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A b s t r a c t  

When implementing a system specified as a number of layers 

of abstraction, it is tempting to implement each layer as a 

process. However, this requires that communication between 

layers be via asynchnonous inter-process messages. Our 

experience, especially with implementing network protocols, 

suggests that asynchronous communication between layers leads 

to serious performance problems. In place of this structure we 

propose an implementation methodology which permits 

synchronous (procedure call) between layers, both when a higher 

layer invokes a lower layer and in the reverse direction, from 

lower layer upward. This paper discusses the motivation for this 

methodology, as well as the pitfalls that accompany it. 

1 I n t r o d u c t i o n  

This paper is concerned with a methodology for program 

structure, a methodology suitable for operating system programs, 

especially programs dealing with communications and networks. 

This methodology arose out of our earlier research in the 

implementation of network protocols, in which recurring 

performance problems with protocol software led us to the 

conclusion that many operating systems failed to provide the 

correct runtime support for highly interactive parallel software 

packages such as protocols. This paper describes and motivates 

this methodology, and discusses the operating system, Swift, 

which we built to explore it. 

The methodology described in this paper is relevant to 

programs which have been modularized according to the 

This research was supported by the Advanced Research Projects Agency of 
the Department of Defense and was monitored by the Office of Naval Research 
under contrac~ N00014-75-C-0681 and N00014-83-K-0125. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1985 A C M - 0 - 8 9 7 9 1 - 1 7 4 - 1 -  12/85-0171 $ 0 0 . 7 5  

principle of layering. Traditionally, a layer is thought of as 

providing services to the layer above, or the client layer. The 

client uses some mechanism for invoking the layer, perhaps a 

subroutine call. The layer performs the service for the client and 

then returns. In other words, service invocation occurs from the 

top down. As we will discuss below, there are organizational and 

modularity reasons why this downward flow of control is 

appealing in a layered system. However, the natural flow of 

control is not always downward. In a network driven 
environment, for example, most of the actions are initiated, not 

by the client from above, but by the network from below. The 

natural flow of control is thus upward, not downward. 

Especially where such an upward flow of control crosses a 

protection boundary, most systems do not permit this flow to be 

implemented as a procedure call. Instead, some more 

cumbersome and asynchronous mechanism must be used, such as 

an interprocess communications signal. Substantial inefficiencies 

and complexities can result from asynchronous upward flows. In 

our methodology, the system is organized so that the 

programmer has the choice as to whether an upward flow is 

implemented by procedure calls or asynchronous signals. We call 

this feature upcalls. 

We chose the word upcall to distinguish from the structured 

view of service invocation, organized around downward flow. An 

upcall need not go precisely upward. Our goal is that procedure 

flow should map on to the natural flow of control in the 

program, whether that is up, down, or sideways. With 

procedural invocation available in this way, there is thus no 

reason to use processes and interprocees communication unless 

there is an intrinsic source of asynchrony. 

The other half of this programming methodology is an 

approach towards structuring a layer. In many systems, a layer 

is implemented as a task or process. In our methodology a layer 

is organized as a collection of subroutines which live in a number 

of tasks, each subroutine callable as appropriate from above or 

below. Subroutines in different task that make up a layer 
constitute, in our terminology, a multi-task module. A multi- 

task module also contains a collection of state variables, which 
are accessible, using shared memory, from the different tasks 

which execute the subroutines of the layer. 

The purpose of this paper, therefore, is to describe the 

programming methodology which we call upcalls and multi-task" 
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modules, and to describe the Swift system, which is based on 

these concepts. After a brief discussion of layering and its 

movitation, and a brief example, we will discuss the advantages 

of the methodology, as well as the problems it can cause. This 

paper will also discuss two related aspects of the Swift system, 

memory management and task scheduling. As mentioned above, 

the various tasks that constitute a multi-task module 

communicate using state variables stored in shared memory. For 

this reason, as well as for the efficient passing of data between 

layers, Swift was implemented in a single address space. We 

thus added another goal to our project, to demonstrate program 

development techniques which would provide for reliable 

program execution in a single address space. The technique we 

used was to implement Swift in a high level typesafe language 

with garbage collection. We will briefly describe that aspect of 

Swift. 

2 Layering and Upcalls 

A common organizing principle of modern operating systems 

is to arrange the various functions of the system in layers, each 

of which presents to its client an abstract view of the functions 

in the lower layer. The layers are ordered according to a 

principle which is usually defined as "using, ~ or "depending 

upon the correct operation of." The idea of layering as an 

organizational principle for operating systems is not a new one, 

dating back at least to the THE system of Dijkstra [2]. Many 

systems which followed after, such as the one described by 

Habermann, Flan, and Cooprider [3] explicitly invoked the 

layering principle as an organizing tool. A design with an acyclic 

dependency relationship among its parts not only assisted in the 

general methodical organization of the system, but was thought 

to contribute specifically to the verification of the system, a 

point which was of great concern to system builders during the 

1970%. Explicit attempts to untangle and order particularly 
knotty parts of operating systems were undertaken for this 

reason. For example, Reed [9] developed an ordered relationship 

between the parts of memory management and process 

scheduling, and Janson [5] developed an ordered layering for a 

virtual memory system. This layered structure for operating 

systems perhaps reached its peak in the thirteen layer 

specification developed by Neumann [8] as part of the system 

verification effort done at SRI. Network protocols, even more 

than operating systems, have been influenced in design by the 

methodology of layering. Indeed, with the seven layer reference 

model of the ISO [4], it is almost impossible to think about 

protocols without thinking about layered organization. 

Of course, a specification in layered form does not by itself 

commit the implementer to any particular approach to 

modularity and interface design. However, a modern operating 

system offers a serious temptation to inefficient implementation. 

The process is the fundamental structuring component provided 

by most systems. It is natural to try to map the basic module of 

the specification to the basic component of the system; this maps 

layer to process. The result, at least in our experience with 

protocols, is almost always substantially inefficient. The 

implementer smart enough to avoid this trap then discovers that 

neither the layered specification nor the operating system 

facilities really gives any implementation guidance at all, forcing 

the implementer to design the program structure from scratch. 

This paper attempts to solve this problem by providing an 

efficient implementation approach for a layered specification. 

To those systems programmers who are accustomed to 

developing modules within the context of a large unstructured 

supervisor, the idea of an upward subroutine invocation across 

layers of abstraction may not seem particularly daring. But to 

those who feel that the "depends on" relationship of layering is 

important, an upward subroutine call is a substantial heresy. 

Most particularly, if the upward call crosses a protection 

boundary (imagine the supervisor invoking a client program as 

part of its operation), not only the system organization but the 

reliable and stable execution of the system is threatened. Thus, 

this paper must do two things. First, it must demonstrate the 

benefits of upcalls; second, it must show how to avoid their 

perils. The goal of our research, and the motivation of our 

development of the Swift system, was to develop constraints on 

the up call programming style which would lead to coherent, 

reliable and readable programs without severely impacting the 

efficiency and natural structure of the code. Upcall programs, if 

written by sophisticated programmers, appear to be very simple, 

short and efficient. However, we must demonstrate how to avoid 

the possibility of creating the parallel programming equivalent of 
FORTRAN "spaghetti code. m 

3 M u l t i - t a s k  M o d u l e s  

To this point, we have discussed how various layers should 

communicate with each other, but we have not discussed how the 

various parts of a layer should be organized within an 

implementation. In some systems, such as the THE system [2}, a 

module such as a protocol layer would be organized as one or 

more processes, invocable by an interprocess signal. In our 

methodology, invocation across layer boundaries occurs by 
subroutine call, and a layer is organized as subroutines which 

live in a number of tasks, callable as appropriate from above or 

below. There must thus be a mechanism for these various 

subroutines to share state in order to coordinate their actions. 

For this purpose, we use shared memory, with access mediated 

by a monitor lock. Subroutines in different tasks that 

collaborate with each other through shared state are referred to 
as a multi-task module. 

Part  of our programming methodology is a restriction on the 

use of intertask communication. In systems based on message 

passing, the exported interface to a layer is the definition of the 

messages which may be sent to it. In our environment, no multi- 

task module ever exports an intertask communication interface. 

The only exported interfaces are subroutine calls. All intert~k 

communication goes on within the layer using interfaces which 
are private to that layer. 

The resulting system organization is illustrated in Figure 1. 
Layers of the system, represented by horizontal ovals, span a 

number of tasks as they carry out some integrated function. 

Individual tasks, represented by vertical boxes, realize a single 

thread of activity, perhaps on behalf of a single client or single 

external event, and move up and down between the layers as the 
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F igure I: 
natural flow of control dictates. As the figure shows, intertask 

communication only occurs in a horizontal direction, between the 

various tasks in a layer, while flow of control between layers is 

achieved between through subroutine calls, both up and down: 

4 A n  E x a m p l e  

Before proceeding to a more detailed defense of this 

methodology, an example may help illustrate the concepts of 
upcall and multi-task module in practice. Since the 
programming style was initialy motivated by network protocols, 
we will use that  as an example. Figure 2 illustrates a skeleton 

implementation of a three layer protocol package that  provides a 
remote login service. The bottom layer is responsible for 
dispatch of incoming packets to the correct transport service. 

The transport layer organizes the packets into the correct 

sequence, detects lost or duplicate packets, etc., and delivers the 

data, in this ease one character at a time, to the remote login 
layer, which performs display management. Each layer 
represents an instance of a multi-task module. This figure 
includes the connection initiation code, which involves the 
downcall sequence, and incoming packet processing which, fairly 

naturally, involves an upcall. There are actually two upealls 
illustrated as part  of packet receipt. The subroutine net-dispatch 

is upealled as part of the interrupt handler, and in turn upealls 
the transport layer to determine which transport level entity 
should receive this packet. Using this information, it selects the 

correct task from a table, and then signals that task. That task 

in turn starts running by executing the program net-receive, 

which in turn upcalls the transport layer (the subroutine 

transport.receive), which in turn upcalls the subroutine display- 

receive. 

I l lustration of System Organization 
Note that  there are many other ways which the receive 

function could have been organized using upcalls. The net- 

dispatch routine could have selected an anonymous task, rather 

than one specifically associated with the particular port in 
question. In Swift, we tended to use yet another approach, in 
which there was one single task associated with the processing of 
all incoming packets. This latter approach works fine, unless the 

processing at a high level consumes a great deal of time, in which 
ease the processing of other packets may be delayed. 

The processing of received packets seems to fit rather 
naturally into the upcall philosophy. A packet is received, and 

the processing of that  packet must  necessarily proceed from the 
lower layers to the higher, however that  flow is achieved. On 
the other hand, it might superficially seem that  the sending of a 

packet would more naturally proceed from above. The client, 

having some data to send, would invoke a transport module to 

format a packet, which would in turn invoke a network layer 
module to send the packet. A closer inspection of network 

protocols reveals, however, that  sending as well as receiving is 
properly structured using upcalls. The reason for this is that  in 

most cases, the decision as to when a packet is sent is not 

determined by the client, but  by the flow control mechanism of 
the transport protocol, and the congestion control mechanism of 

the network layer. In a simple implementation of a network 

protocol, one is tempted to ignore real life resource management 
issues, such as flow and congestion control, but  in fact they are 

the heart of protocol processing, and dictate the program 

structure. Figure 3, therefore illustrates the companion modules 
for sending packets, which take into account the necessity of 
implementing transport layer flow control. In this example there 
is both an upcall and a downcall. The downcall notifies the 
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d l s p l a y - s t a r t O :  
l o c a l - p o r t  = t r a n s p o r t - o p e n ( d i s p l a y - r e c e i v e )  

end 

d i s p l a y - r e c e i v e ( c h a r ) :  
w r i t e  c h a r  t o  display 

end 

2a.  T h e  d i sp lay  or  r e m o t e  iogln layer  

t r a n s p o r t - o p e n ( r e c e i v e - h a n d l e r ) :  
l o c a l - p o r t  = n e t - o p e n ( t r a n s p o r t - r e c e i v e )  
t r a n s p o r t - h a n d l e r - a r r a y ( l o c a l - p o r t ) =  

r e c e i v e - h a n d l e r  
r e t u r n ( l o c a l  p o r t )  

en_.d 

t r a n s p o r t - g e t - p o r t ( p a c k e t ) :  
/ / u p c a l l e d  by i n t e r r u p t  l a y e r  
e x t r a c t  p o r t  f rom p a c k e t  
r e t u r n ( p o r t )  

end 

t r a n s p o r t - r e c e i v e ( p a c k e t , p o r t ) :  
/ / u p c a l l e d  by n e t - l a y e r  
h a n d l e r  = t r a n s p o r t - h a n d l e r - a r r a y ( p o r t )  
validate packet header 
fo__r, e a c h  c h a r  i n  p a c k e t  d _ ~ h a n d l e r ( c h a r )  

2h .  T h e  t r a n s p o r t  l ayer  

n e t - o p e n ( r e c e i v e - h a n d l e r ) :  
p o r t  = g e n e r a t e - u l d O  
t a s k - l d  = c r e a t e - t a s k  ( n e t - r e c e i v e  

( p o r t , r e c e i v e - h a n d l e r ) )  
n e t - t a s k - a r r a y ( p o r t )  = t a s K - l d  
r e t u r n ( p o r t )  

end  

net-recelve(port,handler): 
handler = net-handler-array(port) 
do forever 

remove packet from per port queue 
handler(pacKet,port) 
block() 

en__d 
end 

net-dlspatch(): //upcalled by interrupt handler 
read packet from device 
r e s t a r t  d e v i c e  
p o r t = t r a n s p o r t - g e t - p o r t ( p a c k e t )  
p u t  p a c k e t  on p e r  p o r t  queue  
t a s k - l d  = n e t - t a s k - a r r a y ( p o r t )  

w a k e u p - t a s k ( t a s k - l d )  
end 

2c. T h e  n e t w o r k  l ayer  

F i g u r e  2: T h r e e  L a y e r  P ro t oco l  P a c k a g e  

lower layers that  an action should be taken. In Swift, this kind 

of downcall was referred to an an "arming call," because it 

armed the lower layer for action. The arming downcall did no 
serious processing, and always returned immediately, never 

blocking. The resulting upcall executed whenever the flow 
control would permit. This example includes a modified version 
of the program transport-receive, to show the processing of the 
flow control information in the incoming packet. In the interest 
of brevity some details, such as creation and initialization of the 

send side task, have been omitted. 

Figure 4 illustrates the control relationships which exist 
between the various modules defined in Figures 2 and 3. The 

figure indicates with arrows the upcalls and downcalls between 
layers, and the intertask signals internal to a single multi-task 

module. 

This example illustrates that  the upward calls are generally 

made using procedure variables. Use of a procedure variable is 

not a defining characteristic of an upcall, but  it is very common. 
In general, layers are constructed to serve a commuity of clients 

which are unknown at program definition time. Thus, the layer 

cannot upcall its client until the client has first downcalled, 

perhaps as part  of initialization or arming, with the entry point 
to be upcalled later. Thus, the upcall methodology requires a 

language and system with suitable mechanisms for procedure 

variables. 

5 Advantages of the Methodology 

The distinguishing feature of the upcall methodology is tha t  

flow of control upward through the layers is done by a 

subroutine call, which is synchronous, rather than by an 
interprocess signal, which is asynchronous. One obvious 

advantage of the synchronous flow is efficiency. First, in almost 

every system the subroutine call is substantially cheaper than an 

interprocess signal, no matter  how cheap the interprocess signal 
becomes. In a system with many layers, the cost of messages 

across process boundaries can swamp the processing cost within a 
single layer. However, the system overhead of interprocess 

signaling is not the major Source of inefficiency when layer 

crossings are done by asynchronous signals; the more serious cost 

is building data  buffering mechanisms to hold the information 

until the next layer is scheduled and runs. This buffering of 
information at each layer boundary, which in some systems can 

require copying the data itself, can easily turn out to be the 
dominant component of execution. In an experiment done by one 

of us, rewriting a downcall protocol package as upcalls improved 
performance and code size by a factor of five to ten. 

A closely related advantage of upcalls is simplicity of the 

implementation. Clearly, elimination of code for buffering data  

at layer boundaries is an important  simplification. Perhaps a 
more interesting simplification results from the ability of one 
layer to "ask advice" of a layer above it. In classical layering, a 
lower layer performs a service without much knowledge of the 
way in which that  service is being used by the layers above. 
Excessive contamination of the lower layers with knowledge 

about upper layers is considered inappropriate, because it can 

create the upward dependency which layering is atteml~ting to 
eliminate. However, as a practical matter,  the lower level often 

substantially contorts itself to provide a service with reasonable 
performance for a variety of clients. For example, file systems 

often provide both a character at a time interface and a block at 
a time interface, to deal with clients with different requirements. 
The 'necessity of providing both of these interfaces, and especially 

for dealing with a client who changes back and forth between 
them as part  of reading the same file, can often result in a very 

complicated program. In the upcall methodology, it is 

considered acceptable to make a subroutine call to the layer 
above asking it questions about the details of the service it 
wants. For example, in a network architecture, it is helpful to 
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d i s p l a y - k e y b o a r d - h a n d l e r ( ) :  
/ / u p c a l l e d  by I n t e r r u p t  h a n d l e r  f o r  k e y b o a r d  
get c h a r a c t e r  from keyboard device 
and p u t  In  k e y b o a r d - b u f f e r  
t r a n s p o r t - a r m - f o r - s e n d  

( p o r t ,  d i s p l a y - g e t - d a t a )  
en.._.d 

d i s p l a y - g e t - d a t a  ( p a c k e t ) :  
/ / u p c a l l e d  by t o  send d a t a  
copy d a t a  from k e y b o a r d - b u f f e r  i n t o  p a c k e t  

en_.._d 

t r a n s p o r t - a r m - f o r - s e n d  ( p o r t , s e n d - h a n d l e r ) :  
t r a n s p o r t - s e n d - h a n d l e r - a r r a y  ( p o r t ) =  

send h a n d l e r  
I f  o k - t o - s e n d ( p o r t )  

t hen  w a k e u p - t a s k ( s e n d - t a s k - l d )  
e l s e  w a n t - t o - s e n d ( p o r t ) = t r u e  

en___d 

t r a n s p o r t - s e n d ( p o r t ) :  
/ / r u n s  in  t a s k  I d e n t i f i e d  by s e n d - t a s k - l d  
i f  o k - t o - s e n d ( p o r t ) = f a l s e  t hen  b l o c k ( )  
a l l o c a t e  packe t  and f i l l  I n  h e a d e r s  
s e n d - h a n d l e r =  

t r a n s p o r t - s e n d - h a n d l e r - a r r a y ( p o r t )  
s e n d - h a n d l e r ( p a c k e t )  
/ / u p c a l l  d l s p l a y  l e v e l  to  g e t  d a t a  
n e t - s e n d ( p a c k e t , p o r t )  
o k - t o - s e n d ( p o r t ) = f a l s e  
w a n t - t o - s e n d ( p o r t ) = f a l s e  

en__~ 

t r a n s p o r t - r e c e i v e ( p a c k e t , p o r t ) :  
/ / u p c a l l e d  by n e t  l a y e r  
h a n d l e r = t r a n s p o r t - h a n d l e r - a r r a y ( p o r t )  
v a l l d a t e  p a c k e t  heade r  
i f  p a c k e t  a u t h o r i z e s  s e n d i n g  then 

if want-to-send(port) 
then wakeup-task(send-task-ld) 
else ok-to-send(port)=true 

fo_./_ each char in packet d ohandler(char) 
end 

neE-send(packet,port): 
start net device to send packet 

en__~ 

Figure  3: R o u t i n e s  t o  S e n d  a Packet  

make an upcall to a layer above asking if it has any further data 

to send now, in order to include that data in an outgoing packet 

which is being formatted for some other reason. It is our 

experience, both in Swift and in other upcall experiments that we 

have done, that the ability to upcall in order to ask advice 

permits a substantial simplification in the internal algorithms 

implemented by each layer. For a general discussion of how 

protocols can be improved if communication of this sort across 
the layer boundaries is permitted, see the discussion by 

Cooper [1]. For another example of upcalls used to ask advice, 

see the paper by Reid and Karlton on the Pilot file system [10]. 

Along with the upcall, we must consider the benefits of the 

multi-task module. First, most programmers are more 

accustomed to dealing with subroutine interfaces than 

interprocess communication interfaces as standards. Thus, the 
fact that only subroutine interfaces are exported leads to a layer 

interface which is less threatening and easier to understand. 

Second, this methodology eliminates the temptation of 

architecting a systemwide codification of the format or usage of 

an intertask message. Different layers, in fact, have drastically 

different requirements for communicating between the tasks. 

Some communicate in terms of a work queue, others in terms of 

modified state variables and others in terms of requests for 
execution of other tasks after a certain period of time has 

elapsed. Hiding this variability inside the module makes dealing 

with each module a simpler intellectual exercise. For example, 

the network layer in Figure 2 dispatches a task based on the port 

identifier of the incoming packet. The dispatch algorithm is 

contained within a single module upcalled by the interrupt 

handler. If the layer were redesigned to use a different task 

allocation technique, for example a pool of anonymous tasks, this 

change would be internal to the network layer rather than 

requiring a change to an exported interface. The knowledge of 

how tasks are used; like other design decisions, should be local 

rather global. 

A general characteristic of this methodology, which we 

consider a strong advantage, is that decisions about how tasks 

are used need not be made until late in the design. In the 

example above, the decision as to which task should be used to 

handle an incoming packet is not constrained in any serious way 

by the example programs. For example, the program could be 

initially written so that all incoming packets are processed by 

one task. This decision could be later changed if a performance 

bottleneck resulted from the initial design, or if a redesign were 

required in order to meet one of the reliability criteria outlined 

below. In a system in which layers are realized as tasks, the 

deployment of tasks within the system is determined as part of 

the initial architecting of the system abstractions, and it becomes 

very difficult to rearrange tasks later, in order to deal with 

problems such as performallce. 

In the network example, the upcall structure has the 

substantial advantage over the downcall structure that 

"piggybacking" occurs naturally in the outgoing packets. 

Piggybacking is the term, in network vernacular~ to describe the 

desirable situation in which information from various layers of 

the protocol implementation are combined into a single outgoing 

packet as an efficiency enhancement. It is the goal of almost 

every protocol architecture to encourage piggybacking, since the 

most influential factor in network performance is the number of 

packets sent, but almost all implementations of protocols do a 

very poor job of piggybacking, because of lack of communication 

between the layers. In an architecture where the network code 

and the client are separated by an interprocess message, there is 

no obvious way for the network code to guess whether or not the 

client is about to send data in response to the data just received. 
Most implementations abandon this optimization and simply 

send an acknowledgment packet out before signaling the client to 

run. However, in the upcall case, where the client runs in the 

same task as the network code, the proper interaction of the 

layers occurs naturally, because the client will have armed the 

send side before returning to the network code which is 

processing the received packet. Thus, at the time that the send 
task is triggered to format the outgoing packet, the relevant 
layers will have already determined whether or not they are 
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'display 
layer 

t ransport  
layer 

network 
layer 

receive 
create receive in terruDt send 
task task handler task 

qet -data  

I .  
transPort-open t ransport-  receive transport - t ransport-send 

l l-- 
~ e t  net- receive net-dispatch net-  send 

,,, t 
/create -task /wokeu inte'rrupt 

keyboard 
interrupt 
handler 

d isplay- 
keyboard- 

handler 

transport-arm 
for -send 

wakeup 

interrupt 

F i g u r e 4 :  Cont ro l  F low I n  Network  Pro toco l  Rout ine 

ready to include information in the packet. In the network case, 

the discovery that upcalls lead to a natural achievement of 

piggybacking was one of the most exciting and stimulating 

observations about this methodology, because it was clear to 

those of us who had programmed protocols using more 

traditional approaches that piggybacking was a goal which 

normal program structures simply could not achieve effectively. 

Although we have made no attempt to formalize the design 

process which results from this methodology, it may be helpful 

to describe informally how design and implementation seems to 

proceed, as typified by our experience with Swift. The first 

decisions, as in most systems, have to do with the layers of 
abstraction, which in this case define the various multi-task 

modules. Exactly which tasks will be in the modules is not 

determined at first, but the modules themselves are defined 

early. The next step is the determination of the various events 

which trigger actions within the system. For example, in a 

network implementation there are three sources of actions: the 

client, the timer, and the network. The next stage in the design 

defines the flow of control for each of these actions. For example 

an initial hypothesis might be that sending data from the client 

is a downcall, whereas a closer investigation will reveal that 

sending data is best structured as an upcall from the network 

layer. Once these design decisions have been made, the general 

shape of the system is fully determined, and more detailed design 

decisions can be undertaken, for example, exactly what upcalls 

are useful for asking advice between the layers, and exactly how 

tasks should be deployed to execute upealls and downealls. 

In determining whether an upeall has been used properly, a 

good rule of thumb seems to be that a synchronous interface 

should be used unless asynehrony is really needed. If a layer 
contains a strange buffering algorithm in order to move data 

from one task to another, the programmer should consider 

whether or not a subroutine call might possibly replace the 

intertask message at this point. The result of replacing an 

intertask message with a subroutine call is sometimes a 

substantial wrench to the programmer's conception of the design; 

programmers first encountering the upcall methodology seem to 

undergo a process of retraining somewhat akin to that which 

results from the first experience with recursion. 

6 P r o b l e m s  

Most of the participants in the Swift project were convinced 

of the virtues of this methodology before we began. We had 

used upcalls in a variety of experiments, and we were convinced 

that this programming style led to simple, efficient code. In 

Swift, we hoped to explore two further aspects of upcnlls. First, 

upcaUs had been initiMly motivated entirely by network 

protocols, and we wanted to see if upealls were useful in other 

contexts, for example, display window management packages, or 

file systems. Second, and perhaps more important, we wanted to 

understand how to avoid some of the disadvantages which arise 

in programming using upcalls. 

To many people, the use of upcalls violates a basic religious 

tenet of layering, the "using m or "depends on" relation. This 

relation is valued both because of the structural simplicity it 

provides, and because the lower layers are often responsible for" 

managing and multiplexing shared resources, so that if a lower 

layer fails, many separate clients at the upper layer may be 

disrupted• For a lower layer to call up to an upper layer is thus 

a very perilous thing to do, since if the module implementing the 

upper layer fails, the lower layer may be left in an inconsistent 

state, which may destroy not only the lower layer, but every' 

other client of that layer. There was thus the possibility that 

upcalls would result in a system which, while simple and 

efficient, was very prone to catastrophic failures. Swift was 

intended to let us understand whether this was a serious 

problem. 

We identified a number of techniques for controlling the 

propagation of failures. When an upealled module fails, there 
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are two resources which must be recovered, the shared variables 

in the lower layers and the task executing the code. To make 

sure that data in a lower layer is not corrupted by a failed 

upcall, it is necessary to organize the data into two categories, 

that data associated ~vith each individual client and that data 
which describes the way the various clients interact and share 

the resources of the lower layer. The simple rule which prevents 

catastrophe is that all data of the latter sort must be made 

consistent and unlocked before any upcall is made. Data of the 

former sort, since it is private to a particular client, need not 

remain consistent during an upcall. It is perfectly acceptable, if 

an upper level module fails, to destroy a vertical stripe down 

through the system, provided that that vertical stripe is cleanly 

isolated from the resources owned by other clients, and that the 

real resources associated with this vertical stripe can be 

reclaimed. 

The other aspect of recovering from a failed upcall is that 

the task executing the code must be recovered or terminated. If 

the task executing the code is a precious resource, then serious 

problems may result from a failure, because the task may be in a 

sufficiently inconsistent state that its stack and related resources 

are beyond recovery. The simple solution to this problem is to 

make tasks expendable. For example, figure 2 shows a separate 

task responsible for upcalling each client. If one of those clients 

fails to return, or otherwise aborts, the task can simply be 

thrown away. So long as no locks for shared resources are 

associated with that task, no problems of a systemwide nature 

can result from simply abandoning the task and freeing its 

resources. 

An important question, left unanswered by the above 
discussion, is how the resources at each level that are associated 

with a failed client can be identified and freed. The solution is 

for the system to mediate between the client and the layers that 

it uses. When a client first communicates with a layer, the layer 

arranges to be notified if the client fails. The layer gives the 

system an identifier for the client, a procedure that implemen~ 

the layer-specific cleanup, and perhaps some handle for the 

relevant resources. If a client fails, the system intervenes and 

upcalls the relevant cleanup procedures with the supplied 

argument. The conventions about how resources associated with 

a client should be maintained are thus localized in the layer 

managing the resources. 

Another important question is how to distinguish between a 

task in a loop and a task running an unexpectedly long 

computation. As in most systems, we can only be somewhat 

arbitrary about this, and leave the decision to a timer or to an 

overseeing human. 

While the technique described above can prevent catastrophe 

in the face of a failed upcall, we have not identified any tools 

which the language or system can provide to make sure that the 

resources have in fact been properly organized so that shared 
variables are not locked at inappropriate times. Instead, we 

must require of the programmer that he exercise skill and 

knowledge to organize the system properly. Thus, in the lower 
levels of the system, where sharing and multiplexing are 
important, competent programmers are the key to successful 

System operation. However, in the upper levels of the system 

sharing and multiplexing are not usually the critical requirement, 

and it is therefore reasonable to let the modules at various levels 

of a vertical stripe to be considered of equal trust, so that they 

all go together when they go. 

In addition to the basic violation of trust between layers, 

there is another more insidious problem associated with upcall% 

which is the indirect recursive call. A module which has been 
called from a layer below may, as part of its execution, call back 

down into the same module which called it. This can cause great 
confusion in the lower layer, because this return call can change 

the value of variables in the lower layer, so that when control 

ultimately returns back from the upeall into the lower layer 

again, that layer may find that its state has changed. Such 

unexpected change, if not regulated, usually leads to horrible 

program bugs. One of the goals of Swift was to explore 

techniques for controlling this. 

In fact, we identified a number of techniques for controlling this 

problem, which are discussed below. 

1. The most general technique for controlling this problem is 

for the lower layer to put all of its variables in a consistent state 

before making the upcall, and then to completely re-evaluate its 

state on return from the call. While this eliminates any program 

bugs, it leads to a very clumsy programming style, which can 

materially detract from the efficiency and simplicity of upcalis. 

Thus, we tended to restrict the use of this technique to 

circumstances in which a recursive downcall was an important 

outcome of an upcall. 

2. Another technique is to prohibit, as part of the 

specification of an upeall, any reeursive downcall. This 

technique, while apparently rather restrictive, in fact makes very 

good sense for a large number of upeails. One tends to make 

upcalls into the client above to ask simple questions, such as 

whether there is more data to send now. A simple query of this 

sort should not under any circumstances trigger a recursive 

downcall. If a recursive downcall is prohibited, then the lower 
layer may leave its variables locked and inconsistent during the 

upcall. This has the side effect of immediately catching 

programming errors, for any recursive downcall will attempt to 

lock again the locked variables, leading to an immediate hard 

failure of the program. It is regrettable that such bugs can only 

be caught at run time, but it is our experience that they are 

caught very early in the debugging process, so the practical peril 

associated with this kind of interface specification is not great. 

3. A.nother technique for dealing with recursive downealls is 

for the downcall to perform the requested action directly if 

possible, but to queue a work request for later execution by the 
task holding the lock, if it should find a lock already set. 

Although we did not experiment with this technique in Swift, it 

is a well understood approach for insuring smooth cooperation 

between a process and an interrupt handler, where the interrupt 

handler is prohibited by system structure from using the normal 

process scheduling tools if it finds a lock set. The drawback of 
this technique is the complexity associated with the work queue. 
A subroutine package would be helpful if this technique were to 

he widely used within the system. 
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4. A technique which is somewhat similar to the technique 

above is to restrict the semantics of downcalls so that  they never 

perform any important actions on their own, but merely set flags 

which are examined at known times by other tasks, including the 

task making the upcall. In many cases, this is a natural 

structure for downcalls, because downcalls are often just requests 

to perform an action in the future, such as a request to send a 

packet whenever it is convenient. 

5. A final technique is possible in the special case that  an 

upeall almost always triggers the same return downcall. For 

example, an upcall to get data to send will often cause a 

downcall to arm for further sending. In this special case, the 

downcall can be replaced by one of two alternatives, extra return 

arguments to the upcall or another special upcall to query the 

client. Since these generate overhead every time, they should 

only be used if the function is needed often. 

We found that  these techniques made upcalls relatively easy 

to program and bug free. However, no one of these techniques is 

suitable for all circumstances. Rather, we found different parts 

of Swift being programmed with different combinations of these 

techniques. Thus, once again, we were forced to depend on the 

competence of the programmer for the production of good code. 

We are not embarrassed by this, since we tend to believe in the 

importance of competent programmers. However,some of the 

design decisions required in programming with upcalls are of a 

subtle and unfamiliar nature, and require a period of 

familiarization. 

A multi-task module, like an upcall, is an unfamiliar style to 

many programmers. Parallelism has always been a difficult 

phenomenon for programmers to grasp. The principal 

implementation problem which seems to arise in multi-task 

modules is failure to use monitor locks properly, so that  the 

interactions between different tasks are not harmonious. The 

more serious conceptual problem is restructuring what had been 

previously thought of as a sequential program as a variety of 

subroutines which can be upcalled in different tasks. For 

example, one traditionally thinks of a screen-oriented text editor 

aa a single task which blocks until a character is received and 

which then manipulates the file being edited in some way, 

perhaps updating the display as a side effect before returning to 

the blocked state waiting for another key stroke. After some 

thought it is possible to see that  a text editor can equally be 

thought of as a subroutine which is called by the handler for the 

network (or the terminal) whenever a character is received, and 

which manipulates the file before returning, possibly arming a 

send task in order to update the display if necessary. 

One other problem with multi-task modules is that  it is 

difficult to find all of the pieces of the module if it is necessary 

to change the global state of a module, for example to shut it 

down. The various subroutines of the layer may be running in 

different tasks, and some of the tasks normally stationed in this 

layer may be off temporarily in some other layer, perhaps 

blocked waiting for some event. A solution to this problem is to 

define a global cleanup signal which can be sent to all of the 

relevant tasks, defining which module is attempting to cleanup. 

This leaves unanswered tile question of which tasks should 
receive this signal; the obvious solution is to signal any ' task  on 

whose stack there is a frame associated with the subroutine of 

this module. However, it is unclear to us whether the 

bookkeeping associated with finding the necessary tasks for 

cleaning up should be done by the system or by the application 

code of the layer in question. We hope that  current research 

underway will clarify this question. 

7 Related System Features  

Our development of the Swift system was motivated by a 

desire to better understand the programming methodology of 

upcalls and multi-task modules. However, that  methodology 

alone is not sufficient to describe the nature of the complete 

system. Such functions as memory management and task 

scheduling are not specifically constrained by the methodology, 

but must be designed to meet its needs. In this section, we will 

discuss task scheduling and memory management in the Swift 

system. 

7.1 Task Scheduling 

In many systems, processes have some form of priority, 

which the scheduler uses to determine which of the ready 

processes to run. On the basis of our earlier experience with 

network protocols, we felt very strongly that  such a priority 

mechanism was needed, and further that  the priorities could not 

be static, but must be assigned dynamically each time a task is 

scheduled, since the urgency associated with a particular task has 

to do with the particular operation it is carrying out at  the time. 

Swift thus allows the priority associated with the task to be set 

as part  of the scheduling request. 

Priori ty is usually expressed it, terms of some ordered 

sequence of arbitrary numbers. This works well if the system 

has been designed by one person, who can keep track, external to 

the system, of the meaning of these arbitrary numbers. We felt 

that  a more reasonable approach would be to express the 

importance of each task by characterizing the time within which 

it must run. By describing priority in terms of deadline, 

measured in microseconds, rather than by an arbitrary number, 

we created a representation of priority whose meaning was self- 

evident to the various system programmers. 

As part of multi-task modules, we provided monitor locks to 

control shared access to regions of memory by multiple tasks. 

This implies that  the implementation of monitors and the 

scheduler must interact, for if a task encounters a lock which is 

set, its execution must be suspended until the lock is free, at  

which time it must be scheduled. In Swift, we have a queue of 

suspended tasks associated with each monitor; a task must check 

on monitor exit to see if this queue is empty. 

There is a further interaction between the monitor 

mechanism and the scheduler. It is possible that  a task with a 

short deadline will encounter a monitor which has been locked by 

a task with a longer deadline. That  task may not be running, 

because it has been preempted by other tasks with short 
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deadlines, and thus the task encountering the lock is prevented 

from meeting its deadline. To circumvent this problem we 

implemented a mechanism called mdeadline promotion," in which 

a task with a short deadline, on encountering a monitor held by 

a task with a long deadline, can temporarily change the deadline 

of that other task to the shorter value until such time as the 

monitor is unlocked. This mechanism, we believe, is an 

important part of deadline scheduling, and we invested 

substantial effort to develop a promotion strategy which would 

not substantially add to the overhead of monitor entry and exit. 

Our current design has at most one instruction overhead unless 

promotion has occurred. 

7.2 Address  Space Management 

As discussed above, Swift executes all tasks in a single shared 

address space. Shared memory between tasks is critical, both to 

permit common access to shared state variables in monitors, and 

to permit the efficient passing of data from one task to another. 

Earlier experimentation made clear to us that it is almost 

impossible to build an efficient protocol implementation if it is 

necessary to copy data in order to pass it from one process to 

another. 

The problem with shared address spaces is arbitrary memory 

corruption due to program bugs. Several of us, prior to Swift, 

had had experiences attempting to program in a shared address 

space, and the failures caused by programs that write into 

unexpected words of memory are very difficult to debug. 

The technique we chose to control the propagation of errors 

within our single address space, was to program the system in a 
high level language, specifically CLU [6], which provided strong 

checking at compile time and run time to insure that the address 

space was not corrupted. CLU checks the bounds of all 

references to arrays and structures, it validates the use of all 

pointers, and so on. While there is some coat at run time 

associated with these checks, we felt that this was a reasonable 

price to pay for efficiency of the single address space, if the 

system was in fact reliable. 

Another important aspect of orderly address space 

management is insuring that all pointers to an object have been 

destroyed before the object is freed. Otherwise, programs may 

use such a pointer to modify s reallocated area of memory, 

causing arbitrary corruption of storage. To prevent this 

problem, the system rather than the user must deallocate objects 

that are no longer needed. This function, called garbage 

collection, is not a novel idea for an operating system; it has 

been demonstrated before in the LISP machine [7] and in the 

CEDAR [11] operating system. Development of a production 
garbage collector was not the major focus of the project, but we 

implemented a simple mark/sweep garbage collector to permit 

system testing and demonstration. 

We had two reliability goals. The first, and simplest, is that 

after a system failure the address space should be sufficiently 

uncorrupted so that the debugger would run, so that we could 

analyse the failure. The more ambitious goal is that the damage 
caused by failure should be sufficiently isolated and recoverable 

so that the system can continue to run without degradation after 

a serious failure. In systems with multiple address spaces, the 
solution to a failure is usually to sacrifice one or more address 

spaces, and hope that there are no cross address space 
dependencies which disable other parts of the system. In a single 

address space system such as Swift, it is necessary to define some 

other entity which is sacrificed after a failure. We used the term 

"job" to characterize this entity in Swift; it corresponds to the 

vertical stripe through the system described earlier, the stripe 

associated with the resources for a particular client. The 

research to demonstrate the complete recovery of the system 

after a failure is not yet complete, but the definition of the 

necessary mechanisms seems straightforward. The simpler goal, 

that of at least permitting the debugger to run after a serious 

crash, was very straightforward, and we achieved it without any 

special effort. 

8 S w i f t  S ta tus  

Currently, the kernel of Swift has been programmed, and a 

number of system function, such as network protocol and stubs 

to remote file systems have been written in order to experiment 

with the upcall methodology. A small number of applications 

have been programmed but we do not intend to put Swift in 

service as any sort of production system. Initially, Swift was 

implemented bn the Digital Equipment Corporation VAX 

architecture; it was subsequently moved to a machine based on 

the Motorola 68000. This change did prove that the operating 

system was substantially portable, but practical difficulties which 

have arisen with the 68000 machine mean that there is currently 

no good vehicle on which Swift could run as a service machine. 
Currently, our major effort is the demonstration of recovery of 

the system after a job failure. 

9 C o n c l u s i o n s  

Our experience in programming Swift convinces us of the 

utility of the basic programming methodology of upcalls and 

multi-task modules. It also convinces us of the utility of 

programming in a strongly checked typesafe language inside a 

single address space. We are confident that the methodology is 

suitable for many operating system functions, obviously 

including network and input/output support. We are not yet 

sure of the scope of problem for which upcalls is a good 

methodology. We designed a display window-management 

system for Swift, and concluded that a window package would 

also benefit from the upeall design; however, that design was not 

validated by implementation. We feel that some applications, 

such as text editors, which are naturally driven from below by 

arriving characters, could be profitably structured as upcalls, 

and we are currently designing an upcail driven text editor to 

explore this hypothesis. However, for many large applications 

such as compilers, the whole methodology seems irrelevant. 

Perhaps the most interesting and general result of this 

research is some further understanding about the organization of 

parallel computations. The process is the moat obvious 

abstraction provided by an operating system to decompose a 
computation. At the same time, according to the current 
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religion of structured programming, layers are the most 
important abstraetion tool in decomposing a function. It is, 
therefore, somewhat tempting to think of mapping layers onto 
processes. Swift has clearly shown us that realizing a layer as a 
process can be a very bad idea; conversely that organizing a 
layer as a multi-task module, where the tasks correspond to 
vertical stripes representing particular client requests rather than 
horimntal stripes representing particular functional 
decompositions, is an effective system organization technique. 

This line of reasoning leads to the further, and perhaps 
controversial conclusion, that since shared memory was the 
obvious vehicle for linking the various tasks in a multi-task 
module, that a system which was based on the idea of 
communication between tasks only through messages, and not 
through shared memory, would not be as suitable a vehicle for 
support of this sort of system. It is possible to imagine building 
a multi-task module in a system where tasks cannot share 
memory, but the only obvious way to structure such a system 
would be to create, as part of each multi-task module, one task 
which was responsible for managing the state variables, and to 
require that anyone wishing to manipulate the state variables do 
so by sending a message to that task. This structure seems to 
take the already parallel structure of the multi-task module and 
make it substantially more convoluted and confusing, as well as 
arguably leas efficient. Certainly, we feel that the good 
performance of the upcall methodology and the simplicity of the 
programs we write argue in favor of this methodology, at least 
for a large clam of programming problems. 

[6] Liskov, Barbara, et al. 
CLU Reference Manual. 
Springer-Verlag, NY, NY, 1981. 

[7] Moon, David A. 
Garbage Collection in a Large LISP System. 
In Proceedings of 198~ ACM Symposium on LISP 

Functional Programming, August 0-8, Austin, TX. 
ACM, 1984. 

[8] Neumann, P. G., etal, 
A Provably Secure Operating System. 
Technical Report Final Report of SRI Project 2581, SRI, 

Menlo Park, CA, June, 1975. 

[9] Reed, David P. 
Processor Multiplezing in a Layered Operating System. 
Technical Report TR-164, Massachusetts Institute of 

Technology, LCS, Cambridge, MA, June, 1976. 

[10] Reid, L. G., and Karlton, P. 
A File System Supporting Co-operation Between 

Programs. 
In Ninth ACM Symposium on Operating systems 

Principles, Brctton Woods, NH. ACM, 1983. 

[11] Teitelman, Warren. 
The Cedar Programming Environment: A Midterm 

Report and Examination. 
Technical Report CSL-83-11, P83-00012, Xerox 

Corporation, Pals Alto, CA, June, 1984. 

10 Acknowledgement 

The author wouuld like to thank Michael Grecnwald, Pui 
Ng, Lixia Zhang and James Gibson for their substantial help in 
the revision of this paper, and Larry Allen, Dave Reed and the 
other members off the Swift development team whose 
contribution to the project made the paper possible. 

References  

[1] Cooper, Geoffrey H. 
An Argument for Soft Layering of Protocols. 
Technical Report TR-300, Massachusetts Institute of 

Technology, LCS, Cambridge, }viA, May, 1983. 

[2] Dijkstra, E. W. 
The Structure of the THE Multiprogramming System. 
CACM 11(5):341-346, May, 1968. 

[3] Habermann, A. N., Flon, Lawrence, and Cooperider, L. 
Modularisatin and Hierarchy in a Family of Operating 

Systems. 
CACM 19(5):266-272, May, 1976. 

[4 l leO. 
P~fercnee Model Of Open Systems Interconncction. 
Technical Report IS0/TC97/SC16 4798, ISO, 1982. 

[5] Janeon, Philippe A. 
Using Type Eztension to Organize Virtual Memory 

Mechanisms. 
Technical Report TR-167, Massachusetts Institute of 

Technology, LCS, Cambridge, MA, September, 1976. 

180 


