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ABSTRACT

We examine the ability to exploit the hierarchical struc-
ture of Internet addresses in order to endow network agents
with predictive capabilities. Specifically, we consider Sup-
port Vector Machines (SVMs) for prediction of round-trip
latency to random network destinations the agent has not
previously interacted with. We use kernel functions to trans-
form the structured, yet fragmented and discontinuous, 1P
address space into a feature space amenable to SVMs. Our
SVM approach is accurate, fast, suitable to on-line learning
and generalizes well. SVM regression on a large, randomly
collected data set of 30,000 Internet latencies yields a mean
prediction error of 25ms using only 20% of the samples for
training. Our results are promising for equipping end-nodes
with intelligence for service selection, user-directed routing,
resource scheduling and network inference. Finally, feature
selection analysis finds that the eight most significant IP ad-
dress bits provide surprisingly strong discriminative power.
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INTRODUCTION

The hierarchical structure of the Internet and address al-
location policies [9] provide locality to IP addresses. This
work exploits the IP address structure in order to endow
network agents with predictive abilities. Based on prior in-
teraction with the network, we examine an agent’s ability
to successfully predict latency to random hosts the agent
has not previously interacted with. Specifically, we cast the
problem of predicting round-trip network latency to an IP
destination as an application of machine learning.

IP addresses must be globally unique and are therefore
assigned by regional registries which are in turn governed
by a central body, the Internet Assigned Numbers Author-
ity (IANA). Wherever possible, addresses are delegated in
a semi-organized and hierarchical fashion with the inten-
tion that networks, organizations and geographic regions
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receive contiguous blocks of IP address space. Contiguous
allocations permit aggregation of routing announcements,
preserve router memory and reduce BGP convergence time.
While Internet IP address space maintains hierarchy and
structure, it has evolved organically over time. As a result
the address space is discontinuous, variable and fragmented
[4, 12] as evidenced by the approximately 200,000 BGP en-
tries in the global routing table [10]. Our research investi-
gates the use of kernel functions to transform the Internet
address space into a feature space amenable to Support Vec-
tor Machine (SVM) [18] learning methods.

The ability to learn and predict network latencies to ran-
dom destinations is potentially useful in a variety of prac-
tical applications. For example, our results provide an esti-
mation accuracy granularity suitable for: service selection,
where multiple copies of the same resource are geographi-
cally distributed; user-directed routing via overlays or IPv6
logical interfaces; resource scheduling in grid environments;
and network inference.

In the larger architectural context, we believe machine
learning is particularly well-suited to providing intelligence
in today’s Internet and future networks. Machine learning
techniques are most successful in complex and dynamic en-
vironments which can accommodate and recover from infre-
quent predictive errors. For example, an agent’s prediction
of the best server among a set may be incorrect but is not fa-
tal. The incorrect prediction may simply lower performance
or cause the agent to adaptively choose a different server.
Further, the high-levels of aggregation and traffic in the net-
work provide a large and continuous training set for on-line
learning and adaptation. We hope our work serves as a step
forward in the area of latency prediction and general net-
work intelligence using recent statistical learning methods.
The primary contributions of this paper are:

1. Validation of SVMs and kernel functions as methods
to learn on the basis of the Internet address space.

A feature selection analysis of the informational con-
tent of IP addresses. We find that eight bits provide
strong discriminative power in determining latency.

An estimation accuracy within 30% of the true value
for approximately three-quarters of the latency pre-
dictions on a large, live Internet data set. We obtain
this performance without any prior interaction with
the target, using only 20% of our data samples for
training the SVM.



2. LATENCY PREDICTION

Latency prediction is a difficult, but relevant research
topic with many potential practical applications; Section
4 details several applications that motivate this research.
Using recursive DNS queries, King [8] estimates latencies
between arbitrary pairs of Internet hosts. King’s method as-
sumes DNS servers are in close proximity to the hosts they
are authoritative for and requires an active probe. Vivaldi
[6] is a scheme which defines a synthetic coordinate system in
order to predict latencies. Vivaldi is a distributed algorithm
that requires nodes to query each other to establish their
relative position in the coordinate space. Meridian [19] is
a distributed network location system using concentric ring
queries rather than a virtual coordinate system.

We hypothesize that agents can exploit the inherent IP
address locality to their advantage. An agent in the network
can be any device that is attempting to make decisions based
upon previous interactions with the network!. It is reason-
able to believe that latency, congestion and throughput are
much more likely to be consistent amongst destinations all
within the same subnetwork as compared to random nodes
drawn from the entire network?. In the case of latency, the
fundamental speed of light limit imposes a lower bound on
round-trip delay measurements in the face of network noise
and variation.

In this Section, we summarize SVMs using a simple ex-
ample of placing IP addresses into a latency class. With this
intuition, we describe our SVM-based methodology and data
set. In contrast to prior work, our effort is designed for in-
dividual, intelligent network agents and does not presume
any additional network infrastructure, overlays or network-
layer assistance. Our technique is predictive on the basis of
prior learning: an agent forms a latency estimate for a ran-
dom, remote end-node with which it has never previously
interacted.

2.1 SVM Methodology

SVMs work well in many learning situations because they
generalize to unseen data: the machine is defined by only a
subset of the training points, or support vectors. For basic
classification into two types, SVMs find a hyperplane that
provides a maximal separation between classes. This opti-
mal hyperplane is orthogonal to the shortest line connect-
ing the convex hulls of the two classes in some dimensional
space. The support vectors are exactly those data points
which define this shortest line. Thus, SVMs maximize the
minimal margin. Additional data points do not affect the fi-
nal solution unless they redefine the margin. For this reason,
SVMs are amenable to continuous, adaptive on-line learn-
ing, a desirable property in network environments.

The semi-structured IP address space is a challenging
foundation for learning latency. While an agent’s latency
to machines on a particular subnetwork may be within a
tight bound, there exist other subnetworks with an identical
bound that are numerically distant in the IP space. Anal-
ysis of geographic locality in BGP prefixes [7] finds that
autonomous systems commonly advertise multiple discon-

LOur intent is that every autonomous agent in the network
build an independent view of the network in order to form
predictions that maximize individual utility.
Intra-network consistency is naturally not absolute, but our
work is concerned with providing a most likely prediction for
applications that can compensate for occasional errors.
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Figure 1: Separating XOR inputs. Four IP ad-
dresses belong to two distinct latency classes, cir-
cles and triangles. Although the points are not sep-
arable in the input space, a mapping ® to a three-
dimensional space gives a separating hyper-plane.

tiguous prefixes corresponding to a single location. Because
of this address discontinuity, we turn to kernel functions [18].

Let the input to the learning algorithm be pairs of d di-
mensional vectors x € R% and corresponding y labels: (%,9).
For latency prediction, the input vector is an IP address
x € {0,1}*? and y € R is a latency. A kernel ® transforms
the IP address x in the input space into a higher dimensional
feature space. SVM kernels allow us to find the separating
hyper-plane in the feature space without carrying out the
actual transformation in the input space.

As an instructive example, consider an agent A interacting
with nodes B,C,D and FE. Figure 1 plots the four nodes
by their two most significant IP bits to provide a graphical
intuition of SVM kernels. A’s latency to B and C' is 10ms,
while D and E are 200ms away. We depict 10ms nodes with
circles and 200ms nodes with triangles. Clearly, no linear
separator exists in the input space. However, as shown in
the lower half of the Figure, the feature space defined by the
kernel transformation ® yields a separator.

SVM regression [17, 11] is a similarly-posed optimization
problem. Rather than predicting class labels, the machine
estimates y € R. We use mySVM [16], an SVM regression
package for the results in this paper.

2.2 Data Set

To collect data for our experiments, we use a simple ac-
tive measurement procedure. We select unsigned 32-bit in-
tegers at random until one is found as a valid IP address in
a public global routing table. Based on the approximately
1.8B publicly advertised addresses, filtering with the BGP
table reduces our search space by approximately half. If the
randomly selected destination responds to ICMP echo re-
quests, i.e. “ping,” we record the average of five ping times
from our measurement host as the round-trip latency. Our
data set consists of approximately 30,000 randomly selected
(IP, Latency) pairs. The data is available as a public re-
source from: http://ana.csail.mit.edu/latency
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0.18 T T T T

0.16 B

0.14 q

0.12 B

01 q

0.08 - B

Probability

0.06 4

0.04 - B

0.02 - B

0 1 1 1
10 15

Minimal IP Distance (log 2)

20 25

Figure 3:
dispersion

Probability mass function of IP address
in data set.

Figure 2 displays the probability mass function of latencies
as observed in our data set. The distribution is non-trivial,
with multiple modes and a long tail, posing a reasonable
challenge to a learning algorithm.

The selection of training points is crucial to any learning
algorithm. 30,000 addresses out of the approximately 1.8B
advertised in the global routing table is quite sparse. If
our test points are close to points in the training set, we
expect the learning to over-perform. We wish to ensure
that our training set is suitably well-distributed in order to
generalize to random predictions. One metric of distribution
is address dispersion. To compute address dispersion, we
find the numeric difference between each address and the
next closest address. For the set of 30,000 addresses {A},
the minimum dispersion of address 1 is:

min; = argmin (|7 — j|) Vj € {A —i}
J

Figure 3 shows the probability mass function of IP address
dispersion in our data set, i.e. Pr(|logymin;| = z) Vi €
{A}. Approximately 82% of the addresses have a minimal
separation of 219 or greater.

3. RESULTS

In this Section, we use SVM regression for latency predic-
tion. Learning algorithms require optimization along several
dimensions. We begin by analyzing the training complexion:
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which features of the IP address provide the most discrim-
inatory power and what size training set generalizes well.
Given a suitable training set, we examine prediction error
and error distribution.

3.1 SVM Regression

We use SVM regression to produce a latency prediction.
IP addresses are simply unsigned 32-bit integers. We trans-
form the IP addresses into a 32 dimension input space where
each bit of the address corresponds to a dimension. Thus,
the input to the SVM machine is an IP address bit vector
x while the labels y are floating point round-trip latency
numbers.

To reduce possible dependence on the choice of training
set, all results we present are the average of five independent
experiments. We randomly permute the order of the data
set so that, after splitting, the training and test samples are
different between experiments. In this way, we ensure the
generality, a critical measure of the effectiveness of learning
algorithms.

Performance is measured in terms of deviation from the
true latency in the data set. Let V(f(-), y) be the real-valued
loss function between the prediction f(-) and the true value
y. We first establish a baseline against which to determine
the effectiveness of the learning. The most naive approach
is to simply always predict the mean latency of the training
samples: f(x) =7 = Zliy‘ The mean latency of our data set
is y = 122ms. A mean prediction strategy with an absolute
loss function, V(f(x),y) = |§ — y|, yields a mean prediction
error of approximately 70ms. Thus, results lower than 70ms
metric indicate effective learning.

We experiment with linear, polynomial and Gaussian ker-
nels and empirically obtain the best results with a fifth-
degree polynomial. The remainder of our results are based
on using a fifth-degree polynomial kernel.

3.2 Problem Dimension

The selection of training complexion is crucial to creating
a machine that generalizes well and operates efficiently. We
examine the informational content of each bit, or “feature,”
in the IP address. Let @ be a feature vector where 0; €
x. Intuitively, the most significant bits correspond to large
networks and should provide the most discriminatory power.
Here “most-significant features” correspond directly to BGP
prefix masks, i.e. 192.160.0.0/12. We run the regression
SVM algorithm against our data set using 4000 points for
training while varying the number of input features. For
example, the first 12 features of IP address 192.168.1.1 is
the bit vector 8 =110000001010.

We plot the SVM prediction mean error as a function of
the dimensionality of the input space in Figure 4. We see
that four or fewer bits yields virtually no information; the
mean error is nearly identical to that in a mean prediction
strategy. However, with only four more bits of input ad-
dress, the regression achieves a mean error around 33ms.
The optimal number of most significant features is between
12 and 14, after which test error begins to increase. This
increase in test error is symptomatic of over-training as the
least significant bits of the IP address add no discretionary
strength.

Next, we use greedy feature selection to determine which
bits of the IP address are most valuable to the regression
algorithm. Greedy selection simply finds, in succession, the
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next single feature that minimizes test error. For an error
function V(f(0), -), find the next feature ; from the remain-
ing features not previously selected in 61, ...,60;_1. Thus, we
evaluate each potential feature i for the fixed set of i —1 fea-
tures. Formally:

0; «— argmin V' (f(0,x;),y)Vz; & 01,...

J

761'71

Figure 5 depicts the prediction error as a function of features
found in greedy feature selection. The x-axis shows which
feature is selected; for example the first five best features
are, in order, 214 3 7.

Thus, the majority of the discriminatory power is com-
prised of the first eight bits of address. This is a powerful
result, but perhaps unsurprising given the traditional as-
signment of classful “net A” address blocks to large orga-
nizations and networks. Error continues to decrease to a
minima around 12 bits after which the additional features
begin to over-fit the training data and hinder the regression
performance.

3.3 Training Size

Given the optimal features found via feature selection, we
next attempt to optimize the balance between training and
test size. Figure 6 shows the mean absolute error in mil-
liseconds as a function of training size along with a 70ms
line indicating the learning bound. Using 4000 of the data
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Figure 6: Latency prediction mean error vs. train-
ing size. The 70ms line represents a naive mean
prediction strategy.

points as training, we obtain an average error of 26.6ms
across all latency predictions in the test set. 6000 training
points yields 25ms average error. We select 6000 training
points for the remainder of our experiments. Given the in-
herent noise in the network, the ability to predict latencies
within 25ms of their actual value is readily acceptable for
applications such as resource scheduling, service selection
and user-directed routing.

A second metric of performance is to run SVM regression
on a false data set identical in size to our real data, but
with random features. In other words, for every measured
latency, we assign a random IP address to create the false
data set. Regression on the false data set with the same
kernel parameters and training size yields a mean absolute
error of 84ms, again lending credence to our original hypoth-
esis: it is possible to leverage the structure of the network
in order to form latency predictions.

3.4 Regression Performance

Using the first 12 features, i.e. bits, from 6000 of our sam-
ples for training yields a good balance between performance
and exploitation. Given this training set, we examine the
distribution of latency prediction errors. While the previous
Section demonstrates a mean error of 25ms, it is important
to understand the character of the errors. Figure 7 gives a
scatter plot of measured versus predicted latencies. Perfect
predictions will fall along a line at a 45 degree angle from the
axes, while poor predictions are points that strongly deviate
from the line.

Figure 8 shows the cumulative probability distribution of
prediction error in milliseconds. 11% of the predictions are
within 2ms of the correct value, while more than 80% are
within 40ms of our measured latency. The distribution has
a long tail however, indicating that while the majority of
predictions are quite close, there is a relatively even distri-
bution of infrequent errors greater than 60ms.

Finally, figure 9 presents the cumulative distribution of
ratios between predicted and measured latencies. Ratios less
than one indicate an underestimate of latency while those
larger than one indicate an overestimate. With our SVM
prediction method, approximately 61% of the estimates are
within a 20% error, i.e. with ratios between 0.8 and 1.2,
while approximately three-quarters of the predictions are
within 30% of the actual value.
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3.5 Prediction Speed

Latency predictions must be fast in order to be practical
for the wide-range of potential applications. Since we apply
known SVM methods in a novel arena, we present empiri-
cal performance results rather than computational complex-
ity measures. Joachims [11] contains an analysis of several
techniques to reduce the time and space complexity of the
quadratic programming required in SVMs.

A significant cost is collecting the training points, however
several points bear notice. First, the host may continually
collect training data through its normal interaction with the
network, for instance using latency from the TCP three-way
handshake. In this mode of operation, the data are no longer
random and hence the model may be overly specific to IP
addresses within networks the host typically interacts with.
Yet, this specificity is a desirable feature for most hosts and
servers. Because SVMs are amenable to online learning, the
model adapts to provide the best generality and performance
given the workload the host expects to encounter.

Second, it is reasonable for the host to periodically collect
new, random training data. For instance, the host can spend
weekend or night time hours collecting data and updating its
model. The frequency of these updates and the performance
degradation of the model without updating is a subject for
future research.

On a 1.66GHz 32-bit Intel x86 architecture, training and
creating the machine using 6,000 data points requires 27.5s,
or ~4.6ms per data point. Once trained, the prediction
of latency to an arbitrary IP address takes approximately
1.5ms. Thus, the SVM regression is fast and practical for a
wide-variety of agents and applications.

4. APPLICATIONS

Prediction of network latencies to random destinations is
potentially useful in a variety of practical applications which
motivate this research:

1. Service Selection: To balance load and optimize
performance, a resource may be distributed over a set of
geographically distributed servers. These servers may co-
ordinate to form service selection decisions on the basis of
current network performance and the origin of a request as
well as the object requested [15]. Service selection is also
an important problem in peer-to-peer (P2P) networks where
popular data is replicated among many nodes. A search in a
P2P file sharing network may result in many potential peers
offering the file. Latency prediction enables an alternate
architecture where intelligence is shifted to the end-nodes.
For instance, consider a web service existing in multiple,
distributed locations advertised via a set of DNS address
records. An intelligent resolver agent’s first choice for the
given resource can be guided by our learning algorithm. The
client predicts which server is closest from among the set of
all potential addresses for the given resource. Note that
an incorrect prediction is not fatal; nothing precludes the
agent from selecting a different server if the first proves to
be a poor choice. Both clients and servers benefit in such
an architecture without explicit coordination.

2. User-directed Routing: Currently network end-
nodes have no control over the route their data takes through
the network to a destination. However, the continued adop-
tion of IPv6, with multiple per-provider logical interfaces,



and research efforts such as NIRA [20] and RON [1], are
poised to give nodes coarse routing control. In an IPv6
world with its provider-assigned addressing model, hosts will
have a combinatorial number of interfaces. When forming
decisions on how to best send traffic to a particular des-
tination, learning algorithms can significantly narrow the
host’s search space. Similarly, a mobile device choosing from
many different possible wireless networks could form deci-
sions based on prior interactions with each. In fact, any
agent can build a “routing table” without formal partici-
pation in a routing protocol or receiving routing announce-
ments.

3. Resource Scheduling: Web-servers endowed with
predictive abilities might tailor content depending on the
anticipated latency of the remote end-point or perform op-
portunistic scheduling [2]. Additionally, the grid computing
community would like to predict transfer times in order to
perform distributed scheduling efficiently [14].

4. Network Inference: Researchers frequently use struc-
tural models of the Internet including routing tables. How-
ever, publicly available routing tables [13] provide only a
highly aggregated view and from limited vantage points. In
many cases, it would be useful to understand the internal
structure and address assignments of individual networks.
A classification algorithm such as we propose could be used
to infer detailed topological properties of networks.

5. CONCLUSIONSAND FUTURE WORK

An emerging architectural tussle is where in the network,
if at all, intelligence should be placed [3]. Increasingly,
end-nodes must be intelligent participants in the network
through learning, prediction and classification. While a
complete view of the network may be best harnessed by
a distributed knowledge plane [5], we find significant value
also to end-nodes acting as autonomous learning agents.

Our results are the first to examine latency prediction
from machine learning on the IP address space. Using SVM
regression, our results show an estimation performance within
30% of the true value for approximately three-quarters of
the latency predictions on a large, live Internet data set.
The results produced by our method are encouraging to en-
able a range of applications including service selection, user-
directed routing, resource scheduling and network inference.

We plan to continue the research by investigating alter-
nate feature geometries in order to use linear kernels and
better represent the IP address structure. We wish to ex-
plore other network applications of SVMs and construction
of autonomous agents on network test beds. These agents
will model our vision of how a web server, peer-to-peer node
or IPv6 host might act intelligently. An important question
for future research is how network topology changes over
time affect performance and thus how often the model must
be retrained. Finally, we wish to investigate on-line learn-
ing as a means for agents to adapt to a changing network
environment without explicit retraining.
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