
Exploring Adaptive Power Saving Schemes for 
Mobile VoIP Devices in IEEE 802.11 Networks 

Shuvo Chatterjee, Dietrich Falkenthal, and Tormod Ree 
Massachusetts Institute of Technology, Cambridge MA 02139 

shuvo@alum.mit.edu, dlf@mit.edu, tormodin@stud.ntnu.no 
 
 

Abstract-Current IEEE 802.11 power saving schemes provide 
limited savings for VoIP specific wireless traffic.  This paper 
characterizes traffic from the two most popular VoIP service 
providers in the United States with hopes of developing an im-
proved approach to save power.  It proposes a novel scheme, 
named Adaptive Microsleep (AMS), as well as an alternative 
scheme named Non-Adaptive Microsleep (NAMS).  Both AMS 
and NAMS are well suited for power saving on mobile VoIP de-
vices by increasing the amount of time the devices spend in a low-
power sleep state, but doing so without introducing additional 
delays that would noticeably deteriorate voice quality.  Simula-
tions show that both schemes successfully satisfy both of these 
primary goals, saving up to 83% power, while also meeting a 
secondary goal of not requiring large infrastructure changes to 
802.11. 

 
I. INTRODUCTION 

Cellular phones have become ubiquitous in society. They 
give users the freedom to roam freely while still maintaining 
connectivity. However, spotty reception is still a major 
drawback, especially indoors. For indoor scenarios, using 
commonly available WiFi connections may be an apt solution 
to increase coverage when regular cellular phones may be out 
of service range. As such, one could argue that the future of 
wireless communications lies in wireless VoIP phones, or at a 
minimum in hybrid VoIP/cellular services. 

At present, cellular phones allow users 2-3 hours of 
continuous talk time on average. While WiFi VoIP phones 
seem to be the future of wireless communications, their talk 
time can be significantly shorter. Much of this is due to IEEE 
802.11’s static Power Saving Mode (PSM), which turns the 
antenna on the network interface card (NIC) on and off 
continuously at a fixed rate. 

In recent years, researchers have been tackling the problem 
of power saving in wireless devices, and in many cases, they 
have created new and successful schemes. One such scheme is 
known as Bounded Slowdown (BSD) [1]. In BSD, the NIC 
adjusts its sleep time based on the network traffic. It is a 
successful scheme when applied to wireless Web devices. 
However, in this paper, we show that it is not an optimal 
power saving scheme for use with VoIP traffic. 

Instead of using PSM or BSD, we present our own power 
saving scheme, known as the Adaptive Microsleep Protocol 
(AMS). We also present an alternative protocol, named Non-
Adaptive Microsleep (NAMS). Both schemes are designed for 
use during VoIP conversations. Our research shows that both 
AMS and NAMS are better suited for VoIP traffic than PSM 
or BSD as they allow VoIP devices to sleep longer, thereby 
increasing the power saved. 

II. TRAFFIC CHARACTERIZATION 

To be able to define new ways of saving energy we captured 
traffic from two of the most popular VoIP applications in the 
United States, Vonage and Skype. We captured the incoming 
and outgoing traffic using tcpdump [2].  

 
A. Vonage Characterization 

Vonage has become the fastest growing and largest VoIP 
provider in the United States, reaching more than 2.2 million 
subscribers by  the end of 2006 [3]. Vonage is not yet used on 
cellular phones, but could conceivably be used on a variety of 
mobile devices including laptops, PDAs, and WiFi phones. 

We captured Vonage data on a computer connected to a hub 
placed between a standard Vonage compatible phone and the 
Vonage phone adapter. For Vonage we captured five 3 minute 
conversations between the Vonage phone and a Verizon 
network cellular phone. The captured traffic shows that 
Vonage uses only the UDP protocol.  Fig. 1 shows a plot of 
the packets observed from the fourth of our five Vonage 
conversations. We observe from the collected data that 
Vonage uses a constant packet size of 172 bytes, both 
incoming and outgoing from the Vonage phone. 

For power-saving sleep opportunities, the time between 
consecutive packets is more important than packet size. A plot 
of the aggregate cumulative distribution function (CDF) for 
the time between consecutive outgoing packets for all 
conversations is shown in Fig. 2. We observe that 98% of the 
packets have a spacing of less than 23ms. We also observe 
that only 1 percent of the packets have a delay of more than 
50ms. The time between consecutive packets is concentrated 
at certain time intervals. 

The CDF of observed time between consecutive incoming 
packets is plotted in Fig. 3. From the plot it can be seen that 
there are no such concentrations as observed with the outgoing 
packets. This is caused by the packets having to traverse the 
internet before reaching the node at which we conducted the 
traffic measurements. It should also be noted that 99% of the 
packets have spacing between 10 and 30ms.  

 
B. Skype Characterization 

We also conducted similar measurements on conversations 
from Skype to the same cellular phone.  Skype can be used on 
a variety of different computer operating systems, and 
according to Skype’s website [4] has been downloaded more 
than 500 million times (as of March 2007). 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



 
Fig. 1. Plot of a Vonage conversation (data set #4), 

packet size (incoming and outgoing) vs. time (in ms x 104) 
 

 
Fig. 2. Cumulative distribution function (CDF) showing time between 

consecutive outgoing packets for all sets of observed Vonage conversations. 
 

 
Fig. 3. CDF showing time between consecutive incoming packets 

for all sets of observed Vonage conversations. 
 

For Skype, we captured traffic data for conversations 
transported over both the UDP and TCP protocols. Skype uses 
UDP to transport the conversation data as long as there are no 
barriers, such as firewalls, blocking UDP traffic [5]. TCP is 
needed for initialization. Since we are concentrating on energy 
savings during active conversations, the set-up phase is not 
included in our characterization. We conducted the 
measurements over a public wireless network at the 
Massachusetts Institute of Technology.  When measuring TCP 
traffic, we forced Skype to utilize TCP by blocking the UDP 
ports.   We  found the  TCP  dumps  to  have more variation in 

 
Fig. 4. Plot of a Skype conversation (#5), using UDP. 

 

 
Fig. 5. CDF showing time between consecutive outgoing packets 
for all Skype convesations, using UDP, over a wireless network. 

 

 
Fig. 6. CDF showing time between consecutive incoming packets 
for all Skype convesations, using UDP, over a wireless network. 

 
packet size and delay than the UDP dumps.  Because of this 
and because UDP is the only protocol employed by Vonage, 
we decided to concetrate our study on conversations using 
UDP.  Also, UDP appears to be Skype’s primary choice of 
transport protocol. 

After initial trials, we captured ten Skype conversations over 
the wireless network from a laptop to the Verizon network 
cellular phone. The TCP ports were blocked, so only UDP was 
used for these conversations.  We characterized the data files 
from tcpdump with Matlab. Fig. 4 shows a plot of one of the 
captured conversations. It can be seen that the packets seem to 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



be closely spaced. The largest packet is 69 bytes. Outgoing 
and incoming packets often have the same size, and the most 
commonly occurring sizes are 29 and 58 bytes. Skype clearly 
utilizes several packet sizes, while Vonage only uses one size. 

For a general view of the packet spacing in Skype 
conversations we plotted the aggregate cumulative distribution 
function (CDF) for the time between consecutive packets for 
all our ten measurements. The CDF for outgoing packets can 
be seen in Fig. 5. This data shows us that 99% of the packets 
have spacing between 10 and 30ms. 

Fig. 6 shows the same plot as Fig. 5, but for incoming 
packets. The distribution of time between consecutive packets 
is quite similar for the two plots. The major difference is that 
the spacing between incoming packets is more spread out than 
is the case for outgoing packets. We observed that more than 
10 percent of the incoming packets arrive back to back. We 
believe that this is caused by the 802.11 Access Point (AP) 
buffering packets before sending them to the receiving node 
where we conducted our measurements. From the data it can 
also be seen that around 96% of the packets have spacing of 
less than 50ms. The incoming packets hence have a larger 
percentage of longer spacing than the outgoing packets.  

 
C. Silence suppression 

Jiang and Shulzrinne show in [6] that some speech encoding 
algorithms suppress traffic when the source is silent. We 
conducted experiments to find out whether such coding 
algorithms were used by either Skype or Vonage. 

For Skype, we measured the traffic for a conversation over a 
wired 100Mbps Ethernet link, during a 2 minute conversation. 
For the first minute of the conversation, the person with the 
laptop muted the microphone. For the second minute, the 
person with the cellular phone muted the microphone. The 
measurements were carried out over both UDP and TCP, 
blocking the ports for the protocol not used. For Vonage, 
measurements were carried out with muting the devices in the 
same manner. The laptop doing the measurements was still 
connected to the hub between the Vonage phone and the 
Vonage phone adapter.  

The aggregate cumulative distribution functions for the time 
between consecutive packets can be seen in Fig. 7. The data 
collected shows that there are no spacings of more than 
100ms, inferring that neither Skype nor Vonage completely 
suppress data during periods of silence. Comparing the 
average time between consecutive packets for incoming and 
outgoing packets in this case to the study conducted earlier, it 
should be noted that this traffic was measured over a wired 
link. This removes the extra jitter introduced by the wireless 
link. A comparison of the muted and not muted measurements 
is given in Table 1. We can see that the difference in times 
between consecutive packets is minimal. The only significant 
difference is a smaller standard deviation for the incoming 
packets with Skype. This is most likely because the muted 
experiment was conducted over a wired link. 

Given the small differences between the muted and not 
muted characterization, we conclude that Skype and Vonage 
do not suppress traffic during periods of silence. 

 
Fig. 7. Cumulative distribution function plots of time between 

consecutive packets for conversations with muting. 
 

time between consecutive packets 
  mean st. dev. 
Vonage:     
outgoing 19.9946 5.9304 
incoming 19.9938 0.9863 
outgoing, muted 19.9990 5.9295 
incoming, muted 19.9987 1.0984 
Skype:     
outgoing, wireless 19.8599 2.1928 
incoming, wireless 21.5035 14.0681 
outgoing, muted, wired 20.0125 2.7448 
incoming, muted, wired  19.9927 10.5297 

Table 1. Mean and standard deviation for muted 
and not-muted Skype and Vonage conversations. 

 
III. PROTOCOLS 

D. Observations 
The current protocol for power saving in an 802.11 network, 

Power Saving Mode (PSM), is not able to conserve power 
during a VoIP conversation.  The interval between consecutive 
packets in VoIP traffic is much less than the PSM power-
saving sleep interval of 100ms, thus PSM sleep mode will 
never kick in.  Motivated by this observation, we seek a 
protocol that allows network cards to enter a sleep state during 
VoIP conversations. 

Additionally, our observations show that a node using 
Vonage or Skype will send packets in a regular pattern with 
short delay between two consecutive outgoing packets. 
Because this delay is so short, it does not significantly delay 
incoming packets, nor qualitatively degrade the perceived 
quality of the conversation [7]. 

 
E. The AMS Protocol 

The AMS protocol starts in a measuring mode, during which 
it determines the average time between consecutive incoming 
packets. This is done because different VoIP applications use 
different coding schemes for the voice traffic. This results in 
different intervals between times at which packets are sent, 
and thus also a difference in the inter-arrival times of packets. 
To conserve the maximum amount of energy, it is our goal to 
spend as much time as possible in the sleep state. Moreover it 
is also our goal to introduce as little additional delay as 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



possible. In an ideal situation, this would be done by 
predicting exactly the time of the next packet transmission or 
packet arrival, and entering the awake state just before this 
occurs. To save power while not introducing an unacceptable 
level of delay, we thus need to measure the average time 
between consecutive incoming packets. This measure is then 
used as a threshold for the maximum time the network 
interface card can spend in the sleep state. The time between 
consecutive outgoing packets does not need to be measured 
because AMS makes the NIC go from the sleep state to the 
awake state whenever there is a packet to transmit. 
Additionally, a second goal was to create a protocol that does 
not require significant changes to the IEEE 802.11 standard. 

The time the NIC stays in the measuring mode is a static 
predetermined interval. After this interval has passed, the NIC 
enters the power saving mode. In this mode, there are two 
different states, sleep and awake. The protocol tries to 
maximize the time the NIC is in the sleep state, while 
constraining the delay introduced for incoming packets. 

The PSM protocol requires the Access Point (AP) to buffer 
any incoming traffic for the node while it is in its sleep state. 
Traffic is then announced in a periodic beacon broadcast to all 
the nodes. In AMS the AP also needs to buffer any incoming 
traffic for a node in the sleep state. Because AMS allows the 
NIC to go in and out of the sleep state more frequently than 
PSM, we have chosen not to utilize a beacon approach to the 
synchronization between the AP and the NIC. 

In AMS, the NIC does not notify the AP when entering the 
sleep state. The AP will therefore try to transmit any incoming 
data to the NIC. If the NIC is in the sleep state, this 
transmission will not be successful, and we require the AP to 
buffer such traffic. Since our protocol is designed to work in 
an 802.11 network, the absence of link layer 
acknowledgements will indicate a failed transmission. The AP 
will retransmit the buffered data to the node when it learns that 
the NIC has entered the awake state. This can happen in two 
different ways, when the AP receives data from the NIC or 
when it receives a polling packet discussed later. 

There are two events that will make the NIC go from the 
sleep to the awake state. The first is if the NIC has data to 
transmit, which triggers an immediate transition. The other is 
if a maximum adaptable sleep timer, known as the sleep 
threshold, is reached. In the first case, the NIC will transmit 
the outgoing data, wait for any incoming data for a fixed 
period of time known as the listening threshold, and if there 
are no incoming packets, it will return to the sleep state. We 
set the listening threshold to a fixed value to allow for packets 
to traverse to the NIC even in the presence of contention on 
the network. In the second case, the NIC will transmit a packet 
polling the AP for any buffered data. After the polling packet 
is sent, the node stays awake for the listening threshold, and if 
there is no data to be received, it reenters the sleep state. 

The sleep threshold and the polling packet are introduced to 
counter the situation where there is a substantial delay 
between two outgoing packets. In such a case, the NIC will 
reach the sleep threshold and enter the awake state to poll the 
AP for buffered data.  

 

mode = measure; 
measureT = preset measuring interval; 
while (mode = measure) 
{ 
 if(time()–startTime > measureT) 
 { 
  mode = pSave; 
 } 
 if((pkt received)&(mode = measure)) 
 { 
  // update threshold with exp 
  // weighted average 
 } 
 if ((mode = pSave)&(pkt sent)) 
 { 
  Sleep(threshold); 
 } 
}  
while (mode = pSave) 
{ 
 if(wakeup&(reason = pkt_sent)) 
 { 
  wait(listeninginterval);  
  receive pkts : decrease threshold 
   (multiplicative); 
  no pkts: do nothing;  
  sleep(threshold); 
 } 
 else if(wakeup&(reason = threshold)) 
 { 
poll base station; 
wait (listeninginterval); 
receive pkts: decrease threshold 
 (multiplicative); 
no pkts: increase threshold 
 (multiplicative); 
sleep (threshold); 
 } 
} 

Fig. 8. Pseudocode for AMS. 
 

F. The AMS Polling Packet 
The NIC polls the AP with a polling packet. The packet is a 

stream of 0’s that is 5 bytes in length. Conceptually, the poll-
ing packet is based on 802.11’s RTS/CTS frames, which are 
60 bytes in length. Because under AMS the NIC polls the AP 
after waking every time, we are setting the polling packet to 
be of size 5 bytes to avoid unnecessary contention and spuri-
ous transmission over the network. 

Once the AP receives the poll from the NIC, it sends the 
NIC any buffered packets that may be waiting. If no packets 
are currently buffered, it sends the NIC nothing. Likewise, the 
NIC waits for the listening threshold after sending the packet 
for any packets that might be waiting for it at the AP. If it re-
ceives no response from the AP, it determines that there are no 
packets for it in the AP’s queue and returns to the sleep state. 
If it does receive packets from the AP, it stays in awake state 
to receive all of them. The sleep threshold is adjusted based on 
the response the NIC receives from the AP. 

 
G. How the Sleep Threshold is Adjusted 

After sending the AP the polling packet, if the NIC does not 
receive any packets during the listening threshold, it returns to 
sleep state and multiplicatively increases the sleep threshold 
by a factor of α. The idea here is that, since the NIC reached 
its sleep threshold the last time it was in the sleep state without 
ever waking to send a packet, and because no packets were 
waiting for it in the AP when it awoke, traffic on the link as a 
whole must have decreased, and therefore it can sleep longer. 
Conversely, if it receives data after sending the AP the polling 
packet, the NIC determines that it was in sleep state for too 
long and multiplicatively decreases its sleep threshold by a 
factor of β. The idea here is that, since packets were already 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



waiting for the NIC in the AP’s queue, traffic on the link must 
have increased while the NIC was in the sleep state, and 
therefore it must quickly decrease its sleep threshold to avoid 
causing further delays on the link. 
 

 
Fig. 9. Visualization of how the sleep threshold is adjusted. 

 
H. The NAMS Protocol 

We also consider an alternative protocol based on AMS. In 
the Non-adaptive Microsleep (NAMS) protocol, the NIC has a 
fixed sleep threshold of 50ms and no longer requires the use of 
polling. It is therefore a simpler protocol than AMS. Like 
AMS, however, it does require the AP to still buffer its 
packets. If the outgoing stream is predictable, as is the case for 
Vonage and Skype, then the NAMS scheme will work well. In 
these cases, the period between transmissions is short enough 
that adjusting the sleep period is unnecessary. On average, 
Vonage and Skype force the NIC into an awake state to send 
packets often enough that the NIC can receive data then, so 
the polling packet is unnecessary. We leave a fixed sleep 
threshold for instances where the device may not send a 
transmission for an excessive amount of time. 

 
mode = pSave; 
sleep; 
while (mode = pSave) 
{ 
 if (pkt_sent) 
 { 
  wait(listeninginterval); 
  receive pkts; 
  sleep(fixed_threshold); 
 } 
} 

Fig. 10. Pseudocode for NAMS. 
 

I. Comparing AMS to PSM & BSD 
Our proposed protocol, Adaptive Microsleep (AMS), allows 

for power conservation on a much finer grained basis than 
PSM. Krashinsky and Balakrishnan [1] have shown through 
measurements that the time for a network interface card (NIC) 
to switch between a sleep and awake state can be less than a 
millisecond. AMS takes advantage of this through switching 
between the states more frequently than the PSM scheme 
allows. AMS also adapts the duration of the time the NIC 
stays in the sleep state to the on going traffic. 

AMS and BSD are similar in that both have adaptive sleep 
patterns, but that is the extent of their similarities. There are 
several differences between the two protocols. First, AMS 
switches between sleep and awake state far more frequently. 
This allows for sleep between VoIP packets, which arrive at 
an interval that is less than the minimum sleep time required 
for BSD. Second, in scenarios where there are a large number 

of packets waiting at the access point for the NIC, BSD tends 
to drastically decrease its sleep threshold, jumping from a long 
sleep time to a long time in the awake state. While this 
technique works well for dealing with bursty Web traffic, it 
does not work well with VoIP traffic. Instead, AMS 
multiplicatively decreases its sleep threshold, which allows for 
smoother sleep adjustments over time. Finally, BSD utilizes 
the beacons already present in the 802.11 infrastructure, which 
means it is restricted to the beacon’s 100ms constraint. Unlike 
BSD, AMS does not use 802.11’s beacons. Instead, it utilizes 
its own polling mechanism for situations where the NIC 
reaches the sleep threshold and must let the AP know that it is 
in the awake state. Using the beacons in AMS would have 
caused too much contention for VoIP traffic. 

 
IV.  SIMULATION 

Trace-driven Matlab simulations using the previously 
characterized Skype data files showed favorable results for 
both protocols. NAMS and AMS spent similar amounts of 
time in sleep state.  Packet delay was also similar and small 
enough to pose little danger to degradation of voice quality.  
AMS performed slightly better than NAMS in limiting the 
maximum packet delay.  

 
J.  NAMS Simulation Runs 

NAMS was fairly straightforward.  We set the sleep 
threshold to 50ms and the listening threshold to 2ms. Once set, 
both parameters remained constant throughout the simulation. 
We arrived at the initial values by analysis and confirmed 
them by experimentation.  A sleep threshold of 50ms was set 
to avoid long delays which might noticeably degrade the voice 
quality of the conversations.  Two factors influenced our 
choice of the listening threshold. On one hand, a lower 
listening threshold gives a higher percentage of sleep time 
because the NIC stays awake for a shorter time. On the other 
hand, the listening threshold needs to be long enough to 
account for any congestion in the network. Congestion in the 
network could lead to the AP not being able to deliver pending 
transmissions for a newly awoken NIC fast enough to be 
received prior to a transition back to sleep state. After 
considering these factors and experimenting with different 
values, we decided on 2ms as our value for the listening 
threshold. This is the same amount of time that a NIC stays 
awake to listen for the beacon under the PSM scheme [1]. A 
more thorough evaluation of the listening threshold is difficult 
with data and trace-driven simulations. Implementing our 
protocol, however, would give new opportunities to study the 
real world effects of this value. 

The simulation results for NAMS are shown in Table 2. We 
see that the NIC is able to spend 89.4% of the time in the sleep 
state (we discuss the energy savings that follow from this 
below). The average delay introduced for the incoming 
packets is 7.95ms. Acceptable voice quality should be 
obtained with this protocol, as the maximum delay introduced 
is 33.52ms. The cumulative distribution function for the delay 
introduced by NAMS is given in Figure 11. 

 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



protocol % sleep 
avg delay 

(ms) 
max delay 

(ms) 

# wake-up
transitions
per second 

AMS (0.8, 1.8) 87.8% 7.90 22.46 55 
AMS (0.8, 2.0) 88.1% 7.92 22.64 54 
AMS (0.8, 1.2) 81.1% 7.06 19.27 85 
NAMS 89.4% 7.95 33.52 50 

Table 2. Simulation results for AMS and NAMS. 
 
 

 
Fig. 11. CDFs for the delay time for NAMS and AMS (0.8, 2.0) 

 
 

K. AMS Simulation Runs 
AMS simulations were conducted in the same manner as 

NAMS with two additional provisions. First, we set the meas-
uring interval length. The measuring interval is the time spent 
at the beginning of the conversation determining the average 
time between consecutive incoming packets, as described in 
the protocol section. Through experimentation we found 
400ms provided an adequate value for the measuring interval. 
As in NAMS, we set the listening threshold to 2ms. 

Second, values for the gain α and loss β, which during 
operation adaptively adjust the sleep threshold, were set. We 
ran simulations varying α and β, and the results are given in 
Table 2. Each run is denoted AMS(β, α). A more aggressive 
value for the increase of the sleep threshold, such as 1.8 or 2.0, 
give a higher percentage of time spent in the sleep state than a 
value like 1.2 does. We kept the value determining the 
decrease in the sleep threshold, β, constant at 0.8.  The 
average and maximum delay is quite similar for the two 
aggressive settings. The setting with α as 1.2 gives a slightly 
lower average delay, and a lower maximum delay. The 
cumulative distribution function for the runs with β of 0.8 and 
α of 2.0 is given in Figure 11.  

The number of wake-up transitions given in the last column 
of Table 2 tells us how frequently the NIC goes from the sleep 
state to the awake state. We see that a setting of 1.2 for 
α causes more transitions than for the other settings. This is 
caused by the NIC reaching the sleep threshold more often. 

Comparing the AMS and NAMS results, we see that NAMS 
is able to spend a larger percentage of the time in the sleep 
state. It does, however, have a slightly longer average delay 
and much longer maximum delay. 

 

L. Power Savings 
From the simulation results, we calculated the energy 

savings for two different NICs. The energy spent sending and 
receiving data was negligible compared to the energy spent 
listening and sleeping by comparing the energy consumed in 
these situations. For example, the energy spent transmitting a 
58 byte packet, including headers, over a 5Mbps link using the 
power specifications of the Aironet 350 NIC card is 0.28mJ. 
The energy consumption for listening for 2ms using the same 
specifications is 1580.94mJ. Since the energy spent listening 
is several orders of magnitude larger than the energy 
consumed during transmission, we safely disregard the latter’s 
energy.  Like Krashinsky [1], we also determined that the 
small spike in power consumption observed with the 
Enterasys RoamAbout NIC could be ignored due to its short 
duration. This spike can be seen in Figure 12. 

 

 
Fig. 12. Power consumption of the Enterasys RoamAbout NIC, in [1]. 

 
We calculated the energy savings by using the power 

measurements shown in Table 3.  The results (Table 4) show 
the calculated power savings each protocol could achieve 
using these two different NICs. We arrived at the energy 
savings by combining the time spent in the sleep and awake 
state with the listen and sleep power levels. 

 
power 

phase Aironet 350 NIC Enterasys Networks
RoamAbout NIC 

listen 790 mW 750 mW 
sleep 169 mW 50 mW 
transmit 1304 mW - 
receive 955 mW - 

Table 3. Power consumption for Aironet 350 and Enterasys RoamAbout. 
 

energy savings 

protocol Aironet 350 NIC 
Enterasys Network 
RoamAbout NIC 

AMS (0.8, 1.8) 69.02% 81.95% 
AMS (0.8, 2.0) 69.25% 82.23% 
AMS (0.8, 1.2) 63.75% 75.69% 
NAMS 70.28% 83.44% 

Table 4. Energy Savings 
 

We see from the results in Table 4 that the Enterasys card 
has higher power saving than the Aironet card.  This is simply 
an attribute of the lower sleep power level for the Enterasys. 
When looking at the AMS power savings, we see that the 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.



more aggressive settings for α of 1.8 and 2.0 give slightly 
higher energy savings than the more passive setting of 1.2. 
Our results also show that NAMS gives a higher energy 
saving for both NICs than any of the AMS runs. 

 
M. Implementation 

One of the design goals for our protocol was that it should 
be easy to implement in an IEEE 802.11 wireless network [8]. 
For this reason, we tried to reduce the number of changes that 
would be needed to the firmware and physical properties of 
the network components.  

Both AMS and NAMS require small changes to the behavior 
of the current network elements. None of them require 
changes to the physical properties. AMS requires the AP to 
buffer incoming traffic that it is not able to transmit to the 
sleeping NIC. Current APs buffer traffic for nodes sleeping 
under the PSM scheme [1]. Under AMS, however, the AP will 
not know which NICs are sleeping, and must therefore first try 
to transmit the data. If the transmission is unsuccessful, the 
data must be buffered. The other minor change required under 
AMS is that the AP must send any buffered data when it 
receives indication that the NIC has left the sleep state. This 
will be indicated by either the reception of a regular packet or 
a special polling packet. NAMS requires somewhat smaller 
changes to the AP. With NAMS, the AP does not have to 
recognize the polling packet, since it is not used with this 
protocol. The other changes required are the same as for AMS. 

We believe that the end nodes implementing AMS and 
NAMS will be mobile handsets tailored for VoIP communica-
tion over wireless networks. Current NICs can be adapted to 
AMS and NAMS through changing the firmware of these 
cards. The cost of doing so could be minimal compared to the 
potential power savings. 

 
V. RELATED WORK 

This paper has two contributions. First, it characterizes data 
gathered during VoIP conversations with the two most popular 
VoIP providers in the United States. We show that current 
power saving schemes, such as PSM and BSD [1], are not 
suitable to save energy with such data patterns. Second, we 
propose two protocols, AMS and NAMS, that we believe are 
able to significantly reduce the power consumption during 
VoIP conversations in IEEE 802.11 networks. Our trace-
driven simulation results show energy savings of up to 83%. 

A survey of power saving schemes for wireless networks in 
different protocol layers is given in [9]. Krashinsky and 
Balakrishnan propose an adaptive sleep algorithm for wireless 
web access, BSD, in [1]. This approach shows some similarity 
to ours by adapting the time the NIC sleeps. There are 
however, several major differences, as we discussed in section 
3.6. Kravets and Krishnan propose a power saving scheme 
involving sleep in [10]. This approach introduces delays of 
0.3-3.1 seconds and is controlled at the transport layer. It is 
thus not suitable for delay-sensitive traffic such as voice 
conversations. Another approach to power management is to 
control the power at which the transmissions are done. Qiao 
et. al. propose such a scheme in [11]. When dealing with voice 

transmissions it is important to consider the voice quality of 
these. Kotwicki analyses the effects of loss rate and delay in 
[7]. There have also been numerous papers on power saving in 
sensor networks, such as [12, 13]. 

 
VI. CONCLUSION 

In this paper, we successfully characterized traffic from the 
two most popular VoIP applications in the United States. We 
also proposed the Adaptive Microsleep (AMS) and Non-
Adaptive Microsleep (NAMS) protocols, two power schemes 
designed to be used during VoIP calls on wireless mobile 
devices. Using simulations, we found that our protocols have 
power savings of up to 83%. We accomplished this by 
increasing the sleep time for the network interface card, and 
we did so without introducing any significant delays. 
Additionally, our protocols do not require large infrastructure 
changes to 802.11. We further conclude that the NAMS 
protocol may be better than AMS with traffic such as that 
from Skype and Vonage, since it is a simpler protocol.  
Further work includes hardware implementation and testing as 
well as research to confirm AMS and NAMS to be 
generalizable beyond our test cases. 

 
ACKNOWLEDGMENT 

We would like to acknowledge Ronny Krashinsky and Prof. 
Hari Balakrishnan for helpful comments and feedback. We 
would also like to thank Leo Dertouzos for use of his 
telephone test equipment. 

 
REFERENCES 

[1] R. Krashinsky and H. Balakrishnan. Minimizing Energy for Wireless 
Web Access with Bounded Slowdown. Proceedings of the 8th Annual In-
ternational Conference on Mobile Computing and Networking, Septem-
ber 2002.  

[2] The tcpdump/libcap project. www.tcpdump.org. 
[3] Vonage,  http://ir.vonage.com/faq.cfm?FAQID=2, accessed 4/18/2007 
[4] http://share.skype.com/sites/en/2007/03/half_a_billion_downloads.html, 

accessed 4/18/07 
[5] Salman A. Baset and Henning Shulzrinne. An Analysis of the Skype 

Peer-to-Peer Internet Telephone Protocol. Columbia University, Sep-
tember 2004. 

[6] Wenyu Jiang and Henning Shulzrinne. Analysis of On-Off Patterns in 
VoIP and Their Effect on Voice Traffic Aggregation. In The 9th IEEE 
International Conference on Computer Communication Networks, 2000. 

[7] J. Kotwiki. An Analysis of Energy Efficient Voice Over IP Communica-
tion in Wireless Networks.  Master’s Thesis, Case Western Reserve Uni-
versity.  March, 2004. 

[8] IEEE Computer Society LAN MAN Standards Committee.  IEEE Std 
802.11: Wireless LAN Medium Access Control (MAC) and Physical 
Layer (PHY) Specifications.  August 1999. 

[9] Christine E. Jones, et. al. A Survey of Energy Efficient Network Proto-
cols for Wireless Networks.  Wireless Networks 7 (4) (2001) 343-358. 

[10] Robin Kravets, P. Krishnan. Power Management Techniques for Mobile 
Communication. ACM Press, 1998.  

[11] Daji Qiao, Sunghyun Choi, Amit Jain, Kang G. Shin. MiSer: An Optimal 
Low-Energy Transmission Strategy for IEEE 802.11 a/h. Mobicom, Sep-
tember 2003.  

[12] Wei Ye, John Heidemann, Deborah Estrin. An Energy-Efficient MAC 
protocol for Wireless Sensor Networks. Proceedings of the IEEE Info-
com, 2002.  

[13] Yeonkwon Jeong, J.P., Joongsoo Ma, and Daeyoung Kim. An Enhanced 
Power Save Mode for IEEE 802.11 Station in Ad Hoc Networks. 2004. 
Daejeon, Korea. pp. 414-420. 

Second International Conference on Digital Telecommunications (ICDT'07)
0-7695-2910-0/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 12, 2009 at 17:12 from IEEE Xplore.  Restrictions apply.


