MAC TR-117

AN INPUT/OUTPUT ARCHITECTURE FOR VIRTUAL
MEMORY COMPUTER SYSTEMS

David D. Clark

January 1974

This research was supported by the
Advanced Research Projects Agency

of the Department of Defense under
ARPA Order No. 2095 which was moni-
tored by ONR Contract No. N00014-70-
A-0362-0006.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

AN INPUT/OUTPUT ARCHITECTURE FOR VIRTUAL MEMORY COMPUTER SYSTEMS
BY
David Dana Clark

Submitted to the Department of Electrical Engineering on August 20, 1973
in partial fulfillment of the requirements for the Degree of Doctor of
Philosophy.

ABSTRACT

In many large systems today, input/output is not performed directly
by the user, but is done interpretively by the system for him, which causes
additional overhead and also restricts the user to whatever algorithms the
system has implemented. Many causes contribute to this involvement of the
system in user input/output, including the need to enforce protection
requirements, the inability to provide adequate response to control signals
from devices, and the difficulty of running devices in a virtual environ-
ment, especially a virtual memory. The goal of this thesis was the creation
of an input/output system which allows the user the freedom of direct access
to the device, and which allows the user to build input/output control
programs in a simple and understandable manner. This thesis presents a
design for an input/output subsystem architecture which, in the context of
a segmented, paged, time-shared computer system, allows the user direct
access to input/output devices. This thesis proposes a particular archi-
tecture, to be used as an example of a class of suitable designs, with the
intention that this example serve as a tool in understanding the large
number of interactions which exist between the various parts of the input/
output system. These interactions make the design of an input/output system
more complex, for they prevent the independent investigation of the various
input/output system parts. Using this specific system, the thesis draws
several conclusions, some of which are 1) that in order to provide a
coherent and understandable program structure, input/output operations
should be contained in a process dedicated to the task, which uses inter-
process communication facilities. to signal to other processes, 2) that to
allow the user to refer to his device in a simple fashion while using the
segment access controls to protect his devices from other users, the input/
output device should be interfaced as a number of memory words, which can
be mapped into the environment of the user as a segment, 3) that the
virtual memory can meet the timing needs of the input/output system with-
out compromising its own functions by the use of time limits on the dura-
tion of the input/output operations, and 4) that interrupts should not be
part of the user environment, but should be hidden from the programmer, so
that the input/output program he provides is sequential rather than
interrupt driven in structure, a much preferable form.

THESIS SUPERVISOR: Jerome H. Saltzer
TITLE: Associate Professor of Electrical Engineering

2

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor, Professor J. H. Saltzer,
and my thesis readers, Professor F. J. Corbato and Professor §. Patil, for
their advice and guidance. Their suggestions have been most helpful in
shaping the ideas in this thesis. The commept§36£id§ﬁérs whqzh#ve reviewed
the material are also gratefully acknowledged.

Withouf the assistance of Muriel Webber, whoitypéd drafts from
countless pages of myvhgpdw:iting,]éhg”fhésié,migh£ np£ haQA proceeded
at all. L :

- Finally, I would like to thank all thoae,_aﬁduégpeéiaily my wife
Susan, who have given me encouragement and support"du:ing this somewhat

protracted undertaking.,

This research was supported by the Advanced Research Projects Agency

of the Department of Defense under ARPA Order No. 2095 which was monitored

4

by ONR Contract No N00014-70-Ar0362-0006

1

TABLE OF CONTENTS

ABSTRAGT |
ACKNOWLEDGEMENTS
LIST OF FIGURES
Chapter
1. INTRODUCTION

Defects of Current 1/0 Systems

Overview of Thesis

Review of Related Work

‘2. THE BASIC 1I/0 SYSTEM

Preliminary Simplifications
The Representation of the Device

Mapping the Device into the Users'- Environment’

Connection of Device Selector to Device
The 1/0 Environment -- A Summary
Parallelism in I/0

The Handling of Errors in I/0
Interprocess Signals

Stopping a Process

A Look Behind and Ahead

3. INTERFACE TO RECORD ORIENTED DEVICES

The Effect of Frozen Pages on the System
The Effect of Frozen Bindings on the .User
Other Bindings

Stopping the I/0 Process

Other Forms of the Time Bound

Summary

4. BUFFERED INTERFACES

A Model of I/O Buffering as Several Parallel
Algorithms :

Synchronization of Buffer Algorithms

Error Recovery with Buffers

Other Forms of Buffering

An Example of a Multi-level Protocol

Summary

12
16
20

27

27
29
35
39
41
43
51
56
58
61

65

70
73
76
76
77
79

81
86

89
94
103
105
108

Chapter
5. MULTIPLEXING IN THE I1/0 SYSTEM 110
Sharing of the Ports on the Device Selector 111
A Multiplexed Device Controller 112
A Multiplexed Communication Line 115
Multiplexing of External Buffers 118
Multiplexed Ports Re-examined 122
Summary 123
6. PROCESSORS AS A SCARCE COMMODITY 125
Dynamic Assignment of I/0 Processors 126
Buffers as a Tool for Processor Scheduling ’ 132
A Specialized I/0 Processor 136
Program Structure Induced by SPs 141
A Channel-Processor Programming Scheme 143
Impact of Process Suspension on Multiplexing 146
Summary 148
7. MEMORY AS A SCARCE COMMODITY 150
Memory Costs Associated with 1/0 152
Cost Reduction through Memory Management 153
Fair Share Resource Distribution ' 157
Compatibility with Other System Functions 159
Summary 163
8. CONCLUSION 165
Future Research 171
APPENDIX A: Details of Buffer Algorithms 176
APPENDIX B: Review of Interface Between Device and 182

Device Selector

Comparison with Other I/0 Interfaces 185
BIBLIOGRAPHY ’ , : 188

BIOGRAPHICAL NOTE 191

LIST OF FIGURES

Figure Page
1-1: Possible modularization of I1/0 system. 11
2-1: Module interconnections with devices represented as 32

memory.
2-2: Module interconnections in system with specialized 32

I/0 processor.

2-3: Typical memory implementation, showing relation between 33
addresses and physical modules.

2-4: Program in PL/I to read data from a tape. 37
2-5: Interface between device and device selector, 42
2-6: Sequential form of flow chart for I/0 control program. 47
2-7: Interrupt-driven form of flow chart for 1/0 control 48
program.
2-8: Redrawing of Figure 2-7 to resemble Figure 2-6. 50
2-9: Module intercomnection with buffers added. 63
4-1: Buffer inserted between device and device selector. 85
4-2: The two stages of data flow in a buffered device,. 85
4-3: Several buffer stages and associated data flow 87

algorithms between device and selector.

4-4: Device interface of Figure 2-5 with read operation 97
required and buffer error recovery lines added.

5-1: Device interface of Figure 4-4 with reverse write 117
ready line added.

5-2: A scheme for multiplexing buffers. ’ 121

6-1: Device interface of Figure 5-1 with need processor 129
line added.

6-2: 1I/0 system augmented by addition of specialized 137
processor,

configuration of system modules.,

2t ataovithm for buffer,

Pt sdgerithm for buffer without wor line.
dara aluoy ithm for buffer with wor line.

te ctenice celector interface.

Chapter 1
Introduction

The last few years have seen a great advance in the sophistication
of computer operating systems, particularly with the interface betﬁeen
the user and the computing resource, as certain features of the com-
puter, not optimally structured as far as the user is concerned, are
modified by software or hardware to provide a better interface. Examples
of these modifications include time-sharing, which adjusts a computer to
the speed and response needs of users, and virtual memories, which re-
move the limitations imposed by the size of the primary memory of the
computer,

In contrast to other computer subsystems, the user input/output sub-
system has undergone relatively little evolution. Thus, even in a fairly
sophisticated operating system, the user wishing to do his own I/0 can
still discover an awkward and restrictive I/0 interface. This state of
affairs holds because the insights that form the basis of an orderly
system implementation do not exist for I/0. I/0 subsystem implementa-
tions are still complex and ad hoc, with resulting disadvantages, The
purpose of the thesis is to identify the problems which are central to
the complexity of I/0 subsystem design, and to develbp the understanding
which will allow orderly éolutions to these problems.

In this thesis the term I/0 will be used to mean I/O performed at
the request of the user, rather than I/0 performed by the system to sup-

port system functions. For example, input or output to the disk to sup-

port paging will not be considered. Another way of describing the I/0
to be studied here is that it is I/0 to devices which are controlled by
the system only to the extent of granting or denying permission to use
them. From the system point of view, the device is just a source or
sink of data.

The I/0 subsystem will be considered in the context of a large
multi-processing time-sharing system. The system will provide multiple

virtual memories, each consisting of a paged segmented address space,

with protection mechanisms provided to control access separately to each
segment in the virtual memory. Each user is provided with one or more
processes, each characterized by a current value of an instruction
counter and an associated virtual memory. In other words, every process
has its own address space. The supervisor will be distributed; that is,
the programs which constitute the operating system are implemented as
segments containing code which execute in the process of the user on
whose behalf they are run. The system code exists in all address spaces,
rather than being isolated in an address space of its own.

This particular kind of computer operating system was chosen as
being far enough advanced to make this research interesting but well
enough developed to provide faith that the implications and interactions
of the various features ére indeed understood. One implemented system
with these features is the Multics system (8,9,31). This system will
be used from time to time through the thesis as an example; it has been
chosen as an example because of the author's familiarity with it, and

because its generality tends to subsume most other systems. It is very

10

important to have an example such as this, for, in the field of operating
system design, the knowledge is lacking which allows the analytical de-
monstration of the effectiveness of given techniques. Iacking such ana-
lytical tools, it is necessary to turn to existence proofs, in the form
of implemented systems, to show that some proposal is indeeed practical.
It is important to stress, however, that prior knowledge of the Multics
system 18 not required in order to understand this thesis. The observa-
tions which the thesis will make about I/0 are not restricted to Multics
by any means, but are believed to be rather more general.

In an attempt to identify the particular aspects of I/0 which will
be considered in this thesis, a possible modularization of an I/0 sub-
system is presented in Figure 1-1. Thg thesis will concern itself with

two modules in the figure: device dependent functions and hardware in-

terface and control, because most complications seem to be centered here,

and because proper design of these modules is crucially related te the
proper functioning of the operating system as a whole. Little will be
said about the design of the I/0 device itself, the bottom module in the
diagram. Other than assuming that devices come in a wide range of trans-
fer rates and data path widths with various timing constraints, device
details will be ignored. The reader may think in terms of disks, tapes,
printers, typewriters, eté.

The upper modules in the diagram will be excluded because design of
these functions seems much better understood, and because these functions
seem less central to the basic supervisor operation. A device-indepen-

dent interface at a fairly abstract level has been achieved or discussed

11

module -

function
user . .

program _ | initlgteﬁread or wr;te call
language ‘

support) format;ipg
. device mapping I/0 onto proper device,

 independent ort of standard interface

functions ' ' ‘ supp ot s

dev1ce» , : - . generation of device instruc-
dependert

tions, buffering, interrupt

functions . y ;

, s handling

e I softvare
hardware

hardware
interface , . , ;

and multiplexing, external buffering
control : .

device .

Figure 1-1: Possible modularization of 1/0 system.

12
in several forms. Multics, for example, has provided a general interface,
in the form of a number of subroutine calls, which allow equivalent opera-
tions on different devices to be expressed in the same way. One routine
reads, another writes, and so on. To specify which device is to perform
the operation, a symboiic name is supplied on each call, Since the re-
lation between name and actual device may be modified dynamically by
other calls, the particular device invoked by a given call at this inter-
face may be changed‘without altering the program making the call. For a
more detailed description of this interface, see the paper by Feiertag
and Organick (18).

An alternéte form bf dévice-independent interface is to model de-
vices as separate processes, and to send information being read or writ-
ten messages through the interprocess communication mechanisms of the
system. This is a slightly more restrictive interface, for only those
aspects of thé device'which ére mirrored in the interprocess communica-

tion mechanism can be affected at the interface.

Defects of Current 1/0 Systems

In ordef t§ understand what this thesis hopes to achieve, it is first
necessary to understand what is wrong with I/0 systems as they exist
" now. Examination of current systems reveals that the various superfi-
cial defects observable are caused by five general problems which beset
the I/0 subsystem, These five problems are as follows:

First, I/0 subsystem des;gners have hgdva hard time matching the
resources actually conéumed by an 1/0 tasklto the résources required,

1/0 devices usually operate at a much slower speed than the speed of the

13

computer to which they are attached. It was thus realized very early
that if the processor were used directly to perform I/0, it would be
very inefficiently utilized. A variety of techniques have been intro-
duced to attempt to reduce the resources needed for I/0. The problem
is that these techniques have, in the process of achieving their goal,
introduced other restrictions and inconveniences. For example, to re-
duce processor costs associated with ‘1/0, channels (special purpose pro-
cessors) were devised to stand in place of processors. But this intro-
duced a chanmnel programming language, and the complexities of program
structure which result from adding a second processing element to the
computation, Another technique developed to reduce processor costs was
scheduling of the processor using interrupts, But this development intro-
duced the awkward program structure which interrupts can cause.

To reduce memory costs associated with I/0, special buffering
schemes were devised. But buffering can cause two problems, First, the
user may be required to perform his I/0 indirectly through the module
managing the special buffer, rather than directly from his own program,
Second, any use of buffers introduces the coéomplexity we will call data
pipelining. Data pipelining describes any situation in which items do
not move directly between device and memory, but rather inhabit inter-
mediate storage on the wa&, such as memory bdffers, hardware buffers,
queues in multiplexors, etc. The result of data pipelining is that the
instantaneous description of items transferred is very complicated, so
that it is often awkward to determine just how far an I/0 operation pro-
ceeded, for example if it stopped on an error. This pipeline of data

must also be flushed on occasion, say if data for a stopped device is

14
clogging some multiplexed facilty.

To reduce the cost of peripheral components associated with I/O,
the components are shared, or multiplexed, among several devices. But
this destroys the uniform appearance of the I/0 system (various devices
are multiplexed in different ways), and may eliminate the possibility of
hardware control of access to devices. Clearly, the resources required
for I/0 should be minimized, but equally clearly, these various draw-
backs should be avoided.

Second, I/0 designers have had a hard time matching timing con-.
straints of I/0 devices to the timing characteristics of a virtual en-
vironment. If a user is given direct access to his device, he will ex-
pect it to operate in the environment he sees. But if the user's en-
vironment includes a virtual memory, then the real time restrictions of
the device must be reconciled with the unpredictable delay which such
things as page exceptions cause in a virtual memory reference. The solu-
tion to this problem often has again been buffers, with the associated
problems discussed above,

Third, I/0 designers have had a hard time integrating the asyn-
chronous nature of I/0 into the process structﬁre. It is appropriate to
view I/Q as going on in parallel with, or independent from, the rest
of the user's computation. The user's cémputation will proceed faster
as a result and system throughput will increase. The desired paral-
lelism can, however, be produced in a variety of ways, some less desir-
able than others. The use of the interrupt to simulate parallelism is
an obvious idea, but it produces a structure with various undesirable

characteristics, as will be discussed in the next chapter.

4

15

Fourth, 1/0 designers have had a hard time developing mechanisms
which apply to a large class of devices. This is a slightly different
sort of problem than the three before. It is perhaps more of a design
criterion which has so far been violated. A good example of this prob-
lem is buffering, mentioned above as a solution to several problems. If
designers could identify the similarities between several devices; and
build one buffer manager which served all, they would derive various
benefits. Obviously, one benefit would be that there was only one mana-
ger to code, install, and maintain. Perhaps more importantly, one buf-
fering strategy could be integrated into the system itself as part of the
virtual memory manager, whereas it is much more difficult to justify in-
cluding a collection of specialized stéategies, which will rather exist
more like accessories fastened to the outside of the system. The bene-
fits of having the 1/0 buffer scheme fully integrated into the virtual -
memory should outweigh any loss of local efficiency which follows from
exploiting the similarities rather than'the differences betweén devices.

Fifth and last, the 1/0 designers have had a hard time devising an
I/0 architecture which is clean, simple, and elegant. The result of this
is that I/0 programs are difficult to write, the correct functioning of
mechanisms is difficult to prdve, and the mechanisms themselves are dif-
ficult to understand. . Tﬁis problem, like the previous one, is in the
nature of a design criterion. Clearly, this thesis cannot afford to re-
strict itself to issues of functionality; it must consider issues of ele-
gance and cleanliness as well, for it is crucial that:the architecture
presented in this thesis be easy to understand as well as funcﬁiondlly

correct.

Overview of Thesis

These preceding five observations allow a ‘general statement of the
goal of this thesis, which is to show that by making the proper assump-
tions and the proper design decisions, it is possible to build a system
which is compatible with a virtual memory machine of the kind discussed
here, and which at the same time succeeds in correcting the five de-
fects discussed - above. - This is a rather. general statement of the thesis
goal. It can be stated more,Specif£ca11y as follows: the failure of
1/0 system designers to cope with the five given defects has two ob-
vious consequences, which this thesis intends to eliminate. The first
consequence is that while it 1s always desirable to have as little of
the system as possible within the privileged supervisor, in order to
foster flexibility and to reduce the bulk of. the code on whose correct-
ness the system depends, the code implementing the various I/0 functions
often require supervisor privileges and protection, for such purposes as
control of multiplexed modules,- shared buffers, or the channels them-
selves. This in turn implies that the user cannot replace these I/0
programs, but must be content with what the system provides. Second,
programs implementing these functions-are difficult to write, error-
prone, and very complicated in structure.. One classic cause of this
complexity is the interrdpt, which can cause a very awkward program
structure. Other-causes mentioned above were special éhannel languages
and improperly implemented parallelism.

The goal of the thesis can now be stated, in terms of these con-
Sequences, as attempting to build a system which, first, gives the user

direct access to his I/0 device, rather than requiring him to use inter-

17

posed system code, and second, provides_an environment in which building
an I/O module is not so'exceptionally difficult as it now seems to be,

In order to achieve this goal, the thesis must proceed in stages;
there is no one insight which will sweep away all difficulties at once,
Rather, there are several design decisions which must be made, and
perhaps more difficult, which must be integrated with each other. One
of the problems of I/O is that the various iSSues of 1/0 design influence
each other to a high degree, so that the implementor can easily become
lost in a maze of interacting solutions.

The technique this thesis will use to launch an orderly attack on
the problem is to make several simplifying assumptions, the effect of
which will be to ignore certain of the defects listed above In parti-
cular, a System will first be presumed in which I/O may consume any
amount of resource needed and in which there are no real timing con-
straints anywhere in the I/O system. Elimination of these two problems
will allow initial concentration on the more fundsmental issue of what .
appearance the I/O System shall have in the virtual environment of the
user. How shall the parallelism implied by I/O‘beirepresented? Per-
haps more basically, what shall the representation of the I1/0 device.
itself be in the user's environment? The thesis will propose a parti-
cular solution to this subset of the problems, and will .then demonstrate
the validity of this solution by removing the various simplifying assump-
tions one by one, and evolving a solution which succeeds in coping with
the defects thus‘revealed. As these assumptions are reconsidered, the
thesis will proceed from a fairly idealized 1/0 snbsystem to one which

might be practical by today 8 standards,

18

The thesis will be orgahiéed'és'follows, In the next chapter, the
first version of the I/0 system will be presented;i it will depend'on
several 8implifying asSumptions, as\meﬁtioned above; The most distincf
tive and important feature of this simple I/O system is that the I/0 de-
vice is represented in'the.ehvirohménﬁ of'thé uééf as some number of
words in his virtual address space. This partiéuléf dé&iée interface
has several important advantages: it allows the user to reference his
device without using speéfalkI/O instfuctions;vit‘allows the'device to
be protected from access using those tools Which'protect segments in
the virtual memory, and it causes a gfedt siﬁplification in the rold and
architecture of channels. The chapter wili then diécﬁss how to implement
the parallélism appropriate for f/o,'and tﬁévéorrécf‘prﬁgram structuré
to deal with errors and with signals from the de&ice{ It will do so by
assuming the existance of several pfocesses, one of more for the‘main
computation of the user, a separate I/0 pfocess, and additional pro-
cesses which haityfdr‘errorsfioroccur. The reSulf of this pfocess struc-
ture is that no device ever "interrupts" a“érocesé asynchronously.

Chapters 3 and 4 deal with the problém of reéonciiing the timing
characteristics of the device éﬁd of tﬁé vi?tdal méﬁory. 'Chabter 3
discusses a modification to the virtual membry, in which the I/0 process
is allowed to fix nécessary’pages in memory dﬁring i/o operations. The
chapter éhdws that impoéihg an enforcea time liﬁitﬂof negofiable dura-
tion on this fixing of pagés is a Sufficiént.gonééraint to make the tech-
nique acceptable to both I/0 process an&'Qiréua1>mem6ry. In this chapter
the use of the time limit will restrict the tecﬁnique to record-oriented

devices, but in Chapter 7 the restriction will be relaxed, so that an

19

interface between I/0 and the virtﬁalwmemo:y,ts prpvided which,is appli-
cable to a very wide variety of devices. ;ChhpterA4rdiacusses an alter-
native to this technique, in which the virtual memory is not modified,
but rather buffers are inserted between the device and the rest of the
system, The chapter discusses the problems of buffers, or more gener-.
ally the problems of data pipelining, which must be resolved before buf-
fers can be 9tilized. It concludes that while buffers can, under cer-
tainﬂcircumstachs, cause several complications, they can, if properly
designed, prove very helpful. . The buffer design which Chapter 4 de-
velops can be used for several purposes other than relieving timing con-
flicts with the virtual memory. 1In fa:ticular, buffers are helpful in
the multiplexing of resources, especially processors,

Chapter 5 will introduce various sorts of multtplexing into the
1/0 system, It will conclude that while most kinds of multiplexing are
quite appropriate, there are certain sorts, the multiplexing of 1/0 ports
and the multiplexing of certain kinds of buffers, which are capab;e of
causing trouble. The chapter will identify these and show what problem
they have.

Chapter 6 considers how to reduce‘thelcosc of processors used to
perform I/0. It discusses the techniques mentioned ﬁbove: channels and
scheduling by interrupts.' For channels, it shows that ;epresenting a de-
vice as a sequence of memory words allows a great simplification in chan-
nel structure. For scheduling by interrupt, it shows that a structure
can be imposed on interrupts which avoi&s the bad effects interrupts.so -
often cause. The chapter also shows thaﬁlbuffers.a&.fdeveloped in Chap-

ter 4 can be used as tools to reduce processor costa.

20

Chapter 7 considers reducing memory costs. It‘fecoﬁsiders Chapter
3, in which a modification was performed on the virtual memory manager
to interface it successfully to I/0, and it extends the class of devices
to which the modification can be applied, while reducing cost at the
same time. The resulting technique is applicable to essenﬁially all the
devices which the thesis will have considered,

Chapter 8 will conclude the thesis by reviewing the total system
which results from the combination of these various techniques. By this
point in the thesis, many specific issues will have been discussed, in-
cluding buffering and data pipelining, I1/0 language semantics and syntax,
the I/0 device interface, parallelism, multiplexing, and asynchronous
virtual memory interaction. ‘Clearly, an integral part of this thesis
must be to show the proper role for issues such'as these within the 1/0
system. Equally clearly, these specific issues are only part of the
thesis.: More important is the combining of all of these issues in such
@ way that a system results which conforms to the broad goals stated
above. Hopefully, one result of the thesis will be to give insight into
the relation between the specific issues and the general goals, This is
the understanding which is really needéd and éuffenn!y lacking in I/0

system. design.

Review of Related Work

Research on I/0 systems can be divided into two classes: those
papers which consider some small portion of the I/0 system, and those
papers which try to integrate several issues to come ‘up with a coherent

overview of the I/0 systeﬁ as a whole. Papers in the former category

21
are far more common.
Buffering, for example, has been the subject of a great many papers.

One of the most common topics is determination of the proper size of a
buffer; given a particular buffer strategy, a question which this thesis
will largely neglect. It would be hopeless to try to reference all of
the queueing theory papers which might bear on this topic Papers speci-
fically related to computer I/O buffering have been written by Chang (3),
Chu (4,5,6,7), Delgalvis (13,14), Dor (16), Gaver (20), and Wolman (40).
Some of these papers might be applicable in a practical implementation _ ,
of this I/0 system but we shall not be concerned with this sort of re-
sult in this thesis.

| Considerable concern has been given to scheduling of the processor
80 as to give proper response to I/O‘tasks."Queueingbtheory‘has been
employed to attack this problem. iMuntz and Coffman (30) attempt to find
the minimum execution time of a collection‘of interrelated tasks given
the execution time of the individual tasks Held and Karp (24) attempt
to f1nd the optimum scheduling order given similar conditions. Man-
chester 27) finds conditions such that starting and finishing time limits
are met. These papers are not directly applicable to this thesis, be-
cause of.the various assumptions which they make about the tasks. In
particular they are more concerned with scheduling a number of inter-
related tasks rather than independent tasks But they are interesting
because of the knowledge which they require of each task In Chapter 3
of this the31s, tasks will be characterized by a maximum running time.
These papers in general, require two other parameters, the max imum

time before Wthh the task must be completed and the minimum time be-

22

tween successive requests to run the task., Papers by Fiala (19) and
Strollo, Tomlinson, and Fiala (585, have shown that:if all real-time
tasks are described by these three parameters, it is possible to devise
a scheme which will integrate scheduling of these tasks into aitime-
sharing Systenvof the sort envisioned here., These papers describe an
analytical technique to discover whether a given collection of tasks‘can
be run within the constraints of the parameters, andlalso describe
various scheduling rules. The thesis will not discuss guaranteed res-
ponse time scheduling. It will be assumed that if, in order to make
some device work properly, such scheduling is required, then the tech-
niques described in these last two papers could be integrated into the
1/0 system of this thesis., The thesis will lay sufficient groundwork
that such an integration should not be difficult. 7 | ‘

One difficulty with I/0 is that in order to refer to the device it-
self it is often necessary to use some specialized language Several
attempts have been made to provide a device representation which could’
be made part of a high-level language. Gertler‘(21) describes an addi?
tion to Algol which allows an 1/0 device to be manipulated as a variable.
Boulton (2) describes a similar modification to PL/I. The IEEE Trans-

actions on Industrial Electronics and Control Instrumentation, Volume

IECI-15, 2, December, 1968, contains papers on a variety of sehemes
whicn allow device control programs to be written’in fortran This
thesis will achieve a similar goal of representing the device in a high-
level language, but it will do so in a form somewhat different from that

above, in that our high-level language representation will directly mir-

ror the”hardﬁare‘representation of the device, which was not a goal in

23

the above papers,

The next chapter will develop a rather idealized I/0 system, which
will gain its considerable simplicity by ignoring twe objectives, the
controlling of resource usage.and the meeting of the device time: con-
straints, The reader may feel that. the at-pkictty 80 -achieved 'is 'decep-
tive, in the sense that there are probably other .assumptions made which
would render even this system complicated in practice. As an indication:
of the simplicity which can in practice result, -the paper by Hatch (23)' ¢
is interesting, It describes an implemented -system which disposes of -
these two objectives, first by the use of channels,' and second by keeping
all of the user's storage in core at all times. As may be imagined, this’
imposes some other limits on the user, but the .I/0 system which results
is rather simple and clean. Even with limited hardware support, the
user may write and execute his own channel program with minimal system -
intervention.

.One paper.which directly considgrcitherintcgmntion,of I/0 into a
paged, segmented, virtual memory system is.the thesis by énith-(37);

This thesis, however, .deals with only two topics in particular. One
topic is the structyre. which the~I/O;eén;rol,progrln-ihould have, given
that the device is controlled by a channelﬂxauh.tlthin the processor:
itself.. The thés;g conclﬁdes.that the 1/0 control program is. best struc-
tured as a single sequential process which moves itself -explicitly from
processor to channel and back as necessary. This»is a result with which
we agree in principle; it will be discussed in Chapter 6. The other-
topic considered by Smith is the architecture of the associative memory

which would be used in the conversion of wvirtual to real addresses.

24

This thesis will not consider in detail the utilization of such an asso-
ciative memory. One point, however, is that Smith fails to consider
the need to clear the associative memory, which causes problems because
it places a large transient load on the address conversion machinery.
It is not as obvious as Smith'would suggest that all channels should
take advantage of an associative memory. The most important problem
with Smith's thesis is that he fails to integrate into his scheme the
lmportant issues of memory management and asynchronous virtual memory
interaction. He presumes that any page which will be needed is already
in primary memory, ‘without discussing how it got ‘there ‘or the cost of
keeping it there,

Wirth (41) attempts to deal with the issue of parallelism in I/0.
The important conclusion he reaches is that while parallelism is an
appropriate tool in doing I/0, there are good and bad ways of producing
this parallelism, The technique Wirth uses, which is similar in struc-
ﬁure to that of this thesis, is to make the I/0 program part of a dié-
tinct process, which communicates with the main computation of the user
by means of the normal system interprocess communication tools. However,
the particular technique Wirth uses tovstructure'thewllo process does
not give the user full direct access to the device, Qnd restricts the
techniques available for ;rror'recovery. Alsb, Wirth does not consider
I/0 in a virtual memory conteéxt, and thus does not consider issues of
memory management,

As thé above suggests, any orderly I/0 system implies some inter-
process communication tools. Two well known sets of tools have been

developed: .Saltzer (35) describes the primitive block and wakeup,

25

Dijkstra (15) describes the prlmttivé’gland:g. Either can be made to
work, The book by Organick (31) deséribes'thé'ﬁavaulticskimplements
interprocess communication using block and'gggégp;

The single feature which most shapes the I/O'syétem of this thesis
is that the device is represented in the virtual environment of the user
as a sequence of memory words. This is not the normal interface for a
device; but there are two computers which have implemented such an inter-
face in some fashion. One is the PDP-11, manufactured by the:Digitai
Equipment Corporation (11;12), The interface to each device in this
machine is as a number of memory words, representing data, state, and
control information in a fashion similar to this thesis. In other res-
pects the two systems afe rather different, The PDP-1l, to the extent
it has a virtual memory, has not exploited it to control devices. Nor
does the PDP-11 use buffers or channels in the novel way which is allowed
by interfacing devices as memory words.

A system which more closely resembles the one developed in this
thesis is the Plessey 250 system, a large multiprocessor, virtual memory
time-sharing system described in several papers (10,17,22,33). The
Plessey system is similar to the Systeﬁ of this thesis in that the re-

.presentation of the device in the virtual address space is as a segment,
protected by the system access control mechaﬂisms, and in that buffers
are used to eliminate channels, with the processor itself doing the I/0.
The most important difference between this system and the Plessey system
is that the Plessey system does not have as a goal direct user access
to the device. The papers available do not give great information on

this point, but the system implements a possibly restrictive scheduling

26

strategy,vand uses multiplexed buffers in a way which surely‘prohibits
direct access to the devices»using that‘buffer. No information is
available discussing Plessey's solutions to the pipelining and synchro-
nization problems raised by buffers, or discussing their views of process
Structure, error recovery, and related topics. But it is a very important
system,’because it is the closest system existing to the one being pro-
posed here,‘and demonstrates the practicality of certain ideas in this .
.thesLs, in particular the,representation of the device as a segment,

and the use of buffers as a processor scheduling tool,

Chapter 2
The Basic I/O System

The purpose of this chapter is to propose a preliminary version of
the I/0 system, which the rest of the thesis will then develop This first
system will be rather idealized for as the first chapter explained, two
problems will be ignored in its design the problem that I/O must not con-
sume excessive resources, and the problem that the real timing constraints
of devices must be reconciled w1th the variable timing of the virtual
memory. ‘While the system will be in this fashion rather 1dealized, it will
meet the goals of direct user access to the device and elimination of cer-
tain causes which make I/O code difficult to write understand and debug
The system will also attempt to comply with the design goals of simplicity
and generality The later chapters will show that the achievenent of these
goals is not compromised when the problems here ignored are taken into

account.

Preliminary Simplifications
The first topic of the chapter will be to show in what fashion the

thesis w111 exp101t the decision to ignore temporarily the two problems
mentioned above. Let us begin by considering a basic characteristic of the
I/0 subsystem. Computer system modules can be divided into active and
passive modules. active such as processors, passive such‘as memory. 1/0-
contains both aspects- the passive part is the stored data , on tape or
digk or in the programmer's head the active part executes the accessing
algorithm to move this data in and out of the passive I/0 storage. The
characteristic which distinguishes 1/0 storage from other memory is that

27

28
this accessing algorithm. the active part of I/O can only be of certain
forms. 1I/0 storage is not random access; it cannot be addressed to an
arbitrary item but only to a group of items, often called a record and
generally a sequence of items muat be transferred starting at a record
boundary, so that the accessing algorithm is a sequence of data transfers

The active agpect of I/O which implements the accessing algorithm
was implemented in early computers and in simple computers today by the
central processor itself. In the more complex systems of today, however
the accessing algorithm is often implemented by a specialized piece of hard-
ware called a channel, or I/O controller, taking advantage of the restricted‘
nature of the accessing algorithm - :

Channels contribute to the efficient use of the’central processor. but
confuse the programming, for invariably the restrictions of the channel pre-
vent the entire accessing algorithm from running on it, 8o that for parts
of the algorithm the programmer must move to the central processor, perhaps
by means of interrupts and interrupt handlers. Ideally the programmer
should not have to cope with this switching from processor to processor
such switching is an implementation feature due to issues of economy

Here, clearly, is a chance to take advantage of the fact that within
this chapter we are not concerned with issues of efficiency.‘ In order to
make the construction of the accessing algorithm as simple as possible it
will be assumed that processors are inexpensive enough that one can be
allocated full time to any process doing I/O and that all I/O will be done
by this processor rather than by some specialized 1/0 controller By

assuming that the processor is cheap enough to be dedicated to a process

29 -

doing I/0, all questions of scheduling processors during I/0 are avoided.
The processor will Just wait for any pending I/0 operations to complete.

Just as specialized I/0 controllers are often employed to make more
efficient use of processors, buffers are often used to achieve more
efficient use of memory. Again this chapter will ignore resource éonsump-
tion and presume that memory- is cliedp enough that any page needed for the
user's I/0 may be kept in memory without special restrictions. In addition,
since in this chapter the timing constraints of devices afe‘to be ignored;
the chapter need postulate no special mechanism to bring pages for I/0 into
memory. 1If during I/0 processing a page exception occurs because some page
is missing, the I/0 device is assumed to be able to pause while the‘pﬁge is
fetched inte.ﬁcmory-by the normal means.

The result of ignoring resource consumption and tfming constraints,
then, is 2 .gystem in which ‘the accessing algéorithm runs directiy'dn”the:
main processor, and in which -the algorithm, for all its storage needs, uses

the normal memory provided in the user enviromment.

The Representation of the Device

The previous section hae outlined some of the features this I/0 system
will have; this section will deal with perhaps’the single most important
characteristic of the I/0 éystemt' the representation of the device itself
in the environment of the user. . That is, given that- the active aspect of
I/0 is represented by the central processor itself, how shall the interface
to the passive part be constructed? -There must exist some port on the
processor to which devices are attached. We must considér what the nature

of this port shall be, and what instructions shall be provided to reference"

30
it. Current computers which execute the accessing algorithm directly
usually have some specialized port to an I/0.bus of. some sort, with'special
instructions to reference it, but in this thesis an alternative will be
chosen in which the processor's memory- interface is used for I/0 devices as
well as memory, so that to read or write on an 1/0 device, the program
issues a memory fetch or memory store instruction to a particular address,
which the hardwa;e associates with the device rather than a memory word.
Such a device interface has been used in two computers, the PDP-11 and the’
Plessey 250, which are discussed in Chapter 1.:

The advantages of this interface are several, ' First, no modificatibns =~
are_:gquired to the central processor, Norspeciﬁl port is needed, nor:
special instructiohs, so that the programmer can use any memory fetch or
store ingtruction to reference I/0. :This ability means no new language
need bg_learned,_ Also, as will be demonstrated, the mechanisms which
manage and control the segmented virtual memory can.be used quite naturally -
to regulate access to I/0 devices.

To see how this interface might work, consider the usual method for
interconnecting processors and memories in a multi<processor system. |
Normally the memory will be implemented as. several memory boxes, each hold-
ing a fixed number of memory words, with each processor connected to all of
the memory boxes. The prgcéasor‘containa-a mechanism which, on each memory
reference, takes the memory address and directs the referénce to the memory
box which contains this address.

Given this architecture, it is easy to specify that-certain:of the
addresses be associated with an I/0 device rather than with wordé of memory,

One coﬁld-just replace a memory box with a device, suitably interfaced, but

3L

this would associate with the device all of the large number of addresses
normally implemented in one memory box. Better is to provide a module, to

be called the device selector, which takes .the place of one memory box, and

which divides up the addresses associa;ed with -the replaged~m¢mory box
among a number of devices which are connected'tojthe ¢;v1ce selector,

The physical arrangeméent of modules which results fiom*this scheme is
depicted'inﬂfigﬁre 2-1. 1In place of onei&fltﬁe memory boxes i; a device
selector,'with the devices in the system conngéégd to it. For purposes of
comparison, Figuré 2-2 depicts the architecture of a more traditional system,
~which uses an I/0 controller, or specialized I/0 processor, to execute the
accessing algorithm. The principle difference is that traditionally the
devices are coqnected to the I/Oygonprqllgr itself. Thus, in contrast to
the traditional case, the architecture of this tﬁeéis‘éeparates the active
part of the I/0 system, represented by the processor, from the passive part
of the I/0 system, embodied in the device selector. Ome obvious advantage
of this separation is that the total system is more reliable, since any
procesdor,'rgther‘thgnujuht 6ne in particular, can control any deviée; ’
Thus the failuge éf Qgéfp:pcessor doea:po; dis;ble'devices.‘ Other advan-
tages of the separation ﬁill be discussed later in the :hesis;

Figure 2-3 depicts the relaﬁion'betyeen‘the phjéiéal_devices and the
address range. The memory has been impleméﬁfe& as a series of‘ﬁeﬁory boxes,
each of which contains 2K words of memory. In-order to implement devicé
attachment, one of the memory boxes has been replaced by a device selector,
which in turn takes the 2¥ addresses assigned to it and subdivided these

~ into blocks of length n, which it associates with individual devices.

32

Processor

Processor

Memory box

Memory box

- Figure 2-1:

Device
selector

000 -

Devices

Module interconnections with devices represented
as memory. .

Processor

Processor

Memory

Memory

: —)
1/0 —
controller | __r—
(specialized .
procegsor) | "

Devices

Figure 2-2: Module interconnections in system with specialized

I/0 processor.

33
LR
01 3
Memory Device
box -} L %%5.. 1
(2k.wprdg) L
2K+ < | tn i
Memory 4 Device
' $‘_"' box) H 2
(2k words)
2*2k4< . +2n ﬁ
Memory Device
L—" box ‘. C ' }_.’ i 3
(2k words) ' _
A . Device .
— Selector :
4o i — | \ o
Memory
>—-—" box .
»(Zk words)
5*2kd% : . +5n
. - R - .Range of
' . addresses
\ , associated
zzgéry ‘ ‘ o ~ with one
addresses - : 4*2k;1 . device

Figure 2-3: Typical memory implementation, showing relation between
addresses and physical modules.

34

The interface as described allows thg program to read and write data
to the device by repeated‘refefence to a particular memory address. This
is not a sufficient interface to allow full contfoi of the device, however,
for control information as well as data mugtabg‘pg§qed:to and from the de-
vice. For this reason not one but several addresses will be associated
with eéch device. (See Figure 2-3.) These additionaI‘addresses'will be used
as follows.

One of the additional addresses will be used to allow the program to
read and write the ggggg,gégg of the device. The state word of the device
contains information gbOut the current condition of the device. It will re-
flect the setting of hardware switches on the device, and the occurrences of
errors. By loading it the programmer can alter the state of the device.

For example, in a device éonnected to a modem, the state wbrd will contain
bits related to the state of the modem, so that by ‘leading the state word,
the modem can be made to hang up, or wait for a call, or answer, and so on.
The details of the state word will be ignored in this thesis, but it is
assumed that any necessary modificétion to the state of a device can be
achieved by setting bits in its state word.

One aspect of device control is important enough to warrant a special

address. This is the record number. The record number is, for devices

with records, the number of the current record being accessed. Assigning
a value to the address causes the device to position itself at the begin-
ning of the specified record. (This implies that assigning to the record

number the value which it contains ﬁéy cause an action; to wit, backing up

to the start of the current record.)

35

It is claimed that the interface now described, with the three aspects
of the device: data, state word, and record address, is sufficient to

allow general control of the device at the detailed level.

Mapping the Device into the User's Environment

The last section described a way of representing devices in the real
address space of the computer. The user, howéver, does not see real but
rather virtual addresses. This section discusses how and to what advantage
the device may be mapped into the virtual address space of the user.

The virtual memory is assumed to be segmented, with the user potentially
having a very large number of segments. A virtual address is composed of
two parts, a segment number and an offset within the segment. Conversion
of virtual addresses to real addresses is performed using a segment

descriptor table associated with each address space. The table is indexed

by segment number and gives, for each segment,’the real starting address

and the length of the segment. (1f segments are implemented by paging, the
real starting address will be that of a page descriptor table in which the
real starting address is found; but this detail is irrelevant here.) To the
real starting address is added the»offsét‘part of the virtual address to
find the desired word in real memory. .

Examination will reveal that éhére.are certain similarities between
devices and segments. Since segments are the basic tool of organization,
with each segment expected to hold one informational entity, such as a
single program, it follows that protection controls are applied on a per-

segment basis. Similarly, access to the I/O system should be granted or

36
denied on a per-device basis, Also, both_devices and segments are manipu-
lated by the user: named, obtained, discarded, etc.

In view of these similarities, devices ‘as well as segments will be
identified by segment numbers in the user's virtual memory address space:
the segment descriptor table entry corresponding to a device will be con-
structed in such a way that references to -that ''segment" will be directed
to the real addresses associated with that device. For example, with
reference to Figure 2-3, if device 3 were to be added ‘to the address space
of a user as segment number d, then the dth entry in the user's segment
descriptor table would be filled in with a real starting address of
3x 2K+ 2n and a length of n. The various offsets in segment d would then
map into the various aspects of the device: ‘data, ‘state word and record
number .

' The result of mapping devices into the user's environment in this way
is that the user has access only to those devices which are mapped into his
address space. Being able to restrict the user in this way is crucial to
the goal of allowing the user direct access to his devices,

A very important advantage of representing»the4device'to the user as
a segment is that he can refer to his device in-any programming language
which lets him refer to a segment. In other words, he can write his 1/0
control program using an apptopriately structured high-level language.
Figure 2-4 is an example of an I/0 control program written in"PL/I, which,
first, shows the possibility‘off:eferencihg'the device from a high-level .
language and which, second, depicts the sequence of actions a user would

go through to use a device in the context of this interface.

37

tape_read:procedUre(reel_name,where_tq_read,num_recs);

/* This is a program in PL/1 to read a tape. The tape i-enti-
fied by the name "reel_name" will be read into the array
"where_to_read", with "num_recs" records being read. For thie
simple example we will assume that no errors will occur, =/

declare rcel_name char(+), /* name of tape */
where_to_recad (»*), /* array into wkich to read =/
nuri_recs fixed; /* how many records tr read «/
declare tape_addr pointer; /* device memory adAdrecs +/
declare 1 tape_drive /* structure of /o device «/
based (tape_addr), '
2 data aligned, /* offset of data in device */
2 record allgned, /* offset of record a-ddrecs =/
2 state aligned; /* offset of state info +#/

declare rec_size fixed inltial (256); /+ some numher n® war-s
per recor” =/

declare (recno,wordno) fixed; /* indexing */

declare get_tape external entry(char(+*)) returns (polnter);
/* This routine will verify the user's access to the tape,
have it mounted, and associate the segment which represents
‘the device in merory with the structure "tape_drive". */

tape_addr = get_tape(rée]_name); /* get a drive +/
tape_drive.record = 1; " /* position tape at start =/

do recno = 1 to num_recs;
do wordno = 1 to rec_size;
where_to_read((recno-1)*rec_size+wordno) = tape_drive.Aats:
end;
end;

/* Mo cxplicit assignment to tape_ drive.record Is necessary in
the loop because it is assumed that the tape advances to the
next record automatically, «/ - : :

return;
end tape_read;

Figure 2-4: Program in PL/I to read data from a tape.

38

The first action of the user must be to have the device made access-
able to him. For-this purpose he must call on the supervisor, which will
create a segment in his addreee apece4correepondin¢.to the.deviee, .In this
example the supervisor call ie‘repreeented oy thekanction get_tape.' The
PL/I language contains noweleer‘construct by ﬁhich the programmer may
associate a name in the program (e. g ., the structure tape drive) with some
| object in the environment of the program (e.g., the segment representing the
device). 1In this sense PL/I is deficient in .its ability to refer to its
environment; and thus to teke,edvantage directly:of a segmented address
space. In this example, the association is made using the veriable
"tape_ addr", which “get_ tepe" sets. | "

Once the segment is eceeesible to the PL/I program, the user can
reference his device directlyt. The user must first position the tape drive
to the first record, by aaeignment to "tape_. drive record”. 1In a practical
case he might also have to set the device in the proper state by aseignment
to "tape_drive.stateﬁ | .After these preliminaries, tbe user reads items
from the tape into the array "where_to_read" by repeated reference to
“tape drive.data”. In general, the ueervconid ree&,~write; and reposition
the device as necessary. Eventually, after theruser is finished with the
device he should call the system and relinquish it.

Hopefully,”this example will convince,tnerreedergthat,_ignoring ior~A
now the issues of resource consumption, timing considerations and errors,
the system as so far constructed allows the user to congtruct I/0 programs

in a simple and orderly fashion.

39

Connection of Device Selector to Devices

The device selector has the responsibility of connecting devices to
the system and allowing those devices to be referenced as if Ehey were
memory words. The purpose of this section s to show that the representa-
tion of the device as memory does not require that the interface between
the device and the device selector be very different from interfaces used
for devices on systems today. A particular interface ﬁill be proposed,
which will be used in subsequent chapters.

In an earlier section, three aspects of a device were identified, in
particular data, state word, and record number. \Ndrhally, at the device
inttrfnce‘thﬁue three aspects are not represented by three different infor-
mation pathways, but rather all are tfanéﬁitted‘over one path, with addi-
tional control lines used to indicate whether the value being transmitted
is data, state, or address. The interface described here willltaké this
approach.

Since it was assumed that the processor will wait for the device, if
the device is slow, and that the device will wait for'the‘processor, if the
processor takes a page fault, the interface must be totally asyncﬁfondus.'
To move information across an asynchronous interfabe; a techhique will be
used which involves two signalling lines, the ;gggz_l;gg aﬂd thevackuowlédge
line. Whenever device or device'selector has information to trahsmit to the
other, it will place this information on the appropridtellines, and then
signal across the interface on a ready iiné5 which indicates to the receiver
of the information that the information is available. The sender then waits

until the receiver signals back over the acknowledge line, indicating that

40
the information has been received. Using this protocol, either side may
force the other to wait as necessary.*

From these various obéervations, a picture of the device interface
evolves, as follows. There will be one set of data lines for the parallel
transfer of a word of data, state word, or address. Since information can
flow in either direction over these lines, two sets of ready-acknowledge
lines will be provided, one each way. There will be a set of command lines,
used to distinguish data, state word, and address, and to indicate the
direction of data flow. These command lines carry information from device
selector to device, and have their own set of ready-acknowledge lines. A
command over the command lines will be issued by the device selector to the
device as part of each transfer, indicating what information is to flow. .
The device selector will use two pieces of information in generating the -
command: first, the particular address which was referenced, and second,
whether the memory reference was a read or a write request.

For example, to read the next item fram a device, the user will issue
an instruction which reads from memory, with an address containing ﬁhe seg-
ment number of the device and the offset value for data. The address con-
version logic will transform this addrgsa'to §-:ea1 one, which will be sent
to the device selector. The device;selectogl,noting,the,particular address
and that the instruction iéuattempting to read; will make up a command to
read data, and, placing it on the command lines for the Qelected device,

signal over the ready line associated with the command lines; then wait for

* The receiver could dispense with the reédz line and presume that the ,
information was available whenever it detected a signal on the informa-
tion line. If there are several information lines in parallel, however,
differences in timing on the lines may cause this technique of detecting
information to be error-prone. Thus the use of a single ready line to
announce that the information lines have stabilized and may be read.

41

the device to pick up the command and signal back over the appropriate
acknowledge line. After this, since the command was to read, the next step
is up to the device, which must place the word to be read on the data lines,
and then signal over the appropriatg ready liﬁg. The device selector will
pick up the word, hand it on to the central processor and signal back com-
pletion to the device over the associated acknowledge line. Thus a command
is issued to the device for every data transfer. Writing data would be
similar to reading, except that ﬁhe selector rather than the device would
initiate thg data tfansfer.

A representation of this interface is picﬁured’in Figure 2-5,‘which
identifies each line, and shows for each the direction of signal flow. As
the diagram suggests, the inte;face will be augmentgdhlater in the thesis
with four more lines. The complete interface is reviewed in Appendix B,

which also compared the interface with several others in use today.

The 1/0 Environment - A Summary

The system so far déveloped gives the user direct access to each of
his devices, while preventing him access to any other device. Since a de-
vice is represented as a segment, it can be easily manipulated, using
memory fetch-store instructions of the machine, in any high-level language
which allows access to’segments. Since the user has direct access to the
state word of the device, he has very general control ovér the device, so
the user is not restricted in the algorithms he constructs to control his
device. The only time he need call on the system supervisor as part of
doing 1/0 is to have the device assigned to him and mapped into his address
space in the first place. Thus the system does indeed give the user direct

access to his device.

42

command ready -
- y —
+ command acknowledge
ﬁ r
command -
+ read ready
—1 : p 1
-) : -
read acknowledge -
b) .
write ready -
— —
b | -
device - - wrj.te acknowlec;ge 3 — device
-selector || 1

— data ~

" error and event signals .

EgEgEERER)

onononon

Figure 2-5: Interface between device and device selector.

43

Parallelism in I/0

One of the three problems introduced in the first cha#ter was to take
proper advantage of parallelism in I/0. The purpose of this section is to
determine where parallelism is and is not appropriate in an I1/0 system
design. 1If the reader will refer to the PL/I example of Figure 2-4, he
will note that within that program there is no parallelism of any sort.
Quite the reverse, it is completely sequential. This reflects the fact
that a single device is sequential in nature, and can do but one thing at a
time. Thus, given the assumption that I/0 is performed by the main processor,
there is no use for parallelism in the construction of a control program for
a particular device.

There is, however, some use for parallelism in I/0. If the user can
perform his I/0 in parallel with other parts of his computation, his total
computatioﬁ will complete sooner, so the system will be more responsive.

The system as well as the user will benefit, for having several tasks in
parallel means that the system has several rather than one task to schedule.
The system, by choosing among these, can better keep all of its resources
busy from moment to moment. Further, as the next sections will show, the
user can impose an orderly and coherent structure on his I/0 task by viewing
it as running in parallel with his other cbmputations; _Thus, the proper
role of parallelism is not.in the control of a particular device, but in
relating the operation of one device to the other tasks of the user.

How is this parallelism to be produced? There are basically two
techniques. One, a fairly common one, is the use of interrupts to multi-
plex a process between two tasks. The I1/0 system of this thesis, as so far

develbped, has no interrupts, so this technique is not relevant. It is

44

important, however, that this technique be understood, for the thesis will
argue that it is an undesirable technique because it confounds the goals

of ease of programming and simplicity of structure in the I/0 system.
Indeed, this thesié will argue even more strongly that the user should
never see an interrupt in the traditional sense, but rather that in all
cases a signal coming from a device should be intercepted by the system and
mapped into some specific mechanism which represents the intent of the
signal.

In order to justify this assertion about interrupts, it is necessary
to have an example of a system which does use interrupts. For this purpose
an alternative architecture will be quickly developed. Imagine a system
in which channels exist. For the purpose of this discussion, a channel is
just a processor which is specialized to perform certain parts of the I/0
accessing algorithm. For example, it might perform the actual transfer of
the data represented in Figure 2-4 by the nested do-loops. When the chan-
nel has finished its task, it sends an interrupt to the main processor, to
indicate that it is done.

In this alternative architecture, interrupts can be used to produce
parallelism in the following fashion. Presume that the user has one process,
that is, one environment. The effect of the interrupt will be to divert
this process from its usual task to a section of code, the interrupt hand-
ler, whose function is to determine the cause of the intérrupt, and take
the necessary steps to get the channel started on its next task. The con-
trol will then be restored to the main computation at the point of the
interruption. Put another way, the effect of the interrupt is to produce

paralielism by multiplexing the user's process between two control points.

45

The drawback to this view is that since fragments of code from the
interrupt handler are executed at arbitrary points during the execution of
the other control point, it becomes very difficult to analyze, predict, or
reproduce the actual computation performed by the process. The computation
is certainly not represented by the user's programs as written. Further,
since the two control points are part of the same environment, the degree
of interaction is unrestricted. Thus the individual programmer is respon-
sible for designing the means to regulate the interaction. Great skill is
needed to device error-free algorithms to synchronize parallelism in this
case.

A much better structure, from the programmer's point of view, would be
to consider the main process of the user to execute only the main computa-
tion, and to run in parallel Qith § separate process rumning the I/0 con-
trol program, to be called the 1/0 process. There are three advantages of
this structure, the first of which is that co-ordination between main pro-
cess and I/0 process can be implemented in terms of whatever interprocess
communication mechanisms the operating system‘supports. This reducés the
difficulty of building properly co-ordinated parallelism, since several
interprocess communication mechanisms have been developed which allow a
logical analysis of parallel structure. Two such schemes are semaphores
with the operation p and x; described by Dijkstra (15), and the primitives

block and wakeup described by Saltzer (35).

The second advantage of this two process structure is that the main
process is not being multiplexed, so the algorithm the main process exe-

cutes does correspond to the programs as written rather than having the

46
programs interspersed at random points with transfers to I/0 code having
unconstrained effect. This makes the algorithm of the main process easier
to debug.

The third advantage of separate processes has to do with the structure
of the I/0 task itself. The algorithm of Figure 2-4 displays, in its
written form, the sequential nature of its algorithm. Consider, in contrast,
the form which the written program would have if it had been coded as an
interrupt handler.

The best way to introduce this "interrupt-handler" structure is by an
example of an algorithm to réad from a disk a series of records. For each
record the algorithm must first seek to the correct address and then read
the record. It will repeat this sequence until there are no more records
to be read. If channels and interrupts do not exist, this algorithm has
the very simple flow chart of Figure 2-6, which would also model the
algorithm of Figure 2-4 except for the addition of the seek action.

- 1f the 1/0 system were implemented using channels, it would be
natural: for the channels to implement the boxes Iabeled geek" and ''read".
Given that the channel is equipped with an interrupt line over which to
signal completion of the current task, some portion of the algorithm must
have the responsibility for receiving the interrupt and determining its
cause. Including this new‘portion of the algorithm produces the flow chart
of Figure 2-7.

A description of this program structure would be that at each inter-
rupt the control returns to the head of the program, so that what is con-
ceptually a sequential set of operations appears to be alternative paths

through the program. The disadvantages of this structure are apparent.

47

more

records
?

seek

read

Figure 2-6: Sequential form of flow chart for I/0 control program.

48

receive
interrupt

completion

no

prepare
read

wait for

interrupt

more
records
?

prepare
seek

|

wait for
interrupt

Figure 2-7: Interrupt-driven form of flow chart for I/0 control
program.

49
It is no longer obvious from the form of the flow chart that the program
contains a loop, nor is it obvious that seeks and reads always come in
pairs. The "start" and "done" points occur at an unobvious point in the
middle of the program., In a more complex program the results can be
chaotic.

The flow chart of Figure 2-7 could be drawn so that it would mimic as
much as possible the form of Figure 2-6. Such a flow chart has been pic-
tured in Figure 2-8, While a program with the form of Figure 2-8 would
have many of the desirable characteristics claimed for Figure 2-7, it is
not obvious that a programmer working with interrupts would create a pro-
gram with the structure of Figure 2-8 unless the system assisted him, per-
haps by providing that portion of the algorithm which received and sorted
out the interrupt.‘ Chaﬁter 6‘contains a description of how the system
might provide this function.

These three advant#ges of the two process scheme, that the main pro-
cess is not arbitrarily;interrupted; that the sequential nature of the I/0
task is not obscured by the iﬁterrupt handler stfucture, and that the inter-
action between the two tasks can be achieved using fofmalized interprocess
communication tools, are the basis for the decision to use the two-process
architecture for the remainder of the thesis. Clearly, the advantage of
the two process scheme is ﬁot an increase in capability. Quite the oppo-
site, the necessity of working within the framework of processes and inter-
process communications might seem rather restrictive to one accustomed to
interrupt handlers. But this restriction is in fact what is desired. The

justification for the imposition of this separate process structure on the

50

more

records
”

prepare wait for
seek s interrupt

recelve
interrupt

|

prepare wait for
read 3 interrupt

no

e ———

Figure 2-8: Redrawing of Figure 2-7 to resemble Figure 2-6.

51
I/0 task is that the goals of simplicity of design and ease of coding and
analysis are thereby fostered, and this is a major goal of the thesis.
While the multiple process architecture nicely complements the I/0
device interface developed in the first part of this chapter, it is, in a
sense, orthogonal to it. It is not necessary, in order to view the I/0
task as a separate process, that the I/0 device be modelled as memory

words, or that the accessing algorithm run on the processor itself.

The Handling of Errors in 1/0

One of the aspects of I/0 which cannot be ignored is that I/O is prone
to errors. The data storage and data transmission media outside the central
processor are constructed using technology which allow occasional transient
errors, causing data to be lost or altered. The I/0 system must provide a
reasonable response to this sort of error, as well as to the obvious pro-
gramming errors such as the use of an invalid record number.

This section will show that in order to deal properly with errors, it
is appropriate to separate them into two categories: those which afe trig-
gered by some particular action on the part of the 1/0 control program, to
be called synchronous errors, and those which. oceur randomly, to be called
asynchronous errors. Examples of the former would include a parity error,
or an attempt to reference'a non-existant record; examples of the latter
would be a power failure on a peripheral device or the'unéxpected discon~-
nection of a communication line. The difficulty with asynchronous errors
is that in order for the I/0 process to deal with them as they occur, it is
necessary to respond at unpredictable times, .and this sort of interruption

is, as the previous section argued, undesirable.

52

In order to avoid diverting the 1/0 process when asynchronous errors
occur, a strategy will be employed in which an additional process is used,
whose function is to wait for such errors. This additional process can, on
detecting an error, perform whatever actions are necessary. The scheme thus
avoids the necessity of interrupting the 1/0 process to deal with asynchron-
ous errors.,

The simple case of synchronous errors will be considered first. To
begin, how can an I/0 process detect that an error has occurred in a device?
A mechanism does already exist which can be used for this purpose. A bit in
the state word of the device can be associated with each error, and the de-
vice can set this bit if the error occurs. The program can then test the
state word whenever it wishes to know if an error has occurred. Thus, in
order to detect errors during a transfer of data such a test would have to
be done after each read or write of the device.

There are certain disadvantages to following each reference to a de-
vice with a test for errors anﬁ a conditional execution of an error recovery
procedure. The insertion of this material 1nt6 the I/0 control proéram
makes it more bulky, and clutters up the written form of the program, making
it harder to comprehend its structure. In addition, the explicit and re-
peated test for errors is expensive. The occurrence of an error is supposed
to be the exception rather‘than the rule, so the ideal mechanism for error
detection would involve no cost except when an error occurred.

One solution is to handle error detection the same way that the system
handles other errors related té memory references. Examples of this sort
of error, which is often called a fault, would be the user attempting to

reference a non-existent address, or an address to which he has no access.

53

Traditionally, what happens if a fault occurs is that an error signal is

returned to the processor. The programmer, in order to take adyantage of
this signal, provides in advance a section of code to be called in case of
an error. When the signal arrives, the system will cause this code to be
executed. In order to use this technique for dealing with I/0 errors, it
is only necessary for the device to generate this error signal whenever a
synchronous error occurs, i.e., whenever certain bits in the state word are
signalled. |

This scheme for error detection and recovery is operationally equiva-
lent to. the explicit test described above. In the one case, the programmer
makes an explicit test at each point an error could occur, and on detection

of an error transfers to error recovery code. Using the error signal, he

does not make the test, but nonetheless, if an error occurs a transfer will
be executed to the error recovery code, and this transfer can occur only at
the places in his program where otherwise he would have had to insert an
explicit test.

The language PL/I attempts to integrate this technique of error recov-
ery into the syntax of the language by means of the condition mechanism,
which the interested reader should étudy.

The mechanism so far described deals with errors in the restricted
case that they are synchronous. The other class of errors, asynchronous,
will now be considered. Included with asynchronous errors will be certain
randomly occurring events which are not errors, but which must be processed
in the same fashion. Examples would be the user pressing the attention key
on his terminal or an operator signalling that a tape has been mounted and

is reédy. Since these signals must be handled much as randomly occurring

54 i

errors are, they will be grouped with these errors, and will be called,

collectively, asynchronous events.

The error signal mechanism was so far designed as an exact equivalent
to the explicit test after each reference. If we attempt to use the error
signal to handle the case of the asynchronous event, this equivalence no
longer exists. Whereas in the previous case, the signal (and the resulting
subroutine call) can occur only at certain explicit points in the program,
the asynchronous event could cause the subroutine to be called at any
arbitrary point in the program.

This arbitrary interruption is undesirable first, because of the
effect it has on the process structure (discussed in the previous sections),
and second because the system must provide a fairly complicated piece of
software to implement the diverting of the process from its current task to
the error subroutine. To avoid these difficulties, a schéme will be pro-
posed which will preserve an orderly structure for the I1/0 prbcess, and
will replace the above mentioned piece of system software with two simple

interprocess signals, start process and stop process.

The scheme to be used is the creation of an event process associated

with the I/0 task. The sole purpose of this process ‘is ‘to detect and re-
spond to asynchronous events. The event process could, quite simply, de-
tect events by looping on a repeated examination of the state word of the

device; more efficiently, the device could generate an event signal, dis-

tinct from the error signal, which could cause the event process to come
into execution. 1In either case, since the event process puts itself in a
known state, looping or waiting for the event signal, it is true here, as

it was of the synchronous error, that signals from the device do not arrive

55
at arbitrary points but at specific locations in the computation, thus
arbitrary interruptions due to device signals are eliminated.

The thesis has argued in considerable length the evils of interrupting
a process at an arbitrary point in order to execute some other piece of
code. Perhaps a specific example will demonstrate the advantages of the
separate event process.

As a result of an asynchronous event, it is often desirable to modify
the I1/0 process, perhaps to discontinue the task the process is curréntly
doing and start something else.

To understand the relative complexity of such a modification with and
without the event process, consider the dynamic allocation of storage to
procedures running in the I/0 process. Normally, there will be a stack of
activation records, containing the dynamic storage (automatic variables,
return information, etc.) for each procedure with a call currently out-
standing. If the event handler is a subroutine in the 1/0 process, when
it is called its activation record must be placed on top of the stack.

This makes more difficult the task of the handler, for if the handler wants,
for example, to abandon the current computation and start a different one
as a result of the event, the handler must remove and add activation re-
cords to the stack, all the while keeping its own record intact. This
means removing and adding items to the middle of a stack, which is compli-
cated. In contrast, if the event handler subroutine is running in a sepa-
rate event process, it can modify the I/0 process without affecting its own
execution. To use an old expression, the use of the event process allows

the handler to avoid the risk of cutting off the branch it sits on.

56

Interprocess Signals

The fact that signals from devices do not cause process interruptions
does not mean that there is no need for asynchronous signals directed to a
process. It just means that these signals do not come from 1/0 devices,
but from other processes. To see the need for such signals, consider the
previous example, in which the subroutine responding to the event, running
in the event process, wanted to modify the I/0 process. Clearly, the I/0
process must be stopped before it can be modified. Thus there is the need

for an interprocess signal, to be called stop-process, which the event pro-

cess can send the I1/0 process before modifying it. Similarly, there must

be a start-process signal, for use after the modification.

Is it necessary to have a signal as powerful as stop-process, which
actually forces the receiving process to stop? Might the same effect be
produced with a passive rather than an active mechanism, a flag which one
process would set, and the other would test periodically, stopping if the
flag were set? To see the need for an active signal; remember that one
event which may occur is the user pressing the attention key on his
terminal. The usual meaning of this event is to stop the user's computa-
tion, and to place it in a known state. One function of this event is to
halt a process which is operating in error. Since there is no guarantee
that a process operating efroneously will ever look at a flag, it is
necessary that there by a way to force the process to stép. Thus a signal
with the power of stop-process is required.

The complexity of the stop-process signal is, however, much less than
the signal which is needed if the event process is not present, in which

case the signal (which would come directly from the device) must trigger

57

the following actions by the system. First, it must stop the process.

Then it must identify the subroutine which is to be executed in that pro-
cess. Then it must modify the environment of the process (hopefully in a
reversible fashion) so that the subroutine can execute successfully, then

it must cause the subroutine to be started. Comparison of these steps with
the simple effect of the stop-process signal shows the great simplification
in the mechanism the system must provide if the event process scheme is used
to avoid asynchronous diversions.

The simplicity of the stop-process signal means less complexity‘to the
system, but it also means more flexibility to the user, because he is then
-free to use whatever mechanism seems most appropriate for each event. In
certain cases a passive device such as a flag may be quite sufficient. Or
in certain cases the event process may be able to handle the event without
involving the I/0 process at all. The flexibility of allowing the user to
choose the tools best suited to the task is denied if the event process is
not used, for in that case the effect is always the same: the I/O process
is diverted to a specified subroutine.

The distinction then, between error recovery with and without the
event process is the following. In both cases the I/0 process may receive
a signal at a random time, but if the event process is used, the signal
will come from that procesé, rather than directly from the device. The
advantages of having the signal come from the event process are first, that
the signal is much simpler in nature, just stopping the process rather than
diverting it, and second that the user has some control over when and if
the signal is sent, for the event process executes a program which is pro-

vided by the user, so that it can be tailored to the particular needs of the

58

given event. This ability of the user to control the exact effect of an

asynchronous signal is the real advantage of the event process scheme.

Stopping a Process

It was implied in the previous section, that the user, in creating the
program to run in the event process, might wish to exercise some control
over the time at which that program signalled the 1/0 process, or any other
process, to stop. This control is needed because, while it is very easy to

stop a process dead in its tracks using the stop-process signal, it can be

very difficult, under certain circumstances, to stop a process in an orderly
way such that it can be restarted, and such that other processes, including
the event process itself, are not disabled by the original stoppage. This
section will explain in some detail the problems of stopping a process in
an orderly fashion. In subsequent chapters specific techniques will be |
introduced by which the I/0 process can be stopped.

There are two reasons why it is important to understand this difficulty
in bringing a process to an orderly halt. The first is to gain insight
into the problems of interprocess co-ordination, and to identify certain
other mechanisms which the system must provide to foster this co-ordinatiom.
The second reason is to develop the understanding necessary to assure that
the I/0 process in partiCuiar can be stopped inh an orderly fashion. That
is, the topic of this thesis is the I/0 subsystem. It i; beyond the scope
of the thesis to provide a strategy for stopping any process in the gemeral
case, but it is important, as part of the thesis, to solve the specific

case of stopping the I/0 process in an orderly fashion.

59

A process which has been stopped dead in its tracks may represent a
problem because it may have resources, (devices, data bases, etc.), claimed
to itself. If a process holding a resource is to be stopped dead, some
other process must find &ll such committed resources and free them. The
first problem is to find them. Unless the system has a uniform mechanism
for registering resources, there may be no way to do so. Next, thevre-,
soufce may have been in an inconsistent state at‘the‘time,of the event, in
which case it must be put in a proper condition again. If it is not, some
other process, including the event process itself, may attempt to use this
resource and discover that it camnot do so. For example, at the point of
stoppage the process might be rethreading a»linked list. vathe event
process attempted to use the list, inconsistency threaded pointers might
cause the process to loop or to be unable to find some desired objgct in
the 1list.

In general, the event process will not know how to tgmove these incon-
sistencies, for the other process might have been using any g;pitrary re-
source, and the event process cannot know how to restore every resource
in the system. It must therefore utilize some‘prchdure.associated with
the particular resource, which knows how to put that resource in a consis-
tent state. This recovery procedure could be run in the event process, or
it could be caused to be‘rﬁn by the other process. In either case there
are significant design problems, for example, to certify the reliability of
the recovery program. Can the event proéeaa‘ttusg it? What if it refuses
to return? Does the event procegs give up and legveythe resource in an in-

consistent state? If so, can it usefully tell anyone? And so on.

60

Further, there is no reason to think that all resources can be made
consistent in the middle of an arbftrarily interrupted modification. In
this case the other process cannot be stopped instantly, but must be allowed
to run until it has the resource in a consistent state. This privilege of
running to a consistent state is, for example, usually allowed systém pro-
grams called by the user. 1In this case, since the other process cannot be
stopped dead, some mechanism must exist to detect when consistency of all
resources exists, and cause the process to stop at that point. This means,
in general, that‘any procedure which requests the right to run to a consis-
tent state must agree to stop. But what if the procedure doesn't stop?

For how long should it be allowed to run? What procedures should be allowed
to claim the right to run to a consistent state?

Because these questions relate to general igssues of resource control’
and interprocess communication, this tbesis cannot propose a solution. It
is an important part of this thesis, however, that it be possible to stop
the 1/0 process in particular. In order that the I/0 process be stoppable,
it is necessary .to impose various restrictions on it, the most'impoftant of
which is that at all relevant times all resources in use can be identified,
and can be reclaimed in a consistent state.

Until this point in the thesis; no restrictions have been imposed on"
the 1/0 process. While thé’primary role of thé 1/0 process is to run the
1/0 control program, there is nothing which would prevenf the user from
causing it to run any other task he wished. In order that the thesis be
able to discuss stopping the 1/0 process, it will be assumed that the I/0
process is restricted to the I/O control function, so that no other unre-

lated resources need be of concern.

61
Various other restrictions on the I/Q process will be identified
througﬂout the thesis, as goals of timing and efficiency are factored into
the system. The general effect of these various restrictions will be to
make the I/0 process somewhat simplified, compared to the normal process on
the system. A by-product of this simplification will be that the 1/0 pro-

cess is easier to stop. This will be discussed at several points in the

thesis,

A Look Behind and Ahead

To review what has been done in this chapter, an I/0 architecture has
been constructed which gives the user direct access to his device, which
gives him a multiple process structure to organize his I/0 task, and which
gives him a uniform and coheremt technique for error recovery. The impor-
tant features of this syﬁtem are;

. The user refers to his device as if it were a segment in his virtual
memory.

. The I/0 task is implemented in a special pfocess,;the ;Lg.grocegs,
which is synchronized with the rest of his tasksvuiing some known
interprocess communication techniques.

An event process is provided to detect asynchronous errors, so that

no process is ever interrupted by a device at a random point.

The chapter, in addition tobdescribing these features in detail, has
discussed the interface which would result between the device and the device
selector, and presented an example of a simple 1/0 control program which

might be used in this system.

62

The chapter has dealt, to a large extent, with lssues of processes
and interprocess communication. This is because I/0 is tied in a very
strong way to ideas of synchromization and parallelism. In particular, the
idea of an asynchronous error or event, which is very basic to 1/0, must be
handled in an orderly fashion if the resulting system is in turn to have an
orderly structure. The event process is the tool provided to deal with
these events, and its generality is felt to be sufficient that the issue of
errors and error recovery will be largely ignored in later chapters.

The defect of the 1/0 system, as developed in this chapter, is that
it fails to cope with two prob}ems:' first, that devices have real timing
constraints, and second, that processors and memory must be used in a some-
what economical fashion. The rest of the thesis will concern itself with
factoring these two issues back into the system, without in the process
destroying the desirable features which the system now- has.

To give the reader a preview of the rest of the thesis, the following
is a brief list of the features.to be added to the I/O system. There will
be one modification to the configuration of the syster modules as now
described: buffers will in certain cases be inserted between the device
and the device selector. The result is pictured in Figure 2-9, which should
be compared with Figure 2-1. The buffering will be used to cope with both
problems mentioned above, ﬁiming and efficiency. In addition, there will
be three modifications to the operating system to allow it to interface to
the I/0 subsystem., The first is a specialized contiguous storage memory
allocation scheme, which will work in conjunction with paging to allow
memory to be used efficiently. The second modification, to be used in con-

junction with the first, is an interface to the virtual memory manager

Processor

63

Processor

Memory box

Figure 2-9:

Device
Memory box
selector

buffers <,Ai>
Oo0o0d

——

devices

|
Y]
[

[
L J

[

Module interconnection with buffers added.

64
which allows the I/0 control program to fix needed parts of virtual mem-
ory into real memory in a controlled fashion. The third modification is
an interface to the process scheduler which allows a signal from a device

to cause a process to be run. The justification and explanation of these

features is the subject of the rest of the thesis.

Chapter 3
Interface to Record Oriented Devices

One of the assumptions which was central to the I/O architecture
developed in the last chapter was that there were no timing constraints
imposed by the devices themselves, 1In this and the next chapter, this
assumption will be removed, and a system will be dévélobed which can
deal with devices having real timing constraints. |

There are various sorts of timing characteristics which a device
might have. Perhaps the most severe, or difficult to interface with,
would be a device which genérated values at arbitrary times, and which
never stopped. The system proposed in this thesis will not interface to
devices with arbitrary timing characteristics such as this; rather, an
interface will be specified for certain classes of timing characteristics.
In particular, it will be necessary to know either the maximum number of
items which the device will transfer before stopping, or the maximum rate
at which it will transfer them. If indeed the device does not stop,/then
this thesis will impose an upper limit on the rate of transfer of the
device.

In this chapter the class of devices to be considered is that which
is often called "recérd-oriented” deQiCes. A record is just a collection
or sequence of é known numbef of data items thch is treated as an en-

.tity by the device. By-this is meant that once the device has started
to transfer the items in a record, it caﬁnotlbe stopped or excessively
delayed without causing an error until all of the record has been trans-

ferred. Normally, the items in a record will be transferred at a fixed

65 o

66

and regular or '"synchronous' rate, and this rate cannot be modified or
delayed without loss of data, The allowable delay is usually specified
in terms of the rate, For exnmple, the transfer of each item might have
to be completed before the next is lnitiated or the item from the first
transfer will be lost, Devices wlth these general characteristics will
be called "record—oriented" It will be shown that ‘such devices are rela-
tively easy to inmsert into the I/O system of the last chapter, so this
class will be investigated first.

The purpose of this chaoter is to devise a schemevuhich will ayoldv
the disruptive effect of delays to the I/O process There are two gene-
ral solutions possible The flrst,»to be called the external solution,
1s to 1nsert some adepter betueeh the deylce and the port on the device
selector so that delays in the 1/0 brocessing can be tolerated The o
other approach, to be called the internal solutlon, is to modify the sys-
tem so that no unacceptable delays can occur. There 1s a third solution,‘
which 1s to start the data transfer over from the beginnlng of the re-
cord if lt is dlsrupted by a delay. lf there ls_soqe assurance that the
same delay will not reoccur on each’attemptbto transfer the record, this
solution may work, but it is not generel, for it;ohly works for certain
devices. Thls solutlon is dlscussed morevfullyrih,the next chapters,

lhe most obvious form that the‘external'solutloh.could take would
be a buffer, to hold the 1tems:wh1ch'need‘to bevtrausferred yhile the
system pauses for any reasoh. .At first glance,.the egternal_buffer_mlght
seem the slmbleerf the two solutions, for in the ihterhal apprgach one
must show that all causes of delay have been found and eliminated. Clo-

ser inSpection, however, will reveal that buffers have certain disad-

67

vantages, the two most important of which are that some facility is re-
quired to synchronize the inflow and outflow from the ends of the buffer,
and that some facility is required to recover the data which may be left
in the buffer after an error has halted I/O.

The advantage of the internal approach‘ié‘that it yields a much
simpler structure; the buffers and their associated problems do not exist.
For this reason the internal approach will be pursued first. In the next
chapter the external approach will be explored, and these problems with
buffers will be analyzed in greater detail.

In this I/0 system, the most obvious delay which might disrupt
the transfer of a record would be caused by the virtual memory manager
pausing to fetch a page involved in the I/0O operation. That is, the I/0
control program could cause a page fault, or page exception. If the time
to fetch a page is greater than the maximum allowable delay of the device,
then data will be lost, This problem did not exist in the earlier sys-
tem, iq which devices had no timing restrictions. Essentially, this
chapter will present a solution to the page exception problem., There
are, however, other possible delays, and all must be dealt with.

As a beginning to the elimination of all interruptions and delays
which an I/0 procedure might encounter, let us construct a list of various
sorts of delays which are observable in systeﬁs today. Delays to the
1/0 control program might be sorted into four classes,

1) Processor multiplexing (time-sharing, multiprogramming)

2) 1Interrupt handling (I/0, time, etc.)

3) Error handling and recovery

4) Virtual environment modification (dynamic changes)

68

The first three of these are easy to eliminate. . By the assumption that
a processor can be dedicated to a process doing I/0, the first case no.
longer exists. Similarly, the second case can be eliminated. In this. .
system no I/0 interrupts exist. The other interrups, such as an inter-. .
rupt f;om a timer, can be dealt with in the same fashion as 1/0 device
signals were, by directing them to a process which is waiting for them. -
This disposes of the second category. As for the third category, it is
obvious that the progress of an 1I/0 program may be del#yed or disrupted
if the user program contains an error, but such delays are not a defect.
of this scheme; user errors can be expected to disrupt_the user's com-
putation. The only responsibility that the I/O system must take is to -
assure that the results of a delay due to an error do not obacure the
nature of the error itself. This leaves the fourth category: dynamic
modificat;on of the virtual environment.

~What is meant by a dynamic modification is any modification to the
environment made '"on the fly", at the point in time at which that modi-.
fication is needed in Qrderdfor,the user's program to continue. An
example would be a page exception, in which the, page is fetched into real
memory at the moment the user needs it;v Qlearly, since dynamic modifi-
cations are made "on the fly", the user's process will experience some
delay while they are performed; it is this delay which must be eliminated.
(In specific cases, where the dela& occurs at a knpwn point and takes a
known time, the user could allow for it, but in general delays do not
occur in this predictable fashion.)

The sort of delays which can result from changes to the virtual en-

vironment depends, of course, on exactly which aspects of the environ-

69

ment can change dynamically. The various changes can be divided, how-
ever, into two categories, The first category is the change in the
binding, or relationship, between two virtual namespaces, For exdmple,
in the Multics system, the first time a procedure references a segment

by name, a binding is created between the segment name (one virtual memory)
and a segment number (ahcther virtual namespace). This binding is called
linking in most systems; in Multics it is done dynamically. The other
category of dynamic changes are those which bind a virtual to a real
name. The most obvious example, of course, is the association of a vir-
tual address with a real memory address, which is the result of a page -
exception,

The I/0 system can easily eliminate delays of the first sort, for
the cost of making such bindings in advarice i8 not the tying up of real
resources, but just ‘the expense of {dentifying and making all the bindings.
In the case of dynamic linking, for example, it is quite reasonable to
provide a static linker, and require the user to employ it on his I/0
program,

The: difficulty comes with bindings of the second kind. When a
binding from a virtual name to a real resource i8 created, it implies
that the real resource so bound is committed for the duration of the
binding. This committment is costly, so that such bindings are only
made and kept for as short a time as possible. A page of a segment, for
example, is brought into memory (bound to real addresses) only as needed.
This implies that if no pauses are allowed during I/0, so that these
bindings must be made in advance, a redl cost will be incurred for the

real resources. The purpose of this chapter is to understand how to con-

70

trol these costs,

For convenience, let us call a binding which has been completed
and which will be maintained in that state a frozen binding, and an en-
vironment with all appropriate bindings frozen, so that it might support

1/0, a frozen environment, There are two questions to be considered con-

cerning the freezing of a binding, or the freezing of a page in particu-
lar: what is the impact on the system, and what is the impact on the

user? The next sections will consider these points,

The Effect of Frozen Pages on the System

From the system's point of view, what restrictions must be placed-
on the user's ability to ask that various of his pages be frozen in
memory. As this section will show, there are three criteria which the
System must guarantee in order to assure successful operation. They are
as follows,

First, the real cost, as paid by the user, of fixing a page in
memory must not be so high that he cannot afford to do I/0. This parti-
cular issue will for‘the present be ignored, because questions of cost
and efficiency have been postponed to a later chapter. In particular,
Chapter 7 will reconsider the material in this chaper, and will augment
the scheme to be described here in such a way that -the cost is made ac-
ceptable. Eor this chapter, it will be sufficient to assume that the
user does pay whatever real costs are associated with his frozen environ-
ment,

Second, an issue distinct from, but related to the first, the user

must not be allowed, by means of freezing pages in memory, to claim more

71

than his share of the machine. It is clear that a user could, by free- .
zing large numbers of his pages in memory in an uncontrolled fashion, use
up so much memory that other users of the system had insufficient memory
left to run well., The user must not be allowed to optimize his computa-
tion at the expense of overall system performance, even if he is willing
to pay for the resources he freezes in doing so. Thus the issue of fair
share is distinct from the issue of cost.
Third, the freezing of pages into memory must not interfere with the
ability of the virtual memory manager to perform other necessary tasks.
From time to time, the system needs to undo virtual-real bindings. For
example, if it i8 desired to reconfigure the system by removing a memory
box while the system is running, then any pages bound to memory in that
box must be unbound and moved. Unless one assumes that reconfiguration
is so fast that the delay it cause is negligible, which is not a realis-
- tic assumption, then the frozen binding 1is an effective obstacle to tasks
such as reconfiguration.
| Both of these latter problems can be solved by imposing the fol-

lowing simple constraint on the freezing of pages: each request for fro-
zen pages must be accompanied by a specified maximum time which the
freeze must continue in effect. The user making the request will deter-
mine the appropriate time, and the system will hold the user to this
limit, 1In order to understand the implications of this time limit, ob-
serve how it solves the reconfiguration problem. If the system can guar-
antee that a frozen binding will come unfrozen before some particular
time, and the delay until that time is short enough, then the process

which is performing the reconfiguration can, on discovering that it can-

72

not move a page because the page is frozen, request that it be notified
when the page becomes free, and then suspend its execution, knowing that
by virtue of the time bound the system cén guarantee that the page will
actually be freed. (In order that the reconfiguration process be able
to tolerate the delay, the time limit on frozen bindings must be: fairly
short, perhaps a few seconds at most.) Thus reconfiguration cam succeed
even with frozen pages.

The time limit on requests similarly provides a means to solve the
fair-share problem. In order torsee why the time limit is {mportant,
note that the share of memory represented by ‘two requests, one for a large
number of pages for a short time, and one for a émall number of pages for
a long time, is in some fashion equivalent. That {8, resource consump-
tion is a space-time product. This being so, and given that the time
limit on frozen environments means that both the time and the space com-
mittment represented by a given request. can be determined at the time
the request is made, the time limit allows the memory manager to restrict
each user to his fair share of the system resources by taking each re-
quest for a frozen environment and not granting it until sufficient time
has passed so that in granting the reqﬁest the user gets no more than
his fair share. The user with a large request would thus discover that
his request was granted only after a long deiay.

The time bound is very important in making this scheme work., The
resource scheduler would not be able to assess the resource consumption
represented by a request if that request was not associated with a maxi-
mum time, Without the time limit, a resource once frozen might never be

released. Thus the time limit is crucial in regulating the resources

73

consumed by I/0.

It has thus been shown that the system can function properly, even
allowing for frozen pages, if a time limit is imposed on the duration of
the freeze. We must now turn from the syStem~£o the user, and consider
what effect this frozen envirommeént scheme with ‘time limit has on the

user's ability to perform I/O.

The Effect of Frozen Bindings on the User

There are two questions about the -effect of the frozen environment
scheme on the user. TFirst, does the requirement that the user predict
in advance the maximum time that his 1/0 task will take restrict him in
such a way that he is prevented from doing 'useful work? The answer is
that the time limit i8 completely compatible with certain kinds of de-
vices, in particular record-oriented devices, because such devices trans-
fer a known number of items at & known rate;iBO'that»the transfer re-
quires a predictable time, For'otherfktnds«bf~devices, such as type-
writers, which, at least in input mode, are essentially unpredictable,
the time limit scheme is not applicable. ' In Chapter 7, the scheme will
be modified to work for typewriters and other such devices as well.

The second queBtion concerning the user and the frozen environment
is what modification in the structure of the‘IIG’syStem'deVeloped in the
last chapter is implied by the use of the frozen environment? Whenever
a user is about to perform I1/0, he must now precede the I/O with a re-
quest to freeze his environment, and.folldw-it with a request to un--
freeze, What complication will this repreésent to the user? The addition

of two subroutine calls to the I/O control program is not a major com-

74

plication. The real complexity is determining which parts of the en-
vironment need to be frozen, and describing these parts to the system,
In general, the following sorts of areas will be needed:

the procedures doing I/0

storage for variables of the procedure

storage for I/0 data being transmitted
What aids can be constructed to help the user identify the parts of his
 environment to be frozen? If the procedgrgs are written in some high-
level language, the user will not know which areas of memory contain the
portions of his program which are to be executed during the freeze. . It
would be possible, however, to devise a procedure which would trace the
user’s program and generate a list of those areas which must be frozen.
All the procedure need do is start at the call requesting the freeze and
follow each branch until it finds a request to unfreeze. This procedure
can also generate a list of those variables whose storage must be avail-
able. The principal difficulty comes with the storage for the I/O data
itself, for only a certain part of this storage need be frozen on any
particular transaction.i'The_storage.might, for example, be represented
as an array, a certain area of which will be referenced, The array may
be very large, which would make it unacceptable to freeze the whole array
in memory. It would be very difficult for some run-time procedure pro-
vided by the system to deduce from the program and the current value of
variables just what portions of the array will be referenced. For areas
such as this whose boundaries change with each instancé‘of the freeze,
it is probably necessary (and desirable, from the viewpoint of efficiency)

for the user to construct explicit expressions describing the particular

75

areas of the variable storage which should be frozen on each I/0 trans-
action.

In summary, then, the I/0 system of Chapter 2 is modified as fol-
lows, Before starting an I/O transaction, the I/O program must call the
memor} manager, presenting it a list of those resources which must be
frozen for the transaction. 1Inside this call the I/0 process will pause
until the manager decides to honor the request and freezes the resources.
When the resources have all been frozen, the manager will set a timer
with the limit which was supplied as part of the request, and return to
the user. When the user has finished the I/0, it must call another entry
in the manager, which will free all the frozen resources. Should the
timer run out before this call has been made, the manager ﬁill assume that
the user program is in error, and will stop the I/O process, free the re-
sources, and notify the process overseeing the computation.

The most obvious limitation implied for the user by these controls
is that he must agree in advance of each transaction to a maximum time
limit. This means that (until Chapter 7) only certain kinds of devices
are connectable to the system., There arekcertain other drawbacks. For
example, since all the areas to be referenced by an I/0 transaction must
be specified before that transaction begins, any dat# which contains the
~address into which the rest is to be read caﬁnat be read in one trans-

action (except into some intermediate area).

Other Bind ings

The freezing of pages into memory has been stressed here because

these bindings are expensive to create and maintain, but the other

76

bindings must not be forgotten., One must examine a particular system to
find all the relevant bindings, but some general sorts of things to be
expected can be listed,

All segments to be used must be made part of the virtual

address space,

All symbolic references must be linked to the correct segment,

* Any process to be signalled must be identified,

In fact, since the process cannot add segments to its address space,
or reference new portions of known segments, its restrictions resemble
those felt by programmers before the invention of dynamic creation of
bindings, when they were forced to define in advance the requirements.of
their computation. But of course this is exactly what is to be expected.

of a frozen environment.

Stopping the I/0 Process

In the second chapter it was stated that the various restrictions
which would be placed on the I/0 process would allow us to state how
another process (e.g., the event process) could stop the :I/0 process in
an orderly fashion, 1In what ways have the controle of this chapter
taken us toward that goal? First, note that a running process is in one
of two states, frozen or unfrozen, and unless it is frozen it cannot be
performing I/0. If it is not\performing 1/0, there is no reason why it
cannot be stopped instantly, If, at the time if is to be stopped it is
doing I/0, then all the physical resources which it is holding are named
in a list, the list describing the frozen environment, which is known to

the system as well as to the I/O process. Thus if the I/0 process is to

77

be stopped instantly, it is only necessary to stop the I/O process it-
self, ;ﬁke sure the device is stopped, and then tell the system to free
the listed resources. .

Alternatively, if appropriate; the I/O process can be allowed to
run until the I/0 is completed. There are essentially two problems with
allowing the I/O process to continue in this fashion: 'how to tell when
the 1/0 is completed, so that the I/0 process: can be stopped, and‘how to
determine that the i/o process is operating in error and is not ever going
to stop. The frozen environmenﬁbscheme with time limit provides the abi-
lity to solve both these problems. First, whenfthe'I/O process finishes
the I/0 it must call the system to unfreeze its resources. At this point
the system can, if apprOpriate,‘stopAthe 1/0 proéess'and‘notify the event
procéss. Inuthié fashion the event process can get control pf‘the 1/0
process at the exact point the.I/O is completed. Second; the event pro-
cess should conclude that the I/O process is behaving in error just Qhen
it overruns its time limit, In fact, the obvious way for the system to
deal in general with the‘fqilurevof the 1/0 process to unfreeze its en-
vironment within thevtimerlimit is to stop the 1/0 process and notify

the event process.

Other Forms of the Time Bound

It should be clear that if the system is to keep any control over
resource usage, there must be some sort of time limit on the freezing of
resources. It may not be obvioys. that the rather simple form of the
bound used here is the most appropriate. This section will explore some

of the aternatives,

78

We might first inquire if instead of an absolute time limit, some
more flexible bound could be used. The bound could be in the form of a
probability distributiog of the time which will be used, This thesis has
not used such an idea because the advantages, especially to a record-
oriented device, are nil, and the complexity of the scheme is éignifi-
cant. The only way in which the system can set a timer using a bound
in the form of a distribution is to assume that the I/0 process will use
the maximum time the distribution will allow. The system can only use
the distribution as a scheduling tool in, estimating resource usage if it
has confirmed that the I/0 process 1is indeed-conformiﬁg to the distri--
bution it supplied. The measurements necessary to confirm this would be
costly. Finally, for a record-oriented device, where known record’ length’
implies fixed time bound, there is no obvious reason why a distribution
is an appropriate description of the time the 1/0 process will use, So
this thesis will consider only fixed time bounds.

There is another variation on this scheme, however, which seems
more useful. This is ts-change the interpretation of the time bound,
so that it describes the maximum time within which the process will un-
freeze, not counting from the time the freeze goes into effect, but rather
from the time when the resource manager asks the I/O process to unfreeze
its resources. This technique is especially’approbriate if the fair-
share problem is not iﬁportant,,ao that the only need for the time limit
is to allow for reconfiguration and other rare bcchrrences, in which
case it would be more efficient to let the I/0 rum until a particular
nee@ to unfreeze actually arose, rather than mak%gg the I/0 repeatedly

stop to unfreeze and then refreeze its environment.

79

The disadvantage of this variation is that the signal from the re-
Source manager will reach the I/0 process at an unpredictable time, which
is undesirable. To avoid the necessity of this signal, which is essen-
tially an asynchronous interrupt, while still providing a means by which
the I/0 process can run until such time as the resource manager wants it
to stop, a new entry point to the resource manager can be provided which
the I/0 process may call to extend its time limit whenever the current
time allotment is about to run out. The resource manager can then stop
the I/0 as necessary by refusing to extend the bound. This approach does
imply the extra cost of these calls, but it avoids the design of the com-
munication path from the resource manmager to .the 1/0 process. This thesis

will presume this new entry point if such a variation is appropriate,

Summary

This chapter has proposed that in order to inte;face to a particular
class of timing dependent devices, namely record-oriented devices, a modi-
fication to'the virtual memory manager be made so that pages of the user's
virtﬁal memory can be fixed, or frozen, into real memory during 1/0. 1In
order to regulate this fixing of pages into memory in a manner suitable
for both system and user, the chapter restricts the freezing of pages by
requiring that the user specify, as part of each request to freeze pages,
the maximum duration of the freeze. This restriction, although very
simple, is powerful enough to solve two problems associated with frozen
pages: assuring that the user can get no more than his fair share of
the machine, and assuring that the system can move frozen pages as needed.

The time limit has the additional benefit that it constrains the 1/0 pro-

80

cess in such a way that it is possible for the event process to stop
the I/0 process in an orderly fashion if necessary.

- The freezing of pages is actually a particular example of the need
to eliminate all delays which can oecur while doing I/0. The chapter’
discusses the various sorts of delays, but concentrates on paging, the
most difficult delay with which to cope.

In fact there were three controls placed on the user's ability to
freeze pages in memory. Not only:must the user supply a time limit, but
he must pay for real resources so committed, and he is ‘scheduled oﬁly s0
often as gives him no more than his fair share of the machine. Of these
three controls, however, the time limit is the most important, for with-
out it the :other controls would not function properly.

One of the goals of the thesis was to seek solutions which were uni-
versal in scope, that is, to find solutions which applied to a wide.:
variety of devices, rather than to one particular device, While the
freezing of pages cannot be called a universal solution, for it applies
only to record-oriented devieces, it clearly applies to a significant
class of devices, and in Chapter 7 it will be extended to include a wide
variety of devices, The frozen environment is thus an example of this

desirable sort of solution,:

Chapter 4
Buffered Interfaces

In an attempt to interface devices with timing constraints, two
classes of mechanisms, internal and external, were proposed. The last
chapter discussed the internal approach; this chapter will discuss the
external approach, The internal approach attempted to interface devices
with timing constraints by systematically eliminating all possible causes
which could delay the I/0 control program during those periods when the
device is operating. 1In contrast, the external approach interposes a
buffer between the device and the port on the device selctor, which al-
lows the device to tolerate any delays of the I/0 control program by pro-
viding storage for the items which must flow during the delay.

Buffering in connection with I/0O is far from a novel idea. The in-
tent of this chapter is not to present new ideas about buffering, but to
demonstate the real cost aqd complexity of using buffers as part of this
or any other I/0O scheme. In brief, the chapter will show that buffers
can be used in the context of this I/0 architecture and that the I/0 de-
vice can still be repreéented as a number of memory words but will also
show that the I/0 control program must take explicit account of the buf-
fer, especially in error recovery, and that the complexity added to the
1/0 control program by use of buffers may, dépending on the particular
device connected, be considerable.

In order to show the issues involved in buffering, this chapter will
develop a particular buffering scheme, the role of which is to serve as

an existence proof that such a buffer can actually be build. The scheme

81

82

is by no means unique, or even best, and the chapter will point out al-
ternatives which might be appropriate.

Buffers are needed to deal with devices which are not record-
oriented, but which have other sorts of timing characteristics. In order
to motivate this material, these other characteristics must be introduced
and understood., Thus this chapter will begin with a discussion of various
kinds of devices,

Most devices which are connected to computer systems are record-
oriented, including disks, drums, card readers, and card punches. De-
vices such as printers and tapes have variable record sizes, but the maxi-
mum size is always known before the device is started, The largest class
of devices which are not organized around records are often called com-
munication devices; these include communication lines to distant devices
or machines, and devices such as terminals and other devices for human
interaction (graphic displays, light pens, input tablets, etc.)., Since
an interactive terminal is a very common device, crucial to time-sharing
systems of today, and since the timing characteristics of such terminals
are fairly typical of these sorts of devices, interactive terminals will
be considered in more detail. On input the terminal generates an item
whenever the typist presses a key. It is considered bad human engineering
to prevent the user from typing as he wants to, so terminals are nor-
mally prepared to accept a character at any time. Thus, in contrast to
a record-oriented device, which delivers a known number of items at a
fixed rate, a terminal delivers as many items as the user chooses to
type at whatever rate the user chooses to type them. If the user were

entering a large quantity of text into the system, the terminal might

83

continue accepting input characters uninterrupted for hours. On output,
the device does not demand items at any fixed rate, so it could be used
as a record-oriented device by delivering output in blocks of fixed size;
however, output which comes in bursts like this is apt to prove almost

as annoying to the user as having his keyboard locked when he wishes to
type. Another observation about terminals and similar devices is that
the transmission rates are (at least for imput) usually much lower than
those of the typical record-oriented device, so that the resources needed
to run them at full capacity are not as great. Issues of resource con-
sumption are being postponed until a later chapter, but, looking ahead,
one of the requirements of any scheme for operating these sorts,bf de-
vices must be that the scheme not require excessive resources.

It is not true, strictly, that devices such as terminals do not
stop. It is almost always true, except in systems dedicated to the I/0
task and specially designed, that the system allocates resources to the
device using probabilistic rules that attempt to serve the device suc-
cessfully "almost’ all of the time. But it is generally accepted that
occasionally the system can and will fail to provide resources when the
device needs them. 1In this case the device will be forced to stop (for
example the keyboard will be locked). Thus while it is considered bad
design to lock the user's keyboard continualiy, rare interruptions are
acceptable. This tolerance of occasional interruptions can be exploited
in the system design.

How might a device such as a terminal be connected to the system?
The frozen enviromment, with its limit on the length of the transaction,

is an inappropriate interface for a device with unpredictable timing

84

characteristics. The interface could be used under one condition: if

the system did not use the time bound as a scheduling tool, but only to
allow reconfiguration and similar tasks, Since-these tasks are rather

rare, it might be reasonable to accept the paases for them as the occa-
sional tolerable disruptions. For the purpose of this thesis, such an

assumption is not very general, so another solution will be sought.

The solution to be discussed in this chapter is, as was mentioned
above, the insertion of a buffer between the device and the system, as
illustrated in Figure 4-1. The buffer used in this fashion provides an
area in which data in transit can 'pile up' to cope with delays induced
by page exceptions or other causes.

This buffer could appear in various forms, It could, as pictured,
be a separate module which is physically inserted in the line between de-
vice and device seleétor. Alternatively, the buffer could be included
within the device. For example, many interactive terminals being de-
signed today include a mini-computer. Such a computer could be pro-
grammed to use its memory as a buffer. In this chapter the buffer will
be viewed as a physically separate module, because this reveals most
clearly the issues involved with buffering.

The buffer scheme to be proposed in this chaptef must be evaluated
in the light of two considerations. First, Chapter 2 described a specific
device interface, with command and data lines controlled by sets of ready
and acknowledge lines. To what extent can a buffer scheme be proposed
which can work with this interface as described? This chapter will show
that certain new lines are required. Second, to what extent must the

user change the way he views his device if that device is connected by

85

to .

memory buffer

selector device ['J* .
-ty device

and selectorf *-

processor 3

Figure 4-1: Buffer inserted between device and device selector.

to
memory o
selector device [.
- buffer device
and selector | «—> -
processor : i "\ . \'\
selector-buffer buffer-device

Figure 4-2: The two stages of data flow in a buffered device.

86
means of a buffer? For example, what changes must be made to the program
of Figure 2-4 if the device is buffered? The chapter will show that the
representation of the device as a portion of the address space is still
an appropriate and viable interface, but that the I/O control program

must take explicit account of the-existence of buffers.

A Model of I/0 Buffering as Several Parallel Algorithms

The introduction of the buffer has broken the flow of data into two
stages, between selector and buffer and between buffer and device, as
pictured in Figure 4-2. At each of these stages, the flow of data is
under control of a particular algorithm, to be called the data flow al-
gorithm. The selector-buffer data flow algorithm is the I/0 contr§1 pro-
gram running on the processor; the buffer-device data flow algorithm is
provided by the internal structure of the buffer. These two algorithms
must work in parallel to move the data the whole distance between the
selector and the device.

The picture could be extended as in Figure 4-3 so that there were
several buffers with associated data flow algorithms., 1In this general
case, all the algorithms Al through Ah+1 must be coordinéted to produce
correct effects. This sequence of data flow algorithms A1 through An+1
could be compared with a bucket brigade in that the successful operation
of the overall system depends on the co-operation and co-ordination of
the sequence of semi-autonomous operations.

Why would a sequence of buffers as in Figure 4-3 be a preferable
model compared to the single buffer of Figure 4-2? Imagine for a moment

that we have successfully inserted a single buffer between device and

87

udaMl3q SWY3TI031E® MOTJ BIVP POIVIOO0SS® puw 838818 I3JING JRIIAIS ‘g~ 9an81g

*JO0JOBTI8 puR 9DTAIP

ETI VLY

u
Juswmala
13330q

Y
Iuswsia

1933nq

€
Juaua T2

1933nq

JUSWO D
1933Nnq

1
JUdWaTd

1333nq

10309798
90T AP

88

selector, 1If the device continues to operate properly, then it must be
true that the buffer behaves exactly like a device as far as the pro-
cessor can tell, and behaves exactly like the processor as far as the
device can tell. This in turn means that if one of the connections to
the buffer was severed, say the one between the buffer and the device,
and a second buffer inserted there, neither buffer could tell that the
other buffer existed, because each would, to the other, be indistinguish-
able from the device or selector which the buffer replaced. Thus, one
need only design a simple buffer element which can hold just one item,
for by combining these elements one can create a buffer of any size
needed. This approach is obviously much simpler than designing the whole
buffer as a unit. Thus, this thesis will consider the buffer to be of
the form pictured in Figure 4-3,

It is usually impractical, as well as undesirable, to have the user
provide all of the data flow algorithms, Normally devices and buffers
are simple devices, which are not programmable, They come from the fac-
tory with the algorithm 'built-in’'. The subject of this chapter is thus
what should these built-in algorithms be, and what co-ordination between
them is necessary, so that the system works properly. In particular,
the data flow algorithms must be structured such that they solve two
specific problems, First, the inflow and outflow of items from the se-
quence of buffers must be co-ordinated in such a way that the buffer is,
as appropriate, kept full or empty, Secoﬁd, if because of an error the
data flow is halted with items in the buffer, the varioqs algorithms
must co-operate to empty the buffer and put it in a known state. This

chapter will propose a buffer algorithm which solves these two problems.

89

Synchronization of Buffer Algorithms

In synchronization the inflow and outflow from the buffer, the fol-
lowing considerations must be taken into account, When I/O starts, the
buffer will normally be empty. Similarly, when I/O comes to a halt the
buffer will normally be empty, The empty state is normal for reading
from a device, so that room exists for holding values which the device
generates. In writing the buffer should normally be full, so that values
are available for the device if the process stops. This means that when
writing, the I/0 programs, as part of starting up, must fill the buffer,
and then attempt to maintain it in that state.

The following is a specific buffer algorithm which will satisfy
these constraints. It is based on the particular interface between the
device and the selector discussed in Chapter 2, which consisted of com-
mand lines running from selector to device, and data lines which could
carry data in either direction. Each I/0 operation was composed of two
parts: first, the command, going from selector to device, and Second,
the data itself, going in either direction as specified by the command.

Consider reading data from device to processor. In this mode the
buffer should be empty, to provide space to hold items generated by the
device while the processor pauses. The processor will commence the read
operation by issuing a read instruction, which will caase the selector
to send a read command to the first buffer. Obviously the buffer must
transfer the command to the next buffer, so that it may eventually reach
the device. Thus part of the buffer's data flow algorithm must be:

When empty buffer receives read data command from selector,
acknowledge it, and pass it on to the device.

90
The next step will be the data being read, which will flow back from the
device to the processor. Thus the»other half of ﬁhe élgorithm is:

After handling the read command, wait for device to send

data back, When data arrives, acknowledge it, and pass

it on to the éeleqtot.

The next steé is to make the buffer work propgrly in the case that
the processor lags behiqd.v In Such a case, the device must be able to
force an item into the buffer, even if the Xead data command has not been
issued by the selector.

Thé technique to be Qsed i1s to add one line ghiqh runs from device
to buffer, to be called the 'read operationirequired' (525) line. 1If
at the time the device needs to transfer another item, it has not re-
ceived a read data command, it will signal over the ror line to the buf-
fer. The bufferfs response will be to create and send to the device a
read data command, so that the device can then transfer its data item.
The buffer, which must‘gec rid of this_item in order to accept another,
will force the item into the next buffer by using its ror line. Thus
the item will be shifted eventually to the buffer adjacen; to the device
selector; when this buffe; signals over its ror line, ;hg processor will
not resgond, so the data item will sit until the processor is ready and
sends a Eggg.gggi command.

In order to implement this, the buffe; algorithm must be augmented
as follows:

wﬁen empty buffer receives ror signal from device, fabricate

a read data command and send it to device. Send ror to selec-

tor. When data arrives from device and read data command ar-

rives from selector, pass data to selector.

For those who are interested in the details of this algorithm, it is

91
presented in Appendix A as a finite state machine. The algorithm is not
simple; to allow for the various possible sequences of events, nine
states are needed.

There is another solution, appealing except for a fatal flaw, which
does away with the necessity of the ror line by having the buffer, once
the sequence of reads has started, always generate a read data command
as soon as the previous read is complete. Why does this not work? Be-
cause the buffer does not know when to stop. The sequence of reads should
come to a halt when the device reaches a logical stopping point, which
might be a record boundary or the end of a message. If the buffer were
to generate a read data command after this stopping point is reached,
the device will continue on to the next record, which should not happen
until the processor requests it. Thus the device, which can identify the
logical stopping points, must have control over the flow of read data
commands, which in this scheme is done by means of the ror line.

This is half of the algorithm., What about writing? Writing re-
quires that the buffer be kept full, so that items will exist for the
device if the processor pauses; thus the algorithm here will differ from
the read algorithm in that it will try to give the processor a head start
over the device in order to fill the buffer up. One strategy which would
do this is as follows: when the processor writes an item into the first
buffer, that buffer does not immediately transfer the item to the next
buffer as in reading, but rather holds it until another item is pre-
sented to it. The next item forces the first into the next buffer, and
so on, until the sequence of buffers is full, at which point the next item

will force the first item out of the buffer and to the device. Once the

92

device is started, some mechanism is then required to allow it to pull
additional values out of the buffer, eveﬁ if the buffer is not being
kept full from the other end. The mechanism required would be a 'write
operation required' (wor) line, similar in nature to the ror line, run-
ning from device to buffer. When the device signals over the wor line,
the buffer will transfer the next item, or raise its wor line to fetch
the next item down. In this way the device, once started, can empty
the buffer.

There is one difficulty with this strategy for writing. If the
length of the message is shorter than the number of buffer elements, the
message Will never get written, because the algorithm relies on filling
up the buffer in order to start the device. One form of solution to
this problem would be to have the processor start the device explicitly,
but this is undesirable because it would change the model which the pro-
cessor had of the device. Even with buffers, the processor has been able
to reference the device using a sequence of memory references. It would
be a shame now to add the necessity of additional .commands. Another al-
gorithm will avoid this problem. Design the buffer so that it always
passes an item along immediately. This will mean that the device starts
as soon as the processor does, so the buffer does not assist in keeping
itself full. The buffer can be filled without this assistance if the
processor can write items fast4r~chan the device can accept them, and
each I/0 transaction starts with a long enough uninterrupted sequence to
fill the buffer. Since the necessary length of such a sequence can be
figured, the frozen environment techniques of the last chapter can be

used to guarantee such a sequence. The statement of this latter al-

93
gorithm is rather simple:

Whenever the buffer contains a data item from the selector,

send a write data command to the device, and on acknowledge-

ment, send data to the device. When a write data command

arrives from the selector, acknowledge it, Wait until buf-

fer is empty. Then wait for data from selector. Pick up

data and acknowledge it,

The algorithm involving the wor line is somewhat more complicated, al-
though the general scheme is clear enough. The interested reader is
again referred to Appendix A, where both write algorithms are displayed
in detail. It will be assumed for the rest of this thesis that the sim-
Pler scheme not using the wor line is preferred.

This completes the specification of an algorithm sufficient to co-
ordinate the various buffers under normal operation. The resultant al-
gorithm is more than a little complex. The resultant algorithm is also
by no means unique. There are changes which could be made. Moreover,
this particular buffer structure, a sequence of identical buffer elements,
is not the only useful structure. The buffer could be a small computer
or a single piece of LSI, which implemented the algorithm as a program,
or it could be built as an integral part of the device.

One other issue related to synchronization has to do with reading
and writing the state word of the device. The issue is the following.
When the processor reads or writes the state work, is the action sup-
posed to occur immediately, or should it be delayed in the buffer? This
problem is most severe when writing, because the processor can, by vir-
tue of the full buffer, get ahead of the device. In this case if the

writing of a state word had immediate effect, the writing of the items

currently in the buffer might be severly affected. On the other hand,

94

if the effect is delayed until the buffer is cleafed, then it would be
impossible ever to stop the device immediately, which is a bad result,
Thus it becomes necessary to distinguish the cases of immediate effect
and buffered delayed effect, and this distinction means ;hat the I/0 pro-
cess cannot completely ignore the existence of buffers. One solution
to this problem is that if the state word should not be modified until
the buffer is empty, then the process should wait until it can deter-
mine that the buffer is empty and the device stopped before proceeding.
The process thus must be able to detect this condition by reading the
state word,

With these various observations we will conclude our discussion of
synchronization of buffers and pass to the other structural question

raised earlier, the recovery from errors.

Error Recovery with Buffers

The other problem with buffers was that buffers complicate the re-
covery from errors and abnormal halts, for an abnormal halt may leave
data in the buffer which must be dealt with, This situation is confused
by the several different cases which can occur. Because of an error the
device may stop, or the processor may stop, or for some reason another
process may want to halt the I/0 in the middle of the transaction. A
good example of this latter case would be the event process when it res-
ponds to the user's attention key. The task of’this process would be
to stop the current computation, including any I/0 in progress. 1In
order to simplify this discussion, we will first consider this last

case, and see in what fashion another process could stop an I/0 trans-

95

action involving a buffer.

The most simple technique for stopping the I/0 is to halt both the
device and the processor and just discard anything in the buffer. This
technique has been used because of its great simplicity,'buf in a pro-
perly designed system such loss of data should be avoided when possible,
In response to the signal from the attention key the current computation
1s certainly to be stopped, but it is very desirable that this stop not
be a destruction but a suspension of the process, so that the computation
might be restartable. The ability to suspend, modify, and restart a com-
putation is present in the Multics system, and has proven very useful.
If data is lost by stopping the process, the process may not be restart-
able. Thus, a goal is that stopping the I/O process not cause loss of
data if possible.

Given this goal, can the simple strategy of discarding the buffer
contents ever be used? It can, under one condition: that the sender
and receiver of data can agree on some previous point in the I/O trans-
action, some check-point at which to begin again. Such a check-point
often exists, For example, if the device connected through the buffer
were record-oriented, the transfer couid be restarted at the beginning
of the current record. This usually works for disks and tapes, is awk-
ward for card equipment, and unacceptable for printers, because the same
material would be printed twice. For a printér, however, it might be
acceptable to start over at the previous page boundary, or at the begin-
ning of the file. Whatever the boundary, this strategy is facilitated
if the I/0 program always allows the buffer to empty before moving from

one record to the next. As long as this rule is obeyed, there is never

96
any question of the record in which the error occurred. Otherwise, it
may be necessary to back up further than the current record.

How could the I/0 control program discard the contents of an array
of buffer elements? An obvious and effective mechanism is to set aside
several bits in the state word which are to have meaning to the buffer
rather than the device. These bits might be more properly made a sepa-

rate state word, an interface state word, rather than a part of the de-

vice state. These bits would be mapped into the additional lines which
are present at the buffer interface. The example so far is ror (and per-
haps wor), which runs from buffer to processor. 1In order to implement
this buffer discard function, another line is needed, rumnning from pro-
cessor to buffer. Setting this line would cause the buffer to reset it-
self and then pass the signal on. Thus another line is added to the de-
vice interface for buffer error recovery. Figure 4-4 shows the device
interface with the various lines which have been added in this chapter.

If no check-point can be found, then in some fashion it will be
necessary to restart from the point of stopping. One obvious way to
stop the I/0 so that it can be restarted from the point of stopping is
to halt the transmitter of the data but let the receiver continue to run
until it has emptied the buffer. This is a variation of the pattern
which would occur during normal termination of an I/0 operation.

Under what circumstances is this solution unacceptable? It may be
that the receiver is what really needs to be stopped. For example, if
the current computation is printing large quantities of output on the
user's terminal, and the user decides that he does not want this output

and presses the attention key to stop it, he does not want his terminal

97

command ready -

+ data -

1 I
- ~]
« command acknowledge
] I
- - {
- .
- command -]
—— ~ read read S
! y —
— ead acknowled]
r -
— ead acknowledge —
L 7 ' -1
- write ready - L
1]
eleers — < write acknowledg T device
selector — write acknowledge —
— L

~ error and event signals

+ read operation required

buffer error recovery -

LI L1 LT L]

J—H—If’lﬁ

Figure 4-4: Device interface of Figure 2-5 with read operation
required and buffer error recovery lines added.

98

to continue while a potentially large buffer rs emptied. He wants it

to stop when he presses the button. Allewing it to continue causes
frustration, but is also bad interface engineering because the terminal
is the only link between the eaer“and<the;computer. If rhe computer
fails to respond to the attention key immediately, the user has no way of
confirming that the attention signal was noticed

It is normally npt necessary'tg stop’theiproce;s as quickly as the
device, so if the.procees rather ;han‘rhe:device is the receiver, this
technique may work well, 1In term§ 6£ the'implementation, the oply dif-
ficulty is that the 1I/0 control program‘must determine whether there are
additional items in the buffer, in order to know whether .to issue another
read. If the ror line can bertested—asna bit of the state work, however,
the presence of a signal therexiedicates exactlf that anorher item re-
mains. Thus there is no problem. | |

Another reason why the technique of letting the receiver continue
to run will fail is that the cause of the stoppage may be the receiver
itself, which has halted when it discovered an error. If the error was
a bad data item, for example, the item must be replaced with a good one
before the receiver can be restarted. Thus the receiver cannot be used
to empty the buffer.

The next possible technique for stopping.rs that the transmitter
should take care of the data in the buffer. One simple implementation
of this would stop the receiver instantaneously, and then have the trans-
mitter remove the data from the buffer and h°1d»?t’,8° that when the
- operation is.resrarted, the data'ie‘éveilable“for'retransmission. Often,

it is not necessary to extract items themselves for the buffer; all that

99

is needed is a count of how mﬁny are there. This i8 true if a copy of
the transmitted items has been saved. For example, if the processor is
transmitting to a device,‘the’prucesaor-nbrmnlly keeps a list of the
items to be transmitted in memory, and moves a pointer down the list as

a copy of each item is sent. In such a case all that is needed is a
count of the number of item§ in the buffer, in order to back up the poin-
ter. 1In contrast, a typewrttér-is an - example of a device which has no
copy, and would have to extract the items themselves from the buffer.

In this case, the obvious question is what would the‘typewriter &o'with'
the items so extracted? In'order»tq get -a general answer to this question,
"~ consider anothérJpﬂﬁéi?ln;bgcﬁﬁﬁqueﬂof'deaking»wkth the data in the buf-
fer, | .

Perhaps the most stﬁplé thiﬁg‘ﬁofdo-withfdatﬁ is to leave it in the
buffer. If in fact the 1/0 is just bﬁiﬁnguspeﬂﬁeg‘and-will be re-
started, why can't the items just remain in the buffer during'the‘sus—
pension? It turuns out that this does not always work very weil, as the
example of the user'sﬂtgrminai-wili show;.‘Tﬁé usual reason to.iﬁterrupt
a cemputation is to modify it, Such a modification is often produced
by the user at his terminal. ‘Thus after the interruption of the process
the next use of the terminal ié not Qhen the'process'is restarte&-but
during the interruption'itself,< If data is left in buffers in antici-
pation of restarting, it will be in the way of any communication during
the interruption.

What this example shows is that the terminal is particular, and
many devices in general, are not dedicated to one task but are shared

among the various tasks of the user. Whenever a device (or buffer or

e

100

process) is shared, any interruption of one task must be structured in
such a way that another taik can use that device. Thus going back to

the earlier solution in which: the typewriter extracted the contents of
the buffer and. retransmitted iﬁ when:restawﬁed,-wtusee"thnt this scheme
is unacceptable because the sharing of the device means that the data

so held will be in the way of other ugage. The device could process -
data in this way only if (it were very sophisticated, perhaps a small pro-
cessor, so that it could implement and interface to the user a local buf-
fer management strategy.

The structure of moat~5ystems is such that the processor is.much -
better equipped than the.device to cope with.data returned in this fashion.
Since a copy of the data usually existé, the state of the I/0 operation
can be represented by an index into the-list; in order to multiplex the
device it is only necessary to store this index.

In terms -of the hardware implementation it :is more difficult for
the processor to remove the data in this case (writing) than it was in
the other (reading) case, because the buffer is carrying the data away,
not toward, the processor. - If the processor is to remove the data, which
given the limitation of the interface can only be done by read operations,
then it will be necessary to reverse the direction of the data flow in -
the buffer so that a read operation will have the desired effect. Es-
sentially what is needed-ié another buffer error recovery signal running
from processor to device through the buffers, which, when set by the
processor, causes the buffer to be forced into a state where the data can
be reached,

If . what 18 needed is the count of the items in the buffer; rather

101

than the items themselves, there is another possible implementation. De-
fine a new aspect to the device, in addition to data, state word and
record number, which 18 the number of items in the buffer. This requires
that there be some module which is connected to both ends of the buffer,
so that it can count items both as they enter and as they leave. Such a
module is not consistent with the model of the buffers as a sequence of
Separate elements, but could éasily be superimposed on that structure.

If the buffer were implemented as one single unit, this function could
easily be added,

In summary, four solutions have been proposed in order to deal with
data left in a buffer by an interruption. 1) Back up to a check-point,
if such exists, 2) Let the receiver of the data continue running to
empty the data, if the receiver can run. 3) Have the transmitter get
back the data or a count of it, if the receiver has some place to put it.
4) Leave the data in the buffer; this was rejected if the buffer was
shared.

Which of the above four solutions is appropriate in a particular
case is influenced by ﬁhe very important consideration that in communi-
cation between computer and a human, the human and the computer have very
different characteristics. In the previous example, the strategy of
backing up to a check-point failed in the particular cases of communica-
tion between a computer and human: printer output, typewriter input and
output. This is because the human reader is concerned with the printed
form of the material he uses, and printed matter camnot be backed up.
Similarly, the strategy of having the receiver recover items from the buf-

fer and resend them later failed in the case of typewriter input, because

102

the typewriter was shared among various tasks. Actually, the user rather
than the typewriter might be thought of as the proper agent to hold the
items, but pushing characters back to the typist is, because of his con-
cern with the printed form, not always possible,

The implementation of this buffering strategy has been presented
in considerable detail, including state diagrams in Appendix A, The
reasons for this detail are first, the desire to show that the characteri-
zation of the I/0 interface as a number of memory words continued to be
viable in the case of buffers, That is, it was necessary to show that
using only read and write instructions, the processor can perform all of
the functions which buffers imply. A proof by example seems ‘the most
simple approach.

Second, -this implementation provides an example of the buffer model
presented at the start of the chapter, in which each buffer element is
executing an algorithm in parallel with the others.’ Since the buffer
algorithms are usually (as in this case) rather simple and are fixed
when the buffer is manufactured, the success of a buffer implementation
lies in devising a buffer algorithm such that the correct overall beha-
vior can be produced by reprogramming only the one algorithm executed by
the processor. -The algorithms presented here do not solve all I/0 in-
terface problems; they are particularly slanted toward devices such as
typewriters, but subject to this restriction they deal with a variety
of circumstances including abnormal halts, Thus they serve as an example
of the sort of algorithms which will be required.

Again, it is important to stress that the thesis does not claim

that this implementation of buffering is the only appropriate one, Buf-

103

fers could be a freestanding computer, or part of the device, as well as
an array of elements. The important thing is the extent to which modi-
fication of the interface is required by the buffer. The insertion of
the buffer caused several small changes to the normal operation of I/O.
Short messages written using the wor strategy will need special start
commands, and synchronization of state modification must be done expli-
citly. For error recovery, explicit attention to the buffer was required.
In every case, however, the modifications did not preclude the use of the
device interfaced as a number of memory words, That is the most impor-

tant result of this example,

Other Forms of Buffering

If one looks at the sorts of buffers in use today, one can find
structures significantly different from the buffer proposed here. An
obvious question is how other sorts of buffers fit into this scheme. 1In
order to discover the answer to this question, consider a different kind
of buffer, similarly composed of a sequence of buffer elements, in which
each buffer element does not transmit an item on its'fecéipt, but holds
items until it accumulates a certain number (a block) and then transmits
this block to the next buffer as a unit., Clearly a buffer of this sort
will have a different interface for inter-buffer transfer than it will
for connection to device or processor. An example of this sort of struc-
ture is a 'store and forward message switching network.

One observation about such a network is that the buffers may be able
to recover from certain errors without intervention of the processor.

If the buffer keeps a copy of each block which it sends, and holds it

104

until the block is successfully received by the next element, then on
failure of the transmission the block can be resent. This is actually
an application of error recovery by backing up to a. check-point, applied
at the buffer to buffer level, rather than at the processor-device level,
This observation is actually the first answer.to the question posed
above concerning fitting other sorts of buffers into the I/O scheme. In
any I/0 transaction, the operétion can be viewed a8 going on at several
levels simultaneously. The processor is trying to move items to a de-
vice, while a buffer is trying to move blocks to another buffer. The
material developed in this chapter in terms of a one level transaction
can and must be applied at every such level.

The strategy used to perform the operation at one particular level
is often called a protocol., Thus in this case there is a processor-
device protocol, a buffer-buffer protocol, and of course on the same
level as the buffer-buffer protocol there are the processor-buffer and
buffer-device protocols. Using this vocabulary, the buffering scheme
developed earlier in this chaptef attempted to make the processor-
device protocol and the buffer-buffer protocol- identical, so that the
device could ignore the existence of buffers. This goal was achieved
imperfectly, 1In a more complicated structure such as block transmission
buffers, it is necessary to admit that there are at least two distinct
levels of protocol. The general observations made so far about buffering
will apply to each level of protocol in operation. For example, at any
level at which error recovery can occur, the recovery procedure will fol-
low one of the four techniques outlined in this chapter. Further, each

level of protocol must be prepared to cope with errors which occur in

105

lower level protocols.

In the block-transfer strategy, error recovery at the buffer-
buffer level was by backing up to a check-point. On the processor-
device level, error recovery might be completely different. The techni-
que of having the transmitter extract the data from the buffer might be
appropriate, for example, At the processor-device level, the implementa-
tion details for these techniques might be quite different; For example,
rather than the transmitter "turning the buffer around’, the receiver
might take the items out of the buffer’and then resend them to the ori-
ginal franSmitter. Another alternative would be to use the check-point
technique by grouping the items into messages, each of which had a name,
so that a check-point could be the beginning of the message. If it
were nécessary to retransmit from the point of interruption, that point
could be described by the receivef to the transmitter in terms of off-
set within a messaée. From this example will come the other answer to
our questions about fitting other sorts of buffers into our scheme: the
same general technique will hold but the details of implementation will

be quite different.

An Example of a Multi-Level Protocol

omm——

A good example of an I/0 system which involves several levels of
protocol is the ARPA communication network, a store-and-forward message
switching facility (34) currently connecting ovér 40 computers, or hosts.
The network which links these hosts is composed of interconnected Inter-
face Message Processo:s, or IMPs, which could be &escribed in terms of

this thesis as block transfer buffer elements. There are several levels

106

of protocol in the network. At the lowest level there are the adjaééﬁé
IMP-IMP protocol and the HOST-IMP protocol, which govern the transfer
between adjacent modules, Above this there is the sender to recéiverr"w
IMP-IMP protocol, between the IMPs which represent the ultimate source
and destination of a message;‘above this there is the HOST-HOST protocol;
and above the HOST-HOST protocol are special-purpose protocols for such
things as‘tranéfer of files'and'allowihg a‘uséf at one host to iog into
another host (the TELNET protocol). Details on these protocols are prb-
vided in several publications (1,28,29,39), |

The adjacent IMP-IMP protocol is designed to allow for error de-
tection and recovery. An IMP sends a block of data, éalled aigggkgg, to
its neighbor, and then waits for'acknowledgément. Themfeceivihg IM? |
will send this acknowledgement‘ﬁack if the.p3ckéi is received corfectly.
If on the other hand the packed is mal-formed, or if the check-sum main-
tained by the hardware indicates a loét bit, thé receiver will dobnothiﬁg;
The sending IMP; 6n faiiing to receive an acknowledgement, will resend
the packet, and will continuevﬁéiﬁgsédﬁﬁntil ah"éckhowlédgement comes
back. This protocol, of course, is an example of error fechery By
backing up to a check-point, the beginning of the packet. This protocol
has no control lines such as ready-ackﬁbwiedge‘which regulate the arrival’
of packets at an IMP. One IMP may sén&QAnotﬁér a packet at any time with-
out prior negotiation. If the receiving IMP is ﬁﬁbréﬁéted tblécéept the |
packet, it throws the packet away, The sending'IMP will, of cburse,'re-'
send the packet when no acknowledgement returns. o

The HOST- IMP protocol is Qery different from the adjacent iMP—IMP

protocol, It has no mechanism such as check-sum for detecting‘érrors in

107

the data transmission. Furthermore, bits are transferred across the in-
terface one at a time rather than in packets, each transfer controlled

by two signals somewhat resembling ready and acknowledge signals, except

that the receiver rather than the sender of the bit must send the first
signal.

No linés exist across this interfacé over which to report errors or
request retransmission. Errors must be reported by sending an error
message across the interface as if it were data. Such messages mﬁy ori-
ginate in the local IMP, or they may come from a distant IMP as a result
of the sender to receiver IMP-IMP protocol, if the message has been lost
somewhere in the network. In this protocol as well, error recovefy is
by backing up to a check-point, in this case the beginning of the mess-
age, which is larger than a packet,

The sender to receiver IMP-IMP protocol and the HOST-HOST protocol
deal with synchronizing inflow and outflow from the net, but the goal
here is not cushioning delays but rather fléw control: insuring that
items do not come into the netwﬁrk faster than théy are going out. 1In
particular, input from one host must not disable other hosts' activities.
To achieve this control, both these protocols require ‘that before sending
any messages the sender must obtain from the receiver permission to send
a particular number of bits, and may not send more than this number. |

In the case of an error, the sender to receiver IMP-IMP protocol
contains a mechanism to cause the retranSmissioﬁ of a message., The HOST-
HOST protocol, however, deals imperfectly with the need to remove infor-
mation which is left in the system as a result of an error. In particu-

lar, the HOST-HOST protocol confaiha the concept of an event signal, the

108

meaning of which is to halt the process .doing I/O,’but the protocol fails
to deal with data in transit when the signal is sent. The TELNET pro-
tocol, built on top of the HOST-HOST protocol, deals with such data by
discarding it, a solution rejected by this thesis.

Thus the network control program in a host must deal with three
levels of protocol, First, it must deal at the hardware level with the
handshake-procedure necessary to .transfer each bit to the adjacent IMP,
Second, it must deal with the HOST-IMP messages, which do such things as
report errors, Third, it must deal with the HOST-HOST messages which

are concerned with multiplexing and flow control.

Summarz

The insertion of buffers into the data path between device and de-
vice selector generates two problems, synchronization and error recovery.
The intent of this chapter was to show that these problems could be solved
in the context of the I/O interface which represents the device as a num-
ber of memory words. This has been shown by example, but in the process
certain modifications were required of the interface between device and
selector, and of the 1/0 control program,

~ The interface was modified by the addition of several new lines,
the ror line and two lines for error recoverj, the line which discards
the buffer contents and the line which turns the buffer around. The re-
vised interface is pictured in Figure 4-4. These lines do not change
the basic nature of the device interface, however, but are rather addi-
tions to it,

The I/0 control program must be modified so that it has explicit

109

knowledge of the buffer's existence. For example, the program must know
how to recover from an abnormal halt which leaves items in the buffer,
In general, it may be true, depending on the complexity of the buffer
scheme, that the I/0 program must be prepared to deal with two distinct
levels of interface protocol, one level for the device and the other for
the adjacent buffer. 1In this case the observations made in this chapter
apply to every level of protocol.

The;buffer scheme described here is an alternative to the frozen
environment scheme of thé last chapter, and was intended to handle de-
’vices which could not usé‘the frbzen‘environment. This buffer scheme is
also capablé of handling the record-oriented devices of the last chapter.
Tﬁe frozen environment Scheme'isifelﬁ'to be the pfeferabie of the two
where‘it is applicable, hgwever,:fOr the coﬁplexity addedAto the control
program by the frozen enfironment:scheme, the addition of the system
calls, is less than the complexity of error recovery and éyéhronizétion
added‘by buffers, Thus the frbzenrenvironment will be used when possible,

Chapter 7 will propose a ﬁodification to the frozen enﬁirbnment
scheme which will work with devices such as4interactive terﬁinals. Thus
it might seem that buffers are of no use at all. 1In fact, buffers have a
use pefhaps more important than the one discussed in this chapter. Buf-
fers were designed to allow devices’to tolerate delays caused to the I/O
control program. When the question of efficient use of processors is con-
sidered; a new delay will appear, the delay of processor scheduling. The
buffer, of course, can deal with this delay as well as the delay caused

by page exceptions. Thus the buffer scheme will appear in a later chapter.

Chapter 5
Multiplexing in the 1/0 System

Up to this point in the thesis, the assumption has beeh that there
was no sharing among users of such things as I/0 device controllers,
communication lines, external buffers and other parts of the I/0
machinery. 1In real I/0 systems, these elements are often shared, or
multiplexed. The purpose of this chapter is to introduce such multi-
plexing into this I/0 system.

The term multiplexing will be taken to mean a sharing of some

facility in such a fashion that the user could believe that the
facility were exclusively his. 1In other words, this chapter will not
consider arrangements for sharing which several users might work out,
or which one user might work out for several of his tasks, although
these arrangements are certainly practical and useful, but will rather
consider schemes for sharing which the system may impose on the user.
Such a scheme must not require the cooperation of the user, nor should
it require the user to modify his programs to cope with it.

There are a variety of techniques lumped under the name of multi-

plexing. A good example of device controller multiplexing is the use

of one set of control hardware to run several tape drives or disk

spindles. An example of communication line multiplexing is the use of

one cable to connect to the computer several typewriters at a remote
location. Buffer multiplexing would reduce the cost of the buffering
proposed in the previous chapter. Each of these kinds of multiplexing

will be discussed in the chapter.

110

111
Multiplexing will be seen to cause a great deal of disruption to

the orderly nature of an I/0 system. Why include multiplexing at all?
The reason is that great economies can be realized by sharing; multi-
plexing is currently necessary to achieve acceptable costs for I/0.
This chapter, then, is an attempt to bring this I/0 system closer to
reality by adding multiplexing.

This chapter does not contain major new fesults. Rather, it is
an attempt to evaluate various knqwn ;ultiplexing&schemes in the context
of this s&stem. The evaluation will show that this system is compatabLe
with various sorts of hultiplexing} thus supportiﬁg the claim that this
system is indeed an apprOpriaté one; it will also show; hopefqily,
what aspects ofvmultip;gxing a?e the most disrupti§e té an‘prderly

© 1/0 syétem.

_Sharing of the Ports on the Device Selector

E The device selector waé'asépmed to provide for each de§ice a
rsepa:ate and distinct connection point, or ngg;gand to map this port
into a distinct set -of memory adéresges.ﬁ Since it ié by mapping
portions of memoty into the user's virtual address space that access
to devices is granted or,éenied, it is crucial that e#ch device be
represented by a distinct portion of memory . _If instead several devices
were to share the same port, and thus the same portion of memory,iit
would not be possible to grant or deny access to these devices individ-
ually, which would mean that for protection reasons the user could not
be given direct access to one of these devices, for in receiving access

to one he would get access to all.

112

Why would one consider having several devices share a port on the
device selector? The eguivalent happehs often‘ih traditional I/0
systems. If several remote typewriteré are éoﬁﬁééted‘fo‘the compﬁte%
through a shared cable, that cable is'nofmélly connected to one port.
Similarly, if several tape'driVeé'ére fuﬁ‘by one tape ¢6nt;oiier, that
one controller is usually connected to one pofﬁ}>‘1n or&eéﬁtégtueaéh |
device have its own port, it will be neééééary, for exaﬁpié, tﬁ5£ such

a tape controller be connected to the selector by not just one cable,

“'but by one cable for each device.

Thus the first conclusion about mulfipléxing is that whatever sorts

of multiplexing are done shiould be done external to fhe device4seléétor,

so that each device is connected to its own de#fcé'séléctor port. This

conclusion is valid not just for this specific system. It follows from
the basic assumptions implied by the goal of mapping devices into the

user's environment in such a way that he can accéss them directly.

A Multiplexed Device Controller

In order to begin fitting multiplexing 1ﬁto tﬁiédéystém, considef |
first the most simple case, which’ié'devicé ¢oﬁtroilef mﬁfﬁibléxing: uA
tape controller rumning a number of tape drives would be an eiample; |
Since the controller is shared, it must move itself from one device go”
another to support the operaﬁion:of tﬁéjbaribﬁs‘déﬁiéeé. This éection
will consider what algorithm it can or should use to move from device

to device,

113
One common strategy, called block multiplexing, i8 to assign the

controller to a particular device for long enough to transfer an entire
record or some other number of items., Let us first consider an alter-
native to this, which is that the controller moves itself from device

to device on an item by item basis, Item by item multiplexing is perhaps
a more natural technique to program, for as this chapter will show, item
by item multiplexing can be done automatically, which eleminates the

need for co?ing with whatever module performs the allocation in the
block multiplexing case,

To understand item by item multiplexing, observe one particular
device as it operates., At some point the controlling I/O program will
issue a coomand to read or write, The multiplexor will then assign
itself to the appropriate device and pass it the command. At this point
the processor running the I/0 program will wait until the device is
ready to perform the data transfer. Clearly,'the multiplexed controller
must not remain assigned to this particular device during this waiting
period, for it is the waiting period which consumes all the time which the
processor wastes because it is faster than the device. If the controller
were to remain assigned during the wait, it would be assigned to the
device essentially all the time. So the controller must assign itself
to a device twice during each transfer, once‘for the command and once for
the data. The implications of this will be discussed below.

As more and more processes attempt to use the controller, it must
share itself among more and more devices. This sharing implies that when
a particular device is ready to use the controller, the controller may

not be free. If the devices have no timing constraints, the only result

114
of this delay will be to cause the device to run slower. It is
desirable, however, that the controller multiplex itself so that it
gives each device a fair share.

If the devices have timing restrictions, it is possible that
excessive delays injected by the multiplexing of the controller would
prevent the device from being serviced in time. In this case it may
be necessary to restrict the number of simultaneous users of the device,
Block multiplexing can be viewed as the result of restricting the
number of simultaneous users to one.

It is not hard to imagine an algorithm as part of the controller
which gave a fair share to each device on an item by item basis, While
1t is similarly possible to create a controller strategy for sharing
itself on a block basis, it is not clear that on a block basis the
controller is the correct piece of the system to make this decision.

If one process is to proceed, while others are halted, the other
resources of these halted processes (e.g., pages in memory) ought to be
freed. This suggests that the allocation of a block multiplexed
controller should be coupled with the request which assures the user
his other resources, the request to freeze the environment.

Doing block multiplexor assignments as part of the request for a
frozen environment has another advantage in addition to committing
resources only as needed, which is that the user then need not take
explicit action because he is using a block multiplexed facility
(provided that the system knows which devices are to be used during the

freeze). Not introducing explicit action was one of the goals of

115
multiplexing. Thus the second conclusion about multiplexing which this

chapter will draw is that in the context of this system a block multi-
plexed facility should be managed just as another resource, by committing

it to a process as part of a frozen environment.

A Multiplexed Communication Line

Often, several terminals at a remote location share one cable to
the main computer. The main difference between this sort of multi-
plexed facility and the multiplexed controller discussed above is that
in this case the device and the communication line are not integrated
in an arbitrary fashion as the device and the controller were. Rather,
it is assumed that the device is equipped with the standard interface
developed in the previous chapters, and the multiplexed line must connect
to this interface.

It was observed in the previous section that under the item by item
multiplgxing technique, the multiplexor must assign itself twice in each.
transaction. In order for it to assign itself correctly in the second
part of the transaction, the transfer of the data, it is necessary that
the multiplexor be able to determine when the device is ready to do the
transfer. In the case éf the multiplexed controller this represented .
no problem, for the device and controller could be interconnected in
any fashion necessary. The multiplexed communication line, however,
must detefmine when the device is ready using only the information
available at the standard interface. If the operation pending is reading,

this is easy. When the device is ready to read, it signals over the

116

read ready line, which indicates that it is now appropriate to assign

the line to this device. If the device is preparing a write operation,
however, it will present no indication to the multiplexed line, for it
generates no signal but rather waits for the write ready signal from

the processor, which will not arrive until the line has been assigned,
What is needed is a new line running from the device over which the
device will signal when it is ready to perform the write. The multi-
plexor will, on receipt of this signal, assign itself to the device and
pass the write ready and the data lines from the process on to the device.
Since this line runs in the reverse direction from the normal write ready

line, it will be called the reverse direction write ready line., The

existence of this line will not alter the operation of device or buffer
in any way except for generating the signal as appropriate, Figure 5-1
displays this addition to the interface,

The necessity of adding a new line to the interface does not result
from details of the interface, but rather from two general observations.
First, in any multiplexed facility such as this, which has "two ends,
the device end and the selector end, it is preferable that one end only
make assignment decisions, for if both can make them Some additional
mechanism is needed to prevent the various decisions from conflicting,
This mechanism will require negotiation between the ends, which may be
impossible in the case of a communication line due to restrictions of
the line itself. The second general observation is that if one of the
two ends provides the slower response of the two (processors wait for
devices, not the other way) then that slower end (the device end) has

the best assignment information available and should make the decision.

117

command ready -
1 1
-]
| + command acknowledge —
L] | -
- command - —
- read ready —
— d acknowled —
read ac -
- nowledge —
- | -
wri -
- rite ready —
device — - it knowled - device
selector write acknowledge — c

L L
| "+ data -

- er
- error and event signals —
- L

- .
— read operation required —
L] . | -

buffer error recovery —

— C y
= |
- reverse write ready —
- -

Figure 5-1: Device interface of Figure 4-4 with reverse write
ready line added.

118

These two observations imply that the device must generate a signal
whenever it is ready to complete a transaction. The necessity of
localizing the multiplexing decision at the device end constitutes the
third conclusion which this chapter will make about multiplexing, or
about interface protocol in general,

There are facilities other than communication lines which might be
multiplexed in the fashion, with two "ends" fanning out to devices and
selector ports respectively. These observations would apply to any

such facility,

Multiplexing of External Buffers

In the previous chapter, which discussed buffers, it was noted that
while external buffers would cope with the various processor delays, for
long delays or fast devices the amount of buffering required would be large.
Rather than associate a large amount of buffering with each device full
time, buffers could be assigned only as needed. This is multiplexing of
external buffers,

Sometimes buffering is needed for the operation of another multi-
plexed facility. Asynchronous time-division multiplexing, often
identified as ATDM, is the use of a multiplexed communication line
assigned on an item by item basis with an insufficient limitation on the
number of users to prevent the peak item arrival rate from exceeding the
rate at which the line can handle the items. The benefit of operating
in this mode is that the average number of items transmitted is increased,
so that the line is more fully used, but in order to prevent the delays

induced by the occasional peak arrival rates from causing timing failures,

TN AL

119
buffering is.needed. Rather than provide this buffering on a per-device

basis, it is usually mﬁlciplexed asapnrﬁ of the ATDM scheme.

We will first propose, and find a flaw with, a simple-minded
scheme for buffer multiblexing, which is to design a buffer element which
resembles. the one in the previous chapter except that it buffers
additional information: the identity of the particular device with
which the item is associated, When these elements are connected
together to form a buffer, an item would go in one end accompanied by
its device identification, and when it reaches the "cher end" of the
buffer the device identification would be sufficient to send it to
thé préper destination. Clearly, the buffer can omly be used in one -
direction at once: 1if one device is reading, all must be'reading, and
this implies that there would be two buffers, one in each direction, for
full operation. But this is not the flaw in tha'systam;

Consider operation in one direction, say reading, and consider the
end of the buffer adjacent to the device selector, There each buffered
item in turn will be examined, its device identification extracted, and
the item will be sent on its way to the proper process, Not exactly; the
item at the head of the buffer will go on its way only when the program
in charge of the associated deiice executes an instruction which picks
the item up. But the user’'s program is not certified in any way. If
it is badly written, or malicious, it may never remove the item from the
buffer, in which case the whole buffer: is stopped up and the scheme

fails utterly.

120
What has gone wrong? The shared buffer, by putting the item of a

user in its first element, is assigning itself to that user in such a
way that the user must act before the buffer is free to assign itself
to another user, This is a violation of the genefal rule that whenever
an I/0 program is not guaranteed by the system to behave in a certain
manner, no multiplexed facility can allow its successful operation to
be predicated on the co-operation of that I/0 program,

One could attempt ad hoc solutions to this, for example a timer to
limit the duration an item will be kept in the buffer, The real answer
is that an item by item allocation scheme is inappropriate for buffer
elements, If allocation were performed'on a block basis, for example
as part of obtaining a frozen enviromment, then the necessary controls
on resource consumption would follow.

How might a block-allocated multiplexed buffer be designed, One
simple configuration is pictured in Figure 5-2. 1In this particular
scheme, the multiplexor has several buffers, one of which it will assign
to a particular device as that device becomes active. If none are
available, the process running the device must wait. Once one of the
buffers is assigned to a device, it will behave as if it were dedicated.

More complicated multiplexed buffers can be imagined, which are
capable of varying the amount of buffer allocated to each device
depending on the dynamic need, A small computer might be used to run an
external allocation algorithm which operated independently of the
frozen environment.

The failure of the simple buffer multiplexing scheme is not a result

of the details of this system, but is, once again, a general result of

121

92T A3

99T AP

99149p

*81933nq wnﬂxwﬁmﬁuaza X0y WAYDS Yy :z-G I3anB1g

xoxatd
-T13Tnm
aa33ng

(u>m)
s1933nq w .
. s3x0d .
I93Inq u 0
\\\\\\\\\\\ .]
: xoxa1d
j 19330q [——] -1arm .
/ ~1933nq
1933nq 10309798
90T A9p
Hﬂmmgﬁn O

122
the desire to allow the user to write and run an arbitrary I/0 program,
Allowing the user this freedom implies that anything the user can do
must not disrupt any other user. Multiplexing 1s an obvious area in
which this restriction will bé‘felt.

While the use of multiplexed buffers does cause complexity, buffers
dedicated to a particular device can be used in conjunction with other
multiplexing without causing trouble, For -example, it might be
appropriate to buffer each typewriter connected thrqugh a multiplexed
communication line. Such buffering would normally Bé connected between
the device and the line, so that it could absorb delays in obtaining
the line, as well as the other processing delayé. In of;er that this

work properly, it is only necessary that each buffer element have a

reverse direction write ready line.

Multiplexed Ports Re-examined

As an earlier section discussed, the multiplexing of ports on the
device selector is to be avoided because it would imply the loss of the
ability to allow direct user access to the devices on the port. In a
practical casé, however, it may not always be poséible to insist that
each device have its separate port, for the system mﬁy have to cope
with some multiplexed facility designed with ‘the expectation that the
main processor itself will demultiplex the Lﬁformation from the facility..
An example of such a facility is the ARPA network, discussed in Chapter 4,
in which messages from a large number of sites come through one port.

In order to demultiplex this sort of facilityvexternally, an additional

computer would be required. In such a situation it may be necessary to

’123]
compromise and multiplex a port, -

If this is done, the I/0 control program which accesses the port
must be provided by the system for protection reasons, and the user
must access the devices on the port by communicating with this system
certified 1I/0 program. The 1mportan£ point about such a solution is
that, assuming its limitations are accepted, it can be‘implemented
easily in the context of this I/0 system. The certified program which
demultiplexes the facility will be run in an I/0 process provided by
the operating system rather than the user. User processes access the
facility by interprocess communication, which is also true for an I/0
process provided by the user, Thus theiuser, from his main computation,
does not see access to these devices as being strongly différenf from
other devices.. And the use of one port in this fashion does not affect
the operation of other ports, Thus in this system a multiplexed port
does not cause a disruptive effect on other parts ofithevsystem; it |
may actually be a very appropriate strategy, if the resulting restrictions

on that port are reasonable for the situation.

Summary

The I/0 system developed in this thesis can be integrated with
various sorts of I/O multiplexing. Multiplexing of a port on the device
selector prevents the user from providing his own program to access the
port, but other sorts of multiplexing, such as multiplexing of device
controllers, communication lines, and buffers can be accomplished.

The main impact of this system on traditional multiplexing tech-

niques is that giving the user direct access to the port implies that

124 .
the multiplexor must not allow faulty programming at one port to affect
the operation of other ports, Multiplexed facilities must be more
careful about port behavior than if the program using the port were
certified.

The addition of the reverse direction write ready line was a
reflection of the observation that in an interface protocol such as the
one devised in this thesis, it is more orderly if the protocol for a
class of transactions is always initiated on the same side of the
interface, in this case the device side. The interface with the addition
of this line is pictured in Figure 5-1,

In view of the various benefits which derive from the I/0 system
developed in this thesis, the restrictions which the system imposes on

multiplexing seem worth the price.

Cgeghe

Chapter 6
Processors as a Scarce Commodity

One of the major assumptions of this thesis has been that processors
were inexpensive enough that one could be dedicated full time to any pro-
cess doing I/0. The economics of today would make this assumption a rather
éxpenstve one; thus the goal of this chaptef is to find ways of reducing
the cost of dedicating processors full time to I/0.

There are two techniques which have been used to solve this problem,
both of which can be made to apply to the I/O'system being developed here.
The first technique is to assign a processor to the I/0 task only at the
time when instructions are to be executed, and to aédigh the processor to
something else whenever the 1/0 task waits for the device. In most systems
which use this technique, the I/0 programmer must explictily cope with the
fact that his process‘is’periodicdiiy‘remove& from its’broceésdr. This
chapter will show that in the context bf'thiérlfb syéfemyit ié'possible for
the system to perform processor assignmehtkéﬁfohatitélly,'so that an I/0
program written under the assumption that it would have the processor full
time need not be modified in order to uselfhis~teéhniaue.

The other technique which has been used to reduce the processor cost
associated with I/0 has been to transfer the I/0 processing from the regu-
lar processor to a specialized processbr,“bften called a chaﬁnel, whose
capability and cost are suited to I/0. This cﬁaptéf’Wiil show that bne of
the important advantages of interfacing I/O”deviées'és‘memdry words is that
a specialized I/0 processor can be used in & much miore versatile manner
than in other I/0 architectures. To the knowledge of the author, this

versatility in the use of a specialized I/0 processor has not been

125

126

exploited before in systems which represent the I/0 device as a region of

memory .

Dynamic Assignment of I/0 Processors

The technique of assigning a processor only as needed usually finds
application for typewriters and other slow devices, for the costs and bene-
fits are well matched. 1In a traditional I/0 system the technique might work
as follows: whenever a typewriter needs to send or receive a character, it
generates an interrupt. In response to this interrupt, the system runs an
interrupt handler, a piece of code which takes the appropriate action, and
then returns. How could this technique be fitted into the I/0 system so
far developed?

Clearly, one issue is efficiency. The switching of the processor to
the I/0 interrupt handler program must not be excessively costly, and must
not cause so much of a delay that the I/0 fails to be serviced in time.

Many systems have demonstrated that this scheme can be made to run effi-
ciently, but this thesis must consider whether efficiency is adversely

affected byrsome feature of this I/0 architecture, or by some feature of
the sort of system in which it is embedded, for example virtual memories.

The other issue which this technique raises is one of program structure.
Chapter 2 argued at some length that for reasons of clarity and ease of
programming, the interruption of processes and the interrupt handler struc-
ture should be avoided. It will be necessary to devise some strategy for
taking away and restoring the processor which does not destroy the structure
of the I/0 process, which so far has been sequential. TIdeally, it would be

possible to devise a scheme for taking away and restoring the processor

127

i

which is completely invisible to the user, so that he can create his I1/0
control program as if it were to be run on a dedicated processor. This,
in fact, can be done.

The term suspension will be used to describe the act of taking away
the processor from the I/0 process. 1If suspension is to be done in a
fashion invisible to the user, the system cannot ask the user for assistance
in determining those points in the I/0 control program where that program
can be suspended. Instead, the system will have to identify these points
on its own. But what are these points? They are exactly when the processor
has attempted to reference an I/0 device, and is waiting for the device to
respond, for at those moments the processor is doing nothing, and can be
put to some other purpose without affecting the I/0 process.

Consider what state an I/0 process is in when it waits for a device.
The processor will have issued an instruction to read or write, the device
selector will have issued the equivalent command, and the pfocessor will
then wait in the middle of the I/0 instruction for the device to respond
and the data to be transferred. It is when the process is in this state

- that it could be removed from its processof, and restored only when the
device is ready to complete the transaction;

How coﬁld the conditions for suspension be detected by the system? An
obvious way is with a timer. That is, if the prbceasor makes a memory
reference to a device selector, (rather than a memory box) and that'refér-
ence is not completed within some time limit (a time of the magnitude of
10 memory cycle times, for example), and the request went to a device for
which suspension were appropriate, then suspension could be initiated.

This timer could be a part of the processor, which might in any case have

128

such a timer to allow recovery from a broken memory box which.fails to re-
spond, or it could be part of the device selector, so that the timer signal
could be delivered only for appropriate devices.

How can the condition for restoration be detected? .Clearly, the device
must generate some signal which will cause the I/0 process to be restored
to a processor. How is this signal to be generated, and what is to respond
to it? It is easy to generate the signal. When the device is ready to
complete the tramsaction, it will signal over one of two lines in the inter-
face. 1If the operation pending was reading, the device will signal over the
read ready line. If the operation was writing, the device will signal over

the reverse direction write ready line introduced in the last chapter. An

obvious way to map these into a signal which will cause restoration of the
processor is to define another line in the interface, to be called the need
processor line, and adjust the interface so that a signal over the read

ready or reverse direction write ready lines causes a signal on the need

processor line. The need processor line is shown in Figure 6-1.

This need processor signal will be used as follows. When the need.

processor signal arrives at the device selector, the selector will in turn
send a signal to some processor, the effect of which will be that a system
routine is executed on that processor, whose function is to schedule the
appropriate I1/0 process to run. Thus whenithe'signai arrives, the I/0
program is restored to-a processor.

. .Suspension and restoration by this technique is essentially invisible *
to the I/0 process. (Not completely, for example the quit handler process-.
must be prepared to find the I/0 proceés in a suspended state.) Such

invisibility means that the program structure has not been disrupted by the

technique, which was the desired goal.

129

command ready -
1 [
- L
< command acknowledge

1 ’ v M
L | -
| command -
N < read ready |
1 '
L] | -

read acknowledge — -
1. . [
- L

write ready -
1 (]
device
-—
selector - write acknowledge — device
| g
| « data — |
[« error and event signals
. - 1 ¢ quired

o read operation required —
J L~
— buffer error recovery -
feed

- .
— reverse write ready —
.- g -

-

— need processor —
L -

Figure 6-1: Device interface of Figure 5-1 with need processor
line added.

130

This scheme for suspension and restoration shares some of the benefits
and costs of paging. One benefit is the just mentioned invisibility, the
fact that the mechanism is supported by the system so that the user need
think little about it. One cost of this scheme, which has an analogy in
paging, is the occasional inefficiency of suspending a process and being
forced to restore it immediately. The equivalent cost of paging, removing
a page from memory and having to fetch it back immediately, is tolerated
as being outweighed by the benefits of paging: paging is automatic, per-
formed by the system and hidden from the user. It would seem that the cost
of suspension and immediate restoration would be similarly tolerated, es-
pecially since I/O is more predictable than paging, so the number of occur-
rences of this sort of inefficiency should be few. This analogy with
paging was constructed to try to convince the reader that this scheme is
viable even though it might sometimes do things which are not optimal.
Without laboring the point further, let us pass on to other issues of
efficiency.

One question of efficiency is will the cost of suspending and restor-
ing the process and of holding the process in the suspended state be
excessive. In many systems using interrupts and handlers it is not
necessary to activate a complete process environment in responding to a
signal. Thus thig scheme might cost more. Some observations about an
operational system may shed some light on this issue. In the Multics system,
suspended processes are divided into two classes, called loaded and unloaded,
depending on whether the system has kept in memory the tables for each
process which maps the process virtual address space into the real memory.

If these tables are loaded in memory, starting up a process is rapid, taking

131

about 300 instructions or about Ilms. Multics does such a scheduling each
time the system takes a page fault. Measurements on the current system,
with two Honeyweil 645 processors, show that this scheduling can happen
under peak load 100 times a_second.' If the process is unloaded, the cost
of fetching these tables ups the cost and delay of restoration considerably,
perhaps in the vicinity of 15ms. Thus it would seem that to implement this
suspension scheme efficiently, all processes suspended for I/0 should be
loaded. 1If this were the case in Multics, typewfiter input could be hand-
1ed»now on a per character basis, for measurements on the same system with
40 to 50 users show that the character. input rate seldom peaks over 15

characters per second for the whole system, which:would only. add 15% to the-
loaded schedulings already done for paging. .These .additional schedulings .
would ciearly ﬁotvbe unreasonable,

.. These schedulings are not now done in Multics because the memory to
keep this many processes loaded costs too much. It was not a design goal of
the Multics address mapping strategy to keep this many processes loaded, but
as hardware costs decrease it does not seem at all unreasonable as a design
goal for future systems. There are two techniques to reduce the cost of a.
loaded process. One is to restrict the generality of processes which are
allowed to be 1/0 processes, i.e., to be kept loaded. A limitation on the
number of segments (or a prohibition against making new ones while doing
1/0) would fix the size of the necessary tables. The other approach is to
remove any excess material from loaded tables. For example, in Multics,
every address conversion table contains information about all the segments
which compose the system supervisor itself, some 200 in number. This

information is identical for all processes. 1f it were extracted and

132
placed: in 4 common table, mapping tables thus specidlized might shrink by -
an order of magnitude. This thesis has not developed a detailed virtual’
memory mapping scheme, so no context exists‘tO’pursuerthis issue in detail.
Hopefully;' the reader is convinced by these géneral observations, and also
by the falling prices of memory, that it is not unreasonable to keep 1/0
processes loaded. This topic is reaily the efficient use of memory, not
processor, and will be discussed in the next chapter. Let us therefore
leave 'it, for there is more td say about scheduling efficiency.

' Can the device tolerate the délay in completing the transaction caused’
by restorihg the I/0 process? Obviously, this depends on the device. Some’
dévices, once they are ready to complete the transaction, will tolerate
little further delay. Others will tolerate any amount of delay. Clearly,
the tolerable delay is a limitation of this scheme. The other limitation
is the overhead of the system scheduling routines, which will take more and
more resources the more often the device transfers items. To circumvent
these limitations, some mechanism is needed which will allow more to be
dotie on ‘each scheduling, so as to 'reduce the frequency of 'scheduling, and
which will help cope with the delay in processor scheduling. Does su¢h a =
mechanism present itself? The external buffer of Chapter 4 will work quite

IN

well.

Buffers as a Tool for Processor Scheduling

It is easy to ‘show that the external buffer of Chapter 4 will increase
the amount done at each scheduling, -and will cushion the scheduling delay.
Clearly, the buffet cam cushion the sc¢heduling delay, for the delay in

scheduling a“process is no different than any other delay with which the

133

buffer was designed to cope. In order to see how the buffer provides more
work at each scheduling, consider reading as an example. If, before the
processor is restored, the device is allowed to fill the buffer up, then
the processor, when restored, can read not just one item, but all the items
in the buffer. Obviously, it is not appropriate to let the buffer fill
completely up, for then there would be no room left to cushion delays in
scheduling. But sufficient buffering can be provided to allow a certain
number of items to accumulate.

In order to delay restoration until the buffer is partially full, it

is only necessary to signal over the need processor line when the buffer is

appropriately full. A clean way to implement this is to propagate the

need processor line through the buffers so that any buffer can turn it on,

and then provide a modified buffer element which will signal over the line
when it changes from the empty to the full ‘state. By positioning this
element properly in the middle of the buffer, the signal can be generated
when the buffer is filled to any desired degree. This simple modification
is all that is required to make the buffer work as a toel in processor
scheduling.

Clearly, this scheme works for writing as well as reading; the only -
difference is that the device empties rather than fills the buffer, so that

a buffer becoming empty rather than full must trigger the need processor

line.

What are the limitations of the buffer scheme? First, it does not
avoid but only puts off the issue of efficiency. This scheme decreases the
scheduling cost associated with a given transmission rate, but does so only

by use of a larger and larger buffer. Clearly, when the cost of the buffers

134

equals the cost from excessive scheduling of processors, the scheme has no
further use. Moreover, as was noted in the.last chapter, buffers are one
of the most difficult items to 'multiplex, so it might in fact be necessary
to provide this large amount of buffer separately for each device, which
seems especially inefficient.

The other limitation of .the buffer is the previously discussed fact
that the data flow algorithm in the buffer is fixed and built in as part of
the buffer. The inflexibility of the algorithm is a special hindrance when
the buffer is used to help schedule the processor, for the reason that for
certain kinds of devices {typéwriter,input is the best example) certain
; computations must. be dqne on each.iteﬁ"as‘it'arr1628; ‘Typewriter’input may
require checking for the arrivalvof a control character, echoing a character
(or a sequence of characters if any sort of automatic typing completion is
implemented), and checking for characters which indicate the end of message.
The use of buffers postpones these computations until the processor is
scheduled. 1In the previous chapter, the processor was always trying to
catch up with the buffer, and the only postponement was caused by delays
such as paging. Now, with buffers serving as a scheduling tool, the post-
ponement is of a different degree; it lasts until tbe processor is
scheduled, and scheduling will only happen when something causes it. What
will cause it? Not the buffer. It only knows to signal for process sched-
uling when it is filled up to a certain amount, and that is not the right
criterion. One character along might arrive, which should get immediate
processing, but if it doesn't fill up the buffer, the character could sit

forever. Clearly, to avoid the delay, these sorts of computations would

135

better be done at the device end of the buffer. But the buffer cannot do
this, for that part of the algorithm is fixed.

There are three solutions to this problem, two ad hoc and one general.
The rest of this chapter will deal with the general solutiom, but the two
2ad hoc solutions ought to be mentioned in passing. First, if the computa-
tions which need to be done at the device end of the buffer can be determined
in advance, special boxes can be built which will do them. These boxes
could then be spliced in between the device and the buffer. The box could.
either do the computation or detecf that it needed to be done and signal on

the need processor line. The limitation of this scheme is obvious: the

algorithms needed must be correctly predicted in advance. Any error is
awkward and expensive, for once again the boxes with their algorithms are
prefabricated and not programmable. The other ad hoc scheme is to set a
timer which goes off periodically and causes a processor scheduling. In
order to provide reasonable response, the timer should probably go off
fairly often, perhaps every few seconds, and this in turn implies that.to
avoid hopeless inefficiency the timer should go off only if something is.in
the buffer. Otherwise the process of a logged in user would be scheduled
every few seconds for the whole console session. Even with this condition
on the timer, the scheme provides an upper limit on efficiency, at the same
time providing an upper limit on responmse. If a suitable value of the timer
interval can be found to satisfy both criteria, the scheme can be made to
work. But there is no guarantee of success in any particular case. Clearly
what is needed is some programmable module less expensive than a processor,

which can execute I/0 programs. This is the topic of the next section.

136

A Specialized I/0 Processor

Traditional systems have often used a specialized 1/0 processor to
execute some parts of the I/0 control program. -Such a processor is often
called a channel. The term "éhannel", however, has~many'different‘meaningé,
so- this thesis will not use it but will instead use the term specialized
- protessor, or SP, by which will be meant any processor the characteristics
of which have been tailoredvfor e#ecuting‘the 1/0 program. Perhaps the SP
can be scheduled with less overhead, so that it is especially appropriate
for the technidue of suspension and restoration. Or perhaps the SP might
be a very inexpensive version:.of the main»processor, perhaps lacking a cache
or some fancy machine instruction, so that minimal cost is incurred if it
sits idle. This section will explore how; 'in the context of this 1/0
system, a processor might be specialized ‘for 1/0.

Structurally, what is the differénce,bétween’a specialized processor
and a traditional channel? In traditional I/0 systems ‘tn which all I1/0 is
done through channels, one important role of the channel has been to pro-
vide the connecting point'fo:ﬁthe devices. Obviously, SP's will not serve
that role in this thesis, for'fhevﬁevice selector has that function. Thus
in this system a SP is nothing more than an alternative form of a processor,
differing in cost and cﬁpability, but identiCal'to-a’prbceSsor in the manner
of its interface to the rest of the system modules. That is, an SP, like
any processor, will do I/0 by‘making memory-to-memory moves. And like a
processor, an SP is not attached to one devite, but may be used to operate
any device (or combination of devices). Structurally, then, an SP is
rather different from a channel in a traditional I/0 architecture. Compare

Figure 6-2, which shows an SP added to this system, with Figure 2-1, which

shows a traditional I/0 processor.

Processor

Memory
box

Figure 6-2:

137

Processor

Memory
box

Specialized
Processor
(sp)

device
selector

s

devices

I/0 system augmented by addition of specialized

processor.

138

This structural difference is an important advantage of the I/0 scheme
of this thesis. By taking the traditional role of the channel, and splitting
it into two parts, one of which is performed by the device selector, the
scheme eliminates many restrictions imposed on SPs. Fewer SPs are needed,
since an idle device does not imply an idle SP. Rather, an SP will be
assigned to operate the device only as needed. Similarly, the failure of
a particular SP does not mean that some particular device is inoperable
until the SP is fixed. The system can just operate with one less SP during
repairs.

What sort of cfiteria will define a'successful'SP.deSign? Two conclu-
sions from previbusychapters seem especially relevant. First, to this
point I/0 has been programmed using the nq:ﬁal computer language. This is
a desirable feature, so hopefully SPs can be designed which execute a
language similar to that of the main processor. The other conclusion is
that the primitive communication mechanisms, e.g., interrupts, which often
are used between channel and processor can lead to awkward program struc-
ture. Hopefuliy, SPs can be designed which do not disrupt the sequential
nature of I/0 progréms.

The previous paragraphs have listed some constraints on SP design,
two goals: minimum cost and maximum flexibility, and two bad features to
avoid: special languagés and awkward program structures. Subject to these
constraints, what sort of SP might be built for this system? Before pro-
ceeding, let the reader be warned that this thesis will not present the
detailed design for a particular SP. A detailed design is inappropriate
because there are several alternatives, depending on relative merits and

costs of the particular system. To pick among them here would serve no

139
useful purpose. Rather, this section will discuss various design techniques
which seem appropriate.

The following is a list of various techniques which might be used to
produce a less costly version of a processor to uée,ﬁor 1/0.

Speed reduction: processors of today often,employ sophisticated tech-
niques tp’increase speed, such as inatrugtion stream pipelining or
ca;hes. This s?eed may be unnecegsary for 1/0, which is often much
slower than the processor.

Elimination of special instructions: ‘hqufqlly_theVSP and processor will
have gimilar igstruct;pns sets. One diffg:enge which might make sense..
wquld bg_thg elimination qucertain_complex.;ngtguctions unrelated to
_I/O{ Special decimal g?ithmetic instrug;iogg, for example, might be .
omitted from a SP.

Shar;ng of hardwa;e amongvSPs: cergaiq func;ions,which are needed by
several SPs can bg implemented as a single module which is shared
among them., Thg ggfec; miéhtmbe a loss in SP speed, but this is not _ .
necessarily bad. Exaﬁplesvofrﬁgpctions which might be shared include
the support of cergainhspeqigl inst:uctiqns,_gnd the conversion of
‘virtual‘to reél add;essgs.

The last technique, sharing, suggests Fn\gltgrgative approach to re-
ducing the cost of SPs. One limit of the technique of suspension and re-
storation wés‘the overhead of switching. Sharing of processor parts is an
alternative technique for giving processingjpowe: to a process only as
needed. By pushing the idea of sharing to its }imit and building a pro-
cessor which, by sharing all its cqmpongnts‘ampng several processes, tried
to multiplex itself to produce the effgqt of several processors, one could

perhaps produce a variant of suspension, implemented by the hardware

140
itself, which was less expensive, or more rapid, than suspension of
regular processors.

Thus there seem to be two techniques for the production of inexpensive
SPs. Make the SP so cheap that the cost of 1etting'it idle is negligible,
or make the SP multiplex itself very efficiently.between several-processes.

Multics, for example, contains a hardware module, the generalized I/0
controller, or GIOC (32) which attempts to provide inexpensive processors
to perform I/0, by sharing modules among the several proéessors; Exémples
of shared functions include the module which references meﬁory and the
module which increments the instruction counter and picks up the next
instruction for the I/0 program. 'For slow devices, the GIOC even shares
the live registers which the control programs use. In many respects, the
processors provided by the GIOC differ strongly from SPs, and rather
resemble traditional channels. They execute a epeciai language having
nothing to do with the‘central’processor Iénguage, they provide the con-
nection point for the device, and they communicate using interrupts. The
idea of cost reduction‘by sharing is, however, well demonstrated.

The next section of the chapter'willidiecuSS other implications of SPs.
Before going on, it seems appropriate to pause and review the role of SPs
and the various other techniques for tontrollihg‘processor utilization.
Four techniques have been identified: ’suspehsion‘and restoration, appro-
priate for very slow devices, suspension and restoration with buffers,
appropriate for medium speed devices where‘no'épecial computation is needed;
SPs, appropriate when programming flexibility is needed or buffers would be
too large, and lastly, the technique of the previous chapter, use of the |

processor’ itsélf. ' Initial reaction may be that this last technique is

SAES

141

never appropriate by today's economics, but in the Multics system today
there are devices which transfer so rapidly that, even though the transfer
is pérformed by a channel, no other use can be made of the processor during
the transfer, for there is not time even to start another task running on
it. Clearly, for this sort of device -the channel is superfluous. There is
another class of 1/0 for which the use of the processor itself may be appro-
priate; this is a very infrequent transaction. If a device is used'VerY'
seldom, it may be worth the cost of inefficient use of processor during its
operation to avoid thé cost of maintaining special mechanisms, such as
dedicated buffers. As processors get cheaper, which seems to be the current
trend, 'this technique will have a wider and widér range of applicability.

It is also appropriate to discuss the economic practicality of the SPs
here‘propbsed,'for cleérly they are complicated compared to the channels to
be found in existing systems. First, it is very important that SPs c;n'be
shared from device to deviée, for fewer of them are thus required, which -
raises the allowable maximum cost. Second, the cost of hardware is coming
down. If the regular processors can be used for really fast transfers so
that the speed required of SPs is not excessive, then various current
fabrication techniques such as micro-programming may allow the production
of sophisticated SPs very cheaply. For these reasons we have no hesitation
in saying that for these circumstances in which SPs are required, it would

be feasible to provide them.

Program Structure Induced by SPs

This section will show that the execution of some portions of the IL/O

progrém by-a specialized processor can not fail to-have an effect on the

142

form of the I/0 program. However, this effect can be minimized, so that
undesirable program structures such as the interrupt handler structure do
not occur.

It is possible to imagine that in general the programs which execute
on processor and on SP must be viewed as two processes executing in parallel,
In fact this view is appropriate under certain circumstances, but it cer-
tainly embodies a considerable complexity, so let us begin with the most
simple case, which is that the I/0 program is written as if it were to run
just on the processor. Without other modification, this program could be
broken up into various parts, some of which -execute on the SP. A scheme to
do this which used "switch-processor'" instructions inserted at appropriate
points was proposed by Smith (37). That is, the switching from processor
to SP and back was programmed explicitly by the user. It seems that it is
necessary to perform this move explicitly, for no criterion can be stated
which will enable the system to determine when a process should change
processors. Actually, it is easy for the system to tell when the I/0
process should be moved from processor to SP; the conditions are exactly
the same as those which triggered suspension: excessive delay in the
device's response to.a read or write request. But when is the process to be
moved back to the processor? Clearly, when the I1/0 transaction is finished.
But there is no way for the system to detect this. It seems simpler to let
the user decide what portions of his code should be run on which processor.

Under what circumstances would a more complicated program structure be
required? When would it be necessary to view the program on the processor
and the program on the SP as two processes, executing at the same time?

Exactly when the SP, because of the steps taken to simplify it, lacks the

143
power to execute some computation which must be done by the I/0 control
program, and in addition, the time which would be spent switching to a
processor to do the computation and then back to the SP would cause such a
delay that the I/0 program might fail to meet timing constraints. Tt is
possible to claim that the occurrence of this situation indicates that the
SP was imprpperly constructed, but iéaues of economics might force this
undesirable situation to hoid. Certainly for channels found on current
hardware, where even a simple computation .such as sending a message to
_anpphg;‘prpcess is beyond the capability of a chammel, it is necessary to
invqkegthglmaiﬁ‘processpr in parallel with the .chamel. :Invthis'éaSe the
simple "switch-processor" instruction must be replaced with something more

complex. An appropriate mechanism is described in the next section.

A Channel-Processor Programming Scheme

This section describes a.specific mechanism which was devised on
Multicsvto deal with the coordination involved when the processor and the
Sg'mugtioperate in parallel. Since, as the previous: section pointed out; -
the necessity for this coordination can be avoided by proper SP design, the
descrip;iop of thisAmechanismjis not crucial. to the :thesis. It has been -
included to make the following peint. The thesis has argued the advantages
of eliminating interrupt driven programs and replecing,them‘with‘programs-
having sequential structure. . Even if the reader has been convinced in the
abstract?vpe may think that in_p:actice hevcanngt'exploit this beneficial
structure, because he is constrained by hia_ha:dware, which uses channels

and interruptg. The purpose of this example is to present a scheme which,

144

in the context of channels and interrupts, allows the user to construct I1/0
control programs which appear to be sequential in nature, and which mask
the existence of interrupts.

The scheme to be described is an idealized version of the I/0 control,
or I0C language, which was developed and implemented by Stanley Dunten on
the Multics system for the control of typewriters. As stated above, in the
Multics system all I/0 is under the control of channels, and these channels
communicate with the main processor by means of interrupts. Associated with
each interrupt (in this reather idealized version of I0C) is a short message,
the interrupt index, which is one of the integers between zero and some
'small number, (Numbers‘less than ten would be sufficient for all fhe
currently written programs.) This interrupt ‘index is used by the run-time
environment of IOC, as will be shown.

The following is a description of the typical sequence of operations
which one would use in the 10C language to start a channel program, and to
coordinate pieces of processor code with 'it. The programmer would first
code- the channel program itself, in line in the IOC program. This progrém,
in the special channel language, would specify, among other things, the
particular interrupt index to be returned at each point where the channel
program might generate an interrupt. Following the instructions for the
channel in the IOC program will be instructions to be executed by the
processor. The first of these will normally be a wait instruction, the
effect of which is to put the process in a wait state where it abandons
the processor pending an interrupt. The interrupt index is used as follows.
Part of the wait instruction is an array of labels. When an interrupt arrives,

if the process is in the wait state, a transfer is executed to the label

145

selected in the array by the interrupt index. If the process is not in the
wait state, the interrupt will be queued until such time as it is.

.The code which is executed by transferring to ome of these labels will
be of two sorts. 1If it represents some computation which the processor
should -do 'in parallel with the rummning channel, then the sequence of code,
when it finishes, must return to the wait state so that further interrupts
can be accepted. To do this the code ends either with a new wait instruc-
tion or with a waitagain instruction, which returns to the previoﬁs wait
state. Alternatively, if the IOC frogram does not execute a wait or
waitagain instruction, it is assumed that control has returned permanently
from the channel, and that after sending the interrupt the channel program
has. halted. -

Sign#ls may be received from two sources other than the channel: from’
the timer, and from other processes in the user's computation. These sig-
nals;- just .as those from the channel, can be received only while the process
is in the wait state, and these other signals are made to have a syntax
similar to the channel signal by mapping them into special interrupt indexes
which caﬁnot be generated by the hardware. These other signals are used as
follows. Normally a timer is started whenever a channel program is started.
1f the channel fails to -operate properly, ahd no interrupts are generated,
the signal from the timer prevents the process from waiting forever. The
signals from oﬁher processes are the means by which those other processes
make requests of the I/0 process. In Multics there are four requests,
whose meaning is as follows. 1) Abort any writing in progress. 2) Start

writing (the data to be written is in a shared area). 3) Hang up the

146

terminal and destroy the I/0 process. 4) Update the count of input
characters typed. These are the only signals which the 1/0 program can
receive,

The significance of this program structure is that although the
channel generates an interrupt, the IOC program does not see it as an
interrupt, but rather as a signal which arrives only at the points at which
the program is prepared to réceive it: at wait instructions. Thus using a
channel with only limited expressiye ability, the wait instruction produces
an inﬁérprocess communication with the property discussed in Chapter 2 that
the signal arrives only when process has placed itself in a state where it
is prepared to accept it. The I/0 program is, in the literal sense of the
word, never interrupted. If the reader will remember what in Chapter 2 was
called the interrupt handler»prqgramkstructqre; he will see that the awk-
wardness of such a structure has been avoided. . Thus, even in the case of
limited chgnnel capabilities and excessive overhead in process switching,

sequential program structure can be achieved. .

Impact of Process Suspension on Multiplexing

In order to complete this development of processor sharing, it is
necessary to discuss the impact of process suspension on the material pre-
sented in earlier chapters. This section discusses the modification to the
multiplexing scheme of Chapter 5 which is implied by the scheme of process
suspension and restoration. One assumption of that chapter has been
invalidated: that when the device is ready for the transaction, the processor
will always be ready. This assumption was used in deciding when to allocate

a multiplexed controller or line to a particular device in that the controller

147
tested only the readiness of the device. ' Now it would seem necessary to
test both device and processor to make sure both are ready before assigning
a multiplexed module, in order to avoid having the module sit idle while
the proceésor is scheduled. This, in the case of a multiplexed communica-
tion line, requires negotiation back and forth between the ends of a multi-
plexed line, which is not always possible within the design of the line.

. There is an alternative to this, which is to assign the multiplexed
line as before, whenever the device is ready, but to observe that the line,
like a device, has.a time limit wifhin which the traﬁsattion must be com-
pleted.. If, because of delays due to process restoration, the time limit’
cannot be met, then, as before, buffers can be used to absorb the delay.
This is:a different use of buffers than the one discussed in the chapter on
multiplexing. "That chapter considered placing buffers between a multiplexed
communication line and a device. This probleﬁ requifes'that the buffer be
placed next to the processor.

How would this buffering work? Consider reading. When the device has
an item‘geady, it will signal over the read ready line, and at some point
will be assigned the communication line. Assuming that the buffer is empty,
the item will be transferred immediately into the buffer, and the iiné-will
be relinquished. At some later point, the prdcesdor will remove the item
from the buffer. Now in order that this work propérly,-the device must:
never signal over the read ready line while the buffer is full. But a quick
review of the buffer algorithm will convince the reader that this signal can
never happen, for the buffer will never pass a read data command on to the

device so long as it contains an item, and until:the device receives a read

148 .
data command, it will not give a read ready signal. The interested reader

may wish to convince himself that writes work as well.

Summary

The goal of this chapter is to reduce the cost which.results from
dedicating a process full time to I/0. Four techniques are identified.

The first technique, and the most simple, is to observe that for cer-
tain kinds of devices (very fast devices and infrequently used devices),
the cost of the scheme of the earlier chapter, in which the processor itself
was used, is not as great as might be imagined. Observations about the
decreasing cost of hardware are used to support this approach.

For very slow devices, the chapter discusses the technique of suspen-
sion and festoration, in which the. process is assigned to a processor,only
when program execution is required. This . technique required the addition

of one line, the need processor line, to the interfage.

For those cases in which this technique causes too much scheduling
overhead, the external buffers of Chapter 4 can be used to extend the num-
ber of operations done on each scheduling, and to cushion the device against
scheduling delay.

The fourth and final technique is the use of a specialized processor or
SP, useful if the fixed algorithm of the buffer is insufficient or the
amount of buffer needed is excessive.

The chapter does not propose a specific SP design, but discusses
several design criteria. It proposes two goals, maximum programming flexi- .
bility and minimum cost, and twe features to avoid, creation of a special

programming language and introduction of an awkward program structure,.

149

The chapter discusses in some detail the: effect of SPs on program
structure, and concludes that while SPs qill>p§v§_some effect on the
struétu;e of the I/0 program,>the awkngdnesg of thg interrupt handler
structure éan be avoidéd.; Indeed, the chapter shows by example that de-
sirgple program structure can be producgd’in a less than ideal I/O
environment.

By interfacing devices as memory addresses, the function of providing.
a system ?ntegfacé for the device, which is often the task of the channel
in traditional I/0 architecture, is separated from the functions of the I/0
processor and is ﬁade the task of the device selector. The simplification.
of the SP which results from this separation ig very important, in that SPs
thus ?exform I/0 by executing memory-to-memory moves rather than spgciaL
I/0 iﬁétﬁﬁcfions. Furthér, SPs are no longer fixed to a particular device,
butrcgﬁ‘bg uﬁed on any device, as needed. |

, Not‘ohly can an SP be moved from device to device, but éay}device

can be référenced equally well by any of the SPs or main processors. For
a deviceﬁwhich_opératéd at more than one speed, for.exqmpie,‘the user
might wri;e aq.I/O ﬁéogram which referenced the dgvicg somgtimes using a
SP and sometimes using the processor itself; or the user might experiment
with some new device using the processor, and then write a final program,
ﬁore effiéient but more complex, which used a SP. . This flexibility would
vanish if the dgvicewwere,tg be connecfed to any specific processing
element; e.g., a channel or an I/p bus which ip conneqted to some register
in a processor. iny in this chapter, when ghe pqsgibility is raised of
more than.one kind of processor, does this vgry‘}argeiadvgntage of the.

device selector as a separate entity become apparent.

Chapter 7
Memory as a Scarce Commodity

The last chapter considered wayé of réducing the processor cost of
I/0. This chapter will consider memory in a simiiar why, discussing’teéhé
niques for reducing the committment 6f'me?bfy‘requifed for 1/0.

In Chapter 3, the discussion of memory management listed three'goéis
which a particular allocation schemé must meet. They ﬁere first, that‘b
the ‘allocation of memory t§'I/0 must not prevent other tasks of the
system (the exﬂmple was‘reédnfiguratioh of ﬁeﬁory) from operéting .
p:opérly. Second, memory'ﬁust‘be'aliocated4in‘3uch”aAway that no user
can get more than his fair share. Third and last, the.alloéation of
‘memory must be done in such a way that the cost to the user of doiﬁg
1/0 is hd;'out of proportion to other costs in the system. The frozen
‘efivironment scheme using a fixed time limit met the first two goalé; H
but did not attempt to deal with the third. Rather it assumed that the
cosfs'aSSociated with using ﬁaging és thé étbfége;aildcétidn séhemékfor
1/0 would be acceptable. Unfortunately, examination of a éyStemvsﬁch
as Multics will reveal that by today's standards the cost would be
unécceptably'high. (It is assuﬁed that thé'priée.fhe ﬁséffpays does
reflect true cost.) ' | | - .

" This chapter will reduce memory costs associated with 1/0 by
introducing an alternative to paging'which allocates memdfy in a manner
more suited to the characteristics of I/0. It will then show that by
introducing this more efficient scheme, the gfbundwéfkyhas been laid for
a variety of improvéments to the frozen environment scheme which will allow
additional sorts of‘devides,'including'typewriferé'ahdf1ntéractive

terminals, to take advantage of the scheme.

151

Enlarging the class of devices which can use the frozen environment
scheme becbmes»more important with the introduction in the last chapter
of épeqialized processors, or SPs, The introduction of SPs as an
alternative to processors did not change the requirements which the I/0
makes bf;memory. The SP still must either rum in a frozen environment
or.in conjunction with buffers. The last chapter observed that the use °
of SPs will force a modification of the program structure to at least
a small extent. It would be very nice if the programmer coping with SPs.
did not at the same time have to éopeﬂwith the complexity of buffers.

Thg alternative of the frozen environment is not acceptable, however,

, unlesglthe 1/0 is capable of running within the constraint of a fixed
timg 1Lmit, whigh is not always the case, An even stronger reason for
wish;ng t¢ use a frozen environment with SPs arises if the SP has reduced
functional capability compared to a processor, It is possible that in
this case the SP does not have the capability to handle a page exception,
In this case, when the SP must request another processor to fetch missing
pages, the ability to avoid page exceptions by use of the frozen
environment is especially important.

This chapter, then, has two objectives. First, reduce the cost
associated with frozen memory, and second, increase the kinds of devices
which can take advantage of the frozen environment scheme. As we show
that achievement of the first objective is central to achievement of the .
second, we will show that memory costs are the cause of a variety of
compromises and restrictions which are part of many I/0 systems, as

indeed they were a part of the first frozen enviromment scheme.

152 i

Memory Costs Associated with I/0

One of the assumptions which was made early in the thesis was that
the system in which the I/0 was to operate used paging as its memory
allocation scheme. The use of this allocation scheme for the memory
which is involved in I/0 causes the high cost associated with using the
frozen environment scheme in a Multics-like sysfem. The reason is that
the page sizes commonly uséd (Multics currently uses 1024 words per page)
are very large compared to the storage needed for I/0, An example of
typewriters in Multics will show how much memory is saved if only the
storage needed is frozen in memory, rather than all of the page containing
that storage. A running typewriter in Multics requires three storage areas
in memofy, the area holding the I/0 program, the area holding the data
items, and an area for program variables., ‘Each of these is less than
sixteen words (there may be more than one data area), If holding each
of these areas in memory required a full page, the Storage consumed
would jump from 48 words to 3072 words. 'If the areas could be arranged -
in the same page, they could still use 1024 words. The increased cost
of these extra words is sufficient to deter the use of the straight-
forward frozen enviromment scheme, even if the other two goals could
be met,

"Obviously, in the Multics case, in order to achieve acceptable cost,"
paging‘has been abandoned for typewriters in favor of a specialized
memory management technique which allows very small blaocks of storage
to stay in memory efficiently. 1In fact, Some specialized management
strategy for storage related to I/0 is used for every device in the

Multics system. The next sections will try to integrate a special I/0

153

storage management strategy into the system in such a way that the

good features of the I/O system are not'disrup;ed,'

Cost Reduction through Memory Management

The techniques used in Multics to implement special management
strategies have certain drawbacks. . The normal technique is to write
a special storage manager for use with each particular device, which
obtging a segment from the virtual memory manager, and fhen implements
its management algorithm within the segment, The disadvantage of this
technique is that along with the management algorithm the manager must
impleméqt the protection strategy which controls the access to this
specially managed storage. Clearly the access controls of the virtual
memory manager will not help; they protect the segment as a whole, not
thgwa;eas allocated within it, Lacking these access controls, the
special storage manager has no alternative but to deny the user direct -
access to the managed area. The. result, of course, 18 that the user .
cannot write his own 1/0 program, but must rely on system software to
perform his I1/0.

In order that the user to allowed direct access to the specially
managed area, the access controls of the virtual memory must be used to
regulate the area, which means that the spec;al management strategy must
be implemented by the virtual memory manager itself, and not some . .
other moéule:

In the introduction to the thesis it was observed that I/0 would
become tractable when the_similgrities rather than the differences between

devices were identified and exploited. This is a good example. The virtual

154 -
memory manager cannot be‘expected'té implement a different strategy for
each device, It will be necessary to sacrifice a little of the
efficiency of memory usage_and'identify a common strategy which many
devices can use, before the benefits of managemeﬁt'by the virtual
memory can be obtained, |

To see what sort of management strategy would be appropriate for
1/0, look again at Multics. The various storage areas required in core
vary in size but are often very small. 'Many of the I/0 control programs
are between ten and twenty words. Auxiliary areas for variables are
often similar in size, The data items themselves require storage areas
of various size, ranging upward. from 16 wofds, (Some of the larger
areas are the size they are in grder t§ interact well with the paging
mechanism; rather than from device @oﬁstraints.) Ahother observation is
that none of these areas ever change size. Under certain circumstances
the effect of growth is simulatéd by'using a greéter or fewer number of -
areas, but in no case does the size of areas change.

One could try to improve the efficiency of memory utilization by
using a very small page size. This reduces the nﬁmber of extra words
which fill the rest of the page,‘but requires tﬁe use of a page table
which for small pages gets more and more wasteful, since it uses up one
entry for each page, regardless of page size. More importantly, the use
of small pages increases the overhead associated with moving pages in and
out of primary memory, siﬁce the cost of keeping track of the pages in
memory, selecting pages for removal, preparing the control program for the

secondary storage device, and so on, is independent of page size.

, 155
An alternative memory allocation strategy which works well for

small segments of fixed size is contiguous allocation of theseaareas in
memory, By contiguous allocation is:meant the following., Instead of
breaking the segment up into blocks of fixed size (pages), store the
segment as one piece in a region of memory big enough to hold it. This
scheme eliminates the waste of putting a small segment into a large page,
since the region of memory holding the segment need be no bigger than
that required to contain it. This is especially important for small
segments. Thus contiguous allocation mahes much more efficient use
of memory.

.What are the disadvantages ofﬁcontiguous storage? Consider removing
a segment from memory. The result is an area ofhfree.memory which isrthe
size of the segment The system must keep track of this and other existing
free areas, so that when 4 new segment is to be put in memory an area .
the correct size can be found. There is also the possibility that for.
some particular segment being added there is nogfree area‘of a size to
hold it, In this case it is necessary to rearrange‘the segments already
in memory to make room. This is called compaction. |

The advantages and disadvantages of contiguous allocation compared
to paging are well known, and will not be detailed here further. The
important observation to be made here is that because of certain features
of the I/O task, the disadvantages of contiguous allocation are not as
great as in the general case. ‘The reason is that contiguous allocation
is being proposed in addition to, not in replacement for paging., Thus .
whichever scheme is more advantageous can be used in any particular case,

For example, the contiguous allocation scheme can be specialized for

S T T e e B e p R S T

156
small segments, for any seghent near in size to a'page or larger can be
handled by paging. For,andtherbéXample, the overhead of the contiguous
allocation scheme occurs at the time the segment moves in and out of
memory, for at those times the area must Be allbcated énd freed. Thus
ornice a segmént is in memory'it is mqré efficient té-keep it there for a
“long time, so that the overhead of bringing‘itiin canAbé Spfead over
many references to the_segment,' Happily, iﬁ is'reaéonable to use paging
for segments which stay in @emory a short time, since thé‘waste from |
using a whole page to hold a small segment is ﬁfoportional to the length
of use. Thus the memory manager can pick the proper technique, based
on the time limit supplied with the request to freeze thevenvironment.

Another simplificatidn feSulféVfrom.the fact‘that;%;s hoted éb;ve,

“segments for 1/0 need never grow. ' Growing é.ségment which is stored
contiguously is expensive, for a whole new area must be fbund for it,
This disadvantage of contiguous allocation is thus avoided,

The real memory needed to implément'fhetcgﬂﬁighbus allbcétion
scheme can most conveniéntly be obtained;f}om;ﬁhe blbcks.of memory used
to hold pages. This source of storage would me;n that allocation was
done in several areas each éhe size of a pégé, rather than in one.area,
which would increase the waste area, but allow the ambunt of memory used
for contiguous allocation to grow ahd shrink.easily; This strategy is
an example of tailoring the scheme for small segments; éiearly using
blocks of memory for allocation would not work if the scheme had to deal
with segments larger than a page,

Note that if a contiguous allocation scheme were avﬁiiable for small

segments, there are other uses which could be made of it. Chapter 6

157

discussed how storage must be used to hold the address ﬁapping tables
for the 1/0 process, and showéd how the size of the tables mighﬁ be
reduced from those found in Multics. Clearly, COntiguous‘aIIOCation
would be used to keep these small tables in core efficiently. There
might well be other system tables which could be implemented as small
segments (thus giving the user direct access) once the alternate
allocation scheme were instituted. Thus the utility of the contiguoué
allocation scheme is not limited to I/0.

We turn now to the other objédtive of the chapter, which was to
enlarge the class of devices for which the frozen environment is |
appropriate, while still fulfilling the goals of fair share resource‘
distribution and compatibility with other system functions. Aé will

be shown, the steps taken to reduce cost will assist in this endeavor too.

Fair Share Resource Distribution

In Chapter 3 the time limit on the frozen environment was‘propoééd
as a single solution which would:achieve both goals at once. This
sectiOniwill attempt to broaden the class of acceptable devices by
proposing a separate solution to each goal, We will first consider how
to allocate resources in a fair fashion.

The effect of the time limit in resource allocation was to predict
and control the extent of the committment feprésehted by a request to
freeze memory. 'Meaéuring the commitment in thfs:way as a product of
space and time, it should be cleéar that an efficient allocation strategy,
which reduced the space required for a giveniféqu;éf; can allow a

proportionally longer time limit within the constraints of a fair share.

B B ST

Faw w0

158 -

Thus the fixed time limit will continue to be the technique to enforce
fair share allocation; the improvement will be the increased time limit
allowed‘by more efficient allocation techniques.

What sorts of time limits might be reasonable? Again Multics will
be used as an example. As part of typewriter I/O certain small areas
of 16 words are allocated without any time limit at all. They are
considered so small that they represent negligible storage consumption.
The only limit is on the number of such areas which the I/0 program may
claim at once. This is a differept interpretation of fair share.
Earlier it was that resources would be made available some fraction of
the time. Now it is that the user may have some small fraction of
the resources all of the time,

Such a reinterpretation of the fair share criterion allows many
more devices to use the frozen environment technique. Devices such as
typewriters, which were formerly excluded, can now use the technique
subject only to a restriction of the amount of resource consumed. The
choice of whether to use the frozen environment then becomes a matter of
economics. The user must compare the cost of keeping the resources in
memory all the time with the cost on the other hand of external buffering
plus fetching the resources as needed.

If the system cannot allow data to remain in memory for all time,
then the technique will be insufficient for a continuously operating
device. Clearly, the device can operate for no more than that fraction
of the time the system will allow the resources to be frozen in memory.
The sorts of devices which will operate under these conditions depends
on details of the requirements. A typewriter could not operate

continuously, but a typewriter which expected input only at certain times,

159

and which expected it within some time limit, could be made to work,
since it is quite possible now to expect time limits on the order of
minutes rather than seconds.

Without detailed information about the costs and capacities of a
given system, it is impossible to predict the actual time limits which
might be acceptable. Multics serves as an example, however, that even
with today's costs, devices sﬁch as typewriters could be operated
according to this technique if a compatible memory management scheme
were devised. Thus, looking to tomorrow, with memory getting cheaper,
it is reasonable to believe that proper memory management can essentially

eliminate the fair-share problem.

Compatibility With Other System Functions

There remains the other goal, that of being compatible with other
system functions. The example of a system function used earlier was
reconfiguration of the real memory. This chapter has given another:
compaction of the contiguous allocation area. In the original frozen
environment scheme, thebtime limit, being enforced by the system, allowed
reconfiguration processes to wait for the storage to become unfrozen.

The maximum acceptable time limit was exactly the amount of time the
reconfiguration process would be willing to wait. Again using Multics

as an example, the maximum time reconfiguration would wait is probably a
few seconds. The success we had in the last section stretching the limit
out to minutes, or indefinitely, would thus vanish if time limits were
used to insure the success of reconfiguration. It is thus necessary to

abandon the time limit as a means of achieving this goal, and seek other

160

techniques., This section will introduce two techniques., The first

moves the frozen area while the I/0 is using it. The other observes that
events such as reconfiguration are not frequent, so that the disruption
caused by just doing the reconfiguration may be tolerated as a rarity.
These alternatives will be considered in turn.

In order to see how it might be possible to move a piece of frozen
virtual memory without disrupting I/0, consider the technique used in
Multics to move pages which must remain in primary memory. This is a
variantofa technique which was developed and described by Schell (36),
who discussed reconfiguration in some detail, We begin with a review
of address conversion. The tables which would be used to convert from
Virtual to real addresses were discussed in Chapter 2. The segment number

was used as an index into the segment descriptor table, which gives, for

each segment, the location of the page table for that segment. Each
entry in the page table contains the current location of the given page;
it also contains a bit, the modified bit, which is crucial to the
reconfiguration algorithm, The bit is set on by the hardware whenever
a reference which will write into the page is made. To move a page
without disrupting the process which expects it to remain in memory,
proceed as follows. First turn off the modified bit for the page, then
make a copy of the page in the new location. The resulting copy may
not be identical to the original if the original was modified during
the copy. The modified bit can be inspected to see if the original has
changed. 1If it has not, the address of the page which is contained in
the page table entry can be changed to indicate the new copy, and

processes referencing the page will continue smoothly using the new copy.

n ——— e — . — . L o I

161
(Inspection of the modified bit and changing the address must be done

as one indivisible step. This will be discussed below.) If the modified
bit 1is on, the attempt to make a valid copy has failed. This failure
causes no disruption to the operation of the system; it just means that
another attempt must be made to copy the page.

Clearly, what is needed is some guarantee that if the copying
operation is retried, it will eventually succeed. 1In the case of 1/0,
this is easy to guarantee, for I/0 references a page at a regular rate,
or at least at a maximum rate, Thus, in order that the copy be good,
the copying operation must fit between two successive references to the
page, Knowing how long it takes to copy a page allows us to calculate
the maximum rate at which I/0 can run if this scheme is to work, For
example, on the current Multics, with the Honeywell 645 processor, a page
can be copied in about 1,5 ms, This would mean an absolute maximum of
an I/Q reference each 1.5 ms, or 666 1/0 references each second. If
each reference transmitted 36 bits, the resulting bit rate would be
about 24,000 bits per second,

Unless the copying operation is synchronized with the I/0 references,
there is no guarantee that the I/0 may not just happen to reference
the page during the copy. Tt is difficult to achieve synchronization;

a better solution is to try the copying operation several times. 1f, for
example, the actual allowed maximum I/0 rate were less than one half the
limit calculated above, then if during a copy an I/O reference occurred,
it follows that before the next reference occurs there 18 bound to be
time to fit in a second copying operation. Restricting the actual 1/0
transfer rate to one half the theoretic maximum is thus a simple solution

to assure success of the copy on at most the second try.

162

Since the copying time 1is nbrmally proportional to the size of the
item to be copied, the cost reducing storage allocation technique
developed in the last section can be used to advantage here. If,
because of contiguous allbcatton, only the area itself need be moved,
rather than the whole page which contains it, less time is required for
the move. For example, if a 100 word area rather than a 1000 word page
must be moved, the maximum acceptable I/0 rate is increased tenfold,

What if a device is too fast for this technique? One obvious
solution 18 to insist that such a device not run continuously, It would
then be possible to use the alternate technique of waiting (with a fixed
time limit) for the area to become unfrozgﬁ. ‘Looking at practical devices,
it is difficult to find a device which funs faster than the 24,000 bits
per second estimated above for which the fixed time limit technique
would not be applicable. Thus it might seem that these two techniques
h;ve covered all the situations, especialiy since the speed of processors
is going up, which will increase the allowable device rate,

If there exist devices which run too fast and continuously, there
is an alternative to the above technique, less elegant but perhaps
useful, which is to turn off access to the page during the copying
operation., This will have the effect of bringing the I/O process to an
unexpected temporary halt as it attempts to reference the area. If this
halt causes the irreversible loss of data, the technique is unacceptable.
If the only result is that the device must stop, so that throughput is
reduced, then the technique is probably usable, for events such as
reconfiguration are normally infrequent so that the overall effect is

minor,

163

It was noted above that the actions of checking the modified bit
and changing the address in the page table entry must be done as one
step. Clearly, if another process were to modify the area between the
two steps, the modification would be lost, There are several ways
these two steps could be done as one. The bit could be tested and the
address stored using an interlocked read-rewrite memory cycle. Or an
additional bit could be added to the page table entry which, when set,
would cause the referencing processor to halt until the bit is turned
off. This bit could be used to protect the two actions. The bit could
also be used to halt the I/O during the actual copying operation, if that
were to be done. Another way to make the actions indivisible is to stop
all the other processors during the steps, This requires no special bit,
but has a more widespread effect.

Additional complexity is introduced into these schemes if, as in
Multics, an associative memory is used in the processor to remember
recently used virtual-real mappings. The interested reader should be
able to convince himself that by clearing the associative memory at the
proper moments, the scheme will still work, For further details the

reader may consult the thesis by Schell,

Summarx

The purpose of this chapter has been to find an alternative to the
fixed time limit technique which would allow a wider class of devices to
use the frozen environment as an interface to the virtual memory. Such
an alternative has been described. Central to its success was the

efficient use of memory by means of some scheme such as contiguous

164

allocation. The goal of fair share resource distribution was still met
by use of a time limit, with increased efficiency of memory usage
lengtheniﬁg the time limit to the extent that it might in practice be
infinite, The goal of compatibility with the need of the system to
rearrange virtual memory was met by abandoning the technique involving
the time limit for a scheme in which the rearrangement occurs between
successive memory references, The resulting variant of frozen environment
is capable, under appropriate circumstances, of interfacing such devices

as typewriters, which before were completly incompatible.

Chapter 8

Conclusion

The intent of this thesis has been to construct an I/0 system which,
in the context of a large virtual memory time sharing system, allows I/0O
control programs to be expressed naturally and to be executed efficiently.
The purpose of this chapter is to review the system, and to consider the
extent to which it has met its goals.

Chapters 3 through 7 have built up this I/0 system as a series of
additions to a basic framework presentéd in Chapter 2.» The reader may
feel a little uncertain as to the nature of the total system thus assembled,
especially since several chapters have presented alternative techniques
(such as Chapter 6, with four techniques for efficient use of processors)
which lead to alternative forms of the total system. It thus may be help-
ful in review to summarize the system which results when these pleces are
put together.

The:arrangement of the physical modules which compose the system has
been pictured in Figuré 8-1. The devices are connected to the system via
the device selector, which, in conjunction with the address mapping hard-
ware, lets a processor refer to a device as if the device were a segment
in a virtual address space. This device interface is the crux of the
basic system developed in Chapter 2.

There are, from the user’s viewpoint, tﬁo ma jor additions to this
basic system. One, a physical modification to the arrangement pf the
modules, is the several buffers pictured in Figure 6-1, which are used
to cope with the timing characteristics of the devices, and which are
used in conjunction with the technique of suspension and restoration

165

166

Processors Processors

device

Memory box | Memory box selector

buffers

4
]

\~___w,____J

devices

Figure 8-1: Final configuration of system modulés.

167

to control the use of processors, The other addition to the basic system
is the technique of the frozen environment, which does not involve
modification to the hardware modules, but rather a modification to the
software which comprises the virtual memory manager. This technique,
like the buffer, is used to cope with the timing constraints of devices,
and is used in conjunction with the technique of contiguous storage
allocation to control the use of memory.

The fashion in which these two techniques are employed in the
operation of a device depends on the characteristics of the device in
question. There is a trade-off between the techniques, since both can
be used to deal with timing delays, while each is useful in eliminating
some other problems. For example, in the case of very slow or very fast
devices, it will be possible to dispense with the use of the buffers
altogether, which is desirable when possible, because of the complexities
of buffers. It is perhaps unfortunate that because of the choice between
these two techniques no single thumbnail sketch can be constructed showing
the operation of a device. It is unfortunate but it is also crucial that
this choice exist, in order to cope with the wide variation in device
characteristics. For example, the range of transmission rates found in
devices varies by more than six orders of magnitude. It should not be
surprising that any architecture which can deal with this variability
must contain some choices,

As the various chapters have added pieces to the basic system of
Chapter 2, they have also added new lines to the interface between the
device and the device selector. Appendix B has been included for the

benefit of those readers who would like a review of the interface in its

168

final form,

One module which was omitted from Figure 8-1 w;s the specialized
processor, or SP, of Chapter 6, The reader may remember that the Sp-
was proposed as an alternative.to the buffer, in order to deal with
certain special problems. Thus it has been assumed that for the system
Ssummarized here SPs are unnecessary. Another possible system which
could be built out of the pieées described in the various chapters
would be a configuration wﬁich used SPs to control the cost of
processors, and which dispensed with the use of buffers completely by
using the frozen enviromment to deal with all questions of timing. ‘Such
an alternative might be appropriate in certain cases.

The above summary of the system reflects the user's point of view.
Another form of a summary is & 1list of the particular modules in the
operating system which must be modified or created so that the 1/0
works properly.

A contiguous storage allocator must be created to provide

storage at acceptable cost for the small segments typically
used in 1/0.

The virtual memory mapager must be modified so that it accepts

requests to.freeze and unfreeze the environment, This will
require that the manager use the configuous stofage allocator,
and also that it inferface to the modules responsible for
managing resources other than memory,

. The processor scheduler must be modified so that in response

to the need processor signal the relevant process 18 scheduled,

A device manager must be created, which allocates devices to

—TIT

169

particular processes, and which creates the segment representing
the device in the virtual address space of the process,

. The memory reconfiguration routine must be modified so that it

can deal with frozen memory.

Yet another way to summarize this system is to remember the two
goals propsed in Chapter 1, which were that the user have direct
access to his device, and that he be able to construct his I/0 control
program in a natural manner, and to note which features of the system are
important in achieving these goals.

The first goal was that the user be allowed direct access to his
device, or put another way, that it not be necessary for some system
program to interpret the user's I/0 control program for him. Three features
of the system contribute to this goal. First, the representation of the
device as a segment provides a means of controlling the user's access
to each device individually. Otherwise some special registers would be
needed to control which user accesses which device. Secondly, the fact
that the I/0 control program executes in the environment of the user means
that the program is automatically constrained by the protection controls
on the environment. Multics is an example of the alternative; the channels
which perform the I/0 in Multics do not have address mapping ability,
so they must operate in the environment of réal rather than virtual
addresses. Since this environment provides no memory protection, the user
cannot write programs for the channels. The third point is related to this
last one; it is presumed that the cost of activating the user’s environ-
ment is sufficiently small that it is economically reasonable to provide

this environment each time the I/0 control program runs. In other words

e o L

170

it must be cheap to start a process running. These three features:
representation of the device as a segment, rumnning the I/0 control
program in the user’s environment, and keeping the I/0 process cheap to
bring into execution, are the crucial features in giving the user direct
access to his device,

The other goal was that the user be able to construct his I/O
control program simply and naturally, Two features of the system
contribute to achieving this goal. The first is the elimination of the
interrupt from the environment of the user, and the elimination of the
so-called "interrupt handler structure' of the I/0 control program.
Chapter 2 argued at some length that the natural form of the I/0 control
program was sequential, rather than being structured by interrupts. The
other feature which contributes to the goal of programming simplicity
was the ability to write the I/0 control program using the language of
the central processor, or in fact using a high level language.

This thesis has proposed one particular I/0 architecture. It
should be clear to the reader that there is nothing unique about the
details of the architecture. 1Indeed, the thesis itself has pointed out
certain alternatives to the scheme. The role of this particular proposal
is, first, to serve as an existence proof that in the context of virtual
memory it is possible to construct an I/0 system which allows the user
to program his device directly in a natural and efficient manner.

The other role of this proposed architecture is to clarify the
various interactions which exist among the features of the I/0 system.

It is clear that to build a successful I/0 architecture, one must solve

171

several problems. One muét deal with issues 6f protection, efficiency,
program structure, timing and so on. Further, it is clear fhat each
feature of the I/0 system will have an effeét on several of thgse problems,
The resulting interaction between the featureé means that‘one cannot
consider each feature in isolation, for thé success of a feature depends
on the fashion in which it meshes wiﬁh other features. This thesis has
tried fo find an order for cdnsidering the problems of I/0 which redﬁces
the degree of interaction between the various features,‘first considéring
issues of program structure, then considering timing and efficiency.

Thus again the architecture héré proposed serves as an existence proof

that there exists an orderly procedure for designing an I/0 system,

Future Research

An obvious question which must be asked about any research such as
this is where to go from here. The purpose of this section is to
identify various areas in which further research would be appropriate and
fruitful,

It would be most valuable to test out the I/0 system proposed in this
thesis by implementing it, Only in this way can the practicality of the
system be proven. More importantly, only by implementing the system will
it be possible to determine how users will take advgntage of it. This
thesis haé not proposed spgcific 1/0 strategies which the user might
employ; rather it has built a framework within which the user is given
the freedom to construct whatever mechanisms he needs. By observing
the mechanisms which he actually builds it may be possible to disco&er
new tools or modifications to existing facilities whiqh the system ought

to provide for the user or simplifications which would be acceptable.

172

There are several parts of this I/0 system which would have to be
specified much more completely if the systeﬁ were to be implemented. For
examplé, several design decisipns must be made about the device selector,
The selector must be 1mp1eménted in such a way that requests from one
processor -do not interfere with or delay requésts from other processors,
because a request to read or write data may bé pending for a considerable.
time. The selector must operﬁte properly if‘a process with a pending read
or write is suspended and restored. And the behavior ofrthe selector
must be specified for the éase where more than one process tries to
reference the same device. There are also detailed questions about the
interface between the device and selector, such as what sequence of signals
occur if a pending operation is aborted and another started. These sorts
of questions have not been considered in the thesis, for they do not
conitribute to the understanding of the basic structure being developed,
but clearly in a practical case they would be important,

This thesis has not discussed certain auxiliary modules needed as
part of the I/0 system. For example, the system must contain a module
which is called at the time a device is assigned to a process, whose
function is to regulate the utilization of devices. It must make certain
that one process does not hog devices to the detriment of the otheré,
it must confirm the user's authorization to usg the device, and it
must implement any charges which the system imposes for the use of devices.

It is common to alter the number and arrangement of devices
attached to the éystem, so it is important that there be an orderly way
for the I/0 system to determine which devices are connected. It might

be useful or necessary to add a new line to the device interface by

173

means of which the processor may check the existence and identity of the
device, ‘fhé module described in the pteviousfpanagxuph, which regulates
device ufflization,‘must have access t§ this infornntion\in order to make
‘p;oper‘allocatibn decisions, Hopefully, it will be pessible to change
the arrangement of devices while the system is ruﬁﬁing.

One aspect of I/0 which could be considered in greater detail is-
what features should be present in a high-level language which is to be
used for 1/0. This thesis has discussed to a certain extent thé.semantics
of 1/0, and has talked about Program structure, but there remain such
questions as the lanquge representation of the segment which is the device,
the syntax for error recovery and process synchronization, and the form
of the data transfer operation. In general it would be worth-while to
catalog the features which must .be present. in a language so that it can
perform I/O.

The thesis has mentioned that conversion from virtual to real
addresses is usually expedited by means of an associative memory which
remembers virtual-real relationships. If a specialized processor, or SP
is used for any 1/0, then it is necessary qa;héeidﬁ whether the SP should
have an associative memory, and how that membny should be structured. For
example, could parts of the associative memory be shared among several
SPs to reduce the cost? For one view of thii_pnablem the reader may see
the thesis by Smith (37).

This thesis has restricted itself to considering I/0 performed
by the user, and has not discussed I/0 performed by -the system, for example
disk or drum I/0 to support paging. There is no reason, however, why the

device interface described here cannot be used.by the system as well,

174

and this is clearly desirable, as it avoids the need for a separate I/O
structure for the system, The system would use this I/0 structure in
a .slightly different manner than the user, however, and this thesis has
not considered these differencés. For example, in what address space
does the system refer to its device? - What process structure does the
system use to handle erroré? What timing problems does the system have
and how does it cope with theﬁ?

Chapter 6 discussed the possibility that execution delays might
be introduced in the I/0 control program because of processor scheduling,
and 1t'Suégested that buffering might be used to deal with these delays.
Buffering may be iﬁapprOpriate if, for example, a computation must be
performed promptly on an incoming item, for buffers do not eliminate
delays, An alternative solﬁtion is to modify the process scheduler
so that it is able to provide a guaranteed upper limit on tﬁe time from

the arrival of the need processor signal until the process is running.

The thesis has not discussed such a scheduler, and it would be an interesting
project to show that one could be integrated into this scheme. One

scheduler which the author believes to be suitable is described by

Fiala (19) and by Strollo, Tomlinson and Fiala (38).

A problem which is currently under study in the computer industry is
how to build a multiple processor which uses cache memories, The cache
memory, & small, fast memory used to hold recently referenced pages
in a quickly accessible fashion, is a part of the processor. Thus
if two processors reference the same page they will each get a separate
copy in their their own cache, and if one or both write in the page, they

will create two inconsistent copies. Thus any multiple processor cache

175

system must have some inter-processor qommunication scheme to insure
that the copy in each cache is identical, 1I/0 can interact with the use
of cachés because one of the two processors referencing a page may be
an SP, ofquecialized processof. While an SP might not have a cache, it
must have all the mechanisms needed to maintain consistent copies, for it
may modify a page which is currently in the cache of some other processbr.
The addition‘of this mechaﬁisﬁ to the SP may run counter to the desire
to keep the SP as simple as possible. Another difficulty arises if there
are a large numbef of SPs, as there might be if SPs are indeed very cheap.
A large number of SPs might render impractical any co-ordination scheme
which féquired each processor to be cdnnected to evéry other.

While in these fashions I/0 may make the use of caches more
difficult, I/0 also provides a simplification if the frozen environment
scheme is being used, for thé system can alwayé tell which pages may be

referenced by an SP, This knowledge may represent a way to special-case

the problem of SPs and caches.

Appendix A
Details of Buffer Algorithms

Chapter 4 describes a particular buffer algorithm which had as a goal
that the interface which the buffer presents to the seleﬁtor should be
identical in behavior to the interface provided by the device itself, and
similarly that the interface whiéh the buffer presents to the device be
identical to that from the sélector. This appendix presents the details
of these algorithms for the benefit of the reader who wishes to confirm
that the algorithms can be constructed, and to give-an idea of their
complexity. |

The device-selector interface is reviewed in detail in Appendix B,
where the function of all the lines is d18cussed The algorithm involves
the following lines from the interface:

Command lines, from selectorwto device -- the two commands used
in these algorithms are read-data and write-data.

Ready acknowledge pair to control command lines -- (c-rdy and
c-ack). '

Data liﬂés, in either direction -- (d).

Read and write ready-acknowledge pairs, to control data lines --
(r-rdy, r-ack, w-rdy, and w-ack).

Reverse write ready line, from devicg to selector -- (rev-w-rdy);
this was introduced in Chapter 5.

. Read operation required (ror) and write operation required (wor)

from device to selector.

In review, the procedure for transferring an item across the inter-
face consists of two parts: first the command, from the selector

176

177

to the device, and second the item itséifl'bn‘the data lines. 'The‘
transfer of thé command and of the 1tém aré;ggch under control of a pair
of lines called ready and acknowledge. Wheﬁ the command or item has been
placed on the appropriate Iineé, a signal will be sent from'sendér to
receiver on the appropriate ready line, indicatipg'ﬁhat the information
may be read. When the item has been“Sueéessﬁuily read, the receiver will
signal back to the sender on Ehe'gssociatéd3acknow1edge line.

The first algorithm to be presented will read data ffdm device to
selector. As stated in Chapter 4, it was as follows:

When empty buffer receives read data command from selector, acknow-

ledge it and pass it on to the device.

After handling the read coﬁﬁand, wait for device to send data back.

When data arrives, acknowlgdge it, and pass it on to the selector.‘

When empty buffer receives ror signal from device, fab;ipate a read

data command and send it to device. Send rofﬂfﬁ-selector. When

data arrives from device and read data,céémand arrives ffom selector,

pass data to selector.

In order to 8pec1fy in detail all the various sequences of signals
which may arrive at the two interfaces to the buffer, this algorithm is
presented in Figure A-1 aé a state transition diagram, 1In this diagram,
states 1-4 represent the first two parts of éhe algorithm; states 5-9
deal with the ror signal,

Two algorithms were presented for the wriﬁing of data, one with and
one without the write openhtion required line (wor). The one not involving
the wor line, being simpler, has been preferred throughout ehe thesis,

Both will be presented here to show the relative éompiexity.

r-ack/s

178

1 c-rdy

3
and read-
data/s c-ack/d send
c-ack/s
ror/d
send
c-rdy and ornd
read-data/d, f;ZCkiia
ror/s ey
Q, &/
Ly
% 9
)
e
%o
6 RN
‘e
&
o\
">
@
?
&/
r-rdy/d o'b
()
r o"o'
2
Fr
pick up 2
data, send
r-ack/d
Legend
c-rdy and read-data/s state #
{
8
signal/origin
Origin:

= device interface
= selector interface

Figure A-1: Read data algorithm for buffer,

179

The algorithm not involving the wor line is as follows:
Whenever the buffer contains a data item from the selector,
send a write data éommand to device, and an acknowledgement,
send data to device; When a write data command arrives from
selector, acknowledge, to wait until buffer is empty. Then
wait for data from selecﬁor, pickup data and acknowledge it.
This is pictured as a state transition diagram in Figure A-2. Figure
A-3 presents the variant which contains the wor line. As the diagrams
show, the use of the wor line adds considerable complexity to the buffer's

algorithm,

180

send
w-rdy and
data/d

w-ack/d

c-rdy and _ rev-w-rdy/d
write-data/s

4
send
c~ack and w-rdy/s wack/s, crd c-ack/d
rev-w-
rdy/s and write-
data/d
c-rdy and
write-data/s
Y
8
send send
w-ack/d w-rdy and \rev-w-rdy/d
data/d < c-ack/s

Figure A-2: Write data algorithm for buffer without wor line.

w-ack/d

181

Pick up
data, send
w-ack/s

c-ack and
rev-w-

32371 c-ack/s,
and
c-rdy/d
c-rdy and
writz-data/s w-rdy/s c~ack/d
11 6

Send
rev-w-

Send

c-ack and
rev-w- c-ack/d
rdy/s

and
data/d

rev-w-rdy/d

Figure A-3: Write data algorithm for buffer with wor line.

Lt

Appendix B
Review of Interface Between Device and Device Selector

The interface between device ahd,devige selector has been designed
to allow asynchronous interchange of data, staﬁe information, record
numbers, and potentially other sorts of values. Modifications to the
interface have allowed it to operate Succéssfully in conjunction with
buffering, with muitiplexinngf various éorts, aﬁd with processor
scheduling.

Becauée the interface is asynchronous, control lines are needed to
co-ordinate the transfer of information. In particular, two lines, called
____x and acknowledge, are used for any set of information lines. The
ready line runs from the sender to the receiver of the 1nformation, and
a signal over it means that the information lines are now carrying a
valid set of SLgnals and may be read, The acknowledge line runs in the
reverse direction, from the receiver to the sender of the information, and
a signal over this line means that the information has been received, and
that the sender of the information need no longer hold the information
lines in a valid state, ' | |

The various lines in the interface are diagrammed in Figure B-1.

The following is a description of the function of each line.

Command - The steps necessary to move an item of information across

the interface consist of two parts: thevfitlt"t.cnumnnd,frqm selector

to device declaring what is to be transferred and in which direction,
the second the item itself., These lines oarry the command. It‘is
presumed that there are sufficient lines to distinguish the various

commands, .

182

T

183

L command ready - —

] j =

L < command acknowledge —

] -
command -

— e

huontd . b
~ read ready

1 1

) | -

read acknowledge —

1 I

b e
write ready -

m L
device device
~ write acknowledge

selector — » ge —
ot I
+~ data - |
— r and t signal]
< error event s 8
< read operation required
1 |
buffer error recovery -
“ rever ite read
- everse write ready —
o) -
+ need processor
— —
J | -

Figure B-1: Complete device-selector interface.

184

Command ready and command acknowledge - these two lines control the

flow of information across the command lines, in the fashion

described above,

Qggg - the second half of each transaction at the interface is the
transfer of the item specified by the command. These lines carry

the item itself. Whether the item is data, state word, or record
number; and whether the item is read or written is specified by the
command, The number of lines in this connection has not been
specified as part of thé thesis , but unless the interface is modified
there must be sufficient lines to hold the state ﬁord and the record

number information.

Read ready and read acknowledge - these lines control flow of infor-

mation in the data lines in the case in which the information moves

from device to device selector.

Write ready and write acknowledge - these lines control the flow of

information on the data lines in the case in'which the informat ion

flows from selector to device.

Reverse write ready - in order that certain kinds of multiplexing

work properly, it is necessary that the device itself generate a

signal whenever it is ready to perform the data transfer. For reading,

the read ready line serves this function; the reverse write ready is
provided in the case of writing. ’The meaning of the signal to a
multiplexor is that it should now assign itself to this device, This
line is not strictly a ready line, for it does not control information

transfer as a ready line does, but the buffer algorithms of Appendix A

185 i

have been adjusted so that the write ready signal is generated only

in response to a reverse write ready.

Error and event signals - these are lines which the device uses to

report errors and events as discussed in Chapter 2. "Errors and events
are distinguished in that an error signal reports a synchronous
occurence and results iﬁ an error handler being run on the I/0
process, whereas an event signal reports an asynchronous event and

results in the scheduling of an event process,

Read operation required - this line rums from device to buffer, and

is used during reading, to force the buffer to accept an item from
the device if the processor lags behind. See Appendix A for the

specific sequence of signals.

Buffer error recovery - these lines run from the processor through

the buffers, and serve to restore the buffer to a known state after
an error. Two specific recoveries were discussed in Chapter 4:
discarding the buffer contents and reversing the direction of flow

from writing to reading.

Need processor - this signal is received by the processor, and is

generated by a device or by a buffer. Its meaning is that the I/0
process in charge of the service should be scheduled.

Comparison with Other I/0 Interfaces

A discussion of two other I/0 interfaces will give some further
insight into the operation of this interface, andeill at the same time
show that this interface is not greatly different from interfaces in use

today.

186

The interface which is used on Multics for control of devices other
than communication devices is the ""Common Periphgral Interface'" (25) which
is standard over much of the Honeywell line. In major respects it is
similar to the one proposed here. All information is transferred

asynchronously, using control lines similar to ready and acknowledge.

Also, one set of lines is used both for data and statﬁs, the uses being
distinguished by a command. The interface differs in that there are
Separate lines.in each direction, and the data lines to tﬁe‘device also
carry the commands. A special control line is used to signal the presence
of a conmand on these lines.

There are two important differences between this interface and the
one proposed in this thesis. First, the Honeywell interface has four lines
running from the device, which at all times indicates the state of the
device. Thus it is always possible to test the state withqut sending a
command and receiving a state word across the interface. This avoids the
complex interaction which results from needing to test the state in the
middle of some other interface transaction, Since additional state infor-
mation can be obtained by sending a command across the interface, these
four lines could be viewed as a cross between state information and the
error and event lines. The Honeywell intefface does‘contain a separate
line to report asynchronous events. |

The other important distinction between the interfaces is that the
Honeywell interface allows a command to tfiggef not one)but a number of
data transfers. The advantage.of this is that it increases throughput
across the interface by eliminating the repeated command transfer. This

form of the command is consistent with the view that a channel executes

T

L N = i A Bl SUPLLE N R

187

a single instruction which results in a sequence of data transfers. The. .
one instruction would then trigger the one COhmand. In the system of this
thesis, in which each data transfer is_performed.by aiéeparate machine
instruction, it is more reasonable to imagine the command to be generated.
and sent anew as part of each transfer. However, one could déﬁiée é
special line to achieve the same effect as the Honeywell interfacé:za line
from seleétor to device whoseAméaning is '"use again the same comﬁand as
last time'.

The IBM System/360 and System/370.have a standard interface
between channel and device control unit which serﬁes the same function
as the interfaces so far discussed (26). It is again similar, with
asynchronous transfers over oneyset_of'data lines in gégh diréction~
regulated by control lines similar to sgggz and écknowlédg‘. Like the
Honeywell interface, the IBM interfacevalibés,bne command to triégef not
one but a sequence of transfers, The IBM interface differs in that the
sequence of control signals across the inﬁerface 18 much more cbmplicatéd,
to some extent because the channel may be shared among several devices, so
that the interface control signaléimust aléb>sélact.the4ptoper deéice. An
interesting question is whether the protocol used to select the device
could be used as a means of {mplementing the device seléctor of this

thesis,

Bibliography

(D Bolt Beranek and Newman, Inc., Specifications for the Interconnection
of a Host and an IMP, Report 1822, Cambridge, Mass.

(2) Boulton, P.I.P., and P. Reid,"A Process-Control Language,! IEEE
Trans. Computers, Vol C-18,11, Nov. 1969.

(3) Chang, W., "Computer Channel Interference Analysis,'" IBM Systems
Journal, Vol 4,2, 1965.

(4) Chu, W.W., "Buffer Behavior for Batch Poisson Arrivals and Single
Constant Output," IEEE Trans. Communication Technology, Vol COM-18,5
Oct. 1970.

(5) Chu, W.W., "A Study of Asynchronous Time Division Multiplexing for
Time-sharing Computer Systems," Proc. AFIPS 1969 FJCC, Vol. 35
AFIPS Press, Montvale, N.J.

(6) Chu, W.W., "Buffer Behavior for Poisson Arrivals and Multiple
Synchronous Constant Qutput', IEEE Trans. Computers, Vol C-19,6
June 1970.

N Chu, W.W., "Design Considerations of Statistical Multiplexors,”
ACM Symposium on Problems in Optimization of Data Communication
Systems, Pine Mtn, Georgia, Oct. 1969.

(8) Corbato, F.J., J.H. Saltzer, and C.T. Clingen, "Multics -- The First
Seven Years,'" Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale
N.J.

9) Corbaté, F.J., and Vyssotsky, V.A., "Introduction and Overview of
the Multics System," Proc. AFIPS 1965 FJCC, Spartan Books, Washing-
ton, D C.

(10) Cosserat, D.C., "A Capability Oriented Multi-processor System for
Real-time Applications,'" International Conference on Computer Commu-
nication, Washington, D C, 1972.

(11) Digital Equipment Corporation, PDP-11 Processor Handbook, Maynard
Mass, 1971.

(12) Digital Equipment Corporation, PDP-11 Péripherals and Interfacing
Handbook, Maynard, Mass., 1971.

(13) Delgalvis, I, and J.P. Bricault, "An Analysis of a Request Queued
Buffer Pool," IBM Systems Journal, Vol 5,3, 1966.

(14) Delgalvis, I, and G. Davison, ''Storage Requirements for a Data
Exchange,'" IBM Systems Journal, Vol 3,1, 1964

188

T TTIIT

(15)

(16)

(17)
(18)

(19)

(20)
(21)
(22)

(23)

(24)
(25)
(26)
(27)

(28)

(29)

189

Dijkstra, E.WQ, "The Structure of the 'THE'-Multiprogramming System,'
Comm ACM Vol 11, 5, May 1968.

Dor; N.M., "Guide to the Length of Buffer Storage Reqoired fof
Random (Poisson) Input and Constant Output Rates)' IEEE Trans.
Electronic Computers, Vol EC-16, Oct. 1967 L

England, D.M., "Operating System of System 250," Intérna,tionél
Switching Symposium, MIT Cambridge Mass, 1972

Feiertag, R.J., and E.I. Organick, "The Multics Input/Outputisystem,"
ACM Third Symposium on Operating Systems Principles, Oct 1971.

Fiala, E., Scheduling of Real-time Processes in a Time-shared Envi-
romment, MS Thesis, Dept. Electrical Engineering, MIT, 1968.

Gaver, D.P., and Lewis, P.A.W., Probability Medels For Buffer Storage
Allocation Problems, IBM Research Report No. RC 2590, Aug 1969.

Gertler, J., "High-level Programming for Process Control", Computer
Journal, Vol 13,1, Feb. 1970.

Halton, D., "Hardware of the System 250 for Communications Control,"
International Switching Symposium, MIT, Cambridge, Mass. 1972.

Hatch, T.F. Jr., and J.B. Geyer, "Hardware/software Interaé;ion on
the Honeywell Model 8200", Proc. AFIPS 1968 FJCC, Vol 33, AFIPS
Press, Montvale, N.J.

Held, M., and R. Carp, "Dynamic Programming and Sequencing Problems'
J. Soc. for Industrial and Applied Mathematics, Vol 10,1, 1962.

Honeywell Information Systems, Inc, Product Pexformance Specification
Common Peripheral Interface, No. 43A130524 i

IBM, sttem[360 and S zstem[37 [O Interface- Channel to Control
Unit (Original Eguig!gg t Manufacturers’ Information), GA22- 6974-

Manchester, G.K., "Production and Stabilization of Real-time Task
Schedules,' JACM Vol 14,3 July 1967.

McKenzie, A., Host/Host Protocol for the ARPA Network, Network
Information Center Doc. 8246, Augmentation Research Center,
Stanford Research Institute, Menlo Park, Cal.

McQuillan, J.M., and others, "Improvements in the Design and Perform-
ance of the ARPA Network," Proc. AFIPS 1972 FJCC, Vol 41, AFIPS Press
Montvale, N.J.

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

190

Muntz, R.R., and E.G. Coffman, Jr., "Preemptive Scheduling of Real-
time Tasks on Multiprocessor Systems,” J ACM Vol 17,2, April, 1970.

Organick, E.I., The Multics System: An Examination of 1ts Structure,
MIT Press, 1972.

Ossanna, J.F. and others, " Communication and Input/Output Switching
in a Multiplex Computing System," Proc AFIPS 1965 FJCC, Spartan Books
Washington DC.

Plessey Telecommunications Research, Ltd., Architectural Features of

System 250 .

Roberts, L.G. and B.D. Wessler, "Computer Network Development to
Achieve Resource Sharing', Proc AFIPS 1970 SJCC, AFIPS Press,
Montvale, N.J.

Saltzer, J.H., Traffic Control in a Multiplexed Computer System,
ScD Thesis, MIT Dept. Electrical | Engineering, 1966 Also as
Project MAC report TR~30.

Schell R.R., Dynamic Reconfiguration in in a Modular Computer System,
PhD Thesis, MIT Dept. Electrical Engineering, 1971. Also as
Project Mac report TR~86.

Smith, A.A., Ingut[Outgut in Time-shared Segmented, Multiprocessor
sttems, MS Thesis, MIT Dept -Electrical Engineering, 1966. Also as
Project MAC report TR-28.

Strollo, T.R., R.S. Tomlinson, and E.R. Fiala, "A Time-shared’I/O
Processor for Real-time Hybrid Computation,” Proc. AFIPS 1969 FJCC
AFIPS Press, Montvale, N.J.

Telnet Protocol Specification, Network Information Center Doc. 15372
Augmentation Research Center, Stanford Research Institute Menlo
Park, Cal.

Wolman, E., "A Fixed Optimum Cell-size for Records of Various Lengths'
JACM Vol 12,1, Jan. 1965.

Wirth, N., "On Multiprogramming, Machine Coding, And Computer Organi-
zation," Comm. ACM, Vol 12,9, Sept 1969.

Biographical Note

David Dana Clark was born on April 7, 1944. He grew up in St. Louis,
Missouri, where he attended John Burroughs High School. He then attended
Swarthmore College, majoring in Electrical Engineering. He was awarded

the McCabe Engineering Award as the outstanding engineering student in his
class. In 1966 he received the degree of BSEE with distinction.

He attended graduate school in Computer Science at MIT starting in
1966, receiving the MS and EE degrees in'September, 1968. Since 1967 he
has been associated with Project MAC, where his principal interest has been
research on the Multics system. He has also worked in the area of program-
ming linguistics; one project was the design of a high-level language for
~ operating systeﬁ implementation.

He was a teaching assistant in introductory circuit theory courses
at MIT; he also taught a semester introductory course on computers at
Wellesley College. As part of this latter project, he participated in the
writing of a manual for the language PL, which has since been used at MIT.

He is a member of Sigma Xi, Sigma Tau, the IEEE, and the ACM.

His Master's thesis was: A Reductions Analysis System for Parsing PL/I

He has written:
The Classroom Information and Computing Service, Project MAC
report TR-80, January 1971 (with M.D. Schroeder, R.M. Graham,
and J.H. Saltzer).

The Programming Language PL, MIT Dept. Electrical Engineering,
1969 (with A.L. Anger, A.A. Bushkin, and J.R. Coffman).

191

This empty page was substituted for a
blank page in the original document.

CS-TR Scanning Project
Document Control Form Date: A /&3 19

Report# l<s TRR- /i)

Each of the following should be identified by a checkmark:
Originating Department:

O Artificial intellegence Laboratory (Al)
: x Laboratory for Computer Science (LCS)

Document Type:

K Technical Report (TR) [0 Technical Memo (TM)
O Other:

Document Information Number of pages: [T~ (198 ~ mAGES)

* Notto include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:

[0 Typewriter [] oftsetPress [] Laser Print
[] InkJet Printer X\Unkmwn [] other:

Check each if included with document:

N poD Form (X) [0 Funding Agent Form [J cover Page
O spine [0 Printers Notes [Photo negatives
O Other:

Page Data:

Blank Pageseypagemmben,_FagLtows LAST PAGY (tﬁD

Photographs/Tonal Material wy pege numben:

Qther (ot sescriptionpege numben):
Description : Page Number:

FEmace maf (1 190 wvir’so TiTLE PAGE, I~ [
Wiy BLANIK.
(i93-~197) ScaneoiRy L DoD(l))_rpGr?S‘[[&)

Scanning Agent Signoff:
Date Received: /35 /56 Date Scanned: 2/ /i / 94 Date Retumed: . J //2/%6

J
Scanning Agent Signature: W (}V ! QﬂeB-
|

Rev %94 DSL.CS Document Control Form cstriform.ved

BIBLIOGRAPHIC DATA 1. Report No. 2 3. Recipient’s Accession No.
SHEET MAC TR-117

4. Title and Subtitle 5. Report Date ;' 1ggyed

An Input/Output Architecture for Virtual Memory January 1974
6.

Computer Systems

7. Author(s) 8. P:erforming Organization Rept.
David D. Clark o MAC TR-117

9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
PROJECT MAC: MASSACHUSETTS INSTITUTE OF TECHNOLOGY: 1. Contract/Grant No.

545 Technology Square, Cambridge, Massachusetts 02139 NOOO14-70-A-0362-0006

12, Sponsoring Organization Name and Address 13. Type of Report & Period
Office of Naval Research Covered: Interim
Department of the Navy Scientific Report
Information Systems Program 14.

Arlington, vVa 22217
15. Supplementary Notes

Ph.D. Thesis, Department of Electrical Engineering

16. Abstracts; Tn many large systems, user I/0 must be performed for the user by the system,
in order to assure such system goals as security, response, and efficiency. However,
reduced overhead and increased flexibility would result if the user could perform his
I/0 directly. This thesis presents a design for an I/0O subsystem architecture which, if
the context of a segmented, paged, time-shared computer system, allows the user direct
access to I/0 devices. Some conclusions of this thesis are:1) that in order to provide
a coherent program structure, I/0 operations should be contained in a separate I/0 pro-
cess, 2) that to allow the user to refer to his devices in a simple fashion while pro-
tecting his devices from other users, the I/0 device should be represented to the user
as a segment, 3) that the virtual memory can meet the timing needs of the I/0 system
without compromising its own functions by the use of time limits on the duration of the
I/0 operations, and 4) that interrupts should not be part of the user environment, but
should be hidden from the programmer, so that the I/0 program he constructs is sequen-
tial rather than interrupt driven in structure.

17. Key Words and Document Analysis. 17a. Descriptors

Computer Operating Systems
Input/Output
Virtual Memory

Time=-Sharing

17b. ldentifiers /Open-Ended Terms

17c. COSATI Fie 1d/(}roup

18. Availability Statement 19. Security Class (This 21. No. of Pages
chort?
Unlimited Distribution UNCLASSIFIED 192
20. Sccurity Class (This 22. Price
rite Projec > Publications Pagc
W Proj t MAC P UNCLASSIFIED

FORM NTIS-35 (REV. 3-72) USCOMM-CC 14952-P72

THIS FORM MAY BE REPRODUCED

INSTRUCTIONS FOR COMPLETING FORM NTIS-35 (10-70) (Bibliographic Data Sheet based on COSAT!

Guidelines to Format Standards for Scientific and Technical Reports Prepared by or for the Federal Government,
PB-180 600).

1. Report Number. Each individually bound report shall carry a unique alphanumeric designation selected by the performing
organization or provided by the sponsoring organization. Usc uppercase letters and Arabic numerals only. Examples

IFASEB-NS-87 and FAA-RD-68-09.
2. l.eave blank.
3. Recipient's Accession Number. . Reserved for use by each report recipient.
4. Title and Subtitle. Title should indicate clearly and briefly the subject coverage of the report, and be displayed promi-

nently. Set subtitle, if used, in smaller type or otherwise subordinate it to main title. When a report is prepared in more
than one volume, repeat the primary title, add volume number and include subtitle for the specific volume.

5. Report Date. liach report shall carry a date indicating at least month and year. Indicate the basis on which it was selected

(e.g., date of issue, date of approval, date of preparation.

6. Performing Organization Code. Leave blank.

7. Author(s). Give name(s) in conventional order (e.g., John R. Doe, or J.Robert Doe). List author’s affiliation if it differs

from the performing organization.
8. Performing Organization Report Number. Iunsert if performing organization wishes to assign this number.

9. Performing Organization Name and Address. Give name, street, city, state, and zip code. List no more than two levels of
an organizational hicrarchy. Display the name of the organization exactly as it-should appear in Government indexes such

as USGRDR-I.
10. Project/Task/Work Unit Number. Use the project, task arnd. work unit numbers under which the report was prepared.
11. Contract/Grant Number. Insert contract or grant numbgr vunder which report was prepared.
12. Sponsoring Agency Name and Address. Include zip code.
13. Type of Report and Period Covered. Indicarte interim, final, etc., and, if applicable, dates covered.
14. Sponsoring Agency Code. leave blank.

15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . ..
Translation of . .. Prescnted at conference of . .. To be published in ... Supersedes ... Supplements . . -

16. Abstract. Include a brief (200 words or less) factual summary of the most significant information contained in the report.

If the report contains a significant bibliography or literature survey, mention it here.

17. Key Words and Document Analysis. (a). Descriptors. Select from the Thesaurus of Engincering and Scientific Terms the
proper authorized terms that identify the major concept of the research and are sufficiently specific and precise to be used
as index entries for cataloging.

(b). Identifiers and Open-Ended Terms. Usc identifiers for project names, code names, equipment designators, etc. Usec
open-cnded terms written in descriptor form for those subjects for which no descriptor exists.

(c). COSATI Field/Group. Tield and Group assignments arc ro be taken from the 1965 COSATI Subject Category List.
Since the majority of documents are multidisciplinary in nature, the primary Field/Group assignment(s) will be the specific
discipline, area of human endeavor, or type of physical object. The application(s) will be cross-referenced with secondary

Field/Group assignments that will follow the primary posting(s).

18. Distribution Statement. Denote relcasability to the public or limitation for rcasons other than security for example ‘‘Re-

lease unlimited®’. Cite any availability to the public, with address and price.

19 & 20. Security Classification. Do not submit classifted reports to the National Technical

21. Number of Pages. Insert the total number of pages, including this one and unnumbered pages, but excluding distribution

list, if any.

22. Price. Insert the price set by the National Technical Information Service or the Government Printing Oftice, if known.

FORM NTIS-35%5 (REV 3-72) USCOMM-DC 14952-P72

Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the ML.L.T
Libraries. Technical support for this project was
also provided by the M.LT. Laboratory for
Computer Sciences.

darptrgt.wpw Rev. 9/94

