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Abstract

Integrated Services Packet Networks (ISPN) are designed to integrate the network service
requirements of a wide variety of computer-based applications. Some of these services are
delivered primarily through the packet scheduling algorithms used in the network switches.
This paper addresses two questions related to these scheduling algorithms. The first ques-
tion is: what scheduling services should an ISPN offer? In answer, we propose a scheduling
service model for ISPN’s which is based on our projections about future application and in-
stitutional service requirements. Our service model includes both a delay-related component
designed to meet the ergonomic requirements of individual applications, and also a hierarchi-
cal link-sharing component designed to meet the economic needs of resource sharing between
different entities. The second question we address is: what implications does this service
model have for the packet scheduling algorithms? We answer this question by constructing a
scheduling architecture, and then argue that any scheduling algorithm capable of supporting
our scheduling service model must conform to this architecture. The scheduling architecture
is derived from the natural precedence ordering of the service model’s various scheduling
goals.
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1 Introduction

The current Internet, and most similar networks, offers a very simple service model: all packets
receive the same “best effort” service. The term “best effort” means that the network tries to
forward packets as soon as possible, but makes no quantitative commitments about the quality
of service delivered. This service model can be realized by using a single FIFO queue to do
packet scheduling in the switches; in fact, this service model arose precisely because FIFO packet
scheduling cannot efficiently deliver any other service model. This single class “best effort” service
model provides the same quality of service to all flows?; this uniform quality of service is good,
as measured by delay and dropped packets, when the network is lightly loaded but can be quite
poor when the network is heavily utilized. Consequently, only those applications that are rather
tolerant of this variable service, such as file transfer (e.g., FTP), electronic mail, and interactive
terminals (e.g., Telnet) have become widely adopted in the Internet.

However, we expect there to soon be widespread demand for an emerging generation of computer
based applications, such as FAX, remote video, multimedia conferencing, data fusion, remote X-
terminals, visualization, and virtual reality. These applications represent a wide variety of quality
of service requirements, ranging from the asynchronous nature of FAX and electronic mail to the
extremely time-sensitive nature of high quality audio, and from the low bandwidth requirements of
Telnet to the bandwidth intensive requirements of HD'TV. To meet all of these service requirements
using the current Internet service model, it would be necessary (but perhaps not sufficient) to keep
the utilization level extremely low. A better solution is to offer a more sophisticated service model,
so that applications can specify their service needs and the network can then allocate its resources
selectively towards those applications that are more performance sensitive.

We expect that, in order to efficiently integrate the requirements of a wide variety of applications,
the next generation of wide-area computer networks will offer a significantly more sophisticated
service model. There is widespread consensus, in both the telephony and computer networking
communities, that such networks should use packet-switching rather than circuit switching because
packet-by-packet multiplexing uses bandwidth more efficiently than circuit-by-circuit multiplex-
ing in the presence of bursty traffic. We will refer to packet-switched networks which support
sophisticated service models as Integrated Services Packet Networks (ISPN).

One natural question is: what service model should an ISPN offer? This question is motivated by
the design philosophy that the service model is the enduring, and therefore the most fundamental,
part of a network architecture. The service model will be incorporated into the network service
interface used by future applications; as such, it will define the set of services they can request,
and will therefore influence the design of future applications as well as the performance of existing
ones. While both the underlying network technology and the overlying suite of applications will
evolve, the need for compatibility requires that this service interface remain stable*. Thus, the

3 Flow is the term we use to refer to end-to-end connections and other more general varieties of traffic streams.

*Actually, compatibility only demands that the existing parts of the service model must remain largely un-
changed; however, the service model can be augmented without difficulty. Also, we should note that these compati-
bility arguments apply only to those aspects of the service model which are part of the network service interface; our
service model will also have some components (link-sharing) which are exercised through a network management
interface, and here the compatibility arguments do not apply with nearly the same force.



service model should not be designed in reference to any specific network artifact but rather should
be based on fundamental service requirements. Because of its enduring impact, the choice of the
service model is perhaps the single most important design decision in building an ISPN?®.

In order to efficiently support this more sophisticated service model, an ISPN must employ an
equally sophisticated non-FIFO packet scheduling algorithm. In fact, the packet scheduling algo-
rithm is the most fundamental way in which the network can allocate resources selectively; the
network can also allocate selectively via routing or buffer management algorithms, but neither of
these by themselves can support a sufficiently general service model. Once the networking commu-
nity decides on an ISPN service model, a second natural question arises: which packet scheduling
algorithms can realize this ISPN service model?

This paper discusses both the definition of an ISPN service model and also the interplay between
the ISPN’s service model and its packet scheduling algorithms. In the first part of our paper, we
address the first question by proposing a subset of the service model, which we call the scheduling
service model. The scheduling service model contains only those services that are related directly
to the packet scheduling algorithm. We expect that the scheduling service model will form the
core component of the full ISPN service model, and thus is deserving of special focus. We motivate
our proposed scheduling service model by discussing the fundamental service requirements that an
ISPN will need to meet. This detailed discussion of service requirements is one of the key novelties
of our approach.

Since the scheduling service model focuses on the packet scheduling algorithm, there are many ser-
vices that are not included in our scheduling service model. In particular, we exclude those services
which are concerned with which network links are used (which is the domain of routing) and those
services which involve encryption, security, authentication, or transmission reliability. We also do
not consider services, such as reliable multicast, which do tangentially involve the scheduling of
packets but which more fundamentally involve nonscheduling factors such as buffer management
and inter-switch acknowledgment algorithms. Furthermore, we do not consider services which can
best be delivered at the end host or by gateway switches at the edge of the network, such as
synchronization of different traffic streams. Although we expect that many of these services will
be offered by any future ISPN, they will not affect the basic scheduling service model and thus
we do not expect that they will significantly affect the packet scheduling algorithms used in the
internal switches.

In the second part of our paper, we address the second question by investigating what implica-
tions our scheduling service model has for packet scheduling algorithms. Recall that there is a
tight coupling between the current Internet service model and the underlying FIFO scheduling
algorithm. Similarly, we ask whether one can make any statements about the general structure, or
architecture, of the packet scheduling algorithms that are needed to realize this ISPN scheduling
service model. It turns out that, once one recognizes the natural precedence ordering between the
various components of the scheduling service model, there is a canonical scheduling architecture
dictated by our proposed ISPN scheduling service model. While there are many packet scheduling
algorithms which realize the ISPN service model, we argue that they all must conform to the basic

SReference [2], and to a lesser extent reference [15], also focus on flexibility of the packet scheduler as a primary
design objective. We discuss this at greater length in Section 9.



architecture that we develop.

In this paper, we do not address the design of specific packet scheduling algorithms except to
present briefly one particular instantiation of our architecture® which demonstrates that our service
model is not impractical. We should note that there have been many other packet scheduling
algorithms proposed in the literature (see, for example, [12, 14, 16, 17, 25, 28, 30, 31, 35]), and
they too implement various pieces of our service model.

A packet scheduling algorithm is only part of a complete mechanism to support explicit qualities
of service. In particular, since resources are finite, one cannot support an unbounded number of
service requests. The network must employ some form of admission algorithm so that it has control
over which service commitments are made. The admission process requires that flows characterize
their traffic stream to the network when requesting service, and the network then determines
whether or not to grant the service request. While in this paper we focus on the scheduling
service model and on the architecture of scheduling algorithms, it is important to keep in mind
that admission control plays a crucial role in allowing these scheduling algorithms to be effective
by keeping the aggregate traffic load down to a level where meeting the service commitments is
feasible (see [14, 19, 23, 27] for examples of admission control algorithms). In fact, admission
control is but one kind of denial of service; we will discuss the several varieties of denial of service
and their role in allowing the scheduling algorithm to meet service commitments.

This work is a revised version of the first half of Reference [3], which contains an embryonic form of
the thinking presented here. However, we would like to acknowledge that the thoughts discussed
in this paper also reflect the contributions of many others. In particular, the works of Parekh and
Gallager [30, 31], Ferrari et al. [12, 14, 35], Jacobson and Floyd [2, 25, 15], Golestani [16, 17],
Guerin et al. [18, 19], Kurose et al. [4, 20, 29, 33, 37|, Lazar et al. [21, 22, 23, 24], and Kalmanek et
al. [28] have been critical in shaping our thinking on this matter. Discussions with the End-to-End
Services Research Group, the authors of the above works, and many of our other colleagues have
also been instrumental in clarifying our thoughts. In particular, Abhay Parekh has taught us much
about the delay bound results in [30, 31]. Also, Sally Floyd and Van Jacobson have rightly insisted
that packet scheduling algorithms must deal with packet dropping and hierarchical link-sharing;
we wish to acknowledge that much of our thinking on the hierarchical nature of link-sharing was
stimulated by, and borrows heavily from, their work.

This paper has 10 sections. In Section 2 we identify the two kinds of quantitative service commit-
ments we expect future networks to make; these are quality of service commitments to individual
flows and resource-sharing commitments to collective entities. In Section 3 we explore the service
requirements of individual flows and then propose a corresponding set of service models. In Sec-
tion 4 we discuss the service requirements for resource-sharing commitments to collective entities,
and propose a related service model. In Section 5 we present a precedence ordering among these
service commitments and then in Section 6 we argue that this ordering leads to a particular packet
scheduling architecture. In Section 7 we present an instantiation of this architecture. In Section 8,
we review the various forms denial of service can manifest, and the ways in which denial of service
can be used to augment the scheduling service model. We review the related literature in Section

5A fuller description of this packet scheduling algorithm will be forthcoming in a revision of the mechanism
presented in the second half of Reference [3].



9, and then conclude in Section 10.

2 Service Commitments

A service model is made up of service commitments; that is, a service model describes what
service the network commits to deliver in response to a particular service request. In this section,
we describe the various different kinds of service commitments that are included in our scheduling
service model.

Service commitments can be divided up into two classes, depending on the way in which the
service is characterized. One class of service commitment is a quantitative or absolute service
commitment, which is some form of assurance that the network service will meet or exceed the
agreed upon quantitative specifications; a typical example of this is a bound on maximal packet
delay. The other class of service commitment is a qualitative or relative service commitment, which
is merely some form of assurance about how one set of packets will be treated relative to other sets
of packets. One example of this kind of relative service commitment is to offer several different
priority classes; the service in any priority class is not quantitatively characterized, but there is a
relative commitment to serve traffic in a given priority class before traffic in lower priority classes.
Thus, when we say that the current Internet offers only a single “best-effort” class of service,
this is equivalent to saying that it does not offer any quantitative service commitments, and only
offers the most trivial relative service commitment to treat all packets equivalently. An important
distinction between these two classes of commitments is that quantitative service commitments
often inherently require some form of admission control, with the flow characterizing its traffic in
some manner; in contrast, relative service commitments generally do not require any admission
control.

Service commitments can also be divided into two categories depending on the entities to which
the commitments are made. The first category of service commitments is the one most often
considered in the current literature; these are quality of service commitments to individual flows.
In this case the network provides some form of assurance that the quality of service delivered to
the contracting flow will meet or exceed the agreed upon specifications. The need for these kinds of
service commitments is usually driven by the ergonomic requirements of individual applications.
For instance, the perceived quality of many interactive audio and video applications declines
dramatically when the delay of incoming packets becomes too large; thus, these applications
would perform better if the network would commit to a small bound on the maximum packet
queueing delay. In Section 3 we discuss what quality of service commitments are included in our
scheduling service model.

In contrast, the second category of service commitment we consider has rarely been explicitly
discussed in the research literature, even though there is widespread agreement in the industry
that there is great customer demand for this feature (at this time, certainly greater demand than for
the quality of service commitments to individual flows); these are resource-sharing commitments
to collective entities. In this case, the network provides an assurance that the resource in question
will be shared according to some prearranged convention among some set of collective entities.



These collective entities could, for example, be institutions, protocol families, or application types.
An example of the need for such resource-sharing commitments is when two private companies
choose to jointly purchase a fiber optic link and then elect to share the bandwidth in proportion to
the capital investments of the two companies. In Section 4, we present a more detailed motivation
for this form of service commitment and then discuss the particular resource-sharing commitments
that are part of our scheduling service model.

3 Quality of Service Requirements and Service Models

In the previous section, we distinguished two sorts of service requirements, quality of service
requirements and resource sharing requirements. In this section we consider quality of service
requirements. We first argue that packet delay is the key measure of quality of service. We then
present our assumptions about the nature of future computer-based applications and their service
requirements. Finally, we describe a set of quality of service commitments designed to meet these
service requirements.

3.1 The Centrality of Delay

There is one measure of service that is relevant to almost all applications: per-packet delay. In
some sense, delay is the fundamental measure of the service given to a packet, since it describes
when (and if) a packet is delivered and, if we assume that data is never corrupted (which we
think is a good approximation for future high-speed networks), the time of delivery is the only
quantity of interest to applications. Delay is clearly the most central quality of service, and thus
we will therefore start by assuming that the only qualities of service about which the network
makes commitments relate to per-packet delay. Later, in Section 3.3 we will return to this point
and ask if the service model that results from this initial assumption is sufficiently general.

In addition to restricting our attention to delay, we make the even more restrictive assumption
that the only quantity about which we make quantitative service commitments are bounds on the
maximum and minimum delays. Thus, we have excluded quantitative service commitments about
other delay related qualities of service, such as targets for average delay. This is based on three
judgments. First, controlling nonextremal values of delay through scheduling algorithms is usually
impractical because it requires detailed knowledge of the actual load, rather than just knowledge
of the best and worst case loads. Second, even if one could control nonextremal measures of packet
delay for the aggregate traffic in the network, this does not control the value of such measures
for individual flows; e.g., the average delay observed by a particular flow need not be the same
as, or even bounded by, the average of the aggregate (see [29] for a discussion of related issues).
Thus, controlling nonextremal measures of delay for the aggregate is not sufficient, and we judge
it impractical to control nonextremal measures of delay for each individual flow. Third, as will be
argued in the next section, applications that require quantitative delay bounds are more sensitive
to the extremes of delay than the averages or other statistical measures, so even if other delay
related qualities of service were practical they would not be particularly useful. We discuss this



Play-back

Figure 1: A schematic diagram of a playback application. The signal is generated and packetized
at the sender and then transmitted over the network. The receiver, in order to remove the effects
of network-induced delay jitter, buffers the packets until their playback points.

in the section below when we discuss real-time applications.

Why have we not included bandwidth as a quality of service about which the network makes
commitments? This is primarily because, for applications which care about the time-of-delivery
of each packet, the description of per-packet delay is sufficient. The application determines its
bandwidth needs, and these needs are part of the traffic characterization passed to the network’s
admission control algorithm; it is the application which then has to make a commitment about the
bandwidth of its traffic (when requesting a quantitative service commitment from the network),
and the network in turn makes a commitment about delay. However, there are some applications
which are essentially indifferent to the time-of-delivery of individual packets; for example, when
transferring a very long file the only relevant measure of performance is the finish time of the
transfer, which is almost exclusively a function of the bandwidth. We discuss such applications at
the end of Section 3.3.

3.2 Application Delay Requirements

The degree to which application performance depends on low delay service varies widely, and
we can make several qualitative distinctions between applications based on the degree of their
dependence. One class of applications needs the data in each packet by a certain time and, if the
data has not arrived by then, the data is essentially worthless; we call these real-time applications.
Another class of applications will always wait for data to arrive; we call these elastic applications.
We now consider the delay requirements of these two classes separately.

3.2.1 Real-Time Applications

An important class of such real-time applications, which is the only real-time applications we
explicitly consider in the arguments that follow, are playback applications; Figure 1 illustrates
such an application. In a playback application, the source takes some signal, packetizes it, and
then transmits the packets over the network. The network inevitably introduces some variation
in the delay of the delivered packets. This variation in delay has traditionally been called “jitter”.



The receiver depacketizes the data and then attempts to faithfully play back the signal. This is
done by buffering the incoming data to remove the network induced jitter and then replaying the
signal at some fixed offset delay from the original departure time; the term playback point refers
to the point in time which is offset from the original departure time by this fixed delay. Any
data that arrives before its associated playback point can be used to reconstruct the signal; data
arriving after the playback point is essentially useless in reconstructing the real-time signal”.

In order to choose a reasonable value for the offset delay, an application needs some a priori
characterization of the maximum delay its packets will experience. This a priori characterization
could either be provided by the network in a quantitative service commitment to a delay bound, or
through the observation of the delays experienced by the previously arrived packets; the application
needs to know what delays to expect, but this expectation need not be constant for the entire
duration of the flow.

The performance of a playback application is measured along two dimensions: latency and fidelity.
In general, latency is the delay between the two (or more) ends of a distributed application; for
playback applications, latency is the delay between the time the signal is generated at the source
and the time the signal is played back at the receiver, which is exactly the offset delay. Applications
vary greatly in their sensitivity to latency. Some playback applications, in particular those that
involve interaction between the two ends of a connection such as a phone call, are rather sensitive
to the value of the offset delay; other playback applications, such as transmitting a movie or
lecture, are not.

Fidelity is the measure of how faithful the playback signal is to the original signal. The play-
back signal is incomplete when packets arrive after their playback point and thus are dropped
rather than played back. The playback signal becomes distorted when the offset delay is varied.
Therefore, fidelity is decreased whenever the offset delay is varied and whenever packets miss their
playback point. Applications exhibit a wide range of sensitivity to loss of fidelity. We will consider
two somewhat artificially dichotomous classes: intolerant applications, which require an absolutely
faithful playback, and tolerant applications, which can tolerate some loss of fidelity ®. Intolerance
to loss of fidelity might arise because of user requirements (e.g., distributed symphony rehearsal),
or because the application hardware or software is unable to cope with missing pieces of data. On
the other hand, users of tolerant applications, as well as the application hardware and software,
are prepared to accept occasional distortions in the signal. We expect that the vast bulk of audio
and video applications will be tolerant.

Delay can affect the performance of playback applications in two ways. First, the value of the
offset delay, which is determined by predictions about the future packet delays, determines the
latency of the application. Second, the delays of individual packets can decrease the fidelity of
the playback by exceeding the offset delay; the application then can either change the offset delay
in order to play back late packets (which introduces distortion) or merely discard late packets

It is an oversimplification to say that the data is useless; we discuss below that a receiving application could
adjust the playback point as an alternative to discarding late packets.

80bviously, applications lie on a continuum in their sensitivity to fidelity. Here we are merely considering
two cases as a pedagogical device to motivate our service model, which indeed applies to the full spectrum of
applications.



(which creates an incomplete signal). The two different ways of coping with late packets offer a
choice between an incomplete signal and a distorted one, and the optimal choice will depend on
the details of the application, but the important point is that late packets necessarily decrease

fidelity.

Intolerant applications must use a fixed offset delay, since any variation in the offset delay will
introduce some distortion in the playback. For a given distribution of packet delays, this fixed
offset delay must be larger than the absolute maximum delay, to avoid the possibility of late
packets. In contrast, tolerant applications need not set their offset delay greater than the absolute
maximum delay, since they can tolerate some late packets. Moreover, tolerant applications can
vary the offset delay to some extent, as long as it doesn’t create too much distortion.

Thus, tolerant applications have a much greater degree of flexibility in how they set and adjust
their offset delay. In particular, instead of using a single fixed value for the offset delay, they can
attempt to reduce their latency by varying their offset delays in response to the actual packet
delays experienced in the recent past. We call applications which vary their offset delays in this
manner adaptive playback applications. This adaptation amounts to gambling that the past packet
delays are good predictors of future packet delays; when the application loses the gamble there
is a momentary loss of data as packets miss their playback points, but since the application is
tolerant of such losses the decreased offset delay may be worth it. Besides the issue of inducing
late packets, there is a complicated tradeoff between the advantage of decreased offset delay and
the disadvantage of reduced fidelity due to variations in the offset. Thus, how aggressively an
application adapts, or even if it should adapt at all, depends on the relative ergonomic impact of
fidelity and latency. Our main observation here, though, is that by adapting to the delays of in-
coming packets, tolerant playback applications can often profit by reducing their offset delay when
the typical delays are well below the absolute maximum; this advantage, of course, is accompanied
by the risk of occasional late packets.

We now state several of our assumptions about the nature of future real-time applications. First,
we believe that most audio and video applications will be playback applications, and we therefore
think that playback applications will be the dominant category of real-time traffic. By designing
a service model that is appropriate for these playback applications, we think we will have satisfac-
torily (but perhaps not optimally) met the needs of all real-time applications. Second, we believe
that the vast majority of playback applications will be tolerant and that many, if not most, of
these tolerant playback applications will be adaptive. The idea of adaptive applications is not rel-
evant to circuit switched networks, which do not have jitter due to queueing. Thus, most real-time
devices today, like voice and video codecs, are not adaptive. Lack of widespread experience may
raise the concern that adaptive applications will be difficult to build. However, early experiments
suggest that it is actually rather easy. Video can be made to adapt by dropping or replaying a
frame as necessary, and voice can adapt imperceptibly by adjusting silent periods. In fact, such
adaptive approaches have been employed in packetized voice applications since the early 70’s (see
[9, 36]); the VT [1] and VAT [26] packet voice protocols, which are currently used to transmit
voice on the Internet, are living examples of such adaptive applications.

Third, we believe that most playback applications will have sufficient buffering to store packets
until their playback point. We base our belief on the fact that the storage needed is a function of



the queueing delays, not the total end-to-end delay. There is no reason to expect that queueing
delays for playback applications will increase as networks get faster (in fact, for an M/M/1 queue-
ing system with a fixed utilization, queueing delays are inversely proportional to the speed), and
it is certainly true that memory is getting cheaper, so providing sufficient buffering will become
increasingly practical. Fourth, and last, we assume that applications have sufficient knowledge
about time to set the playback point. The notion of a playback application implies that such
applications have some knowledge about the original generation time of the data. This knowl-
edge could either be explicitly contained in timestamps, or an approximation could be implicitly
obtained by knowing the inter-packet generation intervals of the source.

3.2.2 Elastic Applications

While real-time applications do not wait for late data to arrive, elastic applications will always
wait for data to arrive. It is not that these applications are insensitive to delay; to the con-
trary, significantly increasing the delay of a packet will often harm the application’s performance.
Rather, the key point is that the application typically uses the arriving data immediately, rather
than buffering it for some later time, and will always choose to wait for the incoming data rather
than proceed without it. Because arriving data can be used immediately, these applications do
not require any a priori characterization of the service in order for the application to function.
Generally speaking, it is likely that for a given distribution of packet delays, the perceived per-
formance of elastic applications will tend to depend more on the average delay than on the tail of
the distribution. One can think of several categories of such elastic applications: interactive burst
(Telnet, X, NFS), interactive bulk transfer (FTP), and asynchronous bulk transfer (electronic
mail, FAX). The delay requirements of these elastic applications vary from rather demanding for
interactive burst applications to rather lax for asynchronous bulk transfer, with interactive bulk
transfer being intermediate between them.

3.3 Delay Service Models

We now turn to describing service models that are appropriate for the various classes of applications
that were discussed in the previous paragraphs. Since we are assuming that playback applications
comprise the bulk of the real-time traffic, we must design service models for intolerant playback
applications, tolerant playback applications, and elastic applications.

The offset delay of intolerant playback applications must be no smaller than the maximum packet
delay to achieve the desired faithful playback. Furthermore, this offset delay must be set before
any packet delays can be observed. Such an application can only set its offset delay appropriately
if it is given a perfectly reliable? upper bound on the maximum delay of each packet. We call a
service characterized by a perfectly reliable upper bound on delay guaranteed service, and propose
this as the appropriate service model for intolerant playback applications. Note that the delay

9By perfectly reliable, we mean that the bound is based on worst case assumptions about the behavior of all
other flows. The validity of the bound is predicated on the proper functioning of all network hardware and software
along the path of the flow.

10



bound not only allows the application to set its offset delay appropriately, but it also provides the
information necessary to predict the resulting latency of the application.

Since such a intolerant playback application will queue all packets until their respective playback
points, application performance is completely independent of when the packets arrive, as long
as they arrive within the delay bound. The fact that we assume that there is sufficient buffering
means that we need not provide a nontrivial lower bound to delay; of course, the trivial no-queueing
minimum delay will be given as part of the service specification.

A tolerant playback application which is not adaptive will also need some form of a delay bound
so that it can set its offset delay appropriately. Since the application is tolerant of occasional late
packets, this bound need not be perfectly reliable. For this class of applications we propose a
service model called predictive service which supplies a fairly reliable, but not perfectly reliable,
delay bound. For this service, the network advertises a bound which it has reason to believe with
great confidence will be valid, but cannot formally “prove” its validity'. If the network turns out
to be wrong and the bound is violated, the application’s performance will perhaps suffer, but the
users are willing to tolerate such interruptions in service in return for the presumed lower cost of
the service and lower realized delays!t.

It is important to emphasize that this is not a statistical bound, in that no statistical failure
rate is provided to the application in the service description. We do not think it feasible to
provide a statistical characterization of the delay distribution because that would require a detailed
statistical characterization of the load. We do envision the network ensuring the reliability of these
predictive bounds, but only over very long time scales; for instance, the network could promise
that no more than a certain fraction of packets would violate the predictive bounds over the course
of a month 2. Such a statement is not a prediction of performance but rather a commitment to
adjust its bound-setting algorithm to be sufficiently conservative.

All nonadaptive applications, whether tolerant or not, need an a priori delay bound in order to
set their offset delay; the degree of tolerance only determines how reliable this bound must be. In
addition to being necessary to set the offset delay, these delay bounds provide useful estimates of
the resulting latency. Nonadaptive tolerant applications, like the intolerant applications considered
above, are indifferent to when their packets arrive, as long as they arrive before the delay bound.

Recall, however, that we are assuming that many, if not most, tolerant playback applications
are adaptive. Thus, we must design the service model with such adaptation in mind. Since
these applications will be adapting to the actual packet delays, a delay bound is not needed to
set the offset delay. However, in order to choose the appropriate level of service, applications

10This bound, in contrast to the bound in the guaranteed service, is not based on worst case assumptions on the
behavior of other flows. Instead, this bound might be computed with properly conservative predictions about the
behavior of other flows.

HFor nonadaptive applications, the realized latency is lower with predictive service since the fairly reliable bounds
will be less conservative than the perfectly reliable bounds of guaranteed service. For adaptive applications, as we
discuss below, the minimax component of predictive service can, and we expect usually will, reduce the average
latency, 1.e. the average value of the offset delay, to be well below the advertised bound.

12Guch an assurance is not meaningful to an individual flow, whose service over a short time interval might
be significantly worse than the nominal failure rate. We envision that such assurances would be directed at the
regulatory bodies which will supervise the administration of such networks.

11



need some way of estimating their performance with a given level of service. Ideally, such an
estimate would depend on the detailed packet delay distribution. We consider it impractical to
provide predictions or bounds on anything other than the extremal delay values. Thus, we propose
offering the same predictive service to tolerant adaptive applications, except that here the delay
bound is not primarily used to set the offset delay (although it may be used as a hint) but rather
is used to predict the likely latency of the application.

The actual performance of adaptive applications will depend on the tail of the delay distribution.
We can augment the predictive service model to also give minimaz service, which is to attempt
to minimize the ex post maximum delay. This service is not trying to minimize the delay of every
packet, but rather is trying to pull in the tail of the distribution. Here the fairly reliable predictive
delay bound is the quantitative part of the service commitment, while the minimax part of the
service commitment is a relative service commitment. We could offer separate service models
for adaptive and nonadaptive tolerant playback applications, with both receiving the predictive
service as a quantitative service commitment and with only adaptive applications receiving the
minimax relative commitment. However, since the difference in the service models is rather minor,
we choose to only offer the combination of predictive and minimax service.

It is clear that given a choice, with all other things being equal, an application would perform
no worse with absolutely reliable bounds than with fairly reliable bounds. Why, then, do we
offer predictive service? The key consideration here is efficiency!?®; when one relaxes the service
requirements from perfectly to fairly reliable bounds, this increases the level of network utilization
that can be sustained, and thus the price of the predictive service will presumably be lower than
that of guaranteed service. The predictive service class is motivated by the conjecture that the
performance penalty will be small for tolerant applications but the overall efficiency gain will be
quite large.

As we discussed above, both of these service models have a quantitative component. In order
to offer this service, the nature of the traffic from the source must be characterized, and there
must be some admission control algorithm which insures that a requested flow can actually be
accommodated. A fundamental point of our overall architecture is that traffic characterization
and admission control are necessary for these real-time delay bound services.

The third category for which we must develop a service model is elastic applications. Elastic appli-
cations are rather different than playback applications; while playback applications hold packets
until their playback time, elastic applications use the packet whenever it arrives. Thus, reducing
the delays of any packet tends to improve performance. Furthermore, since there is no offset delay,
there is no need for an a priori characterization of the delays. An appropriate service model is to
provide as-soon-as-possible, or ASAP service, which is a relative, not quantitative, commitment!,
Elastic applications vary greatly in their sensitivity to delay (which, as we mentioned earlier, is
probably more a function of the average delay than of the maximum delay), and so the service

13Efficiency can be thought of as the number of applications that can be simultaneously serviced with a given
amount of bandwidth; for a fuller definition, see [6, 32].

14We choose not to use the term “best-effort” for the ASAP service since that connotes the FIFO service discipline.
Also, we should note that we do not describe, as part of the scheduling service model, any congestion control related
feedback (congestion notification bits, etc.) which might be part of such a service.
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model for elastic traffic should distinguish between the various levels of delay sensitivity. We there-
fore propose a multiclass ASAP service model to reflect the relative delay sensitivities of different
elastic applications. This service model allows interactive burst applications to have lower delays
than interactive bulk applications, which in turn would have lower delays than asynchronous bulk
applications. In contrast to the real-time service models, this service model does not provide any
quantitative service commitment, and thus applications cannot predict their likely performance
and are also not subject to admission control. However, we think that rough predictions about
performance, which are needed to select a service class, could be based on the ambient network
conditions and historical experience. If the network load is unusually high, the delays will degrade
and the users must be prepared to tolerate this, since there was no admission control to limit the
total usage.

However, there may be some cases where an application (or the user of the application) might
want to know more precisely the performance of the application in advance. For instance, a Telnet
user might want to ensure that the delays won’t interfere with her typing. For these cases, the
application can request predictive service (since the firmness of the guaranteed bound is probably
not required) provided it is willing to specify the maximum transmission rate desired. Note
that since the network will then require compliance with the advertised transmission rate, the
application cannot get a higher throughput rate than what it requested.

At the beginning of this section, we made the initial assumption that delay was the only quality
of service about which the network needed to make commitments. We now revisit this issue and
ask if that i1s indeed the case. For the typical real-time or elastic application which cares about
the delays of individual packets, there seems to be no need to include any other quality of service.
However, we observed earlier that there are some applications, such as transfers of very long files,
which are essentially indifferent to the delays of individual packets and are only concerned with
overall delay of the transfer. For these indifferent applications, bandwidth rather than delay is
a more natural characterization of the desired service, since bandwidth dictates the application
performance. If such an application has no intrinsic overall delay requirement, then the desired
service is to finish the transfer as quickly as possible. The desired service is as-much-bandwidth-
as-possible. By servicing packets as soon as possible, the ASAP service described above delivers
exactly this as-much-bandwidth-as-possible service. Thus, while we did not explicitly consider
bulk transfer applications, our proposed service model already provides the desired service for
bulk transfer applications with no intrinsic overall delay requirements.

However, if this bulk transfer application had some intrinsic overall delay requirement, i.e. it
required the transfer to be completed within a certain time, then the ASAP service is no longer
sufficient. Now, the appropriate service is to allow the application to request a specified amount of
bandwidth; the application chooses this bandwidth amount so that the transfer will be completed
in time. An application can secure a given amount of bandwidth through either of the real-time
services. The per-packet delay bounds provided by these real-time services are superfluous to bulk
transfer applications with overall delay requirements. While one could imagine a different service
which provided a commitment on bandwidth but not per-packet delay, the difference between
requesting a large delay bound and no delay bound is rather insignificant, and thus we expect
that such indifferent applications with delay requirements will be adequately served by predictive
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Figure 2: Our rough taxonomy of applications and their associated service models. We have
arbitrarily depicted three levels of ASAP service.

service with very large delay bounds. This has the disadvantage that indifferent applications
with delay requirements do not get as-much-bandwidth-as-possible, but are constrained to their
reserved amount.

Figure 2 depicts our taxonomy of applications and the associated service models. This taxonomy
is neither exact nor complete, but was only used to guide the development of the scheduling
service model. The resulting scheduling service model should be judged not on the validity of
the underlying taxonomy but rather on its ability to adequately meet the needs of the entire
spectrum of applications. In particular, not all real-time applications are playback applications;
for example, one might imagine a visualization application which merely displayed the image
encoded in each packet whenever it arrived. However, non-playback applications can still use either
the guaranteed or predictive real-time service model, although these services are not specifically
tailored to their needs. Similarly, playback applications cannot be neatly classified as either
tolerant or intolerant, but rather fall along a continuum; offering both guaranteed and predictive
service allows applications to make their own tradeoff between fidelity and latency. Despite these
obvious deficiencies in the taxonomy, we expect that it describes the service requirements of current
and future applications well enough so that our scheduling service model can adequately meet all
application needs.

4 Resource-Sharing Requirements and Service Models

The last section considered quality of service commitments; these commitments dictate how the
network must allocate its resources among the individual flows. This allocation of resources is
typically negotiated on a flow-by-flow basis as each flow requests admission to the network, and
does not address any of the policy issues that arise when one looks at collections of flows. To ad-
dress these collective policy issues, we now discuss resource-sharing service commitments. Recall
that for individual quality of service commitments we focused on delay as the only quantity of
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interest. Here, we postulate that the quantity of primary interest in resource-sharing is aggregate
bandwidth on individual links. Our reasoning for this is as follows. Meeting individual application
service needs is the task of quality of service commitments; however, both the number of quanti-
tative service commitments that can be simultaneously made, and the quantitative performance
delivered by the relative service commitments, depend on the aggregate bandwidth. Thus, when
considering collective entities we claim that we need only control the aggregate bandwidth avail-
able to the constituent applications; we can deal with all other performance issues through quality
of service commitments to individual flows. Embedded within this reasoning is the assumption
that bandwidth is the only scarce commodity; if buffering in the switches is scarce then we must
deal with buffer-sharing explicitly, but we contend that switches should be built with enough
buffering so that buffer contention is not the primary bottleneck.

Thus, this component of the service model, called link-sharing, addresses the question of how to
share the aggregate bandwidth of a link among various collective entities according to some set of
specified shares. There are several examples that are commonly used to explain the requirement
of link-sharing among collective entities.

Multi-entity link-sharing. — A link may be purchased and used jointly by several organizations,
government agencies or the like. They may wish to insure that under overload the link is shared
in a controlled way, perhaps in proportion to the capital investment of each entity. At the same
time, they might wish that when the link is underloaded, any one of the entities could utilize all

the idle bandwidth.

Multi-protocol link-sharing — In a multi-protocol Internet, it may be desired to prevent one protocol
family (DECnet, IP, IPX, OSI, SNA, etc.) from overloading the link and excluding the other
families. This is important because different families may have different methods of detecting and
responding to congestion, and some methods may be more “aggressive” than others. This could
lead to a situation in which one protocol backs off more rapidly than another under congestion,
and ends up getting no bandwidth. Explicit control in the router may be required to correct this.
Again, one might expect that this control should apply only under overload, while permitting an
idle link to be used in any proportion.

Multi-service sharing — Within a protocol family such as IP, an administrator might wish to limit
the fraction of bandwidth allocated to various service classes. For example, an administrator might
wish to limit the amount of real-time traffic to some fraction of the link, to avoid preempting elastic

traffic such as FTP.

In general terms, the link-sharing service model is to share the aggregate bandwidth according
to some specified shares; however, one must be careful to state exactly what this means. The
following example will highlight some of the policy issues implicit in link-sharing. Consider three
firms, 1, 2, and 3, who respectively have shares 1/4, 1/4, and 1/2 of some link. Assume that for
a certain hour, firm 1 sends no traffic to the link while firms 2 and 3 each send enough to use the
entire capacity of the link. Are firms 2 and 3 restricted to only using their original shares of the
link, or can they use firm 1’s unused bandwidth? Assume for now that they are allowed to use
firm 1’s unused bandwidth. Then, how is firm 1’s share of the link split between firms 2 and 37 If,
in the next twenty minutes, all three firms each send enough traffic to consume the entire link, is
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the link allocated solely to firm 1 in order to make up for the imbalance in aggregate bandwidth
incurred during the first hour, or is the link shared according to the original shares? Thus, there
are three policy questions to be resolved: can firms use each other’s unused bandwidth, how is
this unused bandwidth allocated to the remaining firms, and over what time scale is the sharing
of bandwidth measured? Clearly the answer to the first question must be affirmative, since much
of the original motivation for link-sharing is to take advantage of the economies of statistical
aggregation. As for the second question, one can imagine many rules for splitting up the excess
bandwidth but here we propose that the excess is assigned in proportion to the original shares so
that in the above example during the first hour the link would be split 1/3, 2/3 for firms 2 and
3 respectively. The answer to the third questions is less clear. The preceding example indicates
that if sharing is measured over some time scale T then a firm’s traffic can be halted for a time on
the order of T under certain conditions; since such cessation should be avoided, we propose doing
the sharing on an instantaneous basis (i.e., the limit of T going to zero). This would dictate that
during this next twenty minutes the bandwidth is split exactly according to the original shares:
1/4, 1/4, and 1/2. This policy embodies a “use-it-or-lose-it” philosophy in that the firms are not
given credit at a later date for currently unused bandwidth.

An idealized fluid model of instantaneous link-sharing with proportional sharing of excess is the
fluid processor sharing model (introduced in [8] and further explored in [30, 31]) where at every
instant the available bandwidth is shared between the active entities (i.e., those having packets in
the queue) in proportion to the assigned shares of the resource. More specifically, we let 1 be the
speed of the link and we give each entity ¢ its own virtual queue which stores its packets as they
await service. For each entity ¢ we define the following quantities: s;, the share of the link; ¢;(1),
the cumulative number of bits in the traffic stream that have arrived by time ¢; and the backlog
b;(t), the number of bits remaining in the virtual queue at time ¢. Whenever a real packet arrives
at the switch belonging to entity ¢, we place a corresponding idealized packet at the tail of that
entity’s virtual queue. The service within each such virtual queue is FIFO. We now describe how
service is allocated among the different virtual queues. The idealized service model is defined by
the equations:

bi(t) = ¢ — min[s; A, ¢f] if bi(t) =0 (1)

and
bi(t) = ci(t) — s;A if bi(t) >0 (2)

where b}(t) and c;(t) denote the time derivatives of b;(f) and ¢;(t), and where A is the unique
constant that makes 3, 0/ = ¢ — 3, ¢} (when no such value exists, we set A = 00).

At every instant the excess bandwidth, that is the bandwidth left over from flows not using their
entire share of bandwidth, is split among the active entities (i.e., those with b, > 0) in proportion
to their shares; each active'® entity receives an instantaneous bandwidth that is greater than or
equal to their share of the full transmission rate.

This fluid model exhibits the desired policy behavior but is, of course, an unrealistic idealization.
We then propose that the actual service model should be to approximate, as closely as possible,
the bandwidth shares produced by this ideal fluid model. It is not necessary to require that

15There are three states a flow can be in: active (b; > 0), inactive (b; = 0 and ¢} = 0), and in-limbo (b; = 0 but
¢ > 0).
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the specific order of packet departures match those of the fluid model since we presume that
all detailed per-packet delay requirements of individual flows are addressed through quality of
service commitments and, furthermore, the satisfaction with the link-sharing service delivered will
probably not depend very sensitively on small deviations from the scheduling implied by the fluid
link-sharing model. The link-sharing service model provides quantitative service commitments on
bandwidth shares that the various entities receive.

Heretofore we have considered link-sharing across a set of entities with no internal structure to
the entities themselves. However, the various sorts of link-sharing requirements presented above
could conceivably be nested into a hierarchy of link-sharing requirements, an idea first proposed by
Jacobson and Floyd [25]. For instance, a link could be divided between a number of organizations,
each of which would divide the resulting allocation among a number of protocols, each of which
would be divided among a number of services. We propose extending the idealized link-sharing
service model presented above to the hierarchical case. The policy desires will be represented by
a tree with shares assigned to each node; the shares belonging to the children of each node must
sum to the share of the node, and the top node represents the full link and has a unit share.
Furthermore, each node has an arrival stream described by ¢;(¢) and a backlog b;(t) with the
quantities of the children of each node summing to the quantity of the node. Then, at each node
we invoke the fluid processor sharing model among the children, with the instantaneous link speed
at the i’th node, p;(t), set equal to the rate bi(f) at which bits are draining out of that node’s
virtual queue. We can start this model at the top node; when propagated down to the leaf nodes,
or bottom-level entities, this determines the idealized service model.

The introduction of a hierarchy raises further policy questions which are illustrated by the following
example depicted in Figure 3. Consider two firms, 1 and 2, each with two protocols, ‘a’ and ‘b’.
Let us assume that each of the bottom-level entities, la, 1b, 2a and 2b, has a 1/4 share of the link.
When all of the bottom-level entities are sending enough to consume their share, the bandwidth
is split exactly according to these shares. Now assume that at some instant there is no offered 2b
traffic. Should each of la,1b and 2a get 1/3 of the link, or should la and 1b continue to get 1/4,
with 2a getting the remaining 1/2 share of the link which is the total of the shares belonging to
firm 27 This is a policy question to be determined by the firms, so the service model should allow
either. Figure 3 depicts two possible sharing trees. Tree #1 in the figure produces the 1/4, 1/4,
1/2 sharing whereas tree #2 produces the 1/3, 1/3, 1/3 sharing. When the link-sharing service
commitment is negotiated, it will be specified by a tree and an assignment of shares for the nodes.

In the hierarchical model, the bandwidth sharing between the children of a given node was in-
dependent of the structure of the grandchildren. One can think of far more general link-sharing
service models. Assume that in the example above that protocol ‘a’ carries traffic from applica-
tions with tight delay requirements and protocol ‘b’ carries traffic from applications with loose
delay requirements. The two firms might then want to implement a sharing policy that when la
is not fully using its share of the link, the excess is shared equally among 1b and 2a, but when
1b is not fully using its share of the link we will give the excess exclusively to la. To implement
this more complicated policy, it is necessary to take the grandchildren structure into account. We
think that this sort of flexibility is probably not needed, for the same reason that we restricted
ourselves to bandwidth as the only collective concern; quality of service issues should be addressed
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Figure 3: Two possible sharing trees with equal shares at all leaf nodes. When one of the leaf
nodes is not active, the trees produce different bandwidth shares for the remaining active nodes.

via quality of service commitments and not through the link-sharing service model. Therefore, for
our resource-sharing service model we restrict ourselves to the hierarchical service model presented
above.

This preceding discussion about the link-sharing service model implicitly assumed that all traffic
associated with a bottom-level entity was serviced in a FIFO manner (i.e., the packet’s belonging
to a bottom-level entity were never reordered, even though the ordering relative to packets from
other bottom-level entities was not necessarily FIFO). However, the link-sharing service model
will need to coexist with other scheduling disciplines. Rather than defining a completely general
service model, we will later present an example where link-sharing is defined in the context of

non-FIFO scheduling.

In Section 3 we observed that admission control was necessary to ensure that the real-time service
commitments could be met. Similarly, admission control will again be necessary to ensure that
the link-sharing commitments can be met. For each bottom-level entity, admission control must
keep the cumulative guaranteed and predictive traffic from exceeding the assigned link-share.

5 Ordering the Service Requirements

Our collection of service models consists of guaranteed real-time, predictive real-time, several
classes of ASAP, and hierarchical link-sharing. These service models are comprised of several
varieties of service commitments. There are three different quantitative service commitments:
guaranteed delay bounds, predictive delay bounds, and link-sharing bandwidth allocation shares.
There are also two different relative service commitments: minimax for predictive traffic and
multiple classes of ASAP for elastic traffic.

These service commitments can be seen as a set of objectives or goals for the packet scheduling
algorithm. However, when a packet arrives and is scheduled, all of these objectives must be
combined in some manner to make a single consistent scheduling decision for the packet. This is
not an entirely trivial task, given that there can be conflicts among the objectives. For example,
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a packet using guaranteed service may need to leave at once to meet its delay objectives, but may
exceed the link-sharing objective if it does so. Furthermore, in a more trivial way, every other
scheduling objective is in conflict with the ASAP scheduling goals. We must therefore find a way
of systematically combining these various objectives into a coherent decision framework.

We now define a transitive precedence ordering among the scheduling goals associated with these
service commitments. This ordering can be thought of as defining a decision tree that reflects how
the various objectives should be used to make a single scheduling decision. As such, this precedence
ordering reflects which service commitments the packet scheduling algorithm should keep if, upon
overload, it cannot meet all of them and thus must choose between them. Two important points
to keep in mind are that (1) this is not an ordering of importance of the various service objectives
but instead an ordering of which criteria take precedence in the scheduling algorithm, and (2)
this ordering is not done in isolation but rather takes into account the limitations imposed by
admission control.

Consider the three quantitative service commitments: guaranteed delay bounds, predictive delay
bounds, and link-sharing bandwidth allocation shares. Recall that the delay bound given to
guaranteed real-time traffic is advertised to be perfectly reliable, whereas the delay bound given
to predictive real-time traffic is explicitly advertised to be imperfectly reliable. This strongly
suggests that guaranteed delay bounds take precedence over predictive delay bounds. In addition,
since the link-sharing service model is less concerned with the timing of each individual packet
than the real-time service models, we can therefore conclude that the guaranteed delay bounds
and the predictive delay bounds take precedence over the link-sharing bandwidth allocation shares
on a packet by packet basis. Admission control plays a significant role here. One can only allow
the real-time delay bound scheduling goals to take precedence over the link-sharing scheduling
goals because admission control ensures that such a policy will not lead to a significant violation
of the link-sharing goals.

In general, it is natural to give quantitative service commitments precedence over qualitative ones.
Correspondingly, we give the link-sharing scheduling goals, and therefore by transitivity the real-
time delay bound scheduling goals, precedence over the ASAP scheduling goals. Furthermore, we
give the real-time delay bound scheduling goals precedence over the minimax scheduling goals.
However, we do not give the link-sharing scheduling goals precedence over the minimax scheduling
goals, for the following reason. Admission control must ensure that the real-time traffic, by itself,
does not lead to violations of the link-sharing bandwidth allocation shares. This means that we do
not have to check link-sharing limits when we make scheduling decisions for individual real-time
packets. Consequently, we need not give the link-sharing scheduling goals precedence over the
minimax scheduling goals.

Note, however, that we did insist that the real-time delay bound goals took precedence over the

minimax scheduling goals; this is because we do not believe that admission control alone can

ensure that real-time delay bounds will be met!®.

16This statement is in contrast to the assumption made in much of the ATM literature that admission control
is not only necessary but also sufficient to ensure real-time delay bounds. We, to the contrary, do not expect that
networks will be able to support real-time delay bounds while operating at reasonably high levels of utilization
without explicit help from the packet scheduling algorithm.
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Figure 4: The precedence ordering of the various scheduling goals. An arrow indicates precedence
and the following acronyms are used: GB=guaranteed delay bound, PB=predictive delay bound,
PM=predictive minimax, LS=link-sharing bandwidth allocation share, and EA=elastic ASAP.

We have thus established the ordering relationships of the three quantitative service commitments.
The guaranteed delay bounds takes precedence over everything else, the predictive delay bounds
take precedence over everything except the guaranteed delay bounds, and the link-sharing band-
width shares take precedence over the ASAP scheduling goals but do not take precedence over
the minimax scheduling goal for predictive traffic. We now claim that the two remaining relative
service commitments, minimax predictive and ASAP elastic, are not directly comparable. While
currently it seems clear that the time scales of the service requirements for typical elastic appli-
cations are larger than those for typical tolerant real-time applications, there is nothing in the
distinction between elastic applications and tolerant real-time applications that demands that this
remain so in the future. We do not wish to embed this perhaps temporary time-scale distinction
in our architecture, and thus do not declare a precedence ordering relation between these two
relative scheduling goals. Consequently, since we are assuming this is a transitive ordering, we
cannot install a precedence ordering between the relative service commitment of minimax predic-
tive and the quantitative service commitment of link-sharing bandwidth allocation shares; above
we argued that it was not necessary to give precedence to link-sharing over minimax predictive,
and now due to transitivity we find that we cannot give precedence to minimax predictive over
link-sharing because that would then imply a precedence ordering between minimax predictive
and ASAP elastic. Combining these precedence relations, we find the precedence ordering of the
scheduling goals which is depicted in Figure 4.

One subtle point that arises is the interaction between the scheduling goals of guaranteed traffic
and the qualitative goals of minimax for predictive traffic and ASAP for elastic traffic. Recall
that guaranteed service makes a firm commitment that packets will arrive before the delay bound,
but makes absolutely no commitments about when during this period the packets will arrive.
However, the two other services, elastic and predictive, do make qualitative commitments about
decreasing delay. In order for guaranteed service to be compatible with these other commitments,
guaranteed packets should never take precedence over other packets unless they must be sent in
order to realize the delay bounds, and guaranteed packets should always be sent if the link would
otherwise be idle. Thus, guaranteed packets should be sent as late as possible without violating

20



<A-G>

|

G

Figure 5: A scheduling architecture for guaranteed service. The symbol G represents some al-
gorithm that orders the guaranteed packets and < A — G > represents an arbiter which decides
when to send guaranteed packets.

the delay bounds or letting the link go idle.

When seen as defining a decision tree, this precedence ordering sets up a sequence of tests by which
scheduling decisions are made. First, the algorithm must check if any guaranteed packets need to
be sent in order to satisfy a guaranteed delay bound; if so, they are sent. Second, the algorithm
must check if any predictive packets need to be sent in order to satisfy a predictive delay bound;
if so, they are sent. If no real-time packets need to be sent in order to satisfy these real-time delay
bounds, then the algorithm is free to arbitrarily choose between giving some predictive packet
service (thereby meeting a minimax service goal), or giving some elastic packet service (thereby
meeting an ASAP service goal). When the algorithm chooses to service an elastic packet, the
link-sharing goals determine the which elastic packet is sent.

6 A Scheduling Architecture

In the last section we argued that general properties of the service model led to a natural precedence
ordering of the various service commitments. We now explore the implications this precedence
ordering has for packet scheduling algorithms. One might think that the precedence ordering of
scheduling goals would lead to a strict priority scheduling algorithm. We now argue that, instead,
this ordering leads to a rather different architecture for packet scheduling. For the moment, we
will ignore the bandwidth related scheduling goals associated with link-sharing and concentrate
on the other scheduling goals which are all delay related. We first consider the case when there are
only guaranteed service commitments, and then add predictive service commitments and finally
elastic service commitments. We can represent a general architecture for scheduling algorithms
which deliver guaranteed service with the diagram in Figure 5. In this Figure, G represents some
algorithm that orders the guaranteed packets and < A — G > is an arbiter which decides when to
send the packet at the front of the queue. As we discussed in the previous section, < A — G > is
designed to send packets as late as possible without violating the bounds, but will send packets if
the link would otherwise be idle.

When we add predictive service, the precedence ordering dictates that we get the structure depicted
in Figure 6. In this Figure, P represents some algorithm that orders the predictive packets and
the arbiter < A — G > takes a packet from P unless it is necessary to service (G to meet the
guaranteed delay bounds. If both the predictive and guaranteed queues need to be serviced in
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Figure 6: A scheduling architecture for guaranteed and predictive service. The symbol P represents
some algorithm that orders the predictive packets and < A—(G' > represents an arbiter that decides
which queue to serve. The arbiter services the (G queue only when necessary to meet the guaranteed
delay bounds, but if both queues need servicing the G queue gets precedence.

<A-G>

<A-P>
P E

Figure 7: A scheduling architecture for guaranteed, predictive, and elastic service. The symbol F
represents some algorithm that orders the elastic packets, and < A — P > represents an arbiter
that decides which queue to serve. This arbiter must meet the predictive delay bounds, but is
otherwise arbitrary.

order to prevent a violation of their bounds, the guaranteed queue takes precedence.

The scheduling requirements of meeting the delay bounds of real-time traffic takes precedence over
the ASAP scheduling requirements of elastic traffic. However, the scheduling goals of minimax for
predictive traffic and ASAP for elastic traffic do not take precedence over each other. This leads
to the structure illustrated in Figure 7, where < A — P > is an arbiter which makes sure that
the delay bounds of predictive real-time traffic are met but which then allocates service between
the ASAP needs of the elastic traffic and the minimax needs of the predictive traffic. This nature
of this allocation is not specified by the architecture, and can be anything consistent with the
predictive delay bounds.

We now add link-sharing to this structure. Since link-sharing comes after the predictive bounds
but before the elastic ASAP in Figure 4, we get the structure shown in Figure 8. Here the F;
denote algorithms that order the elastic traffic belonging to the various bottom-level entities and
< LS > refers to a link-sharing algorithm that approximates the ideal fluid model; the link-sharing
hierarchy is embedded within the link-sharing algorithm < LS >, so we do not explicitly show the
whole link-sharing tree. The key point here, which is not explicitly shown in the above diagram, is
that the link-sharing algorithm must take into account the bandwidth used by the guaranteed and
predictive packets sent by the various collective entities when deciding which elastic traffic to send,
although the link-sharing algorithm does not affect the scheduling of the guaranteed and predictive
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Figure 8: A scheduling architecture for guaranteed, predictive, elastic, and link-sharing service.
The symbols F; represent algorithms that orders the elastic packets belonging to various bottom-
level entities, and < LS > represents the link-sharing algorithm.

packets. To make this more precise, recall that in the ideal service model of link-sharing each entity
¢ is represented by a node in the link-sharing tree that has associated with it a virtual queue, a
share of the parent node’s bandwidth, and the quantities ¢;(), which represents the arrival pattern
of bits, and b;(¢), which represents the number of bits remaining in the virtual queue. Previously,
when we considered link-sharing in the absence of quality of service commitments, each node’s
virtual queue was FIFO; to take account of the real-time traffic we modify this. Whenever an
elastic packet belonging to entity ¢ or one of its descendants arrives, we place the corresponding
idealized packet in the rear of the node’s virtual queue. Whenever a real-time packet belonging to
entity ¢ or one of its descendants is transmitted, the corresponding idealized packet is placed at
the front of the virtual queue. Thus, the transmission of a real-time packet belonging to entity @
has the effect of delaying the departure of the queued elastic packets in the idealized model. The
cumulative bandwidth of the elastic and real-time traffic belonging to entity ¢ will therefore match
the desired policy requirements.

Our examination of the scheduling service model, and the precedence ordering of the scheduling
goals contained therein, leads us to conclude that any packet scheduling algorithm which supports
our scheduling service model will conform to the architecture depicted in Figure 8. This archi-
tecture has three notable pieces: the guaranteed scheduling algorithm, which is comprised of the
arbiter < A — (G > and the ordering algorithm (; the predictive scheduling algorithm, which is
comprised of the arbiter < A — P > and the ordering algorithm P; and the link-sharing algorithm
< LS > and the ordering algorithms F;. The scheduling architecture details how these pieces
fit together. Guaranteed service sits at the top of the structure, followed by predictive service.
Link-sharing goes below both of these services. Thus, our architecture dictates that while the
link-sharing goals will affect the admission control decisions for real-time flows, the link-sharing
goals have no effect on the scheduling of the real-time packets and only affect the scheduling of
elastic packets. We maintain that this is not just one possible way of scheduling packets, but
rather the only way consistent with our service model.
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Figure 9: A schematic diagram of a packet scheduling algorithm which realized the proposed
scheduling service model. The labels a, b, ¢ indicate different priority levels in the predictive and
elastic traffic classes. The G queue is ordered by the SVC timestamps, and the P and E queues are
all FIFO. The arbiter serves the (¢ queue only when the lead timestamp is greater than current
time.

7 An Instantiation of the Scheduling Architecture

An instantiation of this architecture is defined by a choice for the arbitrating algorithms < A—G' >
and < A — P >, the link-sharing algorithm < LS >, and the ordering algorithms G, P, and F;.
The combination of < A — G > and GG must provide perfectly reliable bounds, which means
that the service a guaranteed flow gets must not be greatly affected by the behavior of other
traffic flows. Thus, as we argue in [3], the key heuristic to keep in mind when designing these
algorithms 1s isolation; the scheduling algorithm must isolate the flows from one another. There
are many choices for < A — G > and G: for instance, the “stop-and-go” algorithm in [16, 17],
the hierarchical round-robin in [28], the J-EDD and D-EDD schemes in [12, 14, 35], the weighted
round-robin algorithm described in [2, 25], and the weighted fair queueing (WFQ) algorithm
described in [8] and later analyzed in [30, 31]. However, we will choose to use a “stalled” version
of the VirtualClock [38, 39] algorithm which we will denote SVC and will describe in a later note
but is essentially using VirtualClock timestamps to order the guaranteed packets and then only
sending packets when their timestamp value is less than or equal to real time (or unless the link
would otherwise be idle). While all of these algorithms provide guaranteed service, they vary in
the degree to which they delay guaranteed packets until it is absolutely necessary to send them
and they also vary in the efficiency with which they deliver guaranteed service (i.e., for a given
amount of bandwidth, how many service commitments can be simultaneously met).
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The predictive service model is to provide reliable bounds but to also deliver minimax service
(that is, minimize the ex post maximum delay). Since we need not provide a perfectly reliable
bound, isolation is not the most important requirement. In fact, isolation is counterproductive
for predictive traffic and, as we argued in [3], the key heuristic here is sharing; sharing enables a
particular flow’s transient burst of traffic to pass through a switch without those packets expe-
riencing overly large delays by spreading the delay around to other flows. Thus, an appropriate
scheduling discipline is FIFO. (Actually, as we argue in [3], one can extend this notion of sharing
across switches and then an appropriate scheduling algorithm is what we called FIFO+.) Since
we may want to offer several different delay bounds, we will employ a multi-level strict priority
queue.

The service model for link-sharing revolved around an idealized fluid model. The connection be-
tween such fluid models and actual scheduling disciplines is discussed in [8] and [30, 31]; suffice it
here to say that this connection is usually done by assigning, in the real switch, a “timestamp”
to each real packet based on when all the bits in the corresponding idealized packet have been
transmitted in the fluid model, and then using these timestamps to order the packet transmis-
sions. This straightforward realization of the fluid processor sharing model produces the WFQ
scheduling algorithm (its use for link-sharing was first explored in [7]). The WFQ algorithm can be
extended to a hierarchical WFQ algorithm to match the service model of hierarchical link-sharing.
However, we assume that one could modify several other algorithms, such as weighted round-robin
or VirtualClock, to provide reasonable approximations to this service model.

In order to meet the delay-related relative service commitments for elastic traffic, we can provide
17 Lastly, for the arbiter < A — P > we choose to give
strict priority to the predictive traffic. We do this because, as we mentioned previously, currently

several levels in a strict priority queue

most real-time applications have tighter delay requirements than most elastic applications; this is
accentuated by the fact that tolerant real-time applications are sensitive to the tail of the delay
distribution whereas the performance of elastic applications tends to depend more on the center
of the distribution.

Thus, a possible instantiation of the architecture is shown in Figure 9, where the labels a, b, ¢
indicate different priority levels in the predictive and elastic traffic classes. In a later paper we
will discuss the implementation and the performance this scheduling algorithm.

& Denial of Service

To meet its quantitative service commitments, the network must employ some form of admission
control. Without the ability to deny flows admission to the network, one could not reliably provide
the various delay bound services offered by our service model. In fact, admission control is just
one aspect of denial of service; there are several other ways in which service can be denied. Denial
of service, in all of its incarnations, plays a fundamental role in meeting quantitative service
commitments.

'"This does not address any of the congestion control issues that arise with elastic traffic. Congestion control
may necesitate using some variant of Fair Queueing [8] along with some form of congestion feedback.
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Since this paper is primarily about scheduling service models, and consequently focuses on the
service actually delivered by the network as opposed to the service denied by the network, we do
not address in detail the algorithms used to deny service. Instead, in this section we merely discuss
the various kinds of denial of service and sketch a few ways in which denial of service can be used
in conjunction with our service model. In particular, denial of service can be used to augment
the resource sharing portion of the scheduling service model by supporting utilization targets.
Moreover, denial of service, through the use of the preemptable and expendable service options
discussed below, can enable the network to meet its service commitments while still maintaining
reasonably high levels of network utilization.

Denial of service, like service commitments, can occur at various levels of granularity. Specifically,
denial of service can apply to whole flows, or to individual packets within a flow. We discuss these
two cases separately.

8.1 Denial to Flows

Denial of service to a flow can occur either before or during the lifetime of that flow. Denying
service to a flow before it enters the network is typically referred to as admission control. As we
envision it, in order to receive either of the two real-time bounded delay services (guaranteed and
predictive), a flow will have to explicitly request that service from the network, and this request
must be accompanied by a characterization of the flow’s traffic stream. This characterization
gives the network the information necessary to determine if it can indeed commit to providing the
requested delay bounds. The request is denied if the network determines that it cannot reliably
provide the requested service. References [14, 19, 23, 27] discuss various approaches to admission
control.

In addition, a service model could offer a preemptable flow service, presumably for a lower cost than
non-preemptable service. When the network was in danger of not meeting some of its quantitative
service commitments, or even if the network was merely having to deny admission to other flows,
then it could exercise the “preemptability option” on certain flows and immediately discontinue
service to those flows by discarding their packets (and, presumably, sending a control message
informing those flows of their termination). By terminating service to these preemptable flows, the
service to the flows that are continuing to receive service will improve, and other non-preemptable
flows can be admitted.

Admission control can be used to augment the link-sharing service model described in the previous
section. Link-sharing uses packet scheduling to provide quantitative service commitments about
bandwidth shares. This service is designed to provide sharing between various entities which have
explicitly contracted with the network to manage that sharing. However, there are other collective
policy issues that do not involve institutional entities, but rather concern overall utilization levels
of the various service classes (guaranteed, predictive, ASAP). Because they are not explicitly
negotiated, and so no service commitments are at stake, these utilization levels are not controlled
by packet scheduling but instead are controlled by the admission control algorithm. All real-time
flows are subject to scrutiny by the admission control process; only those flows that are accepted
can use the network. If the admission control algorithm used the criteria that a flow was accepted
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if and only if it could be accepted without violating other quality of service commitments, then
the utilization levels of the various classes will depend crucially on the order in which the service
requests arrived to the network. One might desire, instead, to make explicit policy choices about
these various level of utilization. For instance, it is probably advisable to prevent starvation of
any particular class of traffic; an explicit control would be needed to prevent starvation of elastic
traffic since the ASAP service does not involve resource reservation. In addition, one might want
the admissions process to ensure that requests for large amounts of bandwidth were not always
squeezed out by numerous smaller requests.

To prevent such problems, we must introduce some guidelines, called utilization targets, into the
admission control algorithm so that the utilization levels are not just dependent on the details of
the load pattern but instead are guided towards some preferred usage pattern. This utilization
target service model involves only admission control; thus, it is not properly part of the scheduling
service model. We mention utilization targets here because other aspects of the scheduling service
model rely on these utilization targets, and also because it is so similar to the link-sharing model,
in that it represents policy objectives for aggregated classes of traffic.

8.2 Denial To Packets

While denial of service is usually associated with admission control, it also can be performed
on a packet-by-packet granularity. Denial of service to individual packets could occur by means
of a preemptable packet service, whereby flows would have the option of marking some of their
packets as preemptable. When the network was in danger of not meeting some of its quantitative
service commitments, it could exercise a certain packet’s “preemptability option” and discard the
packet (not merely delay it, since that would introduce out-of-order problems). By discarding
these preemptable packets, the delays of the not-preempted packets will be reduced.

The basic idea of allowing applications to mark certain packets to express their “drop preference”
and then having the network discard these packets if the network is congested has been circulating
in the Internet community for years, and has been simulated in Reference [33]. The usual problem
in such a scheme is defining what congestion means. In the Internet, with its simple service
model, one usually equates congestion with the presence of a sizable queue. However, this is a
network-centric definition that is not directly related to the quality of service desired by the various
applications. In contrast, in our setting, we can make a very precise definition of congestion that is
directly tied to the applications’ service requirements: congestion is when some of the quantitative
service commitments are in danger of being violated. The goal of admission control is to ensure
that this situation arises extremely infrequently.

The basic idea of preemptability can usefully be extended in two directions. First, for the purposes
of invoking the preemptability options, one can stretch the definition of a quantitative service
commitment to include implicit commitments such as compliance with the historical record of
performance. That is, one could choose to drop packets to make sure that the network continued
to provide service that was consistent with its past history, even if that past history was never
explicitly committed to. Furthermore, one could also extend the definition of a quantitative service
commitment to the utilization targets discussed above.
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Second, one can define a class of packets which are not subject to admission control. In the
scenario described above where preemptable packets are dropped only when quantitative service
commitments are in danger of being violated, the expectation is that preemptable packets will
almost always be delivered and thus they must included in the traffic description used in admission
control. However, we can extend preemptability to the extreme case of expendable packets (the
term expendable is used to connote an extreme degree of preemptability), where the expectation
is that many of these expendable packets will not be delivered. One can then exclude expendable
packets from the traffic description used in admission control; i.e., the packets are not considered
part of the flow from the perspective of admission control, since there is no commitment that they
will be delivered. Such expendable packets could be dropped not only when quantitative service
commitments are in danger of being violated, but also when implicit commitments and utilization
targets, as described above, are in danger of being violated.

The goal of these preemptable and expendable denial of service options (both at the packet and
flow level of granularity) is to identify and take advantage of those flows that are willing to suffer
some interruption of service (either through the loss of packets or the termination of the flow) in
exchange for a lower cost. The preemptable flows and packets provide the network with a margin
of error, or a cushion, for absorbing rare statistical fluctuations in the load. This will allow the
network to operate at a higher level of utilization without endangering the service commitments
made to those flows who do not choose preemptable service. Similarly, expendable packets can
be seen a filler for the network; they will be serviced only if they do not interfere with any other
scheduling goal but there is no expectation that their being dropped is a rare event. This will
increase the level of utilization even further. We will not specify further how these denial of service,
or preemptability, options are defined, but clearly there can be several levels of preemptability, so
that an application’s willingness to be disrupted can be measured on more than a binary scale.

This paper is based on the assumption that one can usefully distinguish between packet scheduling
decisions (“which packet do we send next?”) and packet dropping decisions (“if this packet is next
to be sent, should we send it or drop it?”). Such a distinction seems natural when dropping is a
fairly rare event, and not the main vehicle through which quality of service is delivered. As we
discussed in Section 5, packet scheduling decisions have an ordered structure, which we depicted
in Figure 4. In contrast, decisions about when to drop packets may involve the entire suite of
scheduling goals; one might drop expendable guaranteed packets in order to reduce ASAP delays,
and one might drop predictive expendable packets in order to service additional expendable guar-
anteed packets. This complicated interrelationship of service goals and possible dropping decisions
makes it difficult to envision a coherent and systematic architecture that describes which packets
to drop and when'®. Does this render our basic scheduling architecture invalid or irrelevant? We
discuss this question below.

In this paper, we have discussed a service model in which we implicitly assumed that the vast
majority of sent data is delivered to its destination. In our taxonomy, some applications needed
explicit assurances about the network delays (the real-time applications), and others needed no
such assurances (the elastic applications). However, the universal assumption was that most

18Reference [15] discusses using link-sharing ideas to control such dropping decisions; while this is one possible
approach, more general approaches are also possible.
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applications expected that all (or almost all) of their data would be delivered. Thus, the network
was faced with a bursty and inflexible (inflexible in that most of the data was neither preemptable
nor expendable) load, and the challenge was to deliver the desired qualities of service. Scheduling
algorithms (accompanied by the appropriate admission control algorithms) are indeed the only
fully general way to cope with this problem, and that was our object of focus.

One can imagine applications such as hierarchically-encoded video which could easily be adequately
served with a service model in which, as we have briefly outlined in this section, there is no
assumption that most sent data will be delivered. If these applications represent a small percentage
of the traffic in the network, then such preemptable or expendable traffic can be seen as cushions
or filler which merely ease the implementation of our original service model, but do not undermine
its relevance for the other applications. However, if such applications become the dominant source
of traffic in the network, then the central design problem is quite different. The network is
now faced with a variable but highly flexible demand, and can therefore drop packets at will to
ensure an almost constant delivered load. In this scenario, packet dropping, rather than packet
scheduling, will be the main vehicle through which qualities of service are delivered and thus while
the service model will remain valid, the scheduling architecture will be rendered largely irrelevant.
We conjecture, and we admit that it is completely conjecture at this point, that the network will
not become dominated with such expendable traffic. This is largely an economics judgment; if the
network did become dominated with such expendable traffic, then the marginal cost of serving
nonexpendable packets would be almost identical with the marginal cost of serving expendable
packets (since there is already such a large pool of droppable packets), and so the two services
should be similarly priced. However, one can only hypothesize a sizable share of expendable
packets if expendable service has a significant price advantage over nonexpendable service. Thus,
we think it unlikely that the network will be dominated by such expendable traffic.

9 Related Work

There has been a flurry of recent work on providing various qualities of service in packet networks.
We cannot hope, nor do we try, to cover all of the relevant literature in this brief review. Instead,
we mention only a few representative references. Furthermore, we focus exclusively on the issue
of the service model and do not discuss to any great extent the underlying scheduling algorithm
(for a review of the scheduling algorithms, see [3]).

The motivating principle of this work is that the service model is primary. However, Reference [2]
(and, to a lesser extent, Reference [15]) contend that because we do not yet know the service needs
of future applications, the most important goal is to design flexible and efficient packet schedul-
ing implementations. Obviously both packet scheduling implementations and service models are
tremendously important, but the debate here is over which one should guide the design of the
network. There are two points to be made.

First, there is a fundamental difference in the time-scale over which packet scheduling implemen-
tations and service models have impact. Once a router vendor with a substantial market presence
adopts a new packet scheduling implementation, it will likely remain fixed for several years. So, in
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the short term, we need to ensure that such packet scheduling implementations embody enough
flexibility to adapt if a new service model is adopted during the product’s lifetime. However, router
technology, and the embedded packet scheduling implementations, do evolve as new products are
introduced, and so one cannot expect that packet scheduling implementations will remain fixed
for many years. The time scale of service models is rather different. It typically takes much longer
for a new service model to become adopted and utilized, because it must be embedded in user
applications. However, once a service model does become adopted it is much harder to change,
for precisely the same reason. Thus, we can say that while the set of packet scheduling implemen-
tations will likely freeze first, the service model freezes harder. For this reason we choose to focus
on the service model.

Second, the role of flexibility must be clarified. The services offered to individual flows by a packet
scheduling algorithm must be part of a service model and, as we argued above, the service model
does not change rapidly (except in experimental networks, where perhaps looking for flexible
and efficient packet scheduling implementations is important); in particular, we expect service
models to change much less rapidly than packet scheduling algorithms. Thus, for quality of service
commitments to individual flows, flexibility is not of great importance. However, the link-sharing
portion of the service model is not exercised by individual applications but rather by network
managers through some network management interface. This portion of the service model can
change much more rapidly, so flexibility is indeed important for link-sharing and other forms of
resource sharing. Our disagreement over the relative importance of service models and packet
scheduling implementations reflects, at least in part, a deeper disagreement over the extent to
which quality of service needs are met indirectly by link-sharing, which controls the aggregate
bandwidth allocated to various collective entities, as opposed to being met directly by quality of
service commitments to individual flows. Actually, the important distinction here is not between
link-sharing and delay related services, but rather between those services which require explicit
use of the service interface, and those that are delivered implicitly (i.e., based on information
automatically included in the packet header). Network architectures designed around such implicit
quality of service mechanisms do not require a well-defined service model nor do they require
charging for network service; the network architecture we have advocated involves explicit quality
of service mechanisms and therefore requires a stable service model and, as we argue in Section
10, differential charges for the various levels of network service.

Much of the recent quality of service literature concentrates on the support of real-time applica-
tions. As is most clearly spelled out in References [11, 13], the consensus of the literature is that
the appropriate service model for these real-time applications is to provide a priori delay bounds.
We should note that there is another viewpoint on this issue, which has not yet been adequately
articulated in the literature. It is conceivable that the combination of adaptive applications and
sufficient overprovisioning of the network could render such bounds, with the associated need for
admission control, unnecessary; applications could adapt to current network conditions, and the
overprovisioning would ensure that the network was very rarely overloaded. In this view, it would
be sufficient to provide only the several classes of elastic service without any real-time services.
We think that the extreme variability of the offered load will require too great a degree of over-
provisioning to make this approach practical. However, our line of reasoning is well outside the
scope of this paper; we hope to explore this in more detail in future work.
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There are several service schemes whose service model is to provide a bound on the maximum
delay of packets, provided that the application’s traffic load conforms to some prearranged filter.
Such schemes include the WFQ (see [8]; also see citeP-G,ap-thesis which refers to this as the PGPS
algorithm), Delay-EDD (see [14]), and Hierarchical Round Robin (see [28]). This service model is
identical to our guaranteed service model; this can be considered the canonical service model for
supporting real-time applications.

There are several service schemes which, given that the application’s traffic load conforms to some
prearranged filter, provide not only a bound on the maximum delay but also a nontrivial bound
(i.e., a bound other than the no-queueing bound) on the minimum delay. One such scheme is the
Jitter-EDD scheme (see [11, 35]). The original Stop-and-Go scheme (see [16]) provides a jitter
bound, which is a universal bound on the difference between the maximum and minimum delays
which applies to all flows, no matter what network path their traffic takes, and no matter what
their offered load is (as long as it conforms to the characterization handed to admission control).
The maximum delay bound will depend on the path, but the jitter bound depends only on the
frame size of the network which is fixed. Subsequent enhancements to this scheme (see [17]) enable
the network to provide several different values of jitter bounds. We did not include such nontrivial
lower bounds on delay in our present service model because they serve only to reduce buffering
at the receiver and, as we argued in Section 3.2, we do not expect buffers to be a bottleneck;
furthermore, if some applications do need additional buffering, this can easily be supplied at the
edge of the network and need not be built into the basic scheduling service model.

A rather different form of service model is the offering of statistical characterizations of perfor-
mance. The Statistical-EDD scheme (see [14]) offers a delay bound and the probability that
bound will be violated. In the MARS scheme, delay bounds are firm but there is a statistical
characterization of packet loss (see [21, 22]). In some ways, these service offerings are similar to
the predictive delay bounds included in our service model; however, we do not supply a precise
estimate of the probability. In fact, we explicitly rejected such statistically characterized service
offerings (in Section 3.1) because they inherently require a statistical characterization of individ-
ual flows (or at least of the aggregate traffic), and we doubt that such characterizations will be
available. The SMDS service interface (see [10]) offers a fixed delay bound (independent of path)
with an assurance that a given percentage of the traffic will meet that bound. The statistical
characterization offered here is more similar to our predictive service, in that it applies only over
long time intervals. Another scheme which attempts to provide a reliable bound, but does not give
a precise estimate of the probability of violation, is implicitly defined by the equivalent capacity
approximations in References [18, 19]; these approximations, when used in an admission control
scheme, can ensure with high reliability that delay bounds are not violated.

The link-sharing service model has been informally discussed for years, but has rarely been written
about. One exception is the work of Davin and Heybey (see [7]), where an approximation to the
WFQ algorithm was used to share a link between several agencies. More recently, Jacobson
and Floyd [15, 25] have discussed the possibility of hierarchical link-sharing, and have proposed a
mechanism to accomplish this. Steenstrup [34] has also proposed a mechanism for such hierarchical
sharing. In most of these works [2, 7, 25], the service model has been implicitly defined by the
mechanism itself. Recently, Floyd [15] has provided a more principled description of the service
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model, independent of the implementing mechanism. This service model is, in general outline,
somewhat similar to what we have proposed. The biggest difference is that the service model is
defined relative to estimators, which calculate an entity’s bandwidth usage over some time period,
and persistent backlogs, which indicate unsatisfied demand; in contrast, our service model is defined
relative to the fluid model. It is not clear how these approaches differ in practice.

The idea of offering several classes of service to elastic traffic is often not explicitly mentioned in
many of the above proposals, but represents an entirely trivial change to the various schemes.

This briet review of related work reveals that each component of our scheduling service model
has some similar counterpart in the literature. While our service model is unique in including all
of these different components, our service model does not contain the sum of the features of the
aforementioned schemes. In particular, we have excluded nontrivial bounds on minimum packet
delays and also excluded any statistically characterized service offerings.

Few of the above works focus on the service model independently of a particular realization.
Consequently, they have typically not addressed the issue of the existence of a general scheduling
architecture that we have proposed here. The only exception to this is the recent work of Floyd
[15]. We have argued for a precedence ordering between the various scheduling goals, with real-time
objectives taking precedence over link-sharing objectives. In contrast, Floyd views link-sharing as
coequal with real-time objectives, and argues that in some cases the link-sharing goals should cause
real-time bounds to be violated. This is a rather fundamental difference, with roots in the differing
roles the two viewpoints ascribe to service commitments; we see quality of service as negotiated
on a flow-by-flow basis with link-sharing only used for resource sharing issues, whereas Floyd sees
link-sharing as another way in which to deliver quality of service to flows (which then renders
it comparable in precedence to real-time goals). We hope to more fully explore the differences
between these two viewpoints in future work.

10 Discussion

Figure 10 depicts our line of reasoning in this paper. In the first part of this paper, we proposed
a scheduling service model for ISPN’s. This proposal was based on some assumptions about the
nature of present and future application quality of service requirements and institutional resource
sharing needs. The proposal was also shaped by judgments about the practical limitations of what
can be controlled through scheduling algorithms, and judgments about the relative efficiency with
which the services can be delivered. Our service model has two components; a delay-related
component designed to meet the ergonomic requirements of individual applications, and a link-
sharing component designed to meet the economic needs of resource sharing between different
entities. The delay related services include two kinds of real-time service, guaranteed service and
predictive service, and also includes multiple classes of ASAP elastic service. The service model
for hierarchical link-sharing is based on a hierarchical version of a fluid model for generalized
processor sharing.

In the second part of this paper, we explored the family of scheduling algorithms that could realize
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Figure 10: A schematic diagram of the line of reasoning used in this paper.

this scheduling service model. We first introduced a transitive precedence ordering of these service
commitments. We then found that this ordering led directly to a canonical scheduling architecture;
all scheduling algorithms supporting our service model must conform to this architecture. This
architecture is fairly general and can have many different instantiations (and in Section 7 we
sketched one such instantiation). The key elements of this architecture are that (1) predictive and
elastic packets are sent if and only if guaranteed packets do not need to be sent, (2) admission
control is used to keep the link-sharing goals from being violated by real-time traffic, and (3) the
link-sharing algorithm accounts for the real-time traffic in scheduling the elastic traffic, but does
not affect the scheduling of the real-time traffic.

The service model should be based on fundamental service requirements. Since we obviously
don’t know what future application requirements will be, the design of a scheduling service model
is inherently a speculative task, and there will be legitimate disagreements about which service
models are most appropriate. It is important to distinguish between disagreements which arise
from different predictions about future applications and those disagreements which arise from
different judgments about how to best serve an agreed upon set of applications. Therefore, it is
crucial to make the assumptions about future applications explicit, and we have attempted to do
that in this paper.

Despite the surfeit of detailed scheduling proposals, there has been a regrettable dearth of dis-
cussion, much less debate, about the basic service models that best fit application needs and
network technology ([11, 13] are a notable exceptions). In addition, comparisons between various
scheduling proposals typically focus solely on the algorithmic details rather than stressing the
underlying architectural and structural aspects. Thus, while we obviously hope that the specific
technical proposals contained in this note have some validity, we think it likely that the issues we
address, those of service models and scheduling architectures, are more important than the specific
answers we propose. In fact, perhaps the most important point we make is that the arrows in
Figure 10 go from left-to-right rather than from right-to-left as is implicitly assumed in the more
mechanistically based discussions of integrated services packet networks.

We conclude with one last observation: pricing must be a basic part of any complete ISPN
architecture. If all services are free, there is no incentive to request less than the best service
the network can provide, which will not produce effective utilization of the network’s resources
(see Reference [5, 6, 32] for a discussion of these issues). The sharing model in existing datagram
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networks deals with overload by giving everyone equally poor service; the equivalent in real-time
services would be to refuse a high fraction of requests, which would be very unsatisfactory. Prices
must be introduced so that some clients will request lower quality service because of its lower cost.
Therefore, real-time services must be deployed along with some means for accounting.

It is exactly this price discrimination that will make the predictive service class viable. Certainly
predictive service is less reliable than guaranteed service and, in the absence of any other incentive,
network clients would insist on guaranteed service and the network would operate at low levels
of utilization and, presumably, high prices. However, if one can ensure that the reliability of
predictive service is sufficiently high and the price sufficiently low, many network clients will
prefer to use the predictive service. This will allow ISPN’s to operate at a much higher level of
utilization, which then allows the costs to be spread among a much larger user population.
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