage, diminishing the disincentive of the administrative costs in the first place.

It is unclear that the OCF would choose to require the use of PRSD. The OCF

wants its standard and compliant products to attract market demand, but this re-

quires IoT producers to support the OCF and standardize it in the first place. By

requiring the use of PRSD, the Open Connectivity Foundation could gain public-

ity for supporting good security design. Additionally, with time, the positive effects

of PRSD could make OCF compliance a strong market signal of reasonable secu-

rity. However, OCF is not currently a widespread standard, and it does not want

to discourage its adoption. While over 300 organizations have joined the OCF [69],

the added costs from requiring the use of PRSD, which include its administrative

costs and increased certification costs, could scare them away from ever making OCF
7For more information on OCF certification, see [67].
8More specifically, this approach has the OCF leveraging the network effects of its standard to in-

centivize the use of PRSD. Knieps provides a great introduction to the economics of standardization
and network effects [51].

81

products.9 In making its decision, then, the OCF would need to balance the potential

long term benefits of requiring PRSD with the practical considerations relevant to

becoming the de facto IoT communications in the first place.

5.7 Summary

The Processes for Reasonably Secure Design comprises a process-based security frame-

work that aims to help developers achieve reasonable security designs in their prod-

ucts, understanding that the appropriateness of a security design varies with the

context that a product is used in. Both in respecting this variance and providing

tools to help developers identify and compare tradeoffs between security options, the

guidance in this framework is novel.

This chapter evaluates PRSD according to the criteria identified in Chapter 3. It

finds that PRSD has a high quality of guidance, is appropriately flexible to its scope,

and will probably have low, manageable administrative costs. Its scope covers the

security designs of home IoT products as they relate to threats enabled by the OCF

standards, and we predict that it will scale well to all sizes of projects in this space.

The incentives that organizations will have to use (or not use) this framework are

highly uncertain; there are plausible ways that PRSD could come to widespread use,

but there are at least as many ways it could not.

Table 5.1 summarizes the evaluation PRSD, comparing it to the three frameworks

from Section 3.2.

9Several standardization mechanics affect these factors. Key to standardization is achieving a
critical mass, which is the amount of participation in a standard necessary for the network to sustain
itself [51, p. 108]. The biggest threat to reaching this mass is the penguin effect, in which producers
would decide not to create OCF products out of fear that no others will follow, even if they believe
that OCF has the superior standard for their products [25].

82

Table 5.1: Summary of evaluations of PRSD and other security frameworks.

Criteria NIST 800–160 CITL CII Best Prac-
tices

PRSD

Quality of
guidance

mixed high medium-high high

Flexibility too little appropriately
none

too little appropriately
high

Administrative
costs

uncertain minimal
requireda

very little manageable

Scale highb maximum high high

Scope organizational
structure of
all systems
security

traditional
executables
binariesc

all FLOSS
projects

design of
home IoT
with OCF
standards

Incentives uncertain uncertain for
developersd

uncertain uncertain

aAdditionally, manageable for testers
bBiased towards large projects
cThere are plans to include IoT in the future
dAdditionally, strong for testers

83

84

Chapter 6

Conclusions

To maximize the value of the Internet of Things, developers will need to engineer

devices that achieve sufficiently secure designs without compromising too much in

terms of features, cost, and usability. To do so, they should remain mindful that,

since threats vary depending on perspective, the assets at risk, and the environment

a device is used in, the security mechanisms in their designs should vary with those

factors, too. While this understanding applies in all domains of computer security,

the Internet of Things will force developers to grapple with previously unexplored

interactions between information and actuation, so the perspectives, assets, and en-

vironments these developers will need to consider will be particularly unexplored. To

help overcome these difficulties, this document identifies gaps in the guidance avail-

able to developers and proposes a novel process-based security framework that begins

to fill them.

Many organizations have proposed security frameworks to help developers pro-

duce more secure IoT devices. Of these, outcome-based security frameworks remain

theoretically attractive but practically infeasible. Process-based security frameworks

seem useful, but, before now, there did not exist criteria with which to evaluate and

compare them.

This work introduces six criteria useful for evaluating and comparing these frame-

works:

85

1. Quality of Guidance

2. Flexibility

3. Administrative Costs

4. Scope

5. Scale

6. Incentives

We used these criteria to evaluate multiple process-based security frameworks (of

which, three in particular are highlighted within this work.) Even though the eval-

uations remain qualitative, they revealed shortcomings in the guidance available to

developers. Of particular note, these frameworks often derive from inflexible con-

ceptions of security, and they do not give room to vary security designs with the

situations that a particular product might face. When developers do have room to

choose between security options, they lack the tools they need to enumerate their

options and organize the information relevant to choosing between them. With these

shortcomings, developers are prone to missing threats entirely, inadequately mitigat-

ing them, or choosing security designs that sacrifice too much in terms of features,

cost, usability, or other aspects of security. Widespread vulnerabilities in existing

IoT devices confirm that developers do actually make these mistakes regularly, to the

point that consumer confidence in IoT as a whole is at risk.

The Processes for Reasonably Secure Design is a first step towards addressing

these shortcomings. This novel process-based security framework helps developers

comprehensively and systematically identify and consider the security threats an IoT

device may introduce to its surroundings, options for appropriately mitigating those

threats, and the tradeoffs between those options. In effect, it gives developers the

tools they need to organize and consider the information necessary to making rea-

sonable security designs for their products. It is particularly tailored for the designs

in its scope, which include home IoT devices and threats enabled by their use of the

86

Open Connectivity Foundation communication standards. In addition to describing

the framework itself, we concretely demonstrated its use in multiple case studies,

providing evidence of its value in the process.

We evaluated PRSD, finding that its quality of guidance is high, meaning that

it should successfully help developers in the way it is meant to; it is appropriately

flexible for the scope that it is tailored to, and its administrative costs will probably

be low and manageable. To consider how widespread its use could be, one should

keep in mind that its scope is limited to the security designs of home IoT products

as they pertain to the OCF standards, but that it should scale well to projects of all

sizes within this scope. Additionally, there are many possible futures for PRSD; there

are some plausible ones in which companies will have strong incentives to use PRSD,

but there are others where they will not. Thus, if developers are incentivized to use

the framework, PRSD is well-equipped to help developers create products with more

reasonable security designs.

6.1 Future work

There are many ways to expand upon this work. Perhaps most fundamentally, the six

criteria for evaluating process-based security frameworks could be expanded. While

the qualitative evaluations here proved useful, more rigorous, formal, and quantitative

routines for performing the evaluations could lead to more standardized, objective,

and complete results.

The PRSD framework itself could be improved in several ways. As home IoT

and the OCF standard stabilize, information about common analytical patterns and

relevant technical guidance could also be included in order to make the framework

appropriately more rigid. Beyond this, further work could generalize the PRSD ap-

proach to other architectures beyond the OCF standards and beyond home-based

Internet of Things products. Finally, if it ever becomes clear that there are struc-

tural shortcomings with the processes and their connections, the framework should

be updated as needed.

87

Beyond guiding developers’ security engineering efforts, elements of PRSD could

ultimately form a tool that helps understand the relationship between architectural

constraints and security designs. Across the case studies, the Architectural Synthe-

sis process makes it clear that architectures play a tremendous role in defining what

threats are possible, what security mechanisms could possibly be used to combat

them, and which parties must take responsibility for implementing various security

mechanisms. By going through congruent hypothetical case studies that differ in

communications architecture, one might be able to employ PRSD to explore how dif-

ferent architectures lead to different security designs. Over enough case studies, this

approach might even be useful for generalizing theories about the role of communi-

cations architectures in security.

Finally, if either the Federal Trade Commission or the Open Connectivity Founda-

tion adopted the Processes for Reasonably Secure Design and leveraged their positions

to encourage its use, the framework would likely have a significantly greater positive

impact on the security designs of home-based IoT devices.

88

Bibliography

[1] Lillian Ablon et al. “Consumer Attitudes Toward Data Breach Notifications and

Loss of Personal Information”. In: 15th Annual Workshop on the Economics

of Information Security (WEIS). 2016. isbn: 9780833093127. url: http://

weis2016.econinfosec.org/wp-content/uploads/sites/2/2016/05/WEIS%

7B%5C_%7D2016%7B%5C_%7Dpaper%7B%5C_%7D11-2.pdf.

[2] Alessandro Acquisti and Jens Grossklags. Privacy and rationality in individual

decision making. 2005. doi: 10.1109/MSP.2005.22.

[3] Anne Adams and Martina Angela Sasse. “Users are not the enemy”. In: Com-

munications of the ACM 42.12 (1999), pp. 40–46. issn: 00010782. doi: 10.

1145/322796.322806.

[4] Airbnb. Airbnb Unveils Expansive Suite of Personalized Tools to Empower Hosts.

2015. url: https : / / www . airbnb . com / press / news / airbnb - unveils -

expansive- suite- of- personalized- tools- to- empower- hosts (visited

on 12/28/2016).

[5] Amazon. Amazon Echo - Amazon Official Site - Alexa-Enabled. 2017. url:

https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-

Alexa/dp/B00X4WHP5E (visited on 05/04/2017).

[6] Ross Anderson. “Why Information Security is Hard”. In: Annual Computer

Security Applications Conference (2001). url: www.cl.cam.ac.uk/%7B~%

7Drja14/%7B%5C#%7DEcon.

89

[7] Ross J. Anderson. “Usability and Psychology”. In: Security Engineering: A

Guide to Building Dependable Distributed Systems. 2nd. Wiley, 2008. Chap. 2.

isbn: 9780470068526. doi: 10.1093/epirev/mxr031. url: http://www.cl.

cam.ac.uk/%7B~%7Drja14/Papers/SEv2-c02.pdf%20http://portal.acm.

org/citation.cfm?id=1373319.

[8] Apple. Approach to Privacy - Apple. 2017. url: https://www.apple.com/

privacy/approach-to-privacy/ (visited on 05/04/2017).

[9] Apple. HomeKit. 2017. url: https://developer.apple.com/homekit/ (vis-

ited on 05/04/2017).

[10] Apple. HomeKit. 2017. url: https://developer.apple.com/reference/

homekit (visited on 05/04/2017).

[11] Jari Arkko. The Interoperability of Things: IoT Semantic Interoperability (IOTSI)

Workshop 2016. 2016. url: https://www.ietf.org/blog/2016/03/the-

interoperability-of-things-iot-semantic-interoperability-iotsi-

workshop-2016/ (visited on 02/09/2017).

[12] Ashish Arora et al. Measuring the risk-based value of IT security solutions. 2004.

doi: 10.1109/MITP.2004.89.

[13] Matt Asay. Why 10 million developers are lining up for the Internet of Things.

2016. url: http://www.techrepublic.com/article/why- 10- million-

developers-are-lining-up-for-the-internet-of-things/http://www.

techrepublic.com/article/why-10-million-developers-are-lining-

up-for-the-internet-of-things/ (visited on 01/19/2017).

[14] August. August Home Delivers Secure Access for Airbnb. 2016. url: http:

//august.com/2015/11/12/august-now-works-with-airbnb-to-deliver-

secure-and-easy-home-access/ (visited on 12/28/2016).

[15] Kenneth a. KA Bamberger and DK Deidre K. Deirdre Mulligan. “Privacy on

the Books and on the Ground”. In: Stanford Law Review 63.247 (2011), pp. 247–

316. issn: 00389765. doi: 10.2139/ssrn.2230369. url: http://scholarship.

90

law.berkeley.edu/facpubs%20https://a.next.westlaw.com/Document/

I23cca655362c11e08b05fdf15589d8e8/View/FullText.html?navigationPath=

/Foldering/v4/elanazeide/folders/e652a265ef474b48a6c404123729d5d7/

search/hsjpEfUjAxSWwJOAC5dllh2Uh6CcSCdmsyUeTCzj2W%7B%5C%%7D7Ca5hLTEyMYi4w%

7B%5C%%7D60wJoaOsfkskOqSI2kbTFuhf.

[16] Joseph Bonneau and Paul C Van Oorschot. “The Quest to Replace Passwords

: A Framework for Comparative Evaluation of Web Authentication Schemes”.

In: 2012 (2012). doi: 10.1109/SP.2012.44.

[17] Joseph Bonneau and Sören Preibusch. “The Inconvenient Truth About Web

Certificates”. In: Economics of Information Security and Privacy III. 1. 2010,

pp. 121–167. isbn: 9781441969668. doi: 10.1007/978-1-4419-6967-5. url:

http://www.springerlink.com/index/10.1007/978-1-4419-6967-5.

[18] David D Clark and Marjory S Blumenthal. “The End-to-End Argument and Ap-

plication Design : The Role of Trust”. In: Federal Communications Law Journal

63.2 (2011).

[19] CoAP — Constrained Application Protocol. 2017. url: http://coap.technology/

(visited on 05/04/2017).

[20] Core Infrastructure Initiative. CII Best Practices Badge Program. 2017. url:

https://bestpractices.coreinfrastructure.org/.

[21] Core Infrastructure Initiative. CII Best Practices Projects. 2017. url: https:

//bestpractices.coreinfrastructure.org/projects.

[22] Core Infrastructure Initiative. Other criteria for higher-level badges. 2017. url:

https://github.com/linuxfoundation/cii-best-practices-badge/blob/

master/doc/other.md (visited on 05/06/2017).

[23] Paul A. David. “Clio and the Economy of QWERTY”. In: The American Eco-

nomic Review 75.2 (1985), pp. 332–337. issn: 00028282. doi: 10.2104/ha080079.

arXiv: /www.jstor.org/stable/1805621 [http:].

91

[24] Elise. Data security & privacy on Google Home. 2017. url: https://support.

google.com/googlehome/answer/7072285?hl=en (visited on 02/09/2017).

[25] Joseph Farrell and Garth Saloner. “Competition, Compatibility and Standards:

The Economics of Horsese, Penguins, and Lemmings”. In: Department of Eco-

nomics, UCB (1987).

[26] Federal Trade Commission. “IoT Privacy & Security in a Connected World”. In:

(2015), p. 71.

[27] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based

Software Architectures”. In: Building 54 (2000), p. 162. issn: 1098-6596. doi:

10.1.1.91.2433. arXiv: arXiv:1011.1669v3. url: http://www.ics.uci.

edu/%7B~%7Dfielding/pubs/dissertation/top.htm.

[28] Fitbit. Fitbit App. 2016. url: https://www.fitbit.com/app (visited on

05/07/2016).

[29] Sarah Flicker. “Stakeholder Analysis”. In: The SAGE Encyclopedia of Action

Research. 2014. isbn: 9781849200271. doi: 10.4135/9781446294406.n319.

url: http://dx.doi.org/10.4135/9781446294406.n319.

[30] Dinei Florencio, Cormac Herley, and Van Oorschot Paul C. “Password Portfolios

and the Finite-Effort User : Sustainably Managing Large Numbers of Accounts”.

In: Usenix Security. 2014. isbn: 9781931971157.

[31] Lorenzo Franceschi-Bicchierai. Amazon Quietly Removes Encryption Support

from its Gadgets. 2016. url: https://motherboard.vice.com/en%7B%5C_

%7Dus/article/amazon-removes-device-encryption-fire-os-kindle-

phones-and-tablets (visited on 02/09/2017).

[32] FTC. FTC Approves Final Order Settling Charges Against TRENDnet, Inc.

2014. url: https://www.ftc.gov/news-events/press-releases/2014/02/

ftc-approves-final-order-settling-charges-against-trendnet-inc

(visited on 03/29/2017).

92

[33] Garmin. Garmin Connect Mobile. Garmin. 2016. url: https://buy.garmin.

com/en-US/US/on-the-go/apps/garmin-connect-mobile/prod125677.

html (visited on 05/07/2016).

[34] Matthew Garret. I’ve bought some more awful IoT stuff. 2016. url: http:

//mjg59.dreamwidth.org/43486.html (visited on 12/08/2016).

[35] Google. Actions on Google. 2017. url: https://developers.google.com/

actions/ (visited on 05/04/2017).

[36] Google. Google Home. 2017. url: https://madeby.google.com/home/ (visited

on 05/04/2017).

[37] Google Cloud. Google Infrastructure Security Design Overview. Tech. rep. Google,

2017. url: https : / / cloud . google . com / security / security - design /

%7B%5C%%7D0Ahttps://cloud.google.com/security/security-design/

resources/google%7B%5C_%7Dinfrastructure%7B%5C_%7Dwhitepaper%7B%

5C_%7Dfa.pdf.

[38] L Gordon and M Loeb. “The economics of information security investment”. In:

ACM Trans, Inf. Syst. Sec. 54.4 (2002), pp. 438–457.

[39] Daniel Hein and Hossein Saiedian. “Secure Software Engineering: Learning

from the Past to Address Future Challenges”. In: Information Security Journal

A Global Perspective 18.1 (2009), pp. 8–25. issn: 19393555. doi: 10.1080/

19393550802623206. url: http://www.informaworld.com/openurl?genre=

article%7B%5C&%7Ddoi=10.1080/19393550802623206%7B%5C&%7Dmagic=

crossref.

[40] Chad Heitzenrater, Rainer Böhme, and Andrew Simpson. “The Days Before

Zero Day: Investment Models for Secure Software Engineering”. In: The Eco-

nomics of Information Security and Privacy (2016).

[41] Cormac Herley. “So Long , And No Thanks for the Externalities : The Rational

Rejection of Security Advice by Users”. In: Proceedings of the 2009 Workshop on

New Security Paradigms Workshop. 2009, pp. 133–144. isbn: 9781605588452.

93

[42] Cormac Herley. “Unfalsifiability of security claims”. In: Proceedings of the Na-

tional Academy of Sciences I.1 (2016), p. 201517797. issn: 0027-8424. doi:

10.1073/pnas.1517797113. url: http://www.pnas.org/lookup/doi/10.

1073/pnas.1517797113.

[43] Kevin J Soo Hoo. “How Much Is Enough? A Risk-Management Approach to

Computer Security”. In: (2000). url: https://cisac.fsi.stanford.edu/

sites/default/files/soohoo.pdf.

[44] Huawei. Global Connectivity Index 2015. 2015. url: http://www.huawei.com/

minisite/gci/en/huawei-global-connectivity-index-2015-whitepaper-

en-0507.pdf (visited on 11/18/2015).

[45] Internet Society. “The internet of things: an overview”. In: October (2015). url:

http://www.internetsociety.org/doc/iot-overview.

[46] IoTivity. Documentation. 2016. url: https://www.iotivity.org/documentation

(visited on 12/09/2016).

[47] IoTivity. Home | IoTivity. 2016. url: https://www.iotivity.org/ (visited

on 12/09/2016).

[48] ISO. Quality Management Systems—Fundamentals and Vocabulary. Tech. rep.

ISO 9000:2015. 2015.

[49] ISO. Information technology—Security techniques—Information security man-

agement systems—Overview and vocabulary. ISO 27000:2016(E). Geneva, Switzer-

land: International Organization for Standardization, 2016.

[50] Jacob Kastrenakes. Amazon’s Alexa is everywhere at CES 2017. 2016. url:

http://www.theverge.com/ces/2017/1/4/14169550/amazon-alexa-so-

many-things-at-ces-2017 (visited on 01/10/2017).

[51] Günter Knieps. Network Economics. Springer, 2014, pp. 1–184. isbn: 0521800951.

[52] Brian Krebs. Who is Anna-Senpai, the Mirai Worm Author? 2017. url: https:

//krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-

author/ (visited on 01/19/2017).

94

[53] Juhee Kwon and M. Eric Johnson. “The Market Effect of Healthcare Security:

Do Patients Care About Data Breaches”. In: 14th Annual Workshop on the

Economics of Information Security (WEIS). 2015.

[54] Kevin LaCroix. Target Directors and Officers Hit with Derivative Suits Based on

Data Breach. 2014. url: http://www.dandodiary.com/2014/02/articles/

cyber-liability/target-directors-and-officers-hit-with-derivative-

suits-based-on-data-breach/ (visited on 04/17/2017).

[55] Gwanhoo Lee and Weidong Xia. “Toward Agile: An Integrated Analysis of

Quantitative and Qualitative Field Data on Software Development Agility”.

In: MIS Quarterly 34.1 (2010), pp. 87–114. issn: 0276-7783.

[56] Josh Lerner and Jean Tirole. “Some Simple Economics of Open Source”. In: The

Journal of Industrial Economics 50.2 (2003), pp. 197–234. issn: 00221821. doi:

10.1111/1467-6451.00174. url: http://doi.wiley.com/10.1111/1467-

6451.00174.

[57] Level 3. How the Grinch Stole IoT. 2016. url: http://www.netformation.

com/level-3-pov/how-the-grinch-stole-iot (visited on 05/04/2017).

[58] James Manyika et al. the Internet of Things : Mapping the Value Beyond the

Hype. Tech. rep. June. 2015.

[59] Charlie Miller and Chris Valasek. “Remote Exploitation of an Unaltered Passen-

ger Vehicle”. In: Blackhat USA 2015 (2015), pp. 1–91. url: http://illmatics.

com/Remote%20Car%20Hacking.pdf.

[60] Tyler Moore and Ross Anderson. “Economics and Internet Security : a Survey of

Recent Analytical , Empirical and Behavioral Research”. In: Peitz, M., Waldfo-

gel, J. (Eds.), The Oxford Handbook of the Digital Economy, Oxford University

Press. 2011.

[61] Tyler Moore, Scott Dynes, and Frederick R Chang. “Identifying How Firms

Manage Cybersecurity Investment”. In: Workshop on the Economics of Infor-

mation Security (WEIS) (2016).

95

[62] Nest Labs. Nest. 2017. url: https://nest.com/ (visited on 05/04/2017).

[63] NIST. “Systems Security Engineering: Considerations for a Multidisciplinary

Approach in the Engineering of Trustworthy Secure Systems”. In: (2016).

[64] Onstar. RemoteLink Mobile App | OnStar. 2016. url: https://www.onstar.

com/us/en/services/remotelink.html?source=ct (visited on 05/07/2016).

[65] Open Connectivity Foundation. Certified Products Archive – Open Connectivity

Foundation (OCF). 2016. url: https://openconnectivity.org/certified-

products (visited on 01/11/2017).

[66] Open Connectivity Foundation. Oic Resource Type Candidate Specification v1.1.0.

Tech. rep. 2016. url: https://openconnectivity.org/resources/specifications.

[67] Open Connectivity Foundation. Oic Security Candidate Specification v1.1.0.

Tech. rep. 2016. url: https://openconnectivity.org/resources/specifications.

[68] Open Connectivity Foundation. Oic Smart Home Device Candidate Specifica-

tion v1.1.0. Tech. rep. 2016. url: https://openconnectivity.org/resources/

specifications.

[69] Open Connectivity Foundation. OCF - About. 2017. url: https://openconnectivity.

org/about (visited on 05/04/2017).

[70] Stephen Papa, William Casper, and Tyler Moore. “Securing wastewater facil-

ities from accidental and intentional harm: A cost-benefit analysis”. In: Inter-

national Journal of Critical Infrastructure Protection 6.2 (2013), pp. 96–106.

issn: 18745482. doi: 10.1016/j.ijcip.2013.05.002.

[71] Arun Ross, Jidnya Shah, and Anil K. Jain. “From template to image: Recon-

structing fingerprints from minutiae points”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 29.4 (2007), pp. 544–560. issn: 01628828.

doi: 10.1109/TPAMI.2007.1018.

96

[72] Jerome H. Saltzer and Michael D. Schroeder. “The Protection of Information in

Computer Systems A . Considerations Surrounding the Study of Protection”.

In: Proceedings of the IEEE 63.9 (1975), pp. 1278–1308. issn: 00189219. doi:

10.1109/PROC.1975.9939. url: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.357.2145%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%

20http://ieeexplore.ieee.org/xpls/abs%7B%5C_%7Dall.jsp?arnumber=

1451869.

[73] Runa A Sandvik and Michael Auger. When IoT Attacks: Hacking A Linux-

Powered Rifle. [YouTube video]. 2015. url: https : / / www . youtube . com /

watch?v=ZcukSF7ruZY%7B%5C&%7Dfeature=youtu.be (visited on 01/25/2017).

[74] M Angela Sasse et al. “Debunking Security – Usability Tradeoff Myths”. In:

IEEE Security and Privacy 14.5 (2016).

[75] Kammi Schmeer. Guidelines for Conducting a Stakeholder Analysis. Bethesda,

MD: Partnerships for Health Reform, Abt Associates Inc, 1999, p. 42. url:

www.phrproject.com..

[76] Roy Schmidt et al. “Identifying Software Project Risks: An International Delphi

Study”. In: Journal of Management Information Systems 17.4 (2001), pp. 5–36.

[77] Bruce Schneier. Security and Privacy Guidelines for the Internet of Things.

2017. url: https://www.schneier.com/blog/archives/2017/02/security%

7B%5C_%7Dand%7B%5C_%7Dpr.html (visited on 05/05/2017).

[78] Carl Shapiro and Hal R Varian. Information rules: a strategic guide to the

network economy. Harvard Business Press, 2013.

[79] Timothy Simcoe. “Standard setting committees: Consensus governance for shared

technology platforms”. In: American Economic Review 102.1 (2012), pp. 305–

336. issn: 00028282. doi: 10.1257/aer.102.1.305.

[80] Daniel J Solove and Woodrow Hartzog. “The FTC and the new common law of

privacy”. In: Colum. L. Rev. 114 (2014), p. 583.

97

[81] Sonos. Music Control App. Sonos. 2016. url: http : / / www . sonos . com /

controller-app (visited on 05/07/2016).

[82] Michael Spence. “JOB MARKET SIGNALING.” In: Quarterly Journal of Eco-

nomics 87.3 (1973), pp. 355–374. issn: 00335533. url: http://libproxy.mit.

edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&

db=bah&AN=4966646&site=ehost-live&scope=site.

[83] George J Stigler. “The theory of economic regulation”. In: The Bell journal of

economics and management science (1971), pp. 3–21.

[84] Tesla. Android and iPhone app. 2016. url: https://www.teslamotors.com/

support/android-and-iphone-app (visited on 05/07/2016).

[85] Troy Hunt. CloudFlare, SSL and unhealthy security absolutism. 2016. url:

https://www.troyhunt.com/cloudflare-ssl-and-unhealthy-security-

absolutism/ (visited on 05/06/2017).

[86] Ultimate Ears. UE APPS. 2016. url: http://origin.ultimateears.com/ue-

apps/en-us/ (visited on 05/07/2016).

[87] United States Court of Appeals for the Third Circuit. Federal Trade Com-

mission v. Wyndham Worldside Corporation. 2015. url: http://www2.ca3.

uscourts.gov/opinarch/143514p.pdf.

[88] U.S. Department of Homeland Security. Strategic Principles for Securing the

Internet of Things (IoT). Tech. rep. U.S. Department of Homeland Security,

2016, pp. 1–17.

[89] Robert N M Watson et al. “Capsicum: practical capabilities for UNIX”. In:

19th Usenix Security Symposium (2010), p. 3. issn: 03601315. doi: 10.1145/

2093548.2093572. url: http://dl.acm.org/citation.cfm?id=1929820.

1929824.

[90] Nicky Woolf. DDoS attack that disrupted internet was largest of its kind in

history, experts say. 2016. url: https://www.theguardian.com/technology/

2016/oct/26/ddos-attack-dyn-mirai-botnet (visited on 01/25/2017).

98

[91] Peiter Zatko and Sarah Zatko. Project CITL. [YouTube video]. 2016. url:

https://youtu.be/GhO9vyW1f7w?list=PL7gTU7vlLWKN- ca2ha0cYJBpR_

pQKvMfa (visited on 05/05/2017).

[92] Igal Zeifman, Dima Bekerman, and Ben Herzberg. Breaking Down Mirai: An

IoT DDoS Botnet Analysis. 2016. url: https://www.incapsula.com/blog/

malware-analysis-mirai-ddos-botnet.html (visited on 10/25/2016).

[93] Zigbee Alliance. Zigbee. 2017. url: http://www.zigbee.org/ (visited on

05/04/2017).

99

100

Appendix A

Processes For Reasonably Secure

Design

A.1 Introduction

In order to deal with the high uncertainty and complexity of Internet of Things se-

curity, developers need assistance weighing their options when creating their security

designs. Few process-based security frameworks provide room to vary security de-

signs based on the expected stakeholder perspectives, assets, and environments that

a product could be used in. Of those that do, we are aware of none that provide

the tools that developers need to determine what security designs would be most

reasonable for the situations their products will face.1

This document proposes the Processes for Reasonably Secure Design (PRSD)

process-based security framework to help fulfill this need for home IoT products2 as

they incorporate the Open Connectivity Foundation standards3 into their designs.

The purpose of the framework is to help developers comprehensively and system-
1See Chapter 2 for a discussion of reasonable security and Chapter 3 for a look at other process-

based security frameworks.
2We focus on the home IoT space, as it is a quickly growing segment of the IoT that involves

interactions between a wide variety of heterogeneous devices, so it is an important sector at high
risk of housing security vulnerabilities.

3We focus on the OCF standards, as they are the open communications standard with the most
widespread industry support. Chapter 2 contains a high-level introduction to the OCF standards.
See the OCF website for the complete specification [67].

101

atically identify and consider the security threats a (prospective or existing) device

may introduce, options for appropriately mitigating those threats, and the tradeoffs

between those options. Without having developers relinquish their responsibility to

use their own judgement to weigh tradeoffs and ultimately determine security designs,

PRSD offers them a coherent approach to identifying and prioritizing the information

pertinent to carrying out that responsibility.

In this way, PRSD is unique among IoT security guidance in that it helps develop-

ers determine reasonable security designs relative to the particulars of their product

and its use cases. It is also designed to be flexible enough to adapt to the changing

needs of developers using it while still providing sufficient structure to help avoid

errors, and to entail as little overhead tasks as possible. As a result, applying this

framework should help developers design their OCF-compliant home IoT products

with more reasonable security.

PRSD operates on existing external information and result in security decisions,

which are security mechanisms that the developers have decided to include in the

design of a product. Understanding that development teams rarely have a complete

and final vision for a product at its inception [55], all analyses should be performed

with whatever level of detail existing information permits. As changes are introduced,

be they designs with greater granularity, new features, or changes to potential threats,

developers can simply update the existing analyses accordingly. The analyses in

PRSD are explicitly itemized and linked in order to make it easy to only reconsider

the analyses affected by a change.

More specifically, the processes that comprise PRSD are separate but linked anal-

ysis operations that apply to their dependencies and produce outputs. Dependencies

are information that influence the analysis of a process, and outputs are the con-

clusions resulting from that analysis. This document explicitly describes the depen-

dencies, outputs, and the details of executing each process. As needed, it references

various resources that may aid developers as they carry out process. Justifications for

each process are also included; developers could use them to make informed decisions

about modifying processes as needed to better suit their projects.

102

Generally speaking, developers should proceed through these processes by carrying

out the processes as their dependencies become ready. Since most dependencies are

the outputs of other processes, completing one process allows another to be carried

out. Thus, developers can proceed from one process to the next until they have settled

upon security decisions.

The first process, Situational Modeling (Section A.2), depends only upon existing

external knowledge. Carrying out this process results in outputs that model the situ-

ations that a prospective product could be used in, including the product’s functions,

environment, and the relevant stakeholders. With this model, as well as some gen-

eral threat expertise, developers may perform Threat Modeling (Section A.3), which

outputs relevant security threats to the prospective product. With this, design can

proceed to the next process, Security Option Enumeration (Section A.4), which in-

volves coming up with security options for combating the threats and explicitly laying

out the tradeoffs between those options. Next, the Architectural Synthesis (Sec-

tion A.5) process allows developers to see the effect of architecture proposed by the

Open Connectivity Foundation on the security options and their tradeoffs. Finally,

any competing security options that the architecture does not settle are considered in

Tradeoff Resolution (Section A.6), which results in the security decisions. Continually

affecting all of the other processes, the Updates and Maintenance (Section A.7) pro-

cess guides developers through the process of incorporating new information, design

changes, and increased design detail into the other processes.

PRSD is specifically tailored for security threats enabled by the OCF architec-

ture. These threats primarily include any harm that exploit communications over the

architecture, monitoring OCF communications, bringing a device onto a local OCF

network, and issues related to identification and trust between OCF products and

services. For complete details, see the specification itself [67]. For comparison, some

design aspects that fall outside of the PRSD scope include hardware, sensor, inter-

nal processing, and mechanisms for software updates. While those things certainly

still affect security, PRSD may not be well suited to them. Well-understood aspects

of design deserve more rigid and specific treatment, and less-understood aspects of

103

design require more flexibility.4

Likewise, PRSD is intended to apply to home IoT products, which may include

communications between one home IoT object and an external entity like a cloud

server.5 By the same reasoning that PRSD only applies to specific aspects of design,

other IoT domains, such as connected cars and medical devices, as well as traditional

computers are out of scope.

A.2 Situational Modeling

A.2.1 Dependencies and Output

This process requires any existing information about what kind of product the man-

ufacturers aim to produce, including the situations it is intended to be used in and

the audience it is intended for.

This process produces sets of capabilities, environmental models, and stakeholder

models.

A.2.2 Process Details

Determining the appropriate security design for a home IoT product must start by

carefully outlining the behavior of the product, the environments that it will be used

in, and the stakeholders who could influence it or be influenced by it. The benefits and

costs of using various security options vary with these factors, so tradeoffs cannot be

determined before these factors are identified. This process guides developers through

this identification.

Start by detailing the capabilities, or functions, that the product will be able

to carry out. What are some situations that it will be useful for? What will its

limitations be? This analysis should cover the entire life of the product, from initial
4See Chapter 3 for more discussion of framework flexibility.
5We use the term “product” to generally refer to whatever product is being designed and

produced—it could refer to a standalone device, a subcomponent of devices, or a group of devices
that are designed together.

104

setup to daily operation and, if needed, disposal.

It’s important to consider both outcome capabilities and support capabilities.

Outcome capabilities are actions and behaviors that the product is designed to be

able to carry out. Support capabilities are capabilities that indirectly facilitate the

product’s ability to carry out its outcome capabilities. For instance, with an auto-

mated vacuum cleaner, driving around and vacuuming will be some of its outcome

capabilities, and connecting to a smartphone to receive commands might be one of

its support capabilities. The distinction between these two types of capabilities is not

critical in itself to this analysis; we merely highlight them to help developers compile

a more comprehensive list of capabilities for their proposed home IoT product.

Second, build the environmental models. These models include relevant charac-

teristics of the situations that the product is designed to be used in. While PRSD

does specifically focus on home IoT, there are still a variety environmental factors

that can vary between homes. Environmental models will help to determine what

stakeholder assets the product could potentially compromise and what factors will

affect the functioning of this product. Environmental models might include, among

other things, whether the product will be used inside or outside or other kinds of

devices that might rely on the product for proper use.

The final step of this process is to create the stakeholder models.6 For each stake-

holder, one must consider what assets might be affected by the product, expected

amount of expertise, time, and resources (funds, power, compute) each can and is

willing to contribute towards influencing the product’s development or operation.

The kinds stakeholders include the following:

1. Users, who use the product7

2. Admins, who configure the product

3. Developers, who design and produce the product
6Flicker provides an overview of the process of stakeholder analysis [29], and Schmeer has pub-

lished guidelines that may help to perform this analysis [75].
7It’s important to note that users will have very limited expertise and a poor appreciation for

how their decisions affect their security [2].

105

4. Support, who provide services to keep the products functioning normally (often

overlap with developers)

5. Third parties, who provide products that the product depends on or which inad-

vertently affect the product (e.g., presumed ISPs, library developers, presumed

firewall providers, etc.)

6. The public, who may be affected if the product affects some public good

Adversaries are also stakeholders in a product, but they are considered separately

in the next section.

A.3 Threat Modeling

A.3.1 Dependencies and Output

This process depends on existing information pertinent to potential harms and threats,

as well as the cabilities, environmental models, and stakeholder models produced in

the situation process.

This process produces sets of potential harms, attackers, and means.

A.3.2 Process Details

It is necessary to have a clear idea of the potential threats enabled by a product in

order to determine how to mitigate those threats; this process guides developers as

they identify and analyze potential threats. Carrying out these tasks explicitly and

systematically helps to avoid overlooking or underestimating obscure threats, cor-

rectly estimate risks, and even discard potential attacks that no actor would actually

have an interest in performing.

Begin by mapping out the potential harms that a potential product enables. At

this stage, simply note how a product’s capabilities allow it to perform actions or

inactions that could damage specific stakeholder assets. Determining why or how

someone would cause this harm comes later.

106

Harms tend to fall into three categories. First, there are harms caused directly

by the product. To compile these harms, consider how the product’s capabilities

could adversely affect anything in any of the environmental models, paying particular

attention to stakeholder assets. Second, there are harms to the product itself. To

estimate these potential harms, estimate the direct costs of damage to the product

itself, such as repair and replacement costs, as well as additional harms incurred by

other system components that rely on the product in question.8 For example, with

an IoT thermostat, harms caused by damage to the thermostat include replacement

costs as well as the damage done by poorly controlled home temperature. Finally,

there are harms indirectly enabled by exploiting the product. These harms include,

for instance, exploiting the product in question in order to gain unauthorized access to

a more valuable component of the home IoT system. They also include incorporating

a product into a botnet (such as Mirai) for a distributed denial of service attack [92].

Together, these three categories of harms comprise the list of harms that will be used

throughout the rest of this analysis.

For each of these types of harms, it may be useful to consider the classic pillars

of confidentiality (sensitive data leakage), integrity (incorrect but possible behavior),

and availability (inability to provide service.) While keeping these pillars in mind

could help developers avoid overlooking harms, they do not cover all potential harms.

With the IoT in particular, new interactions like sensing and physical actuation may

enable harms outside the domains of these traditional categories.

Next, enumerate the potential attackers, who are stakeholders with interests in

causing a potential harm. Identify actors that have an interest in causing each of

the harms in the list. Consider both legitimate stakeholders and outsiders who might

want to interfere with the system. This analysis mirrors the previous stakeholder

analysis: for each attacker, identify the harms of interest, the expected expertise of

the attacker, and the resources the attacker can and would be willing to contribute

towards causing the harm.
8Harms incurred by products reliant upon a damaged product could also be framed as direct

harm that results from neglect. Either framing is fine; these categories are only provided to help
developers be complete.

107

Now, determine the relevant means through which attackers could cause the po-

tential harms. Means are the ways through which attackers could theoretically cause

the IoT product to cause harm. At this time, imagine that attackers have unlimited

access to the product; do not assume any security mechanisms.9 The relevant means

are means that fall under the scope of the OCF specification. For instance, send-

ing commands, eavesdropping on communications, and tampering with certificates

used in authentication all exploit the OCF architecture and are thus in scope. For

contrast, physically attacking the hardware and tampering with the manufacturing

process would be out of scope. Means at boundary of the OCF architecture are up

to the developers’ discretion.

If there are any harms that no attacker would want to carry out, or if there are

any harms that lack any means within the scope of the OCF specification, then those

harms can be discarded from this analysis.10

Together, the sets of harms, attackers, and means comprise the threat model

for the product. For organizational clarity, it is important to link harms with the

attackers that would be motivated to carry them out and the means that could cause

them.

A.4 Security Option Enumeration

A.4.1 Dependencies and Output

This process depends on external information about potential security techniques,

the sets of capabilities, environmental models, stakeholder models, harms, attackers,

and means.
9Assuming that all interfaces are vulnerable to attack forces practitioners to explicitly consider

how to defend each one. This approach is specifically motivated by the Jeep Cherokee [59], Track-
ingPoint rifle [73], and Mirai [92] attacks. In each of these cases, the developers did not consider the
security of all interfaces from the ground up. Doing so would likely have made the vulnerabilities in
both the car and rifle obvious and easily fixed. For Mirai, it would have forced developers to con-
sider how to deal with vulnerable SSH and Telnet services. As we will see, the logic of the upcoming
processes would have made it clear that it is simply easier not to run SSH and Telnet than to rely
on keeping universal vendor passwords secret.

10Alternatively, they could optionally be retained for future reassessment.

108

This process produces security options and the tradeoffs between them.

A.4.2 Process Details

With the situational factors and potential threats modeled, developers can look into

security mechanisms to defend against those threats. This examination should include

both the act of identifying potential mechanisms to defend against each harm—the

security options—and analysis of the tradeoffs between them. In carrying out these

steps sequentially, mechanism identification can be performed with a bias towards

inclusivity, to avoid rejecting potential options prematurely. Likewise, explicitly and

systematically considering tradeoffs between options helps developers to overcome

intuitive biases and choose the appropriate options later.

To begin, for each of the means in the threat model, make a list of security

options to prevent or deter an attacker from exploiting the means in question to

cause any of the harms that can arise from it. Annotate each option with an estimate

of the resources necessary to overcome it and carry out the means,11 as well as any

miscellaneous notes about its ability to defend against an attack.12 Developers should

organize this list into clusters of mutually competing security options.

Often, there will be too many variations of any given security option for developers

to feasibly list all of them. Instead of completely specifying each security option, de-

velopers should only include as much information in each security option to make an

informed decision between it and competing security options later. Later, after a par-

ticular security option is selected as a security decision, developers can return to this

process and compare the various sub-options. For instance, if a team is considering

using authentication, initial security option enumeration might consider using user-

set passwords, cryptographic keys generated locally by the product, cryptographic

keys issued by a global PKI system, and fingerprints. Here, generalizing both cryp-
11Although estimating the exact amount of capital required to overcome a security option is often

infeasible, developers should try to make qualitative estimates that facilitate comparisons between
security options.

12For instance, one might note that, if relying on the Certificate Authority, one stolen certificate
could leave all dependent products vulnerable [17].

109

tographic key options into a single option would not include enough information to

make an informed decision, as passwords and fingerprints compare very differently to

keys generated locally and keys issued from a global authority. At the same time,

including much more detail, such as splitting the fingerprint option into multiple op-

tions based on particulars of the scanning algorithm, would be unnecessary at this

time, as the choice of algorithm likely would not significantly change how fingerprints

compare to the other options. However, if the fingerprint option is eventually cho-

sen as a security decision, developers can return to this process later to compare the

potential algorithms and other sub-options. For more information on considering the

sub-options of a security decision, see Section A.7.

Even with this top-down, iterative approach to comparing security options, it is

often infeasible to enumerate every possible option. It is up to developers to balance

comprehensiveness with budget and schedule constraints.

After initial security option identification is complete, it’s time to analyze the

tradeoffs between competing security options. The tradeoffs are as follows:

1. security vs. features : how do the security options constrain the product’s ability

to carry out its various capabilities? For instance, certain kinds of encryption

may make it difficult to perform machine learning on the data generated and

stored with the product.

2. security vs. security : how do the defenses of mutually exclusive security options

compare? For instance, different mutually exclusive authentication methods

have various advantages and disadvantages in terms of security alone.

3. security vs. cost : what costs will each security option put on each stakeholder?

These costs come in many forms, such as the operational costs for users and

admins, the development costs, and the costs of supporting the product. For

instance, using a certificate authority (CA) for authentication requires the man-

ufacturer or some third party to put in the effort to built and maintain the CA.

4. security vs. usability : how do the security options constrain the ability to oper-

ate the product? This is a special subset of security vs. cost that merits its own

110

consideration. For instance, requiring a large and complex password for every

command to the product can be burdensome to users. When considering this

tradeoff, note that there are times when sacrificing usability for security mech-

anisms that seem technically more robust can actually decrease security overall

if users behave in more insecure behavior to circumvent security mechanisms

that they do not like.13

After analyzing tradeoffs, if some of the options are obviously infeasible, then

remove them from the set of plausible security options.

A.5 Architectural Synthesis

A.5.1 Dependencies and Output

This process depends on external information about the OCF architecture, which

includes the OCF specification and potentially IoTivity documentation, as well as an

initial security options and their tradeoffs.

This process prunes the security options and their tradeoffs.

A.5.2 Process Details

After determining ways to potentially secure a product in Security Option Enumera-

tion, one must consult the relevant specifications to determine how to integrate each

option with the OCF architecture. In doing so, some security options will probably be

rendered impossible. With others, the specification may have guidance for weighing

the tradeoffs between them and other options. In some cases, the OCF standardizes

certain options, which can make them much cheaper to develop than if the developers

had to roll them on their own.

Additionally, the architecture might lead the team to consider security options

(or sub-options) that were not considered before. If this is the case, they should be
13Several esteemed security researchers discuss false tradeoffs between usability and security in a

2016 publication of IEEE Security and Privacy [74].

111

added to the list of security options and incorporated into the tradeoffs by reapplying

the Security Option Enumeration process detailed in Section A.4.

A.6 Tradeoff Resolution

A.6.1 Dependencies and Output

This process relies on the harms, attackers, means, security options and their tradeoffs.

This process produces security decisions.

A.6.2 Process Details

At this stage, developers are ready to decide which security options to select as

security decisions. To do so, they must resolve the tradeoffs between competing

options, weighing the advantages and disadvantages of each in order to determine

which security decisions will result in the most reasonable security designs.

The most reasonable security design will include the options that optimize the

balance between harms that are expected to be mitigated and the features, security,

costs, and usability that must be sacrificed to achieve those options. The outputs of

the previous processes all contribute towards making these judgements. A security

option will mitigate an attack, which is a combination of means, attacker, and harm,

when the resources needed to circumvent it and carry out the means exceed the

resources that the attacker is willing to invest to cause a harm. Thus, a security

option’s effect on overall risk can be estimated by examining the attacks it mitigates.

Developers can then compare the estimated risk reductions and sacrifices of competing

security options and decide on the set of options that best balances these factors.

PRSD is unique among process-based security frameworks, because it has develop-

ers perform these comparisons methodically. The Internet of Things introduces many

tradeoffs that are complex and not obvious, and the wide variety of situations that

products can be used in, even within the home context, can have a substantial effect

on the tradeoffs between security options. As a result, making these comparisons

112

Figure A-1: Diagram of the Framework

with intuition or folk security advice alone is too superficial. PRSD helps overcome

biases and simplistic advice, leading to products that are ultimately more reasonably

secure.

A.7 Component Updates and Maintenance

A.7.1 Dependencies and Output

This meta-process depends on any external dynamics that may affect the product.

A.7.2 Process Details

To have project success, developers must account for rapidly changing circumstances,

user needs, and design requirements [76], and modern software development meth-

ods like agile are designed to accommodate flexibility, incremental development, and

changing requirements [55]. Furthermore, as current rampant IoT and software inse-

curity demonstrate, developers often do not fully secure their products, so they should

anticipate needing to provide security updates during the lifecycle of their product.

This meta-process describes how to incorporate changing circumstances into existing

113

analysis under this framework.

When there is new information that might affect the product’s security design,

start by going through the dependencies of each process to see which processes are di-

rectly affected by the new information. New features, environments, and stakeholders

should be incorporated into the Situational Modeling process, changing threats into

the Threat Modeling process, etc. Increased details in the product’s design should be

incorporated the same way.

The modular structure of PRSD makes it relatively easy to propagate changes

throughout relevant analyses without having to reconsider unaffected analyses. All

process outputs should be linked to the information they depend on, so redoing a

process is simply a matter of finding the outputs affected by the new information

and limiting reanalysis to those dependencies and outputs. Likewise, whenever a

process output is changed, the processes that use that output as a dependency can be

updated in the same way. Figure A-1 illustrates the relationships between external

information, processes, and their dependencies/outputs.

A.8 Maintaining the Framework

The Processes for Reasonably Secure Design can be adapted over time. As home IoT

and the OCF standards stabilize, and security design patterns become more routine,

more rigid resources will likely be developed in order to help developers avoid common

errors. These more rigid resources will be compatible with PRSD, as they can be

referenced and explained in the relevant processes. In this way, more rigid guidance

would not replace PRSD so much as it would aid developers as they go through the

processes.

This framework also anticipates that there may be shortcomings in the inherent

structure of its processes. For this reason, the descriptions of each process justify the

way they are structured. These justifications provide grounds for falsifying any part

of its structure.14 Unlike most process-based security frameworks, then, PRSD itself
14Falsifiability allows one to reject erroneous and unnecessary security practices, and it enables

114

provides a grounds from which to have a rational argument about its correctness and

reasonableness.

one to prioritize accepted security practices [42].

115

116

Appendix B

Case Studies

This appendix contains four case studies that illustrate how to use the Processes

for Reasonably Secure Design, the process-based security framework described in

Appendix A. These case studies serve the dual purposes of providing concrete illus-

trations of the usage of PRSD and demonstrating certain aspects of the framework

that support the claims made about its achievements. These case studies are limited

to hypothetical situations, as there are no actual certified OCF products to which

PRSD could currently be applied, even in hindsight.1

The first case study, in Section B.1, covers an OCF-certified door lock called

“SuperLock.” It exemplifies an IoT product that has simple behaviors but which

requires significant security. This case study covers a high level initial application of

PRSD, followed by a reapplication of PRSD to some sub-options of chosen security

decisions.

The next case study, in Section B.2, starts off where the previous one finished, but

with the company wanting to integrate with Airbnb services to automatically provide

door access to Airbnb guests for the duration of their stays. This case study most

notably demonstrates how to apply PRSD at the boundary of the OCF specification

and third party proprietary interfaces, and it also exemplifies how to update existing

analyses to accommodate changing design requirements.
1There are currently three OCF-certified products. [65], but none publish their design details,

and they were not willing to discuss their designs with us.

117

Third, in Section B.3, we look at a “Hub”, which takes voice commands and

responds with audio feedback to manage and operate an arbitrary variety of third

party devices and cloud services. This case exemplifies how PRSD adjusts to meet a

much more complex product design with highly uncertain and uncontrollable security

risks.

Finally, Section B.4 covers the fourth case study, which features a vacuuming

robot called “Vacubot” that exclusively takes input from arbitrary other OCF devices

within the same home network. This scenario primarily demonstrates how PRSD

operates when applied to a product with relatively small security risks.

B.1 Smart Door Lock

B.1.1 Given

Let’s suppose a startup called Lockr wants to make a smart OCF-compliant door lock

marketed to Airbnb hosts, which they will call “SuperLock.” Often, it makes sense

for hosts to give their guests house keys, but they might not want to pay the price

to make many duplicates or have to worry about their guests losing or duplicating

their keys. At the very least, it might give them more peace of mind if they can

give guests expiring keys without having to pay for it. To make it as convenient

as possible, the company wants to have smartphones communicate with SuperLocks

to perform all configuration and operations. Lockr assumes that all smartphones are

also OCF-compliant and capable of onboarding SuperLocks.2 Lockr also assumes that

smartphones can connect to the local OCF network, even remotely. A smartphone

could thus either send requests to a SuperLock directly, if they are both on the local

OCF network, or an intermediary device on the local OCF network could forward

remote requests from a smartphone to a SuperLock, if the smartphone is not on the
2In the OCF specification, onboarding is the process of bringing a new device (in this case, a

SuperLock) onto a local OCF network, making the network “own” it, and provisioning it without
any necessary security constructs.

118

local OCF network.3

The company wants the locking mechanism to work as follows: The homeowner

should have complete control over who can lock and unlock the door lock. She should

be able to grant and revoke permission to use the lock conveniently and at will, and

nobody without permission should be able to unlock the lock. The lock will not store

logs or data aside from data strictly necessary for its ability to unlock and lock based

on commands from trustworthy sources.

SuperLocks receive software updates over the air via a proprietary and explicitly

non-OCF communications protocol. This is the only non-OCF communication it

engages in.4

SuperLocks will have a backup physical lock mechanism, operated like a typical

door lock with a physical key. Lockr has this so that people can still get into their

homes if their OCF network goes down or if the SuperLock loses power, which is

supplied by batteries. Additionally, SuperLocks’ internals will be set up so that they

will not lose their configuration when batteries are changed.

Lockr plans to use a tiny reset button on the indoors side of SuperLocks to allow

homeowners to reset a SuperLock to factory settings.

Lockr wants SuperLocks to have mass appeal and be able to market the lock as

more secure than a typical door lock. They are aiming to price it at around $50–100,

even if that means sacrificing the market that requires exceptionally high security. In

terms of its budget and schedule, Lockr is a pretty typical startup.

In this case study, we assume that the OCF architecture is still in the early stages

of the standardization process. Most people have OCF compliant phones and local

OCF networks in their homes with maybe a couple OCF devices. However, most

devices are not OCF compliant, and no data types or design patterns beyond the

minimum required by the OCF specification have become normalized.
3These are both scenarios that are specified and supported by the OCF specification, as explained

in Section 5 of the Core specification v1.1.0 [67].
4The OCF specification inexplicably does not discuss software updates at all, so Lockr has decided

to develop their own completely proprietary system for sending software updates to SuperLocks.

119

B.1.2 Situational Modeling

Capabilities

From the given information, we can specify several capabilities that SuperLocks

will have. These are described in Table B.1.

Table B.1: SuperLock capabilities

Capability Description

lock lock and unlock mechanism
communication Communication over the home’s OCF network. These

communications are intended to include both lock re-
quests and administration with phones.

update receive Internet updates over a proprietary protocol
physical lock backup physical lock and unlock mechanism
reset reset button restores SuperLock to factory settings

Environmental models

SuperLocks should serve the purposes of a wide variety of homes. The belong-

ings in the home, which the lock should protect, will be of the utmost value to the

homeowners. This lock should serve the purposes of homes that are in dangerous

areas with high crime. We should assume that the house may be a valid target for

somewhat experienced burglars. The locks will be accessible from both sides of the

door, with the outside physically accessible to anyone who comes up to the door.

Stakeholder Models

The stakeholders are summarized in Table B.2. The table includes, for each type

of stakeholder, the people who comprise that type of stakeholder, their interests and

assets affected by SuperLocks, the amount of computer or security expertise they are

assumed to have, and the amount of resources (e.g. time, effort, energy) they are

willing to put towards SuperLocks.

Several aspects of these stakeholders merit elaboration. First, the “OCF network”

asset reflects the local OCF network that a given SuperLock is connected to, includ-

ing the other devices on that network. Additionally, the “availability” asset reflects

whether or not the users and admins can use the SuperLock to get into the house.

120

Table B.2: SuperLock stakeholder Models

Type Stakeholders Interests and Assets Expertise Resources

Users homeowners,
Airbnb guests

SuperLock, safety, pri-
vacy, valuables, OCF
network, availability

minimal minimal

Admins homeowners SuperLock, safety, pri-
vacy, valuables, OCF
network, availability

minimal low

Developers Lockr engineers company revenue higha full time
job

Support Lockr engineers company revenue higha full time
job

Third parties (none)
Public People who use

the Internet
Internet access, time

aAbove average security expertise, compared to other developers.

The admins are in fact a subset of the users. They are the homeowners who

put in a little extra time—reflected by the relatively greater “Resources” entry—to

administer and configure the SuperLocks for their respective homes.

The developers and support are the same people, because Lockr is a startup that

cannot afford a separate support team at this point in its life. We reason that Lockr

has hired engineers with above average security expertise, because SuperLocks are

designed specifically for security, so Lockr’s reputation rests highly on delivering a

secure product.

The public could be affected by SuperLocks if they are incorporated into a botnet.

As part of a botnet, SuperLocks could either carry out DDoS attacks, which would

hinder Internet access, or send spam, which would waste the public’s time. We will

examine this more in the Threat Modeling section.

B.1.3 Threat Modeling

Harms

There are several potential harms which could result from these door locks. The

121

harms caused directly by the lock’s capabilities derive from the lock letting unautho-

rized people into (and out of) the home and vice versa for homeowners and guests. In

the former situation, people staying in the home could be attacked, the home could be

vandalized, and things in it could be robbed. Additionally, just breaking in violates

the sanctity of the home and is a harm in itself. In the latter, people could be kept

out of the home, which, depending on the duration and situation outside the home

(crime and weather), can range to highly inconvenient to, in extreme conditions, life

threatening.

Additionally, the lock itself could be damaged. Besides leading to any of the

aforementioned harms (depending on whether the lock is broken shut or open), this

situation has the additional harm of repairing or replacing the lock. This would be a

nonnegligible inconvenience in terms of both time and money for homeowners.

The lock could also be used as a pivot to exploit other devices on the local OCF

network. For instance, attackers exploiting the lock might be able to get sensitive

information from devices connected to the lock by masquerading as the lock.

Similarly, the lock could be turned into a bot in a botnet, which could be used

to send spam email or contribute to Mirai-like distributed denial of service (DDoS)

attacks.5

Table B.3 summarizes these harms.

Attackers

Table B.4 lists potential actors who may want to cause the harms made possible

by SuperLocks.

For the most part, these attackers will have little computer security expertise,

and they probably are not willing to put significant resources towards causing the

harms. Exceptions include government, an attacker which has incredible expertise

and resources, but would only target the SuperLocks of a few suspects or activists.

Hacktivists can have a moderate amount of expertise,6 but few resources to devote
5Although the only kind of Internet traffic that a SuperLock can receive is OCF requests from a

smartphone, forwarded by a local intermediary, a hacked SuperLock could presumably send out any
network traffic.

6We assume that hacktivist groups often have a few talented hackers and many script kiddies.

122

Table B.3: Potential harms resulting from SuperLocks

Harm Description Assets at risk

break in attackers get into the house safety, privacy, valuables,
company revenue

locked out users prevented from get-
ting into home

safety, availability, company
revenue

damaged the lock is damaged safety, privacy, valuables,
company revenue

pivot harm the SuperLock is exploited
and used as a proxy to de-
vices on the OCF network

OCF network, company
revenue

bot the SuperLock is incorpo-
rated into a botnet

Internet access, time, com-
pany revenue

Table B.4: Potential attackers with an interest in SuperLock harms. Exclamation
points after harms indicate relatively higher expected interest in causing that harm,
which in turn indicates a greater willingness to put resources towards causing that
harm.

Attacker Description Harms of interest

burglars criminals wanting to com-
mit burglary

break in (!!), damaged

prankster people looking to cause mis-
chief

break in, locked out,
damaged, pivot harm

government agents of law enforcement or
espionage

break ina, damaged,
pivot harma

quarrelingb users fighting with each
other

locked out

seizureb landlords or other authori-
ties seizing property

locked out

hacktivists activists who make state-
ments through hacking

pivot harm (!), bot (!!)

expansive crime organized crime looking to
steal data or amass botnets

pivot harm (!), bot (!!)

aStates will have an strong interest in causing this harm to certain suspects or activists, but these
cases are extremely rare, and those users will likely know the risks.

bIt’s possible that more harm could result from trying to protect against this attacker.

123

specifically to SuperLocks. Likewise, expansive crime groups will often have sig-

nificant expertise and resources, but, since they focus on hitting as many targets as

possible, they have only a few resources to devote to any individual target.

Stopping either quarreling or seizure from causing locked out could easily

cause more harm than locked out would actually cause. Thus, we will not weigh in

on this issue and discard these attackers from subsequent analysis.7

Means

The means includes any way to cause any of the harms through the OCF archi-

tecture. They are summarized in Table B.5.

Table B.5: Means through which attackers could cause harms by leveraging SuperLock
OCF communications.

Means Description Harms

spoof admin impersonating an adminis-
trator

break in, locked out,
damaged, pivot harm,
bot

admin commands sending commands that en-
tail administrator-level ac-
tions

break in, locked out,
damaged, pivot harm,
bot

spoof user impersonating an autho-
rized user

break in, locked out

user commands sending commands that en-
tail user-level actions

break in, locked out

MITM onboarding man-in-the-middling the
initial onboarding process

break in, locked out,
damaged, pivot harm,
bot

To elaborate, the “spoof” means involve pretending to be a legitimate admin or

user, whereas the “commands” means involve sending commands that would get a

SuperLock to take administrator or user-level actions without having to impersonate

a legitimate admin or user. In other words, spoof admin and spoof user betray

some failure of identification and authentication, and admin commands and user

commands betray some failure of access control. Since we do not assume any par-

ticular security mechanisms at the threat modeling stage, we cannot go into more
7If Lockr did want to take a stance on this, they could, and the rest of the PRSD analysis could

be adjusted accordingly.

124

detail about what exactly it would entail to carry out these means.

Once an attacker can successfully make administrator-level requests, we assume

that the attacker essentially has root on the SuperLock. This assumption is reason-

able, because administrator-level access would allow an attacker to take any action on

the SuperLock’s OCF resources, which essentially gives the attacker full read/write

access to everything on the lock.8

B.1.4 Security Option Enumeration

Security options

It is infeasible to devise a comprehensive list of potential security options. Gener-

ally, there are often many plausible approaches to deal with each means, and there are

often innumerable variations of each approach. Developers should consider as many

options as possible, although they should understand that they will have to cut off

their list of security options before it is complete. Here, we present a list of high-level

security mechanisms that a company like Lockr might actually use.

encryption: use a strong encryption scheme to make all OCF communications

confidential. While this doesn’t prevent any means in itself, almost all of the other

security options rely on this.

Next, we consider different approaches to identification and authentication, whose

names will start with auth. These all rely on encryption to prevent attackers from

stealing credentials. Additionally, for the time being, we will assume that properly

implemented access controls accompany each of these options.9 Authentication itself

addresses spoof admin and spoof user, and the permissions system that accompa-

nies it will mitigate admin commands and user commands.
8Under the OCF specification, an endpoint represents anything that it wants to expose to other

OCF endpoints as “resources” that can be retrieved with RESTful requests. Furthermore, the OCF
specification supports five generic operations: CREATE, RETRIEVE, UPDATE, DELETE, and
NOTIFY, which each do what one would assume they do. With these operations, an administrator
could make any conceivable change to a device’s resources, which would almost surely allow her to
get root.

9As Section B.1.7 demonstrates, developers can weigh options for access control details later,
after deciding on a higher level authentication scheme.

125

1. auth/password/vendor: use a single manufacturer-set password listed in

each SuperLock’s instruction manual to authenticate each OCF request to a

SuperLock, including during the onboarding process. This could slightly im-

pede all of the means, but any attacker with access to SuperLock instructions

could learn the password to any SuperLock.10

2. auth/password/user: have users set their own passwords for administration,

permanent users (homeowners), and guests. This could stop most burglars

and pranksters, but probably not government, hacktivists, or expansive

crime.11

3. auth/crypto/simple: each SuperLock and smartphone generates their own

public and private keys for authentication. This method would be extremely

difficult to defeat, as it would require either stealing the credential, compro-

mising a smartphone, or breaking public key cryptography—methods typically

only available to government.

4. auth/crypto/local: have homeowners maintain a CMS12 in their own homes

to manage credentials for SuperLocks, smartphones, and other OCF devices.

In addition to the potential weaknesses of auth/crypto/simple, an attacker

could potentially steal an existing credential from a CMS or trick it into issu-

ing her a new and privileged credential. Although Lockr cannot be sure of the

structure of these local CMSs, only government would likely ever have suffi-

cient means and interest to compromise a well designed local CMS to attack a

SuperLock.13 This would represent a single point of failure for all products that
10This might sound like a ridiculous option—it is. However, this was the approach that all the

victims of Mirai took [92]. We include it here to demonstrate how PRSD reveals its weaknesses.
11Passwords can be guessed or socially engineered. Many people do not choose hard-to-guess

passwords, even with most complexity rules [3]. Indeed, researchers have demonstrated that choosing
complex and unique passwords for many accounts is not feasible in general [30].

12CMSs are a construct of the OCF specification [67]. They are never fully specified, either in
structure or in interfaces, but they are generally services that generate, issue, and revoke credentials
for other OCF devices. In this case study, we assume that CMS structure is no more clear to Lockr
than it is in the real world now.

13This attack would not scale well enough for expansive crime’s interests, which is the only
other attacker that might have the resources to attack a CMS.

126

rely on the CMS.

5. auth/crypto/global: use a single CMS to generate, issue, and revoke the

credentials for all SuperLocks and smartphones.14 This has the same types

of weaknesses as auth/crypto/local, although the greater complexity of the

global CMS both provides more attack vectors to attackers and also raises the

potential harm if the CMS is compromised. As a result, in addition to govern-

ment, expansive crime might be able and willing to circumvent this security

option.

6. auth/biometric: have smartphones takes users’ fingerprints and sends some

representation of them to SuperLocks for authentication. To circumvent this,

one would have to lift a user’s fingerprint or break the underlying implementa-

tion, which could probably only be accomplished by government or perhaps

expansive crime.

Additionally, there are several strategies to mitigate MITM onboarding and

protect the initialization of a SuperLock, which we categorize with names that start

with ini.

1. ini/first: on initial bootup, trust the first smartphone to contact the SuperLock

to be the administrator for onboarding, and set up a secure channel to continue

onboarding from there. This would prevent just about any attacker from using

MITM onboarding, unless the attacker has a persistent presence on the local

OCF network and is able to make contact with the lock before the legitimate

administrator. Probably only government could do this consistently.
14There are many systems issues that Lockr would need to sort out to implement either CMS

option. If the CMS under consideration already existed, then Lockr could analyze it with respect
to SuperLocks accordingly. If Lockr had to make its own CMS, then that would require its own
separate analysis. The Hub case study in Section B.3 represents an analysis of a device that acts
similarly to a local CMS. A global CMS would fall outside the scope of PRSD. Instead of assuming
a particular CMS, this case study treats the CMSs in these options as generic OCF CMSs. In
doing so, we illustrate the shortcomings and difficulties in trying to reason about the vague concept
described in the OCF specification.

127

2. ini/PIN: on initial bootup, display an out-of-band random PIN for the admin-

istrator’s smartphone to enter in order to authenticate the administrator.15 This

would improve over ini/first by requiring the attacker to have a way of reading

the PIN. This would certainly make an attack more difficult for government,

but it would not stop it.

3. ini/port: have a USB or similar port on the indoors side of the lock, and initial-

ize the lock by plugging the administrator’s smartphone into it and continuing

the setup from there. To circumvent this process, an attacker would have to

already have compromised the administrator’s smartphone, which defeats the

point of trying to carry out MITM onboarding.

Table B.6 summarizes these options.

Table B.6: Security options for the SuperLock. Dollar signs indicate relatively how
many resources needed to overcome a security option.

Option Means

sp
oo

f
u
se

r

u
se

r
co

m
m

an
d
s

sp
oo

f
ad

m
in

ad
m

in
co

m
m

an
d
s

M
IT

M
on

b
oa

rd
in

g

encryptiona

auth/password/vendor $b $b $b $b $b

auth/password/user $$ $$ $$ $$
auth/crypto/simple $$$$ $$$$ $$$$ $$$$
auth/crypto/local $$$ $$$ $$$ $$$
auth/crypto/global $$$c $$$c $$$c $$$c

auth/biometric $$$ $$$ $$$ $$$
ini/first $$$
ini/PIN $$$d

ini/port $$$$

aDoes not prevent any means in itself. All auth and ini options rely on this.
bOne exploit leaves all SuperLocks vulnerable.
cOne exploit leaves all SuperLocks, and potentially many other devices, vulnerable.
dAdds a second factor over ini/first.

15The random PIN would be used as a pre-shared key for secure key exchange and subsequent
encrypted communication.

128

Most of these options have many sub-options to address. The options presented

here are high level, meant to capture the biggest tradeoffs. As described in the frame-

work, sub-options that come up later will be examined by reapplying this framework.

These security options involve the following tradeoffs:

Security vs. features

None of the security options constrain SuperLock capabilities, although several

do limit who can use it: auth/crypto/local requires users to have a CMS in their

local OCF network, and auth/biometric requires users to have fingerprint scanners

on their phones.

Security vs. security

Table B.6 contains most of the information needed to see the security tradeoffs

between the security options. Beyond this, it should be noted that it would be possible

to choose multiple auth options, using multiple factors to boost security. The ini

options, on the other hand, are mutually exclusive.

Security vs. cost

auth/password/vendor is pretty cheap to implement and doesn’t put any direct

costs on any other parties.

auth/password/user does not take much more resources to implement than

auth/password/vendor, and it doesn’t put any direct costs on other stakeholders,

either.

encryption does cost money to implement. Encryption is not easy, and merely

choosing a reliable standard library to use takes time and expertise. Encryption also

requires greater computing power, so the lock will be more expensive in itself, as

carrying out encryption would be more computationally intense than anything else a

SuperLock would have to do.

All auth/crypto options would cost substantially more to develop than the

auth/password options. However, if there are standard tools and libraries to use,

then these additional development costs drop substantially. They also require more

computation than the auth/password options, but nothing beyond what encryp-

tion would already require.

129

auth/crypto/local rests upon a third party having built a CMS for people to

use in their homes and people paying for them. However, as a general-purpose local

CMS, SuperLock compatibility costs nothing more for either of these parties. Lockr

developers only have to develop the interface to the local CMS. To do so, Lockr would

have to tailor make a custom interface for any type of CMS they want SuperLocks

to support, since the OCF specification does not specify how to connect to CMSs.

This would cost slightly more than auth/crypto/simple if multiple CMS types are

supported, because Lockr developers would need to make multiple interfaces that do

the same thing.

auth/crypto/global would cost orders of magnitude more than the other auth

options, because it requires, beyond mere development, the deployment and contin-

uous maintenance of a global system. These costs could apply to either Lockr or a

third party that supplies the global CMS. That said, if the third party provides a

general global CMS, the marginal cost of supporting SuperLocks is essentially zero.

As with auth/crypto/local, Lockr need only develop an interface to it. Unlike with

auth/crypto/local, though, Lockr would only need to develop one CMS interface

for auth/crypto/global.

auth/biomentric would also cost a lot to develop from scratch; even if the

smartphone already supports fingerprint scanning, it would take a lot of upfront

research and development to transform that information into a cryptographically

secure and reliable authentication credential. However, a standard library would

reduce these costs substantially.

ini/first would have negligible costs to any stakeholder. ini/PIN and ini/port,

on the other hand, are by far the most expensive security options of all, as they

require substantial hardware modifications that would raise the production costs of

every SuperLock.

Security vs. usability

encryption involves a tradeoff between cost and usability. Investing more in

computational power increases encryption speed and thus usability, but it makes the

price of the lock go up. Users are probably willing to wait a moment for the lock to

130

unlock, but users will become frustrated if the delay becomes non-negligible. Thus,

the added security on encryption either requires a notable tradeoff with cost, with

usability, or with a smaller combination of both of them.16

auth/password/vendor has a usability inversely proportional to the complexity

of the password. It relieves the homeowners of the need to come up with a pass-

word, but that relative benefit could be smaller than the loss in usability if Lockr’s

password is more complex than the passwords that a user would set. Alternatively,

auth/password/user comes at a high cost, especially when homeowners start to

get a lot of IoT devices in their homes [30, 41]. The usability cost can quickly be-

come irrational or incentivize users to start coming up with workarounds to their own

security mechanisms [74].

By comparison, the auth/crypto options should be almost completely transpar-

ent to users, aside from whatever is involved with issuing and revoking them, because

smartphones should be able to automatically choose the appropriate credential to

authenticate with SuperLocks. Of these, auth/crypto/local would enable the local

CMS to coordinate permissions and actions between SuperLocks and other devices,

which, although it is not clear what devices one would want to coordinate with a door

lock, could boost overall usability.

auth/biometric falls between the auth/password and auth/crypto options.

Biometric-based authentication can be quick with modern smartphones, but it is

slightly less reliable.

Since onboarding is only done once, the usability burden of all ini options is

pretty tolerable. Although ini/first takes slightly less effort than the other two, few

homeowners would feel inconvenienced by any of them.

B.1.5 Architectural Synthesis

Table B.7 shows the sections of the OCF specification and IoTivity documentation

that provide guidance or requirements relevant to the security options and their trade-
16Determining where to settle between cost and usability for computation is outside the scope of

PRSD, as security is constant anywhere along that spectrum.

131

offs. After accounting for the constraints of the OCF architecture, the Lockr engi-

neers must choose encryption. In addition, they are left with the choice of one of

the auth/crypto options and one of the ini options.

Notably, the OCF specification does not contain any useful information about

choosing between credential types or about selecting, designing, or configuring a CMS

or an interface to one.

Table B.7: Relevant documentation from the OCF specification [67] and IoTivity [46],
and a description of their impact on the previously identified security options and their
tradeoffs. All specification documents are from v1.1.0.

Documentation Impact

Security 9.3.6 auth/password options not allowed
Security 9.3 auth/biometric implicitly not allowed
Security 9.3.3 Description of Asymmetric Authentication Key

Credentials, suitable for auth/crypto/simple,
auth/crypto/local, and auth/crypto/global and
supports revocation

Security 9.3.5 Description of Certificate Credentials, suitable for
auth/crypto/local and auth/crypto/global and
supports revocation

Security 5 encryption and one kind of auth/crypto required
Security 11.2.3 Enumerates suitable ciphers for encryption, substan-

tially reducing development costs
Security 5.1.1.2 Access Manager Service for auth/crypto boosts usabil-

ity but decreases security (suitable for consideration as
a sub-option)

Security 12.1 ACL guidance for auth is not specified, but will be in
future versions of the specification

Security 7.3.4 ini/first specified and supported
Security 7.3.5 ini/PIN specified and supported
Security 7.3.8 ini/port supported
IoTivity standard software implementation of ini/first and

ini/PIN, substantially cutting down software develop-
ment costs

B.1.6 Tradeoff Resolution

From the previous process, we already know that encryption must be selected as a

security decision. Further, the OCF specification has details on how to implement

132

this, and IoTivity does most of the heavy lifting already [47].

One of the auth/crypto options must be chosen. Compared to the others,

auth/crypto/global costs a lot more for the developers or a third party to imple-

ment, and are susceptible as a single point of failure, and are in that way less secure.17

Thus, it is worse than either auth/crypto/simple or auth/crypto/local.

auth/crypto/simple is more secure than auth/crypto/local. The difference

may be small, but Lockr cannot be sure, because it cannot depend on local CMSs

having any particular structure or configuration. Additionally, auth/crypto/local

constrains the potential market and slightly raises costs over auth/crypto/simple.

While using a local CMS does potentially offer some small usability benefits, this

benefit does not offset the certain and uncertain downsides. Thus, we will choose

auth/crypto/simple as a security decision.

Finally, between the ini options, ini/first must be chosen as a security decision.

The other options are significantly more expensive. While ini/first is technically less

secure, the only plausible attacker for any of the ini options is government, which

none of them will stop.18

B.1.7 Security Sub-option Enumeration

This section demonstrates the process of reapplying PRSD to consider details of se-

lected security decisions. To do so, we will consider two design issues that result

from the previous decision to use auth/crypto/simple, which involves having Su-

perLocks themselves generate and manage asymmetric authentication key credentials.

Specifically, we will investigate the enrollment process for guest devices, wherein guest

devices receive the credentials needed to unlock the lock. Second, we examine the

ACL management system.

To reapply PRSD towards these ends, developers need to consider how an attacker
17Even assuming perfect implementation, users would have to trust the global systems not to issue

credentials to attackers, even though its known that the authorities in the existing CA for the web
have done exactly that on numerous occasions [17].

18Lockr developers understand that, no matter what they do, a $50–100 smart door lock is unlikely
to thwart nation-state funded computer security activities.

133

might take advantage of these aspects of design to carry out any of the means from

the threat model. From there, we proceed through Security Option Enumeration,

coming up with options for mitigating these exploits.

Faulty enrollment could allow an attacker to simply receive legitimate credentials

by, say, simply seeking enrollment, which would enable the attacker to imperson-

ate an authorized user (spoof user.) It’s even more important to protect requests

for enrollment as administrators, as attackers with an administrator credential can

impersonate an administrator (spoof admin.) In addition to preventing attackers

from simply requesting credentials from the lock, it’s important to prevent them from

performing MITM on key transfer process, which would also allow them to carry out

these same means.

There are multiple potential security sub-options for enrollment, with names pre-

fixed with enroll, which more or less mirror the options for onboarding the SuperLock

in the first place:

1. enroll/first: have the administrator command the SuperLock to enter an en-

rollment mode. The lock will trust the first device to seek enrollment in this

time period. The devices could then exchange keys through ephemeral Diffie

Hellman. Even if an attacker’s device, and not the legitimate new user’s device,

is the first device to contact the SuperLock, the new user and administrator

would recognize this and simply revoke the stolen credential and try again.

This method would not stop credential theft through a MITM attack, though,

although only government would ever be able and willing to do this.

2. enroll/PIN: use the same general procedure as enroll/first, but has the Su-

perLock send the administrator’s phone a random PIN, which the administrator

could tell the new user. This PIN would be used as a pre-shared key to create a

secure channel using Diffie Hellman key exchange. This could mitigate MITM

by requiring the ability to read the PIN, although government might still be

able to do so.

Separately, poor ACL management would allow an attacker to modify ACLs in

134

order to gain control of the lock without proper credentials, either at the user level

(user commands) or administrative level (admin commands). From the previ-

ous Architectural Synthesis, we know that OCF supports two general approaches to

managing ACLs:

1. ACL/simple: ACLs could be maintained on the lock itself, requiring attackers

to exploit the lock itself to modify them.

2. ACL/AMS: ACLs could be maintained with an Access Manager Service (AMS),

which coordinates ACLs for multiple devices on the local OCF network. The

security of this approach depends on the security of the AMS.

These options are summarized in Table B.8.

Table B.8: Security sub-options for the SuperLock. Dollar signs indicate how many
resources needed to overcome a security option, relative to the other sub-options on
this list and the entries in Table B.6.

Option Means

sp
oo

f
u
se

r

u
se

r
co

m
m

an
d
s

sp
oo

f
ad

m
in

ad
m

in
co

m
m

an
d
s

M
IT

M
on

b
oa

rd
in

g

enroll/first $$$ $$$
enroll/PIN $$$a $$$a

ACL/simple $$$$ $$$$
ACL/AMS $$$b $$$b

aContains a second factor over enroll/first
bDepends on reliability of the AMS. Potential central point of failure to all devices on local

network.

These security sub-options have the following tradeoffs:

Security vs. features

No sub-option constrains a SuperLock’s capabilities. However, ACL/AMS does

require SuperLock owners to own and manage an AMS in their own homes.

Security vs. security

135

Table B.8 illustrates most of the security tradeoffs between these sub-options. It

is also worth noting only one sub-option can be chosen from each category.

Security vs. cost

enroll/first would not have significant marginal development costs, as the nec-

essary cryptographic routines are already supported by the standard cryptography

libraries that SuperLocks were already planned to use anyway. The rest of this option

should be relatively cheap to develop. This option puts no costs on other stakeholders.

enroll/PIN requires all the same development as enroll/first, and it requires

Lockr to develop the scheme for sharing the PIN and erecting a secure channel from

it; however, standard cryptography libraries will do most of the heavy lifting here.

If the lock uses ACL/AMS, then the lock developers will not have to roll their

own ACL management system for the lock, so the AMS sub-option is cheaper to

develop than the local ACL management sub-option. Furthermore, the marginal

costs that ACL/AMS imposes on other stakeholders is negligible, assuming the

AMS is already there to begin with.

Developing ACL/simple would certainly cost Lockr money, since the OCF spec-

ification provides no guidance for doing it (see Table B.7).

Security vs. usability

enroll/PIN is slower and more cumbersome than enroll/first, as two users

would have to manually share a key suitable for establishing a secure channel. How-

ever, it is worth noting that the overhead for both of them is only one-time per user,

probably pretty intuitive, and only takes a few seconds.

A well designed AMS would be equally or slightly more usable than using ACL/simple.

For the most part, ACL management in general should be transparent to admins and

users. However, an AMS could automatically set access policies for other home de-

vices for new guest users of the lock. For instance, hypothetically, an AMS could

automatically allow new Airbnb guests to control a smart TV and the lights but not

the thermostat (and then revoke those permissions when the guest checks out.) How-

ever, such automation is beyond the control of the company producing the lock and

thus is not guaranteed.

136

B.1.8 Architectural Synthesis on Sub-options

Notably, the OCF specification does not include any information about bringing guest

devices on to a local OCF network in general, let alone discusses the security con-

siderations of such actions. While there is general discussion of “onboarding” and

initial configuration (for example, see Section 11.2 of the Core Specification v1.1.0)

and endpoint discovery (Section 10 of the Core Specification v1.1.0), the specification

is silent about prescribing a particular way to introduce new devices; it only specifies

certain state attributes that must be achieved by the end of it [67]. Likewise, the

Security Specification only discusses options for setting up new devices to be owned

by the local network, which would not work for guest devices [67].

With that in mind, Table B.9 summarizes all the aspects of the specification that

do relate to the sub-options under consideration.

Table B.9: Relevant documentation from the OCF specification [67] and IoTivity [46],
and a description of their impact on the previously identified security options and their
tradeoffs. All specification documents are from v1.1.0.

Documentation Impact

Core 11.2 General discussion of “onboarding” and initial configura-
tion, which is the closest the specification gets to guest
enrollment, let alone the enroll options

Security 5.1.1.2 ACL/AMS boosts usability but decreases security over
ACL/simple

Security 13.5.1 specification of ACL resources, making ACL/simple
possible

B.1.9 Sub-option Tradeoff Resolution

For enrollment, using the random PIN to verify identity bolsters security over en-

roll/first by making it more difficult for attackers who have already compromised

the local network to MITM the enrollment process. While this is certainly a security

advantage, it would not stop government, which is the attacker that would have the

resources and motivation to do this, anyway. Furthermore, these attacks are, in gen-

eral, extraordinarily unlikely. This marginal security gain of enroll/PIN probably

137

is not worth the usability and cost tradeoffs it incurs, however. Thus, enroll/first

will be chosen as a security decision.

Storing ACLs locally with ACL/simple primarily protects against hacktivists

and botnet-dealing organized crime seeking one more bot to control. Its tradeoffs

compared to ACL/AMS are mixed. Requiring an AMS limits the market to peo-

ple who already have one; however, doing so saves substantial development costs—

thanks to the OCF specification’s lacking ACL management guidance. Additionally,

ACL/AMS could increase usability by automatically setting up new Airbnb guests

with ACLs for other devices. If the OCF specification was more clear, this decision

would be much simple, but the uncertainty of the security of AMSs, combined with

the uncertainty of managing ACLs, makes this decision difficult. Since Lockr is a

profit-driven company, the difference would probably come down to the particulars

of how much of their potential market already have AMSs versus how much more it

would cost to develop ACL management themselves.

Thus, the final security decisions for this case study are encryption,

auth/crypto/simple with enroll/first and either ACL option, and ini/first.

B.1.10 Discussion

This case study demonstrates that PRSD can be useful for thinking critically about

the tradeoffs involved when weighing options in a home IoT product’s security design.

At one point or another, all elements of each process were used towards ultimately

deciding between competing security options. Thus, if PRSD called for any additional

analysis over what the developers at the hypothetical company Lockr would have

done otherwise, it would only be because the developers were glossing over important

factors in the analysis.

More specifically keeping the ties between security options, means, attackers, and

harms in mind made it more straightforward to weigh what security value was gained

and lost between options than simply considering the security options in isolation.

Consequently, it was easier to compare the relative security tradeoffs with other fac-

tors like capabilities, cost, and usability. By comparison, traditional security frame-

138

works do consider security options in isolation and rarely have developers compare

security impacts explicitly against other tradeoffs.

It’s also clear that architectural constraints can do a lot to resolve tradeoffs (in

full or in part) before the actual tradeoff resolution process. Architectural constraints

eliminated all of the password-based security options and required the encryption

security option, going so far as to specify particular cipher suites to use for this appli-

cation. Furthermore, it narrowed the list of eligible authentication security options.

This framework also laid bare several gaps in the current OCF specification. No-

tably, there is a dearth of specification or guidance for choosing an implementing a

Credential Management System, ACLs, and securely bringing guests on to the net-

work. If this analysis had called for using a full CMS (as opposed to the ad hoc

local credential generation option that was chosen), the sub-options would have been

enormously complicated: misplaced incentives and poor oversight can lead even tech-

nically sound CMSs to issue legitimate certificates to attackers. It might be outside

the scope of the specification to define CMSs in full, but it would still be reason-

able for the specification to define interfaces for safely interacting with CMSs or even

provide some security guidance about choosing or administering them.

Likewise, the ACL management section of the specification is explicitly empty,

aside from a note that it will be filled in sometime in the future. The details of

ACL management are more fine grained than this initial use of the framework called

for; however, considering those sub-options could prove extremely difficult. It is

notoriously difficult to implement and manage ACLs correctly [89].

The lack of specification for guest devices was neither acklowedged nor excusable.

The Core Specification implicitly assumes that there are always carefully crafted

ACLs for determining what resources can be shared with a guest.19 However, the

Security Specification does not include any information for recognizing or generating

ACLs for guest devices and their credentials; its section on security provisioning

(section 7 of v1.1.0) assumes that new devices are unowned and will become owned

by the local network. Guest devices, on the other hand, will already be owned by a
19Actually, it says that there should be as few unsecured resources as possible.

139

separate network, and it’s unlikely that house guests will want to completely reset

their portable devices twice every time they want to interact with their hosts’ devices

(first time to join the host’s network, second time to re-join the guest’s own network.)

Thus, vendors are left to roll their own nonstandard and probably risky ways of having

their devices interact with guests (or act as guests.)

B.2 Updating for Airbnb Integration

B.2.1 Given

Picking up where the previous example left off, let’s suppose that Lockr, having

completed the initial PRSD analysis, decides that it wants to integrate Airbnb with

SuperLocks. That is, they want the lock to check for Airbnb guests, send them

the appropriate keys before they arrive, and revoke them after they leave. Ideally,

this will all be automated yet also allow for homeowners to override the automatic

functionality however they want.

We will assume that the company decides to design for these features immediately

after completing the analysis from the previous example and that there is no other

new information that must be considered.

Lockr knows about Airbnb Host Assist, a service designed by Airbnb to facilitate

“easy key exchange” and “keyless entry” that is largely automated [4]. This is the

service they intend to use. They realize that they are competing with existing smart

locks that also use Host Assist, such as August Locks [14]. The startup is hoping

that OCF compliance will provide will provide a competitive edge, as it will allow

for homeowners and guests to easily integrate their locks into the rest of their home

automation and alleviate the need to install and learn custom software designed just

for the locks.20

The startup does not want to remove the previously designed manual method for
20The OCF specifications, being a communications standard, ideally allows all OCF devices to

communicate with each other in a more or less uniform manner. Thus, users should be able to
interact with most OCF devices the same way, rather than having to download a separate app for
each one.

140

sharing keys, as they realize that some users will have guests that are not Airbnb

guests.

B.2.2 Situational Modeling

Capabilities

This update does not change the outcome capabilities of the lock. It does, however,

require the additional support capabilities necessary to have full Internet connectivity

in order to communicate with Airbnb through the Host Assist API, which implies

communication with non-OCF compliant Airbnb servers.

Table B.10: Capabilities of the SuperLock after integrating with Airbnb. New capa-
bilities over those in Table B.1 have emphasis.

Capability Description

lock lock and unlock mechanism
communication Communication with phones with the OCF standard.
update receive Internet updates over a proprietary protocol
physical lock backup physical lock and unlock mechanism
reset reset button restores SuperLock to factory settings
Internet Communicates with arbitrary Internet traffic to facili-

tate communications with Airbnb

Environmental models

These new capabilities require the lock to be able to deal with whatever traffic it

could receive from the Internet. They are also dependent on the Host Assist service,

which may have dynamic requirements.

With Airbnb integration, the locks will depend on third party services. This can

make responsibility and liability complicated. In general, if developers are aware of

relevant policies in jurisdictions that the locks might fall under, it would be prudent

to include them in the environmental models. However, since the liability in this

situation is dynamic and uncertain, there is nothing specific to include.

Stakeholder models

Table B.11 summarizes the original and new stakeholders, which accounts for

changes in stakeholders and dependent assets that result from Host Assist integration.

141

It is worth noting that, since Airbnb itself is not expected to put any effort towards

SuperLocks specifically, their entries for “Expertise” and “Resources” are accordingly

empty.

Table B.11: Stakeholder Models. Changes over Table B.2 have emphasis.

Type Stakeholders Interests and Assets Expertise Resources

Users homeowners,
Airbnb guests

safety, privacy, valu-
ables, OCF network,
availability, Airbnb
accounts

minimal minimal

Admins homeowners safety, privacy, valu-
ables, OCF network,
availability, Airbnb
accounts

minimal low

Developers Lockr engineers company revenue higha full time
job

Support Lockr engineers company revenue higha full time
job

Third parties Airbnb company revenue
Public People who use

the Internet
Internet access

aAbove average security expertise, compared to other developers.

B.2.3 Threat Modeling

Integrating with Airbnb will not remove any threats, as no capabilities will be removed

from SuperLocks. To perform threat modeling, then, the Lockr developers would only

need to examine how this new functionality would expand the existing threat model.

Harms

The new Airbnb integration could allow an attacker to cause additional harms

through the users’ Airbnb accounts. Depending on the specifics of Host Assist (which

are not public and subject to change), this could allow an attacker to glean sensitive

personal information or to change the configuration of one’s Airbnb account. Notably,

an attacker might be able to change a user’s payout account or possibly steal credit

card information.

142

This expansion of harms is summarized in Table B.12.

Table B.12: Potential harms resulting from SuperLocks. Additions over information
in Table B.3 has emphasis.

Harm Description Assets at risk

break in attackers get into the house safety, privacy, valuables,
company revenue

pivot harm the SuperLock is exploited
and used as a proxy to de-
vices on the OCF network

OCF network, company
revenue

damaged the lock is damaged safety, privacy, valuables,
company revenue

bot the SuperLock is incorpo-
rated into a botnet

Internet access, time, com-
pany revenue

account compromise an attacker could compro-
mise a user’s Airbnb ac-
count

Airbnb accounts, company
revenue

Attackers

Table B.13 shows how Airbnb integration would affect the potential attackers.

The only attacker whose interests significantly change with Airbnb integration is

expansive crime, who could stand to gain from stealing credit card information at

scale. One can imagine that pranksters and hacktivists may also enjoy Airbnb

account access, but these scenarios seem far fetched and unlikely, so we do not assign

them high expected interest.

Means

Although Airbnb integration through Host Assist falls outside of the OCF specifi-

cation, as Airbnb’s servers are not OCF-compliant. As explained in section 5.5 of the

OCF Core Specification v1.1.0 [67], OCF clients like the SuperLock communicate with

non-OCF devices by creating a mapping between non-OCF data or constructs and

OCF resources. Section 5.5 outlines one way to implement this. Since SuperLocks

will have to interpret non-OCF Internet traffic as OCF resources, then, non-OCF

traffic could take advantage of this interpretation to potentially cause harms, which

would be a valid means within the scope of PRSD.21

21The proprietary update scheme is not treated this way, because updates are unlike general

143

Table B.13: Potential attackers with an interest in SuperLock harms. Exclamation
points after harms indicate relatively higher expected interest in causing that harm.
Changes over those in Table B.4 have emphasis.

Attacker Description Harms of interest

burglars criminals wanting to com-
mit burglary

break in (!!), damaged

prankster people looking to cause mis-
chief

break in, locked out,
damaged, pivot harm,
account compromise

government agents of law enforcement or
espionage

break ina, damaged,
pivot harma

quarreling users fighting with each
other

locked out

seizure landlords or other authori-
ties seizing property

locked out

hacktivists activists who make state-
ments through hacking

bot (!!), account compro-
mise

expansive crime organized crime looking to
steal data or amass botnets

pivot harm (!), bot (!!),
account compromise (!!)

aStates will have an strong interest in causing this harm to certain suspects or activists, but these
cases are extremely rare, and those users will likely know the risks.

144

Table B.14 reflects the new categories of means enabled by the new capabilities.

In either case, the exploit depends on taking advantage of however the SuperLock

will map non-OCF traffic to OCF resources and operations; the difference is that

one takes advantage of particulars of the Host Assist API (which are uncertain and

subject to change), and the other takes advantage of how the mapping algorithm

interprets Internet traffic in general.22

Table B.14: Means through which attackers could cause harms by leveraging Super-
Lock OCF communications. Changes from Table B.5 have emphasis.

Means Description Harms

spoof admin impersonating an adminis-
trator

break in, damaged, pivot
harm, bot, account com-
promise

admin commands sending commands that en-
tail administrator-level ac-
tions

break in, damaged, pivot
harm, bot, account com-
promise

spoof user impersonating an autho-
rized user

break in

user commands sending commands that en-
tail user-level actions

break in

MITM onboarding man-in-the-middling the
initial onboarding process

break in, damaged, pivot
harm, bot, account com-
promise

malicious Airbnb
traffic

maliciously exploiting the
Host Assist API to exercise
unauthorized control of the
locak

break in, damaged, pivot
harm, bot, account com-
promise

malicious Internet
traffic

maliciously sending general
Internet packets to the lock
to exercise unauthorized
control of the lock

break in, damaged, pivot
harm, bot, account com-
promise

communications in that the OCF specification does not discuss them at all, so exploits of the update
system are still out of scope.

22These means highlight a notable interaction between implementation and design. While recog-
nizing that implementation can be both important and difficult, PRSD limits its scope to design and
thus has to ask developers to temporarily assume that their implementations will be correct. How-
ever, the same cannot be assumed of Host Assist and general Internet traffic, whose implementations
are beyond Lockr’s control. Thus, these new means reflect Lockr’s limited trust of originators of
Host Assist and general traffic.

145

B.2.4 Security Option Enumeration

The previous security decisions, which include encryption, auth/crypto/simple

with enroll/first and an ACL option, and ini/first (see Section B.1.9), do not need

to change. The only new harm enabled by the old means is account compromise,

but no attacker is so motivated to cause this harm that it changes the tradeoffs

between security options enough to change a previous security decision. Thus, the

previous analysis can be left as is.

With that, only the new means—malicious Airbnb traffic and malicious In-

ternet traffic—need to be addressed in this process. These means are not addressed

by the existing security decisions, so it is necessary to identify new security options.

Security options

It’s important to note that Lockr does not have control over the security design

of every component of the system. Airbnb controls their own servers and Host Assist

itself. Lockr controls its own translation of Host Assist traffic to OCF resources,

how it interacts with those resources, and verification and validation [48] of traffic it

receives.

Although the lack of details about Host Assist make it difficult to reason about

what security measures are needed, we will assume that Airbnb does at least attempt

to implement some basic authentication and integrity measures.

With that in mind, the startup has the following security options:

1. whitelist: design the lock so that the only non-OCF traffic it accepts is well

validated, sanitized, and protected by any authentication and integrity measures

Host Assist offers. All other non-OCF traffic is dropped. Assuming proper vali-

dation and verification of the algorithm that translates between the Host Assist

API and OCF resources, as well as proper implementation, this completely pro-

tects against malicious Internet traffic, and malicious Airbnb traffic will

be as secure as Host Assist allows for.

2. traffic review: for each connection request, send traffic summaries to home-

owners to manually evaluate and allow. This could allow homeowners to monitor

146

and protect their locks with confidence, and well-designed notifications could

allow a savvy homeowner to protect against almost any threat. However, most

homeowners will not be savvy enough to make these decisions wisely, and this

option provides no security for apathetic or ignorant users.

3. no Host Assist: do not do Host Assist, which completely protects against

malicious Internet traffic and malicious Airbnb traffic.

Implicitly, choosing none of these options is also an option.

These options are summarized in Table B.15.

Table B.15: New security options for the SuperLock. Dollar signs indicate relatively
how many resources needed to overcome a security option.

Option Means

m
al

ic
io

u
s

A
ir

b
nb

tr
affi

c

m
al

ic
io

u
s

In
te

rn
et

tr
affi

c

whitelist $$$a $$$$
traffic review $a $
no Host Assist $$$$ $$$$

aOnly as secure as the Host Assist API can be

Tradeoffs

These tradeoffs may depend somewhat on legal responsibility and liability between

Lockr and Airbnb. However, as noted in the environmental models described in

Section B.2.2, the policy situation here is dynamic and unclear. Without having a

stable policy environment, the developers will need to consider how all possibilities

would affect the tradeoffs.

Security vs. features

Using no Host Assist entails entirely abandoning Airbnb integration. It’s worth

noting that this option could make the lock less competitive against other smart locks

that do support Host Assist; the no Host Assist SuperLock might be more secure,

but it’s hard to prove this to consumers. On the other hand, implementing Host

147

Assist opens another avenue of attack but enables all the features described in the

capabilities section.

Security vs. security

Table B.15 contains most of the information needed to see the security tradeoffs

between the options. Beyond this, it is worth noting that no Host Assist is mutually

exclusive of whitelist and traffic review.

Legal responsibility and liability, which are uncertain at this time, would greatly

affect Lockr’s interest in providing these security options.

Security vs. cost

no Host Assist costs nothing, and saves Lockr from the development costs of

implementing Host Assist integration. However, having Airbnb integration could

potentially increase sales enough to cover the extra development costs.

The whitelist probably would not cost much over the existing cost of implement-

ing Host Assist integration at all. The only additional requirements are to have the

algorithm that translates between Host Assist and OCF resources to perform careful

input validation. This validation probably is not too difficult, presuming that Airbnb

defines the Host Assist API well.

The traffic review would cost the most of the three options to develop, as it

is a significant and nontrivial standalone feature. Details of this cost would depend

significantly on the details, which will be considered if this option is chosen as a

security decision.

Security vs. usability

The whitelist imposes no usability burden on either homeowners or guests over

not having it. The traffic review, on the other hand, would require extra manual

effort every time the lock attempts to communicate with Airbnb. This extra manual

effort largely nullifies any of the convenience and automation that makes Airbnb

integration appealling in the first place. Similarly, opting for no Host Assist means

sacrificing all of the usability benefits of Airbnb integration.

148

B.2.5 Architectural Synthesis

The OCF specification does not provide any security guidance for Airbnb integration,

which is understandable because Host Assist does not comply with the OCF specifi-

cation. The Open Connectivity Foundation intends for OCF specification to abstract

a wide variety of underlying protocols, but Host Assist is not one of them. Thus, it

is up to Lockr and Airbnb to make their own security decisions here.

B.2.6 Tradeoff Resolution

The traffic review option provides dubious security at high cost and largely counter-

acts many of the usability advantages of having Airbnb integration in the first place,

so it is not worth implementing.

Compared to having Airbnb integration without it, the whitelist option seems

like a clear choice. It almost entirely protects against malicious Internet traffic

and goes a long way towards protecting against malicious Airbnb traffic, has no

usability costs, and imposes only a small additional cost on the developers.

The nontrivial decision is between no Host Assist and whitelist. Since Host As-

sist falls outside of the OCF specification, translating between that API and OCF re-

sources could cost a lot to develop and is subject to error. Furthermore, the whitelist

can only protect against malicious Airbnb traffic as much as Host Assist allows—

if the authentication features of Host Assist are unreliable, for instance, then it is

difficult for the lock to validate against spoofed traffic no matter what the developers

do.23 On the other hand, having a whitelist instead of no Host Assist allows for

all the features and usability afforded by Airbnb integration.

For the developer’s own calculus, the decision rests largely on the relevant regula-

tory environment. If there is stable regulation that clearly puts liability for problems

with Host Assist itself on Airbnb, then the startup would only be responsible for
23It’s worth noting that, if Host Assist complied with the OCF specification, then developers

would be free to use any of the OCF security features, such as ACLs and credential management,
to ensure the lock’s security regardless of Airbnb’s behavior. Additionally, being OCF compliant
would cut down on development costs significantly.

149

harms caused by malicious Internet traffic, which whitelist protects against al-

most entirely. In this case, from the startup’s profit-driven perspective, whitelist

is the clear choice if it can afford the development costs.24 Otherwise, the startup

might be on the hook for Airbnb’s lackadaisical security design decisions, which is

a risk that probably is not worth taking. In this situation, it is better to abandon

Airbnb integration and choose no Host Assist.

B.2.7 Discussion

This case study demonstrates how PRSD makes it relatively straightforward to update

existing analyses to account for new information. Much of this case study is copied

from or directly derives from the previous analysis, and it was simple to determine

what aspects of the previous analysis needed reconsideration at all. The methodical

design of the framework also made it easy to determine where to incorporate new

information.

This case study also demonstrates how PRSD operates at the boundaries of its

scope and at the boundaries of the control of the agent employing it. The framework

still facilitates systematic and critical decision making when considering system com-

ponents that act across the boundary of the scope (here, communication between an

OCF device and a non-OCF server.) Also, this case study shows that the framework

exposes boundaries of security control between different components of an IoT sys-

tem (here, the boundaries between Host Assist and the lock’s OCF representation of

it.) In general, the framework is able to do this because it has the agent consider the

threat model as thoroughly as possible before having the agent consider what security

options she has to mitigate them.25

Additionally, this case study shows, through considering the interplay between

Host Assist and the OCF specification, the great effect that architectural standards
24This is not to be confused with the socially optimal choice. If Host Assist itself is sufficiently

insecure and Airbnb does not compensate for harms caused by malicious Airbnb traffic, then
this might not be the socially optimal choice.

25As an aside, highlighting these boundaries of control might help to reason about what parties
should have what responsibilities in an IoT system.

150

can have on security decision making. The proprietary Host Assist gives Airbnb a

huge amount of control over the security options that are possible in this scenario;

if Host Assist was OCF compliant, then it would have to allow the lock to use its

own ACLs to make its own trust decisions. Moreover, this demonstration serves as

an example of how the framework can be used as a tool to reason about the different

interfaces between architectures and their security effects in particular scenarios.

Finally, this case study shows that the regulatory environment, or even instability

of it, can have a decisive effect on the developers’ calculus when weighing security

options. Although unsurprising, it is still worth noting.

B.3 Voice-controlled Hub

B.3.1 Given

Let’s suppose there’s a moderately-sized company (not a new startup, but not a tech

giant) called OCFMakers wanting to design, create, and market an OCF compliant

device that acts as a simple-to-use hub, henceforth called the Hub, for interacting

with and coordinating actions between other OCF-compliant devices throughout a

home. It also acts as something like a personal assistant for homeowners.

The Hub primarily takes voice commands as input and provides audio output.

It sends the raw sound signal to cloud services owned by OCFMakers, and these

servers extract machine-readable commands from the raw sound signal of the voice

command, including a voice signature (for identifying the speaker) and any other

metadata that OCFMakers wants to note. The cloud services store this information

and send a “command tuple” including a machine-readable command, voice signature,

and metadata back to the Hub that recorded it. This transmission all occurs over the

OCF specifications.

From there, the Hub matches the command tuple to a table which determines

where to send it, and the command—not the whole command tuple—is sent to the ap-

propriate OCF servers, which include cloud servers, local OCF devices, smartphones,

151

etc. Upon sending a command, the Hub will wait and listen for an acknowledgement

as well as an indication of whether or not to listen for follow up instructions. All

these communications follow the OCF specification.

For instance, a person might tell a Hub, “Was there any suspicious activity last

night?” The Hub would send this raw input to OCFMakers’ cloud services to process,

and the service would return the tuple of command, voice signature, and metadata.

Using some sophisticated proprietary matching algorithm, the Hub would determine

that this is the sort of command to send to the local OCF security camera. Accord-

ingly, the Hub sends the command to the camera, which replies that it received the

command and is crafting a response to relay. The camera does its own processing

and decides to tell the Hub to respond with “All is well. Nothing to report from last

night.” The Hub receives this final response and announces this response to the user.

Hubs store minimal local information and handle few requests through their own

processing. While it may be able to self-report details of its configuration through

locally processed commands, even common small tasks like managing calendars and

todo lists are offloaded to cloud servers or other OCF devices. However, it does store

whatever identification tokens, credentials, and other account information is necessary

for it to fulfill its basic functions.

OCFMakers plans to have its own servers to support, in addition to voice signal

processing, basic personal assistant operations, and they are in talks with various

other platforms to support more functionality from the get-go, such as music stream-

ing and weather services. OCFMakers also plans to publicly release details for in-

tegrating with its voice-command pattern matching algorithm. With this, the Hub

will be able to interoperate with any other compatible OCF products that provide

instructions for handling relevant voice commands.

Ideally, the Hub’s only button will be a power switch. Also, it will need some sort

of web app administrative interface capable of handling setup and configuration that

is too advanced for the voice interface.

The Hub will be marketed as a competitor to the Amazon Echo [5]. OCFMakers

hope that OCF compliance and interoperability with other OCF compliant devices

152

will give them a competitive edge.

OCFMakers also plans to provide seamless software updates over the Internet with

a completely proprietary scheme.26

To be more specific, Hubs also record state information, such as context in a

conversation, and use the command tuple and state to determine which information

to send to what services or devices.27 When discovering services and devices, OCF

devices will need to tell the Hub what commands to send their way. State is stored

as the last several commands issued in the active session. It is up to the devices and

services that actually process the commands to make sense of what the state is from

those commands.

The Hub will support guest users insofar as connected services also support com-

mands without a known voice signature.

B.3.2 Situational Modeling

Capabilities

From the given information, we can discern several discrete Hub capabilities.

These are listed in Table B.16.

Table B.16: Hub capabilities

Capability Description

voice input sensing and processing of voice input, including the ex-
traction of voice signatures

audio audio output
communication send OCF communications over the local network and

the Internet
web app serve a web application for administration
credentials store and manage user credentials
command match algorithm for routing command tuples to the services

that need them
update receive Internet updates over a proprietary protocol

26The update scheme itself is outside the OCF specification, as it does not cover updates in general.
27It’s unclear at this time how much metadata will be necessary for this capability, but OCFMakers

would like to have the option of collecting whatever metadata they want.

153

Environment

Hubs will likely remain more or less stationary within a home. They will probably

be used almost exclusively indoors within people’s homes.

They will likely connect to almost all other OCF devices in the home they are

set up for. They will also need to communicate with OCF servers outside of the

home they are set up, including phones and cloud servers. Without timely access to

OCFMakers’ voice processing cloud services, a Hub cannot operate.

They will also need to interact with known users and unknown guests.

Stakeholders

Table B.17 details the relevant stakeholders.

Table B.17: Stakeholder Models

Type Stakeholders Interests and Assets Expertise Resources

Users homeowners,
guests

Hub, OCF network,
data, credentials,
availability, trust

minimal minimal

Admin homeowners Hub, OCF network,
data, credentials,
availability, trust

minimal low

Developers OCFMakers en-
gineers

company revenue medium full time
job

Support OCFMakers en-
gineers

company revenue medium full time
job

Third parties Hub-compatible
product devel-
opers

company revenue, IoT
products, data

Public People who use
the Internet

Internet access, time

Several aspects of these stakeholders require explanation. Here, the “OCF net-

work” asset includes the local network itself, the connected devices, and any remote

OCF servers a Hub may contact. “Availability” refers to users’ and admins’ abilities

to use Hubs. Similarly, “trust” refers to users’ and admins’ trust in their respective

Hubs, including the answers to their queries.

Admins are a subset of users: they are the homeowners who spend a bit of ex-

154

tra effort setting up and managing their Hub. This extra effort is reflected by the

difference in the “Resources” column. Similarly, Developers and Support are both

engineers at OCFMakers. However, since OCFMakers is an established company, it

probably has a separate division that maintains the cloud services that keep Hubs

running.

Third parties are the vaguest stakeholder group, as they include any group that

makes Hub-compatible devices. In addition to their company revenue, the IoT prod-

ucts they product and the data those products collect could also be affected by Hubs.

The public could be affected by Hubs if they are incorporated into a botnet. As

part of a botnet, Hubs could either carry out DDoS attacks, which would hinder

Internet access, or send spam, which would waste the public’s time. We will examine

this more in the Threat Modeling section.

B.3.3 Threat Modeling

Harms

There are multiple harms that could result directly from Hubs, indirectly from

Hubs, and to Hubs themselves. These harms are detailed in Table B.18.

Attackers

Table B.19 explains the categories of attackers interested in the harms enabled by

the Hub. Attackers are listed roughly in order of increasing security expertise and

resources.

Small crime differs from expansive crime primarily by a qualitative difference

in size and organization. Small crime could be an individual or a small group of

people who cause security breaches more or less informally. Brian Kreb’s description

of Anna-Senpai [52], for instance, would fit this category. expansive crime, on the

other hand, would include larger organizations with more professional organization

and expertise; stereotypical Eastern European criminal hacking organizations would

fit this category. While both attackers can cause devastating harm, expansive crime

will tend to have more patience, security expertise, and funding to develop more

sophisticated attacks. In both cases, these attackers are almost always interested in

155

Table B.18: Potential harms resulting from Hubs

Harm Description Assets at risk

unavailable the Hub ignores commands OCF network, availability,
company revenue

false response Hub responds to command
falsely

data, availability, trust,
company revenue

replace Hub is damaged and must
be replaced

Hub, availability, company
revenue

bot Hub incorporated into bot-
net

Internet access, time, com-
pany revenue

credential theft credentials for other ac-
counts, devices, or services
stolen

credentials, company rev-
enue

pivot harm the Hub is exploited and
used as a proxy to cause
harm through other devices
on the OCF network

OCF network, IoT prod-
ucts, data, company rev-
enue

pivot bots the Hub is exploited and
used as a proxy to incor-
porate other devices on the
OCF network into botnets

Internet access, time, com-
pany revenue

i/O theft voice commands and their
responses stolen

data, company revenue

156

Table B.19: Potential attackers with an interest in Hub harms. Exclamation points
after harms indicate relatively higher expected interest in causing that harm.

Attacker Description Harms of interest

prankster people looking to cause mis-
chief

unavailable, false re-
sponse, replace, cre-
dential theft, pivot
harm

hacktivists activists who make state-
ments through hacking

unavailable (!), false re-
sponse (!), replace (!),
bot (!), credential theft
(!), pivot harm (!), pivot
bots (!), i/O theft (!)

small crime small-time criminals look-
ing to steal data or amass
botnets on a budget

bot (!), credential theft
(!), pivot harm (!), pivot
bots (!)

expansive crime organized crime looking to
steal data or amass botnets

bot (!!), credential theft
(!!), pivot bots (!!)

APT highly motivated, well-
funded, expert, highly
targeted, and patient
attackers

credential thefta, pivot
harma, i/O thefta

government agents of law enforcement or
espionage

credential theftb, pivot
harmb, i/O theftb

aAPT will have an strong interest in causing this harm to a very small number of special indi-
viduals, and those targeted users will likely know the risks.

bStates will have an strong interest in causing this harm to certain suspects or activists, but these
cases are extremely rare, and those users will likely know the risks.

157

stealing valuable data and credentials or building botnets, so their interest in any

single target is low.28

Means

There are a variety of means within the OCF scope that attackers could employ

to cause the harms made possible by the Hub. Table B.20 specifies them.

Table B.20: Means through which attackers could cause harms by leveraging Super-
Lock OCF communications.

Means Description Harms

spoof admin impersonating an adminis-
trator

unavailable, false re-
sponse, replace, bot,
credential theft, pivot
harm, pivot bots, i/O
theft

admin commands sending commands that en-
tail administrator-level ac-
tions

unavailable, false re-
sponse, replace, bot,
credential theft, pivot
harm, pivot bots, i/O
theft

MITM onboarding man-in-the-middling the
initial onboarding process

unavailable, false re-
sponse, replace, bot,
credential theft, pivot
harm, pivot bots, i/O
theft

eavesdrop listening in on communica-
tions between the Hub and
another device

credential theft, i/O
theft

modify traffic actively modify OCF com-
munications between a Hub
and another endpoint

unavailable, false re-
sponse, pivot harm

spoof device pretend to be a legitimate
endpoint that connects to
the Hub

unavailable, false re-
sponse, credential theft,
pivot harm, i/O theft

overload commands assert that a malicious de-
vice is the proper recipi-
ent of a voice command in-
tended for another device

unavailable, false re-
sponse, credential theft,
i/O theft

As with the SuperLock, spoof admin differs from admin commands in that the
28The exception would be that small crime might occasionally want to burglarize a home with

the help of pivot harm.

158

former exploits some weakness in identification and authentication and the latter ex-

ploits some weakness in access control. In either case, we assume that administrator-

level access could enable an attacker to get root on a Hub.29

Overload commands lies at the edge of the scope of PRSD. Determining which

commands to route to which devices is the job of the proprietary pattern matching

algorithm, which itself is not affected by the OCF architecture. However, the structure

of the OCF architecture may enable an attacker to convince a Hub to route commands

intended for another device to a malicious device. In this sense, this means is in scope

as a separate issue than simply eavesdrop or spoof device.

There are some notable means that are not within the scope of PRSD. One user

could impersonate another user’s voice, causing harm by acting as the impersonated

user for the Hub. However, this attack is completely outside the consideration of

the OCF architecture, so it does not merit consideration here. For the same reason,

any attack that would interfere with the proprietary scheme that Hubs use to receive

software updates cannot be considered here.

B.3.4 Security Option Enumeration

Security options

Here, we present a list of high-level security options that a company like OCF-

Makers may actually consider. As with all other security designs, it is infeasible for

OCFMakers to think of, let alone fully consider, every potential option for mitigating

threats to Hubs. These options do, however, cover every means.

encryption: use a strong encryption scheme to make all OCF communications

confidential. All other security options rely on this option, and (assuming a smart

implementation with proper key exchange, etc.) it would prevent eavesdropping on

OCF communications almost entirely.

There are several authentication schemes that could allow a Hub to verify the

identities of administrators and potentially OCF endpoints. For the time being, we

assume some sort of permission scheme (such as access control lists) to control access
29See Section B.1.3 for a justification of this assumption.

159

to the Hub’s resources. Authentication itself addresses spoof admin, spoof device,

and modify traffic, and the permissions system that accompanies it will mitigate

admin commands. These options, whose names start with auth, are:

1. auth/password/vendor: use a single manufacturer-set password listed in

each Hub’s manual to control administrative access to the web application.

This would slightly impede spoof admin and admin commands, although

any slightly motivated attacker could figure out this password by grabbing a

copy of the Hub instruction manual.

2. auth/password/admin: have the administrator set her own password during

the initial setup process. This could slow attackers’ ability to spoof admin

or send admin commands, but would probably would only seriously impede

pranksters, some hacktivists, and some small crime.30

3. auth/crypto/local: use cryptographically secure public key credentials to au-

thenticate administrators, other devices, and services, and store the credentials

locally. By default, the Hub itself would store these credentials, although OCF-

Makers could later explore options for delegating credential storage to another

local endpoint. Devices would need to present their credentials to the Hub

for authentication. This method would be extremely difficult to defeat, as it

would require either stealing the credential, compromising an OCF endpoint, or

breaking public key cryptography—methods typically only available to APT

and government.31

4. auth/crypto/remote: use a single CMS to generate, issue, and revoke the

credentials for all Hubs and compatible devices. This provides the same pro-

tections as auth/crypto/local, except that the CMS could become a central
30Passwords can be guessed or socially engineered. Most people do not choose hard-to-guess

passwords, even with most complexity rules [3]. Indeed, researchers have demonstrated that choosing
complex and unique passwords for many accounts is not feasible in general [30].

31This option differs from the local auth/crypto options we considered for SuperLock because
the Hub has to act as an intermediary to other OCF devices, whereas one may want to isolate a
SuperLock from the rest of the local network.

160

point of failure that leaks the credentials of every device relying on it if it’s

attacked. As a result, expansive crime and perhaps some small crime and

hacktivists might additionally be willing to circumvent this security option.

5. auth/biometric/voice: the Hub could use people’s voice signatures to au-

thenticate the administrator. One would need to find a way to impersonate a

user’s voice or break the underlying implementation, as well as physical pres-

ence, to defeat this option. Assuming that OCFMakers would only deploy this

option if it was fairly reliable, probably only government could ever carry out

such attacks.

6. auth/biometric/fingerprint: the Hub could have a fingerprint scanner that

authenticates administrators for the web app by their fingerprints. Since this at-

tack would require physical presence as well as a way to lift fingerprints or break

the underlying implementation, probably only government could circumvent

this option.

There are several options to protect against MITM onboarding. These options,

whose names begin with ini, include:

1. ini/first: on initial bootup, trust the first device to contact the Hub to be

the administrator for onboarding, and set up a secure channel to continue on-

boarding from there. This would prevent just about any attacker from using

MITM onboarding, unless the attacker has a persistent presence on the local

OCF network and is able to make contact with the Hub before the legitimate

administrator. Probably only government or maybe APT could do this con-

sistently.

2. ini/PIN: on initial bootup, have the Hub emit an out-of-band random PIN

through audio when it’s being setup, which the administrator could enter on

to whatever device is being used to facilitate the setup process.32 This would
32The random PIN would be used as a pre-shared key for secure key exchange and subsequent

encrypted communication.

161

prevent MITM onboarding unless the attacker could either record the audio

and enter it on the MITM device faster than the administrator does.

3. ini/button: use a physical button on the Hub to start the initialization process

for a brief period of time, and follow the procedure of ini/first from there. Like

ini/first, this does depend on a race, but it is more difficult here, because race

starts at a time controlled more directly by the administrator.

Finally, there are several options for dealing with the command overload means,

whose names start with install:

1. install/store: have the administrator select and install appropriate commands

via a store within the web application hosted by OCFMakers. To improve

usability and prevent look-alike commands from being installed, when a device

is connected to the Hub, it could provide a pointer to the correct commands.

Beating this option would require getting by OCFMakers’ certification process.

While this could theoretically be fool-proof, the amount of spam in the iOS and

Google Play stores leads us to believe that any attacker could occasionally fool

some users.

2. install/approve: when a device or service tries to connect to a Hub, the

Hub will audibly ask whether or not to accept the new endpoint’s commands.33

Cloud services, which are not installed on the local OCF network, could connect

if the administrator allows them to do so through another administrative device.

For instance, she could sign up for a cloud service on her phone, and, upon

registration, the service could then send a request through the phone to the

administrator’s Hub. Similarly to install/store, any attacker could trick some

users by using names that sound similar to the name of the legitimate device

whose commands are being overridden.34

33If nobody is around at the moment that voice approval is asked for, the Hub could ask again
later. It’s not difficult to imagine that this could be implemented with negligible usability burden.

34One might imagine that, with this option, an attacker could spam a user by repeatedly asking
her to accept new command patterns. While a naive implementation of this security option may
allow this, there are simple additional mechanisms that could largely mitigate this. For instance,

162

3. install/discovery: have the administrator explicitly command the Hub to is-

sue a request for new commands locally. The Hub would then verbally describe

each new set of commands. If a malicious device tried to install its own com-

mands on the Hub, the administrator could note the unexpected installation

and remove it in the web application. As with install/approve, any attacker

could gain some success with sound-alike names.

Table B.21 summarizes these options.

Table B.21: Security options for the Hub. Dollar signs indicate relatively how many
resources needed to overcome a security option.

Option Means

sp
oo

f
ad

m
in

ad
m

in
co

m
m

an
d
s

M
IT

M
on

b
oa

rd
in

g

ea
ve

sd
ro

p

m
od

if
y

tr
affi

c

sp
oo

f
d
ev

ic
e

ov
er

lo
ad

co
m

m
an

d
s

encryptiona $$$$
auth/password/vendor $ $
auth/password/admin $$ $$
auth/crypto/local $$$ $$$ $$$ $$$
auth/crypto/remote $$$b $$$b $$$b $$$b

auth/biometric/voice $$$ $$$
auth/biometric/fingerprint $$$ $$$
ini/first $$$
ini/PIN $$$c

ini/button $$$c

install/store $$
install/approve $$
install/discovery $$

aMost other security options rely on this.
bCould be a central point of failure for all managed devices.
cAdds second factor over ini/first

Security vs. features

Whatever authentication options are chosen, only other OCF endpoints with com-

patible authentication schemes will be compatible with the Hub.

a Hub could simply reject repeat requests for command patterns that have already been rejected.
There may be ways to get around this, but it would be difficult.

163

It’s difficult to envision a way for remote cloud services to connect to a Hub using

the install/discovery to prevent command overload.

Security vs. security

Table B.21 contains most of the information needed to see the security tradeoffs

between the security options. Aside from this, one should note that most of these

options can be chosen together. However, ini/first cannot be chosen with the other

ini options, and only one of the install can be chosen.

Security vs. cost

encryption and the auth/crypto options cost a lot to develop in the first place,

but it would not cost a lot for OCFMakers to incorporate existing crypto libraries

into their code to take care of the most expensive aspects of these options.

Besides the base implementation costs, auth/crypto/global requires there to be

a third party CMS to manage credentials, which is not a cheap thing for a third party

to develop and support, but the marginal costs of the Hub’s participation in it are

minimal.

Both auth/password options would be relatively cheap to implement—password

checking itself is easy to implement, and password input would only require minor

modifications to the web application.

Relying on auth/biometric/voice for authentication would have high costs and

pose a high risk, as its not clear whether such an authentication scheme could be

developed to sufficient reliability at a cost affordable by OCFMakers.

Many devices already support auth/biometric/fingerprint authentication. OCF-

Makers could probably choose to develop its own sensors and software in-house for

higher development costs or purchase COTS fingerprint authentication components

from a third party supplier. Either way, though, this option is extraordinarily expen-

sive, as this option requires substantial hardware modifications that would raise the

production costs of every Hub.

ini/first has minimal development and no per unit costs. ini/PIN would cost

slightly yet manageably more to develop, but it can also be implemented without

introducing new hardware capabilities. The ini/button would probably have de-

164

velopment costs that are similar to those of ini/PIN, but it would impose higher

hardware costs on each Hub produced. Like auth/biometric/fingerprint, the in-

creased production costs of a hardware modification like this are substantial.

All install options impose small but nonzero costs on to other devices in order to

be compatible with the Hub. It’s worth noting, though, that it already takes some

degree of third party investment to develop compatible command patterns in the first

place.

install/store would require OCFMakers to invest a considerable amount in de-

veloping and maintaining the store; certifying that command patterns are legitimate

would be particularly taxing. install/approve and install/discovery, by compar-

ison, would likely have small development costs.

Security vs. usability

With the computational resources that Hubs were likely to have anyway, none of

these security options will likely impose a noticeable performance cost.

The auth/password options take time to enter correctly and must be remem-

bered, and each of these inconveniences grows with the complexity of the password.

With complex and unique passwords, auth/password/user could easily become ir-

rational or incentivize users to come up with workarounds to their own passwords [30,

41, 74].

The auth/crypto options require particular devices to be used to access the web

app. This would be a pain if those privileged devices were lost, stolen, or damaged.

Besides this constraint, though, the usability burden of auth/crypto/local and

auth/crypto/global is minimal. In fact, they could improve usability overall by

coordinating permissions between devices—some permissions could automatically and

smartly be propagated to minimize how much the people using the devices actually

have to micromanage them. In the case of auth/crypto/local, the Hub itself would

do this management. With auth/crypto/global, the structure of the CMS itself,

which is outside of OCFMakers’ control, would determine the amount of coordination

that could be automated. On the one hand, it could feasibly allow coordination

between devices and services around the world, but, on the other, it may not facilitate

165

automatic coordination at all.

Alternatively, the auth/biometric options prevent remote administration. Ad-

ditionally, while they could work well with administration controlled by voice com-

mands, they would be clunky and cumbersome to coordinate with the web app.

Biometric authentication can also be unreliable—if a Hub could not correctly

recognize authorized auth/biometric/voice or auth/biometric/fingerprints al-

most every time, authentication would quickly become annoying. For

auth/biometric/voice in particular, the developers would have to anticipate that

people’s voices can change based on their mood, age, and health.

The onboarding options—ini/first, ini/PIN, and ini/button—would all be

pretty easy and convenient for most users to carry out. The latter two would re-

quire a bit of extra work, but it probably would not bother most people.

When connecting to new devices and adding new command patterns,

install/approve puts the least burden on users, as long as precautions are put in

place to mitigate spam. install/discovery takes hardly more effort, but it does

require more positive action of the user compared to the reactive nature of in-

stall/approve. The install/store would take the most effort, but anyone who

uses a smartphone app store could attest to, the usability burden here is still small.

It may be worth noting that each these three options could actually improve usability

over none of them at all, as they give clear feedback to an administrator that her Hub

is set up to accept voice commands for a given device or service. Without them, she

would have to check manually in the web app on her own.

B.3.5 Architectural Synthesis

Table B.22 shows the sections of the OCF specification and IoTivity documentation

that provide guidance and requirements relevant to the security options and their

tradeoffs. After considering these pieces of documentation, OCFMakers are left hav-

ing to choose encryption as a security decision, choosing one auth/crypto option,

one ini option, and optionally choosing either auth/biometric option and up to one

install option.

166

As with the SuperLock, the lack of guidance about credential types, CMS design,

and ACL management leave a lot of uncertainty in the tradeoffs.

Table B.22: Relevant documentation from the OCF specification [67] and IoTiv-
ity [46], and a description of their impact on the previously identified security options
and their tradeoffs. All specification documents are from v1.1.0.

Documentation Impact

Security 9.3.6 auth/password options not allowed
Security 9.3 auth/biometric/voice and

auth/biometric/fingerprint not within OCF,
but still acceptable as additional authentication factors

Security 9.3.3 Description of Asymmetric Authentication Key
Credentials, suitable for auth/crypto/local, and
auth/crypto/remote

Security 9.3.5 Description of Certificate Credentials, suitable for
auth/crypto/global

Security 5 encryption and one kind of auth/crypto required
Security 11.2.3 Enumerates suitable ciphers for encryption, substan-

tially reducing development costs
Security 5.1.1.2 Access Manager Service for auth/crypto boosts usabil-

ity but decreases security (suitable for consideration as
a sub-option)

Security 12.1 ACL guidance is currently TBD
Security 7.3.4 ini/first supported
Security 7.3.5 ini/PIN supported
Security 7.3.8 ini/button supported
IoTivity standard software implementation of ini/first

ini/PIN, cutting down software development costs
Core 11.3.2.2 install/discovery cheap to implement within OCF

specification
Core 11.3.2.4 install/approve cheap to implement within OCF spec-

ification
Security 6 auth/crypto options would substantially mitigate

command overload. Accordingly, install options be-
come less critical

B.3.6 Tradeoff Resolution

From the Architectural Synthesis, we know that encryption must be chosen as a

security decision. The OCF specification and IoTivity take care of most of the devel-

167

opment work for this option [67].

First we consider which of the two auth/crypto options to choose. The latter

will be cheaper if there is already a third party providing an external CMS to rely on;

otherwise, building and supporting one is beyond the capabilities of OCFMakers. If

one does exist and is widely used by many of the devices and services that OCFMakers

hopes will interoperate with Hubs, then auth/crypto/global should be chosen for

added value of compatibility with other devices.

Otherwise, if third party global CMS exists but is not the de facto authentication

standard for OCF devices, the decision between these options falls on weighing cost,

usability, and security. auth/crypto/local cannot be bribed and is not a single point

of failure for all Hubs, so it could be slightly more secure than auth/crypto/global.

More specifically, this additional security would make it more difficult for govern-

ment, APT, and expansive crime to carry out spoof device and modify traffic

at scale. Additionally, auth/crypto/local could position Hubs as standard creden-

tial managers of many home devices, increasing their overall value. On the other

hand, auth/crypto/local is more expensive for OCFMakers to develop. If OCF-

Makers can afford this cost, they should choose auth/crypto/local for the added

usability and security value.

Either way, choosing this option naturally allows these credentials to help au-

thenticate administrators as well. OCF compliant devices with web browsers and

administrator-level credentials, then, could simply access the web app by presenting

their administrator credential. This process can be done rather securely and trans-

parently to the user. The only security risk is that the credential is stolen from the

administrative device or that the administrative device is not trustworthy (from the

administrator’s perspective.) In practice, this would likely mean that a homeowner’s

smartphone is compromised. While this can happen, many security measures are

already put in place to these devices.

Biometrics could be used to offset this (relatively small) risk. The additional per

unit cost and usability burden of auth/biometric/fingerprint cannot be justified;

however, auth/biometric/voice could potentially be a justifiable second factor for

168

authenticating to the web application. An administrator could simply be prompted

to command her Hub to unlock the web app after trying to log in with her phone (or

similarly authorized but potentially compromised device.) This would protect well

against spoof admin, but it would not provide full protection against a compromised

phone (which could send admin commands.)35 However, the only attackers likely

to be a threat at this level at all are government and APT, and they could likely

find ways to circumvent auth/biometric/voice if needed, so this option is not worth

its tradeoffs.

ini/PIN should be chosen over the other OTM options. It is more secure than

ini/first, and it is already cheap because it is implemented in IoTivity and uses

planned hardware capabilities, unlike ini/button. Most users will not be inconve-

nienced by the need to enter a PIN one time.

From the architectural synthesis, we already know that auth/crypto/local and

auth/crypto/global—of which one will be chosen as a security decision—will largely

prevent any random device or service from performing command overload. A

malicious device or service could plausibly find a way to get a Hub to trust it enough

to accept command patterns, but the credentials owned by the endpoints associated

with overloaded commands could be used to discern between the two of them. With

the ability to discern between them, a Hub could simply ask which endpoint the

overloaded command is meant for.36 If this becomes a burden for a user, the web

app would presumably allow an administrator to block an unwanted and potentially

malicious device or service.

Still, it would make sense to use install/approve. Knowing that a new device

or service is set up with the Hub is a usability benefit that will probably outweigh

its usability burdens. It also provides an extra layer of protection against command

overload and costs almost nothing. install/discovery would not work by itself, as

it does not allow users to connect a Hub with cloud services in any elegant manner.
35The compromised phone could just wait until a user unlocks the web app and take control after

that.
36Even without malicious intent, a Hub will probably have to do this. For instance, the command

“hail me a ride share to the mall” might provoke a Hub to ask “do you want a Lyft or an Uber?” As
this consideration has nothing to do with OCF, this case study does not consider it in detail.

169

Likewise, the install/store would cost substantially more to develop and support,

would require much more effort from administrators, and would have negligible secu-

rity benefit over the other options.

Thus, the final security decisions at this stage of the framework are encryption,

ini/PIN, install/approve, and either auth/crypto/local or auth/crypto/global

for communicating with other devices and services as well as authenticating for the

web app.

B.3.7 Discussion

This case study strengthened support for some of the observations made following

the smart lock case study. Notably, following PRSD led the hypothetical OCFMak-

ers developers through the process of identifying and thinking critically about the

tradeoffs involved between various options in the Hub’s security design. In coming

to these decisions, the way that the processes in PRSD have the engineers explicitly

link harms, attackers, and means, as well as link means and security options, made

the analysis much easier and more efficient than trying to weigh options in an ad hoc

manner. Moreover, every aspect of the analysis and their outputs contributed at least

somewhat to the final security decisions, so there was no part of the analysis that was

redundant or unnecessary. Finally, the architectural synthesis made it just as clear

as before that the OCF specification needs more guidance on designing or choosing

secure CMSs and ACLs.

Additionally, this case study, when compared to the previous one, demonstrated

that different situations and threat models can call for different decisions between

similar competing security options. With the smart lock, it made the most sense for

each lock to generate its own local asymmetric cryptography keys for authentication.

With the Hub, the case is much less clear—depending on relative costs, it may be

preferable to rely on an external CMS. Similarly, while using an out-of-band PIN

to bolster onboarding security was too expensive for SuperLocks, the extra costs for

Hubs are nearly negligible, so the small extra security is worthwhile. In both of these

cases, a more rigid framework prescribing one alternative or the other would not be

170

perfect for these two case studies; it could guide one into a suboptimal decision.

This case study also gives an indication about how well PRSD scales to larger

projects. Not only is the Hub substantially more complex than a smart lock, its

interactions with other devices and services are more varied and uncertain, and its

potential attack surface is much larger. Still, it was straightforward to decompose

these complexities into a practicable threat model. Likewise, although the number of

means and security options increased over the initial smart lock analysis, the analysis

was still tractable. If development of these hypothetical devices were to continue

into greater granularity, then the increased analytical demand of the Hub over the

lock would probably compound. That said, since reapplications of PRSD over sub-

options typically only considers relative competing sub-options, instead of all sub-

options at once, there’s no reason that the analytical complexity of using PRSD on

the case studies should increase too much. In other words, while applying PRSD to

the Hub throughout its development will inevitably take more time than it would to

do the same to the smart lock, we predict that the difference in analytical tractability

between the case studies would remain more or less constant throughout.

As a stray observation, it’s interesting how drastically the Architectural Syn-

thesis changed the tradeoffs at stake for mitigating command overload; it’s just

as interesting how easy these changes were to incorporate into the existing pro-

cess outputs. When digging into the OCF architecture about resource discovery,

it became clear that the leading authentication options (auth/crypto/global and

auth/crypto/local) would automatically play a large role in preventing command

overload. Previously, they were not considered relevant to this particular means.

This changed the relative security benefits of the install options that were originally

relevant to overload. Despite being such a large change, adjusting the tradeoffs ac-

cordingly was so simple that it justified only a few sentences of explanation between

the Architectural Synthesis and Tradeoff Resolution analysis descriptions. In the end,

these changes made it so that only one of the original three options (install/approve)

was even worthy of consideration as a security decision. Even then, its ultimate in-

clusion as a security decision was only justified because the OCF architecture made

171

its development and marginal costs nearly negligible.

B.4 Robot Vacuum

B.4.1 Given

In this case study, we will consider a hypothetical OCF-compatible household vacuum

robot called “Vacubot” being developed by the equally hypothetical startup “V Corp.”

This mobile robot will drive around, vacuuming up trash with maximum autonomy.37

It can indicate when it is full with an LED on its top side. It has low-to-the-ground

sensors (e.g., ultrasonic, light, and camera) for finding its way around and developing

an internal model of the house layout. Under the hood, it uses AI to construct that

model and determine how to vacuum it efficiently.

Let’s suppose that V Corp. is developing Vacubot in a world where OCF com-

pliance is already ubiquitous. Vacubots have no direct controls, but will instead be

controlled entirely through OCF commands by other appropriate OCF devices. We

further assume that there standard data types that Vacubots adhere to in their ex-

posed OCF resources, so other devices can automatically make sense of Vacubots and

present relevant controls to users with whatever UI a device supports. For instance,

an OCF remote control smartphone app may generate a custom set of controls from

the OCF resources, whereas an OCFMakers Hub (see Section B.3) could determine

relevant voice commands. Perhaps homes in this future will often have some yet-

unimagined device that could automatically come up with and send convenient and

efficient commands to Vacubots so that humans never have to manually operate it at

all. Vacubots will rely on the onboarding process to determine what OCF endpoints

to trust.

Vacubot conspicuously receives software updates over the air via a proprietary

and explicitly non-OCF communications protocol. This is the only non-OCF com-

munication it engages in.
37It can handle small stairs, but could never scale furniture.

172

Emptying the garbage collected by a Vacubot is an entirely manual process per-

formed by humans.

It’s not so quiet and small that it’s sneaky, but it’s still quiet enough that most

people will never be annoying by the sounds it makes.

B.4.2 Situational Modeling

Capabilities

From the given information, we can specify several capabilities that Vacubots will

have, which are listed in Table B.23.

Table B.23: Vacubot capabilities.

Capability Description

move move around the house
sense sense objects near the ground
vacuum vacuum dirt
communicate send OCF communications over the local network and

the Internet
update receive Internet updates over a proprietary protocol
data store sensor data, state, configuration, and models for

vacuuming
AI run AI algorithms that model house layout, efficient

paths, and house dirtiness

Environment

Vacubots will be designed strictly for indoor use. They are mobile devices which

takes commands from other arbitrary OCF devices. They could run into people, pets,

and potentially valuable things, albeit with minimal force.

Stakeholders

Table B.24 details the relevant stakeholders, which follows the same structure and

reasoning as the stakeholder analyses for SuperLocks (Tables B.2 and B.11) and Hubs

(Table B.17.) Here, it is worth noting that “house objects” include any home object

that a Vacubot could run into. “Peace of mind” refers to the peace that is ruined

when one is annoyed; its inclusion will make more sense in the next section. It’s also

173

worth noting that we assume that V Corp. engineers will have below-average security

expertise. Unlike Lockr’s situation, V Corp. probably could not justify hiring security

experts, and, unlike OCFMakers, V Corp. is not large enough to probably already

have some, anyway.

Table B.24: Stakeholder Models

Type Stakeholders Interests and Assets Expertise Resources

Users homeowners Vacubot, OCF net-
work, data, creden-
tials, availability,
house objects, peace
of mind

minimal minimal

Admins homeowners Vacubot, OCF net-
work, data, creden-
tials, availability,
house objects, peace
of mind

minimal low

Developers V Corp. engi-
neers

company revenue lowa full time
job

Support V Corp. engi-
neers

company revenue lowa full time
job

Third parties Vacubot-
compatible
product devel-
opers

company revenue, IoT
products, data

Public People who use
the Internet

Internet access, time

aRelatively low security expertise compared to other developers

B.4.3 Threat Modeling

Harms

Multiple harms that could result directly from Vacubots, indirectly from Vacubots,

and to Vacubots themselves. These harms are detailed in Table B.25.

Attackers

Table B.26 lists potential attackers who may want to carry out the harms enabled

by Vacubots. Their expertise and resources mirror those described in the SuperLock

174

Table B.25: Potential harms resulting from Vacubots

Harm Description Assets at risk

leak data sensitive data is lost to at-
tackers

datai, company revenue

hit things Vacubot runs into things house objects, peace of
mind, company revenue

troll vacuuming places at incon-
venient times

peace of mind, company
revenue

unavailable the Vacubot ignores com-
mands

availability, company rev-
enue

pivot harm the Vacubot is exploited
and used as a proxy to cause
harm through other devices
on the OCF network

OCF network, IoT prod-
ucts, data, company rev-
enue

bot Vacubot incorporated into
botnet

Internet access, time, com-
pany revenue

pivot bots the Vacubot is exploited
and used as a proxy to in-
corporate other devices on
the OCF network into bot-
nets

Internet access, time, com-
pany revenue

credential theft credentials for other ac-
counts, devices, or services
stolen

credentials, company rev-
enue

replace Vacubot is damaged and
must be replaced

Vacubot, available, com-
pany revenue

175

(see Section B.1.3 and Section B.2.3) and Hub case studies (see Section B.3.3).

Table B.26: Potential attackers with an interest in Vacubot harms. Exclamation
points after harms indicate relatively higher expected interest in causing that harm.

Attacker Description Harms of interest

prankster people looking to cause mis-
chief

hit things, troll, unavail-
able, pivot harm, cre-
dential theft, replace

hacktivists activists who make state-
ments through hacking

leak data, hit things,
troll, unavailable, pivot
harm, bot, pivot bots,
credential theft (!), re-
place

burglars people interested in burglar-
izing and stealing physical
homeowner assets from a
home

leak data, pivot harm,
credential theft (!)

government agents of law enforcement or
espionage

leak dataa, pivot harma,
credential thefta

APT highly motivated, well-
funded, expert, highly
targeted, and patient
attackers

pivot harmb, credential
theftb

expansive crime organized crime looking to
steal data or amass botnets

bot (!!), pivot bots (!!),
credential theft (!!)

aAPT will have an strong interest in causing this harm to a very small number of special indi-
viduals, and those targeted users will likely know the risks.

bStates will have an strong interest in causing this harm to certain suspects or activists, but these
cases are extremely rare, and those users will likely know the risks.

Means

Table B.27 details the means relevant to the OCF architecture through which

attackers may cause the harms enabled by a Vacubot.

As with the SuperLock and Hub, spoof admin and spoof user differs from ad-

min commands and user commands in that the former two exploit some weakness

in identification and authentication and the latter two exploit some weakness in ac-

cess control. In either case, we assume that administrator-level access could enable

an attacker to get root on a Vacubot.38

38See Section B.1.3 for a justification of this assumption.

176

Table B.27: Means through which attackers could cause harms by leveraging Vacubot
OCF communications.

Means Description Harms

spoof admin impersonating an adminis-
trator

leak data, hit things,
troll, unavailable, pivot
harm, bot, pivot bots,
credential theft, replace

admin commands sending commands that en-
tail administrator-level ac-
tions

leak data, hit things,
troll, unavailable, pivot
harm, bot, pivot bots,
credential theft, replace

spoof user impersonating an autho-
rized user

troll, unavailable, cre-
dential theft

user commands sending commands that en-
tail user-level actions

troll, unavailable, cre-
dential theft

eavesdrop listening in on communica-
tions between the Hub and
another device

credential theft

modify traffic actively modify OCF com-
munications between a Hub
and another endpoint

leak data, hit things,
troll, unavailablea, pivot
harm, bot, pivot bots,
credential theft, replace

MITM onboarding man-in-the-middling the
initial onboarding process

leak data, hit things,
troll, unavailable, pivot
harm, bot, pivot bots,
credential theft, replace

aCompared to spoof admin, admin commands, and MITM onboarding, unavailable is of
particular concern here.

177

B.4.4 Security Option Enumeration

Security options

This section presents a list of high-level security options that a company like V

Corp. may actually consider. As with all other security designs, it is infeasible for

V Corp. to think of, let alone fully consider, every potential option for mitigating

threats to Vacubots. These options do, however, cover every means.

encryption: use a strong encryption scheme to make all OCF communications

confidential. Most other security options depend on having this option. Additionally,

a best-practices and correct implementation would prevent eavesdrop almost entirely

and prevent modify traffic from causing any harm aside from unavailable.

There are several ways of authenticating identity that may work for Vacubot. For

all of them, assume some accompanying permission scheme (such as ACLs) that is

smartly implemented to control access to Vacubot resources.39 These options each

address spoof admin, admin commands, spoof user, and user commands.

Additionally, they all rely on having encryption. The authentication options, whose

names begin with auth, are:

1. auth/passwords: use one unprivileged password could be used to authorize

operational OCF requests (day-to-day activities), and use a separate password

to authorize all higher-privilege requests, including administrative configura-

tion and arbitrary operations on OCF resources hosted by a Vacubot. This

allows administrators to limit their trust of non-administrative users and their

devices by only giving them the unprivileged password. This could stop most

pranksters and burglars, but would only partially slow down the other at-

tackers.40

2. auth/crypto/local: use cryptographically secure public key credentials to au-
39The details of this permission scheme would be sorted out later as sub-options to whatever

authentication approach is chosen.
40Passwords can be guessed or socially engineered. Most people do not choose hard-to-guess

passwords, even with most complexity rules [3]. Indeed, researchers have demonstrated that choosing
complex and unique passwords for many accounts is not feasible in general [30].

178

thenticate administrators, other devices, and services, and store the credentials

locally on Vacubots themselves. Those users, administrators, devices, and ser-

vices would need to present valid credentials in order to have their commands

accepted. However the permission scheme is ultimately set up, it would at

least distinguish between privileged credentials, which could authorize changes

to credentials and permissions, and unprivileged credentials, which could not.

Aside from those trusted devices being compromised, defeating these credentials

would probably require finding a weakness in the underlying cryptographic pro-

tocol (or exploiting a bad implementation, which is outside the scope of PRSD.)

These techniques are typically only available to APT and government, but

it is difficult to imagine that these attackers would Vacubots this way with any

appreciable frequency.

3. auth/crypto/remote: this is similar to auth/crypto/local, except that Vac-

ubots would trust some CMS with generating credentials and organizing the

permissions scheme. To contrast, under auth/crypto/local, administrative

agents can request permission changes, but the underlying permission system

is still part of Vacubot’s design and stored locally. The CMS could be housed

within the local home OCF network or be a global CMS—Vacubots will trust

whatever they are told when being initially set up. Likewise, this option pro-

vides the same protection as auth/crypto/local. The only caveat is that, if

the CMS is compromised, it could be a single point of failure for all devices

that rely on it. This single point of failure could be an attractive target to

expansive crime if they can exploit it at scale.

4. auth/fingerprint: require a user’s biometric fingerprint to authenticate and

authorize and command that the Vacubot receives. Since V Corp. does not

want to assume a particular kind of device for inputting commands, they would

accept fingerprint data sent over OCF traffic from a device with a compatible

fingerprint reader and also have a fingerprint scanner on each Vacubot itself

to authorize commands from devices without compatible scanners. To defeat

179

it, an attacker would need to find a way to impersonate the fingerprint of an

authorized user, which probably only government could carry out reliably.

5. auth/PIN: aside from the above, Vacubots could also require a second factor

to authenticate administrators for particularly sensitive actions (like adding a

new user.) This factor would have the Vacubot display an out-of-band random

PIN on its top, which an administrator would then enter into an administrative

device to authorize the action. This would require an attacker to either be

physically present to view a PIN and enter it. Phishing would be tricky and

likely require the attacker to compromise the administrative device being used

to enter the PIN. Only government could carry out this attack reliably.

6. no credentials: finally, Vacubots could be configured not to store any au-

thentication credentials locally at all. Regardless of means, this would make

credential theft impossible. Information for verifying credentials like public

keys and password hashes could still be stored. As a slight variation, minimal

credentials would restrict stored credentials to only the absolute minimum

needed for a Vacubot to identify itself.

Finally, there are several options with which to protect the initial setup of a

Vacubot from MITM onboarding. All these options, whose names begin with ini,

require encryption:

1. ini/first: on initial bootup, trust the first OCF device to contact the Vacubot

to be the administrator for onboarding, and set up a secure channel to con-

tinue onboarding from there. This would prevent just about any attacker from

using MITM onboarding, unless the attacker has a persistent presence on

the local OCF network and is able to make contact with the lock before the

legitimate administrator. Probably only government or maybe APT could

do this consistently.

2. ini/PIN: on initial bootup, have the Vacubot display an out-of-band random

PIN through a screen on its top side when it’s being setup, which the admin-

180

istrator could enter on to whatever device is being used to facilitate the setup

process.41 This would prevent MITM onboarding unless the attacker could

either record the audio and enter it on the MITM device faster than the admin-

istrator does.

Finally, we include, for the sake of comparison:

no OCF: do not make Vacubot communicate over OCF. Instead, use buttons on

its body to operate it. Naturally, this prevents any of the means from being exercised

whatsoever.

Table B.28 summarizes these options.

Table B.28: Security options for the SuperLock. Dollar signs indicate relatively how
many resources needed to overcome a security option.

Option Means

sp
oo

f
ad

m
in

ad
m

in
co

m
m

an
d
s

sp
oo

f
u
se

r

u
se

r
co

m
m

an
d
s

ea
ve

sd
ro

p

m
od

if
y

tr
affi

c

M
IT

M
on

b
oa

rd
in

g

encryptiona $$$$ $$$$b

auth/passwords $$ $$ $$ $$
auth/crypto/local $$$ $$$ $$$ $$$
auth/crypto/remote $$$c $$$c $$$c $$$c

auth/fingerprint $$$ $$$ $$$ $$$
auth/PIN $$$d $$$d $$$d $$$d

no credentials $e $e $e $e $e $e

minimal credentials $e $e $e $e $e $e

ini/first $$$
ini/PIN $$$
no OCF $$$$ $$$$ $$$$ $$$$ $$$$ $$$$ $$$$

aAll auth and ini options require this.
bunavailable is unaffected.
cDepends on external CMS. Could be a central point of failure for all managed devices.
dAugments other auth options to this level.
eInvalidates credential theft, affects nothing else.

HI Security vs. features
41The random PIN would be used as a pre-shared key for secure key exchange and subsequent

encrypted communication.

181

auth/passwords, auth/fingerprint, and auth/PIN limit the degree to which

Vacubots can be automated. The first either requires a user to be near a trusted device

that can take the password as input, or users and administrators can circumvent

this by setting up devices with password managers (which, as we will see, has other

tradeoffs.) auth/fingerprint is similar in that each operation a Vacubot performs

requires the user to either have a device with a fingerprint scanner handy or to

physically touch her Vacubot. Likewise, auth/PIN requires line-of-sight physical

proximity to the Vacubot for every privileged operation it performs. These options

would thus prevent Vacubots from running when their operators are, say, asleep or

at work.

auth/crypto/remote requires there to be some compatible CMS available for a

Vacubot to operate at all. In this hypothetical world of OCF ubiquity, this will not

usually be a problem, but it is still a tradeoff worth noting.

no OCF would prevent Vacubots from having any of the OCF compatibility

features in its original design.

security vs. security

Table B.28 contains most of the information needed to see the security tradeoffs

between the security options.

Additionally, it should be noted that all auth options are compatible with min-

imal credentials, yet the auth/crypto options are not compatible with no cre-

dentials, as the Vacubot needs to store its own credential. auth/fingerprint might

be; there is debate about how well a valid fingerprint can be determined from the

information stored about a fingerprint signature [71].

The auth/crypto options are mutually exclusive. Of these two, the former avoids

adding to a central point of failure. Otherwise, the auth options can be used in

combination.

The ini options are mutually exclusive. ini/PIN provides better security, as it

requires the attacker to have a method of reading the PIN.

no OCF is incompatible with all the other security options. It provides complete

security against all the means in this framework.

182

Security vs. cost

Anything requiring cryptography, which includes encryption and anything that

requires it, is expensive to design securely from the ground up. However, if OCF

supports any existing standard libraries that implement cryptologically secure algo-

rithms, then the development costs are small.

Besides the base implementation costs, which are comparable to

auth/crypto/local, auth/crypto/remote requires there to be a third party that

develops and supports a CMS for Vacubots to rely on. This is a huge undertaking. For

normal Internet traffic, entire companies exist that just provide CMSs [17]. Certainly,

as a startup, V Corp. does not have the resources to develop and support such a

CMS on its own at this time. That said, if Vacubots are designed to work with

prevalent existing CMSs, the marginal cost to those CMS providers would be minimal,

if anything.

Both password options would be relatively cheap to implement—password transfer

and checking itself is easy to implement (with widespread existing algorithms), and

V Corp. could rely on existing user interfaces of OCF devices to take password input.

Similarly, many devices already support auth/fingerprint authentication. V

Corp. could probably choose to develop its own sensors and software in-house for

higher development costs or purchase COTS fingerprint authentication components

from a third party supplier. Either way, though, this option is extraordinarily expen-

sive, as this option requires substantial hardware modifications that would raise the

production costs of every Vacubot.

ini/first has minimal development and no per unit costs, as it can be implemented

in software. ini/PIN would cost more to develop, and it cannot be implemented with-

out introducing new hardware capabilities that would substantially increase Vacubot

production costs.

auth/PIN would have the same costs as ini/PIN. Further, with one PIN option,

the marginal cost of adding in the other one is almost zero.

no credentials does not have an inherent cost of its own.

no OCF actually saves all the development costs of making Vacubots OCF-

183

compatible. That said, it imposes the additional costs of designing a UI on the body

of the Vacubot. This could be similarly priced or even more expensive than making

Vacubots OCF-compatible, as V Corp. still needs to develop all the same features,

but it has to do so from scratch instead of taking advantage of existing standards and

the existing UIs of other OCF devices. Furthermore, no OCF dramatically increases

the marginal costs of producing Vacubots because of the extra UI components it

will need on its body, which, again, would already be in place on other devices if

Vacubots were OCF-compatible. no OCF does not save on any marginal costs that

might offset this increase.

Security vs. usability

With the computational resources that Vacubots are likely to have anyway, none

of these security options will likely impose a noticeable performance cost. In this

context, AI takes much more computational ability than encryption.

auth/passwords is highly unusable. Not only are passwords inherently unusable

for a number of reasons [16], the extra burden of having to enter a password for every

command to a Vacubot defeats much of the point of having an OCF-compatible

automated vacuum cleaner to begin with. It still saves some work over a non-OCF

vacuum, but not much. Saving the password or passwords on devices with password

managers could greatly improve the usability of these options, although this is not

something that V Corp. has any influence over.

auth/fingerprints take less time to input than passwords, but they still im-

pose the extra burden of forcing users to take action to approve of everything that

a Vacubot does. Furthermore, if a homeowner doesn’t have a device with a finger-

print scanner, then she would have to physically touch the Vacubot to approve every

action. Either way, like passwords, this defeats much of the point of having an OCF-

compatible automated vacuum cleaner to begin with. It still saves some work over a

non-OCF vacuum, but not much.

auth/PIN has the same low usability as auth/fingerprint, except it always

requires one to be within line of sight of the Vacubot. This is not as bad as having

to touch it, but it is less convenient than using a remote fingerprint scanner.

184

By contrast, the auth/crypto options, if designed and implemented well, would

be largely unnoticed over no authentication. The only difference is that homeowners

would have to use authorized devices to interact with the Vacubot. This is not a

huge burden; if one doesn’t have one’s phone, then being unable to vacuum is a trifle

compared to the other resulting inconveniences.

Indeed, auth/crypto/remote could actually make the Vacubot even more us-

able than it would be otherwise by streamlining its permission management with

other OCF devices it manages. This could save homeowners a lot of hassle and even

potentially automatically set up some coordinated behavior between Vacubots and

other devices. Automated coordination is still possible with auth/crypto/local,

but only if all the other devices are set up to deal with the kind of credential that

Vacubots generate automatically.

The onboarding options—ini/first and ini/PIN—would each be pretty easy and

convenient for most users to carry out. The latter would require a bit of extra work,

but it probably would not bother most people to do input one PIN when they buy a

new device.

no OCF is the least usable at all, as it blocks all the convenience of remote and

automatic operation that OCF compatibility offers. These conveniences would be the

Vacubot’s competitive advantage, so this is a significant sacrifice to make.

B.4.5 Architectural Synthesis

Table B.29 covers the sections of the OCF specification and IoTivity that provide

guidance or requirements relevant to the security options and their tradeoffs.

To summarize, the specification requires encryption to be used, and it does

not allow either auth/passwords or auth/fingerprint to be used. Exactly one

auth/crypto option must be used, although there is little guidance for choosing

between or implementing either one. Either ini/first or ini/PIN can be chosen

and developed at low cost (although the production costs are unchanged), and some

guidance is given for choosing between them. auth/PIN can also be chosen and

developed at low cost, although no guidance for it is given. Minimal credentials is

185

also a viable option. As an alternative to all of this, no OCF can be chosen.

Table B.29: Relevant documentation from the OCF specification [67] and IoTiv-
ity [46], and a description of their impact on the previously identified security options
and their tradeoffs. All specification documents are from v1.1.0.

Documentation Impact

Security 9.3.6 auth/passwords not allowed
Security 9.3 auth/fingerprint not allowed
Security 9.3.3 Description of Asymmetric Authentication Key

Credentials, suitable for auth/crypto/local, and
auth/crypto/remote

Security 9.3.5 Description of Certificate Credentials, suitable for
auth/crypto/remote

Security 5 encryption and one kind of auth/crypto required
Security 11.2.3 Enumerates suitable ciphers for encryption, substan-

tially reducing development costs
Security 5.1.1.2 Access Manager Service for auth/crypto boosts usabil-

ity but decreases security (suitable for consideration as
a sub-option)

Security 12.1 ACL guidance is currently TBD
Security 7.3.4 ini/first supported
Security 7.3.5 ini/PIN supported
IoTivity standard software implementation of ini/first

ini/PIN, cutting down software development costs.
Similarly decreases development costs of auth/PIN.

B.4.6 Tradeoff Resolution

To reiterate, if Vacubots are to be OCF compatible, then encryption needs to be

chosen.

The tradeoffs between auth/crypto/local and auth/crypto/remote are com-

plicated. From a cost perspective, the latter is only a viable option if V Corp. can

reasonably expect that a sufficient number of consumers have access to an adequate

third party CMS to use; the startup cannot afford to make and support such a

CMS itself. Even if both are available options, the tradeoffs remain complicated.

auth/crypto/local entails the costs of designing some sort of credential and per-

mission scheme, and auth/crypto/remote entails the costs building interfaces to

186

the existing third party CMSs that Vacubots are to be compatible with. This trade-

off could fall either way, although if there is a small set of standard CMSs with well-

documented interfaces,42 auth/crypto/remote would be cheaper to develop and im-

plement. Further complicating this decision, the usability of auth/crypto/remote

is likely to be higher than that of auth/crypto/local if the CMS can streamline the

ACLs associated with the Vacubot. Thus, if viable, auth/crypto/remote is more

likely to be slightly preferable to auth/crypto/local in terms of cost and usability

(although there are a number of variables to check for both of these.)

That said, auth/crypto/remote is likely less secure than auth/crypto/local,

because it contributes towards a central point of failure for all OCF devices that de-

pend on it. Furthermore, some CMSs can be bribed or otherwise compromised. While

both options would be somewhat susceptible to attacks from government, these

weaknesses might make auth/crypto/remote additionally susceptible to expan-

sive crime.43 That said, if expansive crime can attack CMSs at scale, Vacubots

are unlikely to sway this attacker’s decision making or contribute significantly to the

botnet that these attackers would build, anyway. Thus, while auth/crypto/local

does technically have some security advantages over auth/crypto/remote, those

advantages are incredibly unlikely to matter when translated to the actual harms

that could result. The developers should simply choose the more usable and cost-

effective of auth/crypto/local and auth/crypto/remote.

The other security options are less complicated to choose from. ini/first is prefer-

able to ini/PIN, because it saves on the marginal production price of Vacubots.

While this makes MITM onboarding less secure, it is difficult to think of a situ-

ation where that would make a significant difference. Even with ini/first alone, an

attacker needs to have already compromised the local OCF network. While MITM

onboarding could technically enable any potential harm, an attacker who has al-
42Although one would expect such standards in a future of ubiquitous OCF devices, the OCF

specification does not provide any help in CMS and ACL design.
43While APT might also have the resources, there is no harm that would make this avenue of

attack worthwhile to it. Even if there are some incredibly critical devices or services that choose
to trust Vacubots and thereby make pivot harms particularly harmful, those critical devices and
services probably have a poor security design with lots of other vulnerabilities, anyway. As a result,
APT could just target them directly.

187

ready compromised the network could likely carry out most of them, anyway. She

couldn’t necessarily carry out leak data, hit things, troll, and replace, but an

attacker with persistence likely would not be interested in these things.

auth/PIN is even less worthwhile, because it hurts usability more than ini/PIN.

Thus, it will also be discarded.

If Vacubots are to be OCF compatible, minimal credentials should be chosen.

It minimizes the harm possible through credential theft and comes with essentially

no tradeoffs.

The final decision is whether or not OCF compatibility is worthwhile. With

encryption, minimal credentials, ini/first, and either auth/crypto/local or

auth/crypto/remote, many of the harms are significantly mitigated. The only

realistic ways to to carry out any of the means is to either compromise other trusted

devices on the network and maintain persistence or, under auth/crypto/remote,

compromise the CMS. In all these cases, there are hardly any situations where there

would be an attacker with enough interest in the potential harms to put in the effort

to carry out any of the means. Even then, the marginal harm that could result from

attacking a Vacubot is hardly more than what the attacker could probably pull off

anyway.44

Furthermore, the OCF standards make the development costs of these options

low, and they all have minimal effect on features and usability. no OCF, on the

other hand, would greatly diminish features and usability and raise the marginal cost

of Vacubots substantially. With no outstanding security threat in the way, the choice

to reject no OCF is easy. Thus, encryption, minimal credentials, ini/first, and

either auth/crypto/local or auth/crypto/remote are the final security decisions.
44The only exception would be if some particularly sensitive device chooses to trust Vacubots

enough to make pivot harms a major threat. However, V Corp. cannot do anything to prevent other
devices from trusting Vacubots, and it is not their responsibility if other devices have poor security
designs.

188

B.4.7 Discussion

This case study provides further evidence for some of the observations made in the

previous case studies. Again, following PRSD led the hypothetical developers through

the process of identifying and thinking critically about the tradeoffs involved between

various options in the Hub’s security design. In coming to these decisions, the struc-

ture of PRSD made the analysis easier and more efficient than trying to weigh options

in an ad hoc manner. Additionally, as before, there were no redundant or unneces-

sary aspects of the structure of PRSD. Finally, the lack of specification or guidance of

CMS design continued to make it difficult to estimate and compare tradeoffs between

options that rely on them.

The only security decision in common between the three case studies is encryption,

which is strictly required by the OCF.45 Thus, as hypothesized, varying tradeoffs do

lead to different security options being reasonable. Moreover, PRSD helps identify

and grapple with these tradeoffs; a less systematic framework would make this analysis

more difficult, and a more rigid framework would lead to suboptimal security designs

in some or all of these case studies.

One might feel that this case study has a lot of analysis for a simple, low-risk de-

vice. Especially when it turns out that some of the stronger security options were ulti-

mately rejected (or at least not accepted outright, in the case of auth/crypto/local),

it may seem that PRSD was a waste of time on Vacubot. However, by doing this

analysis, V Corp. would have concrete evidence to demonstrate why they made the

decisions they did. If Vacubots are ever successfully attacked, this evidence could

potentially help V Corp. win a legal liability case.46 Additionally, this analysis poten-

tially saves V Corp. a lot of money if they would have otherwise chosen more expensive

security options like ini/PIN. It would also save them money if they would have cho-

sen less secure options and if Vacubots were subsequently hacked. Thus, the analyses

in this case study could be well worth their cost in the long run.
45They all have some key-based authentication, but the chosen design and tradeoffs between

contending designs.
46See Section 5.6 for more information on this possibility.

189

In addition to previously identified gaps in the OCF specification, it would have

helped if the OCF provided an option for Vacubot to assert limits to how much other

devices trust it. More specifically, it would be nice if Vacubots could claim that they

are only trustworthy for reporting details of its own status and that it should never

command other devices to do one thing or another. If it could do this, then pivot

harms and pivot bots would have been non-factors. As it is, there is no way to

anticipate for sure how much other devices will trust Vacubots. In the spirit of the

Principle of Least Privilege [72], other devices should not trust Vacubots much, and

they certainly should not trust them beyond their self-reported status. However,

there is nothing that enforces, let alone guarantees, this trust minimization. Thus, it

is difficult to estimate the risk of pivot harms and pivot bots. While it could be

argued that other devices’ trust in Vacubots is not the responsibility of V Corp., the

uncertainty and risk are still there. Having a “do not trust me” aspect to OCF would

make this much cleaner.

Despite these shortcomings, OCF compliance is still worthwhile in this scenario.

This case study explicitly compared the advantages and disadvantages of OCF com-

pliance with the tradeoffs of foregoing OCF functionality entirely, and, despite some

slightly heightened security risks, OCF compatibility was overwhelmingly worthwhile.

Not only did OCF compliance make Vacubots more valuable due to increased inter-

operability, there are ways that standardization cut costs: standard implementations

cut down development costs, and V Corp. is able to use the user interfaces of other

existing products instead of having to design, implement, and produce its own. Thus,

with sufficient adoption, there are times that the Open Connectivity Foundation’s

standards might be worthwhile in the end.

190

