
Designing for Scale and Differentiation
Karen R. Sollins

MIT Laboratory for Computer Science
200 Technology Square

Cambridge, MA 02139 USA
+1 617 253 6006

sollins@lcs.mit.edu
ABSTRACT
Naïve pictures of the Internet frequently portray a small
collection of hosts or LAN’s connected by a “cloud” of
connectivity. The truth is more complex. The IP-level structure
of the Internet is composed from a large number of constituent
networks, each of which differs in some or all of transmission
technologies, routing protocols, administrative models,
security policies, QoS capabilities, pricing mechanisms, and
similar attributes. On top of this, a whole new structure of
application-layer overlays and content distribution networks,
equally diverse in the sorts of ways mentioned above, i s
rapidly evolving. Virtually any horizontal slice through the
current Internet structure reveals a loosely coupled federation
of separately defined, operated, and managed entities,
interconnected to varying degrees, and often differing
drastically in internal requirements and implementation.
Intuitively, it is natural to think of each of these entities as
existing in a region of the network, with each region having
coherent internal technology and policies, and each region
managing its interactions with other regions of the net
according to some defined set of rules and policies.

In this paper, we propose that a key design element in an
architecture for extremely large scale, wide distribution and
heterogeneous networks is a grouping and partitioning
mechanism we call the region. Furthermore we postulate that
such a mechanism can provide increased functionality and
management of existing unresolved problems in current
networks. The paper both describes a proposed definition of
the region concept and explores the utility of such a
mechanism through a series of examples. We claim that there
is significant added benefit to generalizing the idea of the
region.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design.

Keywords
Network Architecture, scalability, heterogeneity, extensibility.

1. INTRODUCTION
We have seen orders of magnitude growth in networks and the
Internet. As elements on networks become smaller, their
numbers will only increase further. Predictions of vast sensor
nets, including “smart paint”, “smart cement”, “smart
buildings” suggest numbers of elements increasing by many
orders of magnitudes. In this paper, we propose that a key
design element in an architecture for extremely large scale and
wide distribution networks is a grouping and partitioning
mechanism. Furthermore we postulate that such a mechanism
can provide increased functionality and management of
existing unresolved problems in current networks.

Virtually any horizontal slice through the current Internet
structure reveals a loosely coupled federation of separately
defined, operated, and managed entities, interconnected to
varying degrees, and often differing drastically in internal
requirements and implementation. Intuitively, it is natural to
think of each of these entities as existing in a region of the
network, with each region having coherent internal technology
and policies, and each region managing its interactions with
other regions of the net according to some defined set of rules
and policies.

The entities in question here are the elements of the
infrastructure itself. In contrast, it is also important to
recognize that a network is of no interest without the
missives1 or messages that traverse the network. In a TCP/IP
network these may be packets or packet aggregates as
proposed in Clark et al. [11]. At a higher level, they may be
agents or queries into a web of information, or distributed
threads of computation. We concentrate on an approach to
improving the organization of the infrastructure, in order to
improve the situation for these missives, and postulate that
the single approach proposed here can have significant impact.

This paper will explore the broad utility of a concept we call
the region. A region is an entity that encapsulates and
implements scoping, grouping, subdividing, and crossing
boundaries of sets of entities. In network systems, these
functions are used for a variety of purposes including scaling,
heterogeneity, security, billing, performance, trust
management, and so on. The assumption that we explore in
this work is that we can separate mechanism from purpose, by
providing a single highly optimized and reusable generic
mechanism to serve a number of purposes. The original
Internet architecture had no concept of region. To meet a
variety of needs the idea has been introduced in an ad hoc way
in many places. At the core of this paper we will be exploring

1 We use the term “missive” generically to reflect things that

may move or be sent through the network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGCOMM 2003 Workshops, August 25-29 , Karlsruhe, Germany.
Copyright 2003 ACM 1-58113-748-6/03/0008…$5.00.

Proceedings ot the ACM SIGCOMM 2003 Workshops 267 August 2003

what might happen if it were introduced as an architectural
capability, as originally suggested by Wroclawski [38].

The region captures two basic concepts, the group and its
boundary. The entities within a region share a set of
characteristics or invariants; by being in a region, an entity i s
defined to reflect the invariants of that region. The key
characteristic of the boundary is that we can know that
approaching or crossing a boundary may trigger an action,
such as either modification of some piece of state or
notification transmitted to an appropriate entity. In this work,
a boundary is a logical concept, although we often describe the
idea by analogy with topological or physical boundaries.
Orthogonal to these basic ideas, the region will be capable of
adaptive re-organization or optimization under changing
conditions. This optimization must be managed under the
constraint of a well-defined specification of the region
interface. Because the behavior of the generic region
abstraction will be well defined and reusable as well as
optimizable, regions will be scalable and widely available.

We expect the generalization to provide two key
improvements to the current situation. First, it will relieve the
implementer of re-inventing mechanism and provide access to
adaptably improved behavior. Second, a shared region
abstraction will provide a number of benefits including both a
new paradigm for managing the flow of information across
layer boundaries, and the opportunity for mutual
improvements between layers. This framework for multi-layer
interaction will enhance rather than eliminate the layered
model of networking.

This paper explores a particular definition or specification of a
region and proposes it as a first class object in the network
architecture. Section 2 defines regions in some detail. Section
3 discussions an initial set of issues in designing adaptive
regions. Section 4 describes several example situations in
which different aspects of the region concept would be
valuable. Section 5 reviews related work, and Section 6
concludes with an abstract interpretation of regions and a
summary of the contributions of this paper.

2. Defining a region
The introduction hinted at a definition of a region. There are
several distinct aspects to a region definition. First, it i s
defined by a set of attribute value pairs. Second, a region
contains a set of members. Any member of a region by
definition has or inherits the attributes of that region. Third, a
region has a boundary, so entities are either inside or outside
the boundary. Finally, a missive moving within the region
may cause state to be changed somewhere if a boundary i s
approached or crossed.

Each of these topics raises a complex set of issues and
questions. Further definition is best achieved by discussing
the types of operations or functions a region supports. These
fall into three groups, definition, membership, and boundary
management functions. We will discuss each group separately.

2.1 Creating and deleting a region
There is a small set of issues related to the creation and
deletion regions. In defining a region, there are two aspects we
consider here, the invariants and the ability to distinguish a

region from another region. The reason this is important here
is that if a name is needed for each region, it will be part of the
operation of creating the region. In addition authorization i s
important, but because it is important for all aspects of
regions, we will address it separately in Section 2.4.

As stated earlier, one of the key aspects of a region is the set of
invariants it represents or by which it is defined. In playing
devil’s advocate, one could argue that a simple definition with
respect to invariants would be to declare that each region
defines a single invariant. In conjunction with this, a key
function will be operations for intersection among regions.
This ignores the fact that the second central aspect of a region
is a boundary, and, unless we provide some means of defining
a merged boundary for the intersection, we have lost a
significant aspect of the region abstraction. Hence, for the
purposes of this work, we will assume that a region can have
more than one invariant. We will find later that the
intersection function may still be a valuable function, but i t
cannot replace the region. Furthermore, issues of the
relationship between individual entities, the invariants of a
region, and membership in the region will be discussed further
in Section 2.2

The second issue we consider here is that of distinguishing
regions from each other. One way of achieving distinction
might be to postulate that each region can be distinguished
from all others by its set of invariants. This has two
implications. First, there must be common agreement on
invariant representation, so that two statements of invariants
that are not intended to be the same as each other are distinctly
represented. This implies global definition of invariants.
Second, no two regions will have the same set of invariants
assigned to them. This would also require global
coordination. Either of these is too great an imposition to be
practical. Our approach is that each region is assigned a
globally unique name or identifier. There exist a number of
global naming schemes2 at present with varying degrees of
scalability, user-friendliness, etc. We will choose one of these
that allows for local determination of a globally unique
identifier. For our purposes at present, which one does not
matter, only that a region must be assigned a globally unique
identifier.3

Finally, in this section we must consider destruction of a
region. The question here is whether regions are destroyed
explicitly or are garbage collected automatically when they
have no membership. We have begun the work of exploring
garbage collection within a region in the work of Law. [18]
Distinct from this is the question of whether there should be
any automated removal of regions themselves; because we
imagine regions being created independently of whether they

2 Examples are the DNS, URIs, URNs, GUIDs, and so on.
3 As we will see later, the location, membership and many other

characteristics of a region may change, so it is probably not
wise to embed explicit or exposed semantics into such
identifiers. As with many other schemes, higher-level
human-friendly naming schemes can be layered on top as
needed. See Sollins and Massinter [30], Sollins and Van
Dyke [31], Sollins [29], and Balakrishnan, Shenker, and
Wallfish [2] for discussions about semantics-free
identification.

Proceedings ot the ACM SIGCOMM 2003 Workshops 268 August 2003

actually have any members at that time, elimination cannot be
based on emptiness, so we suspect that it can only be explicit
or be determined by some more complex sunset algorithm.

Thus to summarize, the management of a region will involve at
least the following sorts of functions: create_region
(invariants, name,…) and destroy_region (name,…).4

2.2 Region membership
The functions a region must support with respect to
membership fall into two subcategories. First, there is the
issue of insertion in and deletion from a region and, second,
there is the issue of learning about and distinguishing among
members. These two groups of functions will be discussed
separately.

As discussed in the previous section, region invariants will
not be globally defined, nor will they necessarily uniquely
define a region even locally; hence they cannot be a determiner
of region membership. We therefore postulate in this work
explicit insertion and deletion as we will discuss further
below, although it is important to recognize that these can be
automated; there is no assumption that a human must be
involved in these operations. Furthermore in general, we also
postulate that an entity can be in more than one region at any
time. Regions may be disjoint, overlapping or nested. We
allow for regions to be members of other regions. A corollary
of time varying membership is that it is acceptable for an
entity to be in no regions at some times as well. Regions and
membership in them is intended to allow for grouping,
simplification, abstraction, and so forth, but where not
appropriate should not be applied.5 In addition we recognize
that in some dimensions or attribute spaces, membership may
be significantly more restricted. As an example, consider
Internet routing and ASs as regions. An IP address will be in
exactly one AS. An AS may hide another AS, so that a host
may appear to be in more than one, but in practice the hidden
AS is not a member of the parent AS, but rather simply reached
through it. If an IP is in no AS, it is unreachable. This said, we
believe there is value in allowing some sets of regions to be
less restrictive in their membership requirements.

There are two key issues with respect to an entity joining a
region, the invariants and introduction. The intention is that
if the invariants were not true of the entity prior to joining a
region, that they become true. The hitch here is that that may
be impossible or unacceptable. If the region consists of
people with green hair, for people with no hair that may be
impossible and for people without dyed hair it may be

4 The precise set of functions and their arguments are part of

the subject of this research. These and the other functions
presented later in Section 2 are representative of what will be
included in the definition and implementation.

5 Lurking in here is a dilemma. One could assume that if a
region exists, then there exists a virtual region containing as
a membership exactly all those entities not in the original
regions. Membership in that region is explicit only in that
it is determined by not taking the explicit action of
inclusion in the original region. We have not established
the utility of such a concept, but recognize that it might
have value.

unacceptable. So, joining may be more than a simple decision
to add an entity to a region; there may be physical capability
or policy decisions by or on behalf of the potential members,
for example.

Because membership in a region cannot be based on invariants
of the entities, an introduction function is needed for inserting
entities into regions. In practice we may find two sorts of such
introductions, those performed by a human and those
performed by members of the region itself. For example, if I
am defining my “home” region, I might buy a new lamp, bring
it into my home, and declare to my “home” region that the
lamp is now part of my region. Later, I might buy a new switch,
introduce it to the lamp as the lamp’s new controller, and in
turn the lamp might introduce the switch into my “home”
region. This is clearly making an assumption that my lamp
has authority to make such an introduction, which in turn
implies that it has the requisite identity and functionality. We
do not expect all entities to have such a capability, but
recognize its utility. In both of these cases, an explicit
introduction action will be taken, although it need not include
human intervention. We recognize that key problem in scaling
up of networks is to allow for removal of humans from the
loop.

One can consider a similar distinction for removal or deletion
from a region, but possibly with different conclusions. We
assume that when an entity is assigned to a region, it inherits
the invariants defining the region, and hence we could
reasonably postulate that if the entity is explicitly and
authoritatively assigned contradictory invariants, it i s
expelled from the region. It is worth noting that, in order to
make this statement, we must be assuming that entities have a
set of invariants, which can be modified.6 Further, if an entity
was introduced into a region by another entity already in the
region, one can ask whether the introduced entity will be
expelled if its introducer is removed. Here, the intuition i s
that that does not make sense. Consider the lamp and switch
again. Just because I dispose of the lamp, does not mean that I
am intending to dispose of the switch. I might choose to
retain it, knowing that at a later time I will acquire another
lamp, which will be controlled by the switch. Thus, we can
conclude that in addition to an explicit removal function,
there may be a more implicit action that may occur.

In addition to determining how an entity becomes a member of
a region or is removed from a region, we must also discuss
some of the other basic membership functions of a region to
list or select members. Initially, we expect these to be
extremely simple, and expect that the set may become richer
with time. The exact behavior of these will depend on size and
performance criteria as well as guarantees that may or may not
be available in the implementation of the region itself. These
implementation issues will be discussed further below, in
addressing self-organizing adaptation. The obvious initial
operations will be to list membership in the region, query

6 This may appear to be a contradictory statement, since

invariants should be immutable. In fact, what we are saying
here is that an invariant may be applicable to an entity only
for limited time periods. An example of this might be the
lamp, which I bought originally, but then gave to my friend.
The invariant statement about ownership may change with
time.

Proceedings ot the ACM SIGCOMM 2003 Workshops 269 August 2003

about whether a particular entity is in the region, and search
the region for entities that match some query. One can ask how
accurate the results of these will be for a region. The accuracy
may be the result of size, performance or other cost limitations,
and possibly distribution of the information.

As mentioned earlier, we plan to provide several set functions
across multiple regions. The one we expect to get the most use
is the intersection function, although only time and
experience will tell. This will provide the capability of
discovering entities that fall into two or more regions
simultaneously. The other obvious function to include i s
union. We may find others to be useful as well.

We can summarize the set of operations on membership as:
introduce_into_region (entity_id,…), modify_invariants
(entity_id, attribute_value-pair,…), remove_from_region
(entity_id,…), list (…), member? (entity_id,…), search
(query,…), intersection (list of region_ids,…), union (list of
region_ids,…). All but the last two will be applied to a
specific region.

2.3 Additional client functions: boundary
crossings and notification
The explicit notion of the boundary of a region provides the
opportunity to enable a rich functionality when activities
touch or cross those boundaries. As stated earlier, a boundary
is a logical concept, not bound to a particular topological or
physical space. There are two aspects to the discussion about
boundary management functions, the functions that take place
when an activity within a region reaches a boundary and the
activity models themselves.

The notion of boundary management can be made explicit by
the provision of three sorts of actions: detection,
modification, and notification. Detection is that task of
discovering when a boundary crossing is occurring. Thus, for
example, detection occurs when a packet moves from one AS
[26] to another or from one DiffServ cloud to another [3],
although the region abstraction allows for an infinite variety
of boundary definitions. When this boundary detection
occurs, in some cases, state will be changed. This may occur as
the change of a field in a packet, a charge being incurred by
counting the packet or its size, or again one of a large variety
of other changes. Finally, as the detection occurs the
appropriate response may be some explicit notification. Part
of the issue with respect to the notification is the selection of
the recipient of that notification, determined at least in part by
the nature of the activity in progress.

We find a large number of differing activity models, each
suggesting a set of places notification might be sent, based on
the locus of control of the activity. At one extreme there is the
packet that is moving through the net. Another related, but
much richer model is that agents (see for example the work of
Minar, Kumar, and Maes [21] or Tripathi and Karnik [34, 35])
are moving through the net. The packet moving through the
net can be considered a small amount of state being
transported. In contrast the agent can be considered to be
much more state in conjunction with one or a set of processes
on the move. A third model is that of remote invocation, in
which an activity is occurring remotely, but final control and
state are being maintained at some static point in the net. Yet

another model is one of continuations. This can be viewed as a
middle ground between a remote procedure call in which
responses return to the invoker or static point and the agent
model in which a very rich entity is moving through the net.
The continuation model can be considered more of a
lightweight thread moving through the net.

Now consider the locus of control or at least authority and
hence possible destinations for notification. In every case,
one candidate recipient is the transit point, because it is there
that a decision may need to be made about whether to support
transit or not. Additionally, in the case of the packet, control
or authority may reside with either the sender or receiver. In
the case of the agent, the recipient of the notification is likely
to be the agent itself. For remote invocation, the invoker is a
likely recipient, and in the continuation situation, either the
thread itself or only the transit point. Other paradigms may
also present themselves, and the region must be prepared for
any reasonable destination of the notification. In other words,
our challenge is to develop a single abstraction that can
cleanly and efficiently support all of these models.

The functions described in this section will not be reflected as
specific operations on regions in the same way as in the
previous sections. Execution of functions or movement of
agents to or from locations will be specific to particular
entities within the region not the region itself. The
notification may be something that is triggered in the region
itself or the boundary element.

2.4 Security
As stated at the beginning of Section 2.1, we have sidestepped
the issue of security in the previous subsections above. This
is a topic that absolutely must be part of an effort such as this.
There are two key aspects to security with respect to regions:
the integrity of a region itself, and the privacy or other
security it provides to others. For regions to be useful, it must
be possible to trust their membership to be accurate and
authorized. For example, if company X wants to create a region
containing all of its network end-points and only its network
end-points in order to build a private overlay network, it needs
to be able to trust that the integrity of that region will not be
compromised. Such compromises may cause problems
ranging from exposure of private information to denial-of-
service attacks. The second problem is providing trustworthy
reflections of boundaries. By this we mean that if an agent or
packet is moving through the network, it is important to be
able to know in a trustworthy way whether or not a region
boundary trigger is or will be occurring. The first is an issue
for members of the region and the second for the clients or
users of the region.

2.5 Comment
It is important to remember that the intention of this work i s
that regions will be capable of supporting a wide variety of
functions and objectives. In this section we have considered
mechanism, but have intentionally stayed away from explicit
purpose, in order to enable use for a variety of purposes.

There is lurking in here a deep and challenging problem.
Many of the activities we are considering are not activities of
the region itself. They are activities that involve individual
members of a region or set of regions. Examples of such

Proceedings ot the ACM SIGCOMM 2003 Workshops 270 August 2003

operations include moving packets or mobile code among
members of one or more regions. At the same time, we are
postulating that the region entities involved will take action
under certain conditions, and, in fact, will be monitoring the
situation in order to recognize those conditions. We can
postulate that it is necessary to separate the region abstraction
clearly from the abstractions of the elements, yet provide the
intertwining of these activities.

3. Adaptive Regions and self-optimization
As mentioned in the introduction, regions will have the
capability of re-organizing themselves in order to improve
their behavior. Again, this is something that will be triggered,
although in this case the trigger will be based on a set of
criteria that may involve size, patterns of usage, demands for
performance, other costs, and how all of these can and should
be traded against each other. This occurs “below the
abstraction”, at the implementation level. Therefore the
criteria or factors in decisions about organization are not
necessarily the same as those used in deciding on the reasons
or utility of creating a region. Internal re-organization is the
mechanism that allows a single abstraction to meet a wide
range of performance and scalability requirements.

It is important to note here that re-organization may have an
impact on the degree of accuracy that can be achieved by a
function. It will be necessary that the definition of region
functions include the ability to factor in degrees of accuracy.

Depending on circumstances, a region entity may be
implemented by methods ranging from a simple, centralized
server to a globally distributed computation over widely
dispersed, possibly replicated information. It is important to
discuss how and when a region entity might transparently
improve its performance when circumstances change. There are
at least three aspects that may lead to the decision to re-
organize or optimize a region: size, usage patterns, and
distribution of the members and clients. Improving the
situation with respect to one or another of these aspects must
lead to careful consideration of whether it will improve or
worsen the situation with respect to another aspect. In each
case, as an evaluation takes place, there must also be a
consideration of the cost of a transformation. This process of
evaluation will be complex, particularly because the overhead
must also be kept as low as possible.

Finally, the overhead on the clients must be kept to a
minimum. Thus, for example, if a re-organization were to
require that any requests in progress be re-submitted, this
might be a problem for clients. More importantly, it i s
possible that distribution or redistribution of a region’s
representation could cause the degree of reliability of some
operations to change. Thus, the whole process of evaluating
the current representation and behavior of a region and
whether or not it should be transformed in some way or
another must be carefully designed. A framework for choices
about optimization of regions is necessary to enable
adaptation of a region to evolving conditions.

3.1 Size
When a region is small, the size of the representation of its
membership probably does not matter. As a region grows, its
representation may become increasingly cumbersome. If size

itself is an issue in supporting a region, then more efficient
representations may become valuable. Converting the
structure of a region from one representation to another will
incur some cost, simply in performing the transformation, so
the choice to make such a conversion must include evaluation
of that additional cost.

The issue of when to re-organize is amenable to both a simple
approach as a starting point, with, later extension to more
sophisticated approaches. The simple approach is to provide
fixed values for hysteresis; this would mean that the critical
point for re-organizing during growth would be larger than the
critical point for re-organizing during shrinkage. The first
step in making this more sophisticated might be to vary the
difference between these critical points depending on a history
of transitions across those points. Additional sophistication
may be achieved by considering other costs of re-organization,
as well as other broader effects. In another sort of approach,
either the cost of re-organizing might be spread out
continuously, or cost might change the farther one gets from
the boundary conditions.

3.2 Usage patterns
There will be a number of different ways a region may be used,
reflected in the list of functions described in Section 2.
Depending on the frequency of each of these sorts of
operations, different organizations of the region may improve
or worsen the situation. If the membership in a region i s
extremely dynamic, then insertion and deletion should be
efficient. If modifications to the information about elements
occur frequently, then that should be optimized. With respect
to use of the elements of the region, if listing membership
dominates over selecting individual elements, that should be
made efficient, and so on.

Both absolute numbers of the different kinds of actions and
the relative balance among the kinds of actions may be
important. If all usage of a region is quite low, then i t
probably is not worth re-organizing at all. As with size,
hysteresis may play an important role here. Once a decision
has been made to re-organize in order to improve performance,
it should take into account the balance of usage, not just that a
particular sort of usage needs improvement.

3.3 Distribution
A third criterion we call distribution; again, we are
considering only the region structure itself, not the individual
members of a region. The question that must be asked here i s
the extent to which either partitioning7, replication or caching
of the representation of a region will improve apparent
performance. If the clients of a region are widely distributed
topologically, there may be several reasons to distribute the
infrastructure representing the region. For example, if network
access is either low-bandwidth or quite variable, then placing
some of the infrastructure closer to the clients may improve
apparent performance. If the patterns of usage can be
partitioned based at least to some degree on this topological
distribution of clients, the infrastructure might be partitioned.
In contrast, if the usage cannot be separated well by topology,

7 We use the word “partitioning” in the sense of a database, not

in the sense of a network.

Proceedings ot the ACM SIGCOMM 2003 Workshops 271 August 2003

or if usage causes a great deal of secondary traffic among the
other parts of the region, replication may be a more desirable
model for organization. As mentioned earlier, an extreme
example of this is one in which operations become
increasingly unreliable with replication or partitioning. Thus,
in considering distribution and partitioning not only the
clients’ distribution but also the isolation or integration of a
region may have an impact on whether and how a region’s
infrastructure is distributed.

3.4 Making decisions
The decisions about adaptation must be made not only to
accommodate all these issues, but also in such a way that the
clients’ perceptions of a region is that it is not too frequently
in flux or too difficult to access. Under differing conditions
different time scales will be important. If humans are
involved, then it may be that changes that appear to be
disruptive should not occur more than once a day or week,
while for routers re-organizations might be feasible on a one-
to-five minute basis, and for other entities perhaps even
shorter time frames. In addition, the cost of adaptation must
always be considered, in addition to the cost of managing the
infrastructure both before and after re-organization. One result
of this component of the region infrastructure must be a
framework for decision-making about adaptation

4. Examples of uses
With the above discussion in mind we can explore several
scenarios in which regions provide capabilities not otherwise
available. In the first, we explore an improvement in network
overlays, using regions as the basis. The second example
demonstrates the use of notification of a boundary crossing in
order to support billing at multiple layers. The third section
addresses the use of regions for building and managing
network based applications.

4.1 Application layer overlays
In this section, we explore the use of regions defined at the
network layer as a vehicle for optimizing and improving
application layer services. In this example, the lower level i s
unaffected by the higher level, but its information enables
more informed decisions and operation at the higher level.

A topic of great interest today is building overlay networks.
These are typically sets of hosts or end-nodes from the
perspective of the packet-level Internet that provide a network
of infrastructural components for some application. For
example, web cache servers provide information sources for
Web users. In many cases the cache servers are hosts from the
perspective of the Internet, but from the perspective of the
browser they are an invisibly embedded in the net.

Now consider the problem of some application level request.
There may be a number of possible routes that such a request
could take through the overlay network. Some choice is made
at the application level about that path, but because the
application level has no information about lower level
routing, that decision cannot be made based on actual paths
followed. The traffic may traverse the same links many times
before actually achieving the desired goal. Choices at the
application level imply that more than one option was
possible and perhaps having lower level routing information

could change or at least better inform such a decision. For
example, both Tapestry [39] and Pastry [27] depend on routing
tables, in which there is choice about the entries. In their basic
schemes at best these schemes may use some roundtrip time
(based on ping or similar roundtrip measures) to make choices
about proximity for entries into the routing tables. But these
do not avoid retracing steps. Nor do they support any ability
to make policy choices about points in the routes selected.

At the routing level, we already have some very useful regions
defined, known as routing domains or autonomous systems
(AS’s). These regions define their invariants as those
destinations recognized by the routing algorithms as having
the same gateways into the region, generally based on subnet
masks of the IP address. Their entry and exit points are well
defined, again the gateways. If we add to the region
information something about the application level services
provided by elements in those regions, it is possible that the
application, deciding on a route through an overlay network
can now make more intelligent decisions about the route to be
used.

One option this approach allows is keeping traffic in the
overlay network within an AS. There may be a variety of
reasons for that decision such as cost, performance, or privacy.
Since an AS is often the definition of a corporate boundary, a
corporation may prefer the idea that generally the traffic of its
applications remain within its AS. The enhanced region
reflects not only the IP level boundaries of the corporation,
but also information about how the application overlay can
stay within those boundaries. The key point is that this is just
one example. The power of the region abstraction is that
alternative regions can be defined by the use of invariants
other than those arising from AS’s, in order to define new
routing regimes.

One can imagine a more complex, but related example in which
again each AS reflects a corporate boundary, but now rather
than requiring that traffic stay within one such boundary, a
corporation may have a set of priorities. The preferred option
is to stay within itself. But if that is not possible, there may be
an ordered preferential list of alternatives. Such a set of
regions may include the elements of a variety of application
overlay network elements, for different applications or
application suites. A single set of region definitions may
serve many applications, helping to make routing choices for
each using the same set of corporate criteria such as cost,
efficiency or privacy policies. Within each such AS there may
be an application network overlay router. Li [19] has taken a
first look at these issues and finds in simulation that with
greatly reduced overhead, using AS information provides
equivalently enhanced performance to latency enhanced
schemes.

4.2 Crossing region boundaries
By viewing a region as a boundary with controlled crossing
points, we can place functionality that is necessary and
possibly shared at those boundary crossings. The sets of entry
points and exit points will be subsets of the total membership
of the region. It is likely that the smaller those sets are the
more likely they will be amenable to centralized or at least
coordinated control. It need not be the case that an entry point
is also an exit point or vice versa. They can be co-located but
need not be.

Proceedings ot the ACM SIGCOMM 2003 Workshops 272 August 2003

Consider an agent that is gathering information on behalf of
its owner. As it moves through the net it accretes information.
There are several examples of charges for which it may be
responsible. Let us postulate that each potential source of
information sits within a region. Each source of information
or group of sources within a region has some billing policy. In
some cases, each information source charges for each piece of
information it provides to the agent. In other cases, there may
be a flat fee for as much information as the agent wants. In yet
others, there may be some group charging, so when an agent
arrives at one information source it receives an admission
ticket for all information sources within the region for a fixed
fee. Other billing models may also exist. In addition, regions
themselves may have transport billing. Some charge per bit
for traveling along their links, while others may charge a flat
fee for travel within the region. Some have charges for bits
transiting their boundaries in or out. Again, a variety of
policies are possible. The key that is important here is that
there may be charging for at least two sorts of service, moving
bits around and provision of information.

In this example, it is important not only for the transit points
and information servers to know when an agent is arriving or
departing, possibly whether it has been there before and so on,
but the agent itself may care, if it is trying to minimize cost
The agent is moving around collecting information. It must
consider fees at one or a set of information sources, fees at
region boundaries, and fees based on its size. Hence it also
wants to be notified of potential transitions. It is likely to
know, without notification when it is moving from one
information source to another, but potential border transition
may be something to which it will need to be alerted. In this
case the region boundary may cause the agent to change its
plans. Hence this example allows us to explore the
relationship between activities occurring in conjunction with
specific members of a region and notification as provided by
the region itself.

We recognize that there are possibly fatal problems with
deploying agents, especially having to do with security. There
has been significant work on this including [21, 34, 35]. To
address this, one can provide similar functionality using one
or another form of portable code, with its own set of security
problems. One issue is the extent to which they are self-
directed and collecting state they carry with them.

4.3 Creating mobile applications in a
pervasive environment
A third example allows us to explore an even richer set of
boundary crossing issues, interactions among multiple
regions, and questions about expanding activities to more
regions as needed.

Visions of the future of our computing environment suggest a
broad base of fixed computing devices and services, the
pervasive computing environment, through which will be
moving humans and other entities, each of which may be
served by a suite of small mobile devices. This is one form of
the vision of Weiser [37] for the ubiquitous computing
environment. We can assume that only those devices that have
some connectivity to others (networking capabilities of some
sort) are of interest here. Furthermore, it is increasingly likely

that at least some of those devices will be capable of using
more than one network technology.

Now, consider the problem of creating applications in this
environment. The application will no longer run on a single
monolithic workstation. Instead, its user interface devices
may at different times include watch displays, wall displays,
printers, speakers, headphones, haptic devices of various
kinds, pointing devices, keyboards, microphones, and so on.
In addition, as suggested, some of these devices may be
capable of using several different network technologies. In
this situation, one must consider not only differing network
technologies, but also changes in the environment, changes in
the management policy of elements, in addition to the obvious
set of problems arising from mobility.

Consider the following simple scenario. We postulate a new
kind of activity we call catalysis that will cause an instance of
an application to come into existence. How does this happen?
A catalyst will contain a set of objectives or functions that the
application must provide, as well as a set of requirement
specifications for components needed to realize the
application. These may include devices of certain types, but
they may also include network resources such as transmission
capabilities, caching, or whatever, in addition, to more
ephemeral elements (objects) that provide certain functions.
Examples of these might be implementations of specific
encryption algorithms, particular sorting algorithms, a
transaction manager, and so on.

In addition to the requirements of the catalyst itself for
forming the application, there are two other sets of
requirements and constraints to be considered, those of the
user and those of the potential elements of the application.
The user may have both functional and policy requirements,
such as which algorithms are acceptable, configuration of
devices, acceptable vendors of service, or prices ranges. The
elements may have security or loading constraints, pricing and
so on. It is important to recognize all three aspects of
catalysis, going beyond the more common dynamic
configuration that reflects only acceptable functional
composition.

In order to limit the search and discovery of acceptable
resources and components of the application, it will be
invaluable to be able to identify the set of regions (one or
more) to be used. Thus, for example, if the catalyst is building
a home alarm application, it will be valuable to limit the
catalysis to the homeowner’s home, the neighborhood (for
notifying neighbors perhaps) and the appropriate
municipality (for notifying the policy or fire department). By
considering an example in which multiple regions are central,
we are able to explore the relationships among regions, as well
as questions about implicit vs. explicit nesting. For example,
one can ask whether it is valuable to consider everything in
my home region to be part of my municipality region or
whether keeping these two concepts and hence regions distinct
is more effective. This particular example was also chosen to
allow for the fact that a neighborhood may span more than one
municipality, hence allowing us to explore overlapping but
not nested relationships among regions.

For making decisions for catalysis it may be valuable to
include elements from various different layers of abstraction

Proceedings ot the ACM SIGCOMM 2003 Workshops 273 August 2003

in a single region, in order to make the most effective choices.
For example, various different devices (siren, telephone, etc.)
may be connected into the home network using base stations
supporting different technologies. So, a device that was being
considered as part of a fire detection system would be more
useful on a wired or radio based network than an infrared
connection. In a more sophisticated decision process, a route
to a device that included an IR link would be less desirable.
So, if the region could actually capture information about the
elements of the network and connectivity, in addition to the
obvious first level of resources the application may need, the
region will be a more useful utility for catalysis.

In addition, it may important for traffic that leaves the home
region be authenticatable, unforgeable, and private. Privacy i s
particularly challenging because it may be important not only
that individual messages not be readable, but also that the fact
that the police are being notified of a burglary is masqueraded.

This example allows us to explore a number of challenging
aspects of regions, including the relationship among
overlapping or nested different regions such as union and
intersection, naming regions, in addition to a key set of
questions about the multi-layered role that regions may play.
An example such as this also demonstrates the need for
regions as mandatory bounds on some activities, as locale of
notification in other cases, and as point of transition in yet
others.

5. Related work
The related work falls into several major categories,
partitioning of namespaces in order to handle scaling of name
assignments and resolution including discovery for peer to
peer applications, boundaries defined in order to reflect
changes in some activity, cross protocol layer interaction,
agent technologies and their security problems, middleware
infrastructure to support creation and execution of network
based applications, and infrastructure adaptation. We will only
be able to provide a sampling here.

One set of problems is grouping of objects in order to address
scaling problems. In each of these examples, the problem was
to reduce the space to be searched in order to find something.
The sole function of the Domain Name System [22, 23] is to
provide a single global hierarchy in which both name
assignment and name resolution occur in order to find hosts.
CORBA [24, 25] provides a much richer set of middleware
activities, but in conjunction with this provides a two level
hierarchy for naming, by uniquely naming each ORB, and
delegating unique assignment with the ORB to the ORB itself.
Here the objective was to find a specific CORBA object. The
Intentional Naming System [1] was designed to route traffic to
the named entity. It is an example of a different approach, in
which names are composed of attribute value pairs, but these
are organized hierarchical. An entity announces itself to any
resolver, which in turns broadcasts the identity of the entity
using a spanning tree to the universe of resolvers. A request to
the entity is resolved and forwarded at each resolver between
the requester and the entity itself. Although this work as i t
stands does not scale, it provides an interesting point within
the space of naming alternatives, because it attempted to
provide multi-layer functionality of both naming and routing.

A new and evolving topic is how to find elements in support
of peer-to-peer communication. Ingrid [15] was an early
attempt to address the problem. In Ingrid each entity i s
identified only by an unordered set of attribute value pairs.
Grouping is intended to be global, based on matching sets of
attribute value pairs. From one perspective, a fatal problem
with this approach is that one can never know whether all the
elements of a group, those sharing attribute value pairs have
discovered each other, because Ingrid is completely
decentralized. Gnutella [12] takes a very different approach. It
is also intentionally completely decentralized, but the
approach to scaling is to limit each search to the nearby peer
group within which a searcher finds himself or herself in at any
given time. This is the bounded multicast approach, with little
control over the starting point of the search. In addition to
Ingrid and Gnutella there is an increasingly large number of
approaches to peer-to-peer communication including BEA
WebLogic [4, 5], IBM’s WebSphere [6], Sun’s JXTA [16], and
the Universal Description, Discovery and Integration Team
[36], as well as structured peer-to-peer systems such as
Tapestry [39] and Pastry [27]. Naming and discovery are
important because we will need to be able to discover regions
and have postulated that it will be based in part on naming.

Almost any horizontal slice through the current Internet
structure reveals a loosely couple federation of separately
defined, operated and managed entities, interconnected to
varying degrees, and often differing drastically in internal
requirements and implementation. We find two specific
examples in routing and QoS provision. BGP [26] boundary
transitions reflect routing protocol changes between BGP used
between AS’s and one of a variety of internal routing
protocols. DiffServ clouds [3] reflect boundary points at
which per domain behavior may change. In each case the
choices of what happens internally to a region or scoping
entity are made independently of what is happening outside.
Wroclawski [38] proposed that a key architectural component
of the Metanet, a new, multidimensional network or networks,
is a region, quite similar to ours.

In terms of middleware support for the creation and support of
distributed applications there is an enormous collection of
work, including CORBA [24, 25], Microsoft’s Universal Plug
and Play [20], Sun’s combination of Jini [32, 14] and Rio [33],
and the W3C’s combination of XML [8, 9], RDF [10, 17], and
SOAP [7]. This is an area where a great deal of work i s
occurring, so this is just a sampling of the activities. In the
work on support for creation of applications, we intend to
build on existing work. We will evaluate the various options,
but the tools available from Sun appear to be a good starting
place.

Although we explore the potential relationship between agents
and regions (see the work of Minar, Kramer and Maes [21], as
just one example of a great many on agents), we recognize that
there is an ongoing problem with security with respect to
agents. Tripathi has explored this and is demonstrating his
approach in the NSF funded Ajanta project [34, 35]. As much
as possible we intend to build on top of existing work, so we
will use something like Ajanta, which is implemented in Java.

Finally, there is related work in the area of adaptation. Much
early work came from the algorithms community and was
collected in such textbooks as the work by Corman, Leiserson

Proceedings ot the ACM SIGCOMM 2003 Workshops 274 August 2003

and Rivest [13], which provides, as an example, interesting
algorithms for managing B-trees under a variety of constraints.
In some cases, the algorithms reflect one-time significant
costs, and in others repeated smaller costs. Such tradeoffs
must be part of our consideration. There has also been a
significant amount of work from the database community.
There was a flurry of work about 10 years ago, and a reviving
of interest in the last few years, including a review of
mechanisms within IBM [28] and as an example the more
recent paper by Zou and Salzberg [40]. We expect the database
community to be an extremely useful source of adaptation
algorithms and cost analysis, since they are generally
constrained by real implementations and real customers.

6. Conclusions
If we consider each type of invariant as one dimension, a
region is a bounded part of a multidimensional plane defined
by the types and values of the invariants for that region. It i s
also then valuable to understand the different planes that
intersect at each member, in order to learn about different sorts
of regions to which each member belongs. Transitions from
one region to another are another way of describing the
“waypoints” defined by Wroclawski [38] in his Metanet
model.

In this paper we have proposed the concept of the region be a
key design element in an architecture for extremely large scale,
widely distributed, and heterogeneous networks, as a
mechanism for grouping, partitioning, and formalizing
boundaries around those groups and partitions. We propose
that common use of regions will enable increased
functionality and management. Furthermore, we propose that
by providing a general mechanism, increased capability i s
made available in each use, in part due to our ability to
provide a generic framework for adaptability that is generally
not provided in any individual instantiation of a similar
mechanism.

7. ACKNOWLEDGMENTS
This work was funded jointly under two grants from the
National Science Foundation, ANIR-0137403, "Regions: A
new architectural capability in networking" and CCR-
0122419, "The Center for Bits and Atoms". It was also funded
in part by a gift from the Cisco University Research Program.

I would also like to thank Dave Clark and John Wroclawski for
many challenging discussions on this and related topics, the
whole NewArch team for lengthy discussions about network
architecture, my students Clyde Law, Ji Li, Rob Beverly and
Steven Chan for questioning my assumptions, and my
reviewers for their insightful feedback.

References
[1] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H. and

Lilley, J., The design and implementation of an
intentional naming system, 17th ACM Symposium on
Operating Systems Principles (SOSP ’99), Operating
Systems Review, 34(5), December, 1999, pp. 186-201.

[2] Balakrishnan, H., Shenker, S., Wallfish, M., Semantic-free
Referencing in Linked Distributed Systems, Proc. 2nd

International Workshop on Peer-to-Peer Systems (IPTPS
’03), Berkeley, Calif. February, 2003.

[3] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
Weiss, W., An Architecture for Differentiated Service, RFC
2475, Internet Engineering Task Force, December, 1998,

[4] BEA Systems, BEA WebLogic Enterprise Introduction,
Document edition 4.1, BEA Systems, May, 1999.
Available aa
hppt://www.bea.com/products/weblogic/enterprise/enterp
rise_intro.pdf.

[5] BEA Systems, Making Component-based Systems Scale
with BEA WebLogic Enterprise, BEA Systems, undated.
Available as
hppt://www.bea.com/products/weblogic/enterprise/papers
.html.

[6] Beck, B., McGinnis, M., IBM WebSphere Everplace Suite
v.1.1 White Paper, International Business Machines,
October, 2000. Available as http://www-
3.ibm.com/pvc/products/pdf/wes.pdf.

[7] Box, D., Ehnebuske, D., Kakivaya, G, Layman, A.,
Mendelsohn, N., Nielson, H. F., Thatte, S., Winer, D.,
Simple Object Access Protocol (SOAP) 1.1, W3C Note,
May, 2000. Available as http://www.w3.org/TR/SOAP/.

[8] Bray, T., Hollander, D., Layman, A., Namespaces in XML,
World Wide Web Consortium, January, 1999. Available
as http://www.w3.org/RF/REC-xml-names/.

[9] Bray, T., Paoli, J., Sperberg-McQueen, E. M.,
Extensible Markup Language (SML) 1.0 (Second
Edition), World Wide Web Consortium, October,
2000. Available as http://www,w3,org/TR/REC-xml/ .

[10] Brickley, D., Guha, R. V., Resource Description Framework
(RDF) Schema Specification 1.0, World Wide Web
Consortium, March, 2000. Available as
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/ .

[11] Clark, D., Sollins, K., Wroclawski, J, Faber, T., Addressing
Reality: An architectural response to real-world demands
on the evolving Internet, Proc. ACM SIGCOMM 2003
Workshop on Future Directions in Network Architecture,
Karlsruhe, Germany, August, 2003.

[12] Clip2, The Gnutella Protocol Specification v0.4,
Document Revision 1.2, undated. Available as
http://www.clip2.com/GnutellaProtocol04.pdf .

[13] Corman, T. H., Leiserson, C. E., Rivest, R. L., Introduction
to Algorithms, MIT Press/McGraw-Hill, 1990.

[14] Edwards, W. K., Core Jini, Second Edition, Sun
Microsystems Press, Prentice-Hall PTR, 2001, ISBN 0-13-
089408-7.

[15] Francis, P., Kambayashi, T., Sato, S., Shimizu, S., Ingrid: A
Self-Configuring Information Navigation Infrastructure,
4th International World Wide Web Conference, December
11-14, 1995, Boston, MA, USA, pp. 519-537. (Also
available as
http://www.ingrid.org/francis/www4/Overview.html .)

[16] Gong, L., JXTA: A Network Programming Environment,
IEEE Internet Computing Online, June 27, 2001.

[17] Lassila, O., Swick, R., Resource Description Framework
(RDF) Model and Syntax Specification, World Wide Web

Proceedings ot the ACM SIGCOMM 2003 Workshops 275 August 2003

Consortium, February, 1999. Available as
http://www.w3.org/TF/REC-rdf-syntax/ .

[18] Law, C. Garbage Collection in Regions, Master’s Thesis,
MIT/EECS, May, 2003.

[19] Li, J. Improving Application-level Network Services with
Regions, MIT-LCS TR 897, May, 2003. Also submitted as
Master’s thesis MIT/EECS, May, 2003.

[20] Microsoft Corp., Universal Plug and Play Device
Architecture, Version 1.0, June, 2000. Available as
http://www.upnp/org/download/UPnPDA10_20000613.h
tm.

[21] Minar, N., Kramer, K., Maes, P., Cooperating Mobile
Agents for Dynamic Network Routing, Software Agents
for Future Communication Systems, Springer-Verlag,
1999, ISBN 3-540-65578-6

[22] Mockapetris, P., V., Domain Names – concepts and
facilities, RFC 1034, Internet Engineering Task Force,
November, 1987.

[23] Mockapetris, P. V., Domain Names – implementation and
specification, RFC 1035, Internet Engineering Task Force,
November, 1987.

[24] Object Management Group, Discussion of the Object
Management Architecture (OMA) Guide, Object
Management Group, Doc. Number 00-06-41, 2000.
Available as http://www.omg.org/cgi-bin/doc?formal/00-
06-41.pdf .

[25] Object Management Group, The Common Object Request
Broker: Architecture and Specification, Rev. 2.4.2, Doc.
Num. 01-02-33, February, 2001.

[26] Rekhter, Y., Li, T., A Border Gateway Protocol 4 (BGP-4),
RFC 1654, Internet Engineering Task Force, July, 1994.

[27] Rowstron, A., Druschel, P., Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems, Proc. IFIP/ACM Middleware 2001, March 2001.

[28] Sockut, G. H., Iyer: B. R., A Survey of Online
Reorganization in IBM Products and Research. Data
Engineering Bulletin 19(2), 1996, pp. 4-11.

[29] Sollins, K. Architectural Principles of Uniform Resource
Name Resolution, RFC 2276, January, 1998.

[30] Sollins, K. and Massinter, L. Functional Requirements for
Uniform Resource Names, RFC 1737, December, 1994.

[31] Sollins, K. R., Van Dyke, J. R, Linking in a Global
Information Architecture, Proc. Fourth International
World Wide Web Conference, Boston, MA, Dec. 1995,
493-509.

[32] Sun Microsystems, Jini ™ Technology Core Platform
Specification, v. 1.1, Sun Microsystems, October, 2000.
Available through http://www.sun.com/jini/specs/.

[33] Sun Microsystems, Rio Architecture Overview, White
paper from Sun Microsystems, March, 2001. Available as
http://www.sun.com/jini/whitepapers/rio_architecture_ov
erview.pdf.

[34] Tripathi, A., Karnik, N., Resource Protection in a Mobile
Agent System, Technical Report 98-011, Dept. of
Computer Science, University of Minnesota, Twin Cities,
1998.

[35] Tripathi, A., Karnik, N., Vora, M., Ahmed, T., Singh, R.,
Mobile Agent Programming in Ajanta, Proceedings of the
19th International Confernce on Distributed Computing
Systems (ICDCS '99).

[36] Universal Description, Discovery and Integration Team,
UDDI Technical White Paper, International Business
Machines Corporation and Microsoft Corporation, Sept.,
2000. Available at
http://www.uddi.org/whitepapers.html.

[37] Weiser, M. Some Computer Science Issues in Ubiquitous
Computing, Communications of the ACM, 36 (7), July,
1993, pp. 75-84.

[38] Wroclawski, J., The Metanet, Research Challenges for the
Next Generation Internet, ed. Computing Research
Association, May 14-17, 1997.

[39] Zhao, B., Kubiatowicz, J, Joseph, A. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location and
Routing, UCB Tech. Report UCB/CSD-01-1141, UC
Berkeley, April 2001.

[40] Zou, C., Salzberg, B., Safely and Efficiently Update
References During On-line Reorganization, VLDB'98,
Proceedings of 24th International Conference on Very
Large Data Bases, August 24-27, 1998, New York City,
New York, USA, Morgan Kaufman, pp. 512-522.

Proceedings ot the ACM SIGCOMM 2003 Workshops 276 August 2003

