
AN ANALYSIS OF TCP PROCESSING OVERHEAD

David D. Clark John Romkey
Epilogue, Inc.

Cambridge, MA Belmont, CA
Massachusetts Institute of Technology

Abstract
This paper reports a preliminary analysis of the
processing overhead of the transport protocol TCP, done
to estimate the possible performance range of the
protocol. The analysis was performed by compiling a
version of TCP and counting the number of the
instructions in the common path. The analysis suggests
that fewer than 200 instructions are required to process a
TCP packet in the normal case. This number is small
enough to support very high-speed transmission if it were
the major overhead. The paper offers some speculation
about the actual source of processing overhead in
network protocols.

1. Introduction
While networks, especially local area networks, have
been getting faster, perceived throughput at the
application has not always increased accordingly.
Various performance bottlenecks have have been
encountered, each of which has to be analyzed and
corrected.

One aspect of networking often suspected of contributing
to low throughput is the transport layer of the protocol
suite. This layer, especially in connectionless protocols,
has considerable functionality, and is typically executed
in software by the host processor at the end points of the
network. It is thus a likely source of processing overhead.

While this theory is appealing, a preliminary examination
suggested to us that other aspects of networking may be a
more serious source of overhead. To test this proposition,
a detailed study was made of a popuIar transport protocol,
TCP’. This paper provides preliminary results of that
study. Our tentative conclusion is that TCP is in fact not
the source of the overhead often observed in packet
processing, and that if properly implemented, could
support very high speeds.

2. TCP
TCP, or Transmission Control Protocol, is the transport
protocol from the Internet protocol suite. The Internet
protocols are connectionless, so the network layer has
minimal function. The functions of detecting and
recovering lost or corrupted packets, flow control, and

Howard Salwen
Proteon, Inc.

Westboro, MA

multiplexing are performed at the transport level. TCP
uses sequence numbers, cumulative acknowledgment,
windows and software checksums to implement these
functions.

TCP is used on top of a network level protocol called
Intemet, or IP2. This protocol, which is a datagram packet
delivery protocol, deals with host addressing and routing,
but that latter function is almost totally the task of the
Intemet level packet switch, or gateway. IP also provides
the ability for packets to be broken into smaller units, or
fragmented, on passing into a network with a smaller
maximum packet size. The IP layer at the receiving end is
responsible for reassembling these fragments. For a
general review of TCP and IP, see’ or4.

Under IP is the layer dealing with the specific network
technology being used. This may be a very simple layer
in the case of a local area network, or a rather complex
layer for a network such as X.25. On top of TCP sits one
of a number of application protocols, most commonly for
remote login, file transfer or mail.

3. The Analysis
This study addressed the overhead of running TCP and IP
(since TCP is never run without IP), and the overhead of
the operating system support needed by them. It did not
consider the cost of the driver for some specific network,
nor did it consider the cost of running an application.

The study technique is very simple: we compiled a TCP,
identified the normal path through the code, and counted
the instructions. However, more detail is required to put
our work in context.

The TCP we used is the currently distributed version of
TCP for Unix from Berkeley’. By using a production
quality TCP, we believe that we can avoid the charge that
our TCP is not fully functional.

While we used a production TCP as a starting point for
our analysis, we made significant changes to the code.
To give TCP itself a fair hearing, we felt it was necessary
to pry it apart from some protocol-independent overheads
with which TCP is closely associated, especially in this
implementat ion.

CH2613-8/88/0000/0284/$01 .OO 0 1988 IEEE 284

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

Chief among these is the data buffering technique for the
Berkeley TCP. In this implementation, data is stored in a
series of chained buffers, called m-bufs. This technique of
chaining small buffers together was used to avoid the
excessive waste that can occur with a simpler scheme
which allocates a maximum size buffer for each packet.
While m-bufs certainly avoid the problem of internal
buffer fragmentation, there is a considerable overhead
possibly associated with managing these buffers.

We felt that this buffering scheme, as well as the scheme
for managing timers and other system features, was a
characteristic of Unix rather then the TCP, and it was
reasonable to separate the cost of TCP from the cost of
these support functions. At the same time, we wanted our
evaluation to be realistic. So it was not fair to ignore
altogether the cost of these functions.

Our approach was to take the Berkeley TCP as a starting
point, and modify it to better give a measure of intrinsic
costs. One of us (Romkey) removed from the TCP code
all references to Unix-specific functions such as m-bufs,
and replaced them with working but specialized versions
of the same functions. To insure that the resulting code
was still operational, it was compiled and executed.
Running the TCP in two Unix address spaces, and
passing packets by an interprocess communication path,
the TCP was made to open and close connections, and to
pass data. While we did not test the TCP against other
implementations, we can be reasonably certain that the
TCP that resulted from our test was essentially a correctly
implemented TCP.

The compiler used for this experiment generated
reasonably efficient code for the Intel 80386. Other
experiments we have performed tend to suggest that for
this sort of application, the number of instructions is very
similar for a 80386, a Motorola 68020, or even a RISC
chip such as the SPARC.

4. Finding the Common Path
One observation central to the efficient implementation
of TCP is to observe that while there are many paths
through the code, there is only one common one. While
opening or closing the connection, or after errors, special
code will be executed. But none of this code is required
for the normal case. The normal case is data transfer,
while the TCP connection is established. In this state,
data flows in one direction, and acknowledgment and
window information flows in the other.

In writing a TCP, it is important to optimize this path. In
studying the TCP, it was necessary to find and follow it
in the code. Since the Berkeley TCP did not separate this
path from all the other cases, we were not sure if it was
being executed as efficiently as possible. For this reason,
and to permit a more dirext analysis, we implemented a
special "fast path" TCP. When a packet was received,
some simple tests were performed, to see if the
connection was in established state, if the packet had no

special control fl-ags on, and if the sequcnce number was
expected. If so, control was transferred to the fast path.
The version of the TCP which we compiled and tested
had this fast path, and it was this fast path we audited.

There are actually two common paths through the TCP,
the sending end and the receiving end. In general, TCP
permits both ends to do both at once, although in the real
world it happens only in some limited cases. But in any
bulk data example, where throughput is an issue, data
almost always flows in only one direction. One end, the
sending end, puts data in its outgoing packets. When it
receives a packet, it finds only control information:
acknowledgments and windows.

The other, receiving, end, finds data in its incoming
packets and sends back control information. In this paper
we will use these two terms, sender and receiver, to
describe the direction of data flow. Both ends really do
receive packets, but only one end tends to receive data.

5. A First Case Study -- Input Processing
A common belief about TCP is that the most complex,
and thus most costly part, is the packet receiving
operation. When receiving a packet, the program must
proceed through the packet testing each field for errors
and determining the proper action to take. In contrast,
when sending a packet, the program knows exactly what
actions are intended and has essentially to format the
packet and start the transmission.

A preliminary investigation tended to support this model,
and so for our first detailed analysis, we studied the
program which receives and processes a packet.

There are three general stages to the TCP processing. In
the first, the TCP checksum is verified. This requires
computing a simple function of all the bytes in the
packet. In the second, a search is made to find the local
state information (called the transmission control block,
or TCB) for this TCP connection. In the third stage, the
packet header is processed.

We chose not to study these first two stages. The
checksum cost depends strongly on the raw speed of the
environment and the detailed coding of the computation.
The lookup function similarly depends on the details of
the data structure, the assumed number of connections,
and the potential for special hardware. In a later section,
we will return to these two operations, but in the detailed
analysis of this section, they are omitted.

The following analysis thus covers the TCP processing
from the point where the packet has been checksummed,
and the TCB has been found. It covers the processing of
all the header data, and the resulting actions.

The packet input processing code has a rather different
path for the sender and for the receiver of data.

285

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

The overall numbers are the following: 6. TCP Output Processing
0 Sender of data- 191 to 235 instructions.

0 Receiver of data -- 186 instructions.

A more detailed breakdown provides further insight.

Both sides contain a common path of 154 instructions. Of
these, 15 are procedure entry and exit or initialization.
For the receiver of data, an additional 15 instructions are
spent sequencing the data and calling the buffer manager,
and another 17 are spent processing the window field in
the packet.

The sender of data, which is receiving control
information, has more steps to perform. In addition to the
154 common instructions, it takes 9 to process the
acknowledgment, 20 to process the window, 17 to
compute the outgoing congestion window (so-called
"slow-start" control), and 44 instructions (but not for each
packet) to estimate the round-trip time. The round-trip
delay is measured not for every packet, but only once per
round trip. For short delay paths, where one packet can be
sent in one round-trip, this cost could occur for every
packet. For longer paths, the cost will be spread over
several packets.

From this level of analysis of one part of the code, it is
possible to draw a number of conclusions. First, there are
actually very few instructions required. In the process of
making this study, we found several opportunities for
shortening the path length. None of those are in this
version.

We subjected the output side of TCP to an analysis that
was somewhat less detailed than the input side. We did
not program a fast path, and we did not attempt to
separate the paths for data sending and receiving. We
thus have a single number that is a combination of the
two paths, and which (by inspection) could be
significantly improved by an optimization of the common
path.

We found 235 instructions to send a packet in TCP.
While this number is actually greater than the cost of
receiving a packet, we believe that the lack of
optimization in this code precludes direct comparison
with input processing. With equivalent attention to the
code, the output side should be less costly than the input
side.

7. The Cost of IP
In the normal case, IP performs very few functions. On
input of a packet, it checks the header for correct form,
extracts the protocol number, and call the TCP processing
function. The executed path is almost always the same.
On output, the operation is even more simple.

The instruction counts for IP were as follows:
0 Packet receipt -- 57

0 Packet sending -- 61

Second, a significant amount of code is involved in
control of the protocol dynamics; computing the 8. Out ut Processing -- An Implementation
congestion window and the round trip delay. These
activities have nothing to do with the actual data flow.
The actual management of the sequence numbers is very
quick. But between 17 and 61 instructions are S P t on
computation of dynamic control parameters.

The analysis made clear that some changes to the
Protocol would Provide a slight Speedup. But these
changes are not what is often proposed.

Tricfc
Output processing Seems much less complex than input.
There is no question of testing for mal-formed packets, or
looking up a TCB. The TCB is known, as is the desired
action.

To take advantage of this constrained environment, we
programmed an optimization as part of the IP output

One change concerns sequence numbers. TCP provides a
sequence number for data, but not for individual packets.
Control information is thus sequenced only indirectly, an
approach which is functionally correct but which
generates overhead. If every packet had a sequence
number, 15 instructions could be removed from the
processing of the window information. A reduction
would also probably occur in the estimation of the round-
trip delay.

In a later section, we will return to a more global
speculation on what these numbers mean.

routine.

IP places a fixed size 20 byte header on the front of every
IP packet, plus a variable amount of options. Most IP
packets carry no options. Of the 20 byte header, 14 of the
bytes will be the same for all IP packets sent by a
particular TCP connection. The IP length, ID and
checksum fields (6 bytes total) will probably be different
for each packet. Also, if a packet carries any options, all
packets for that TCP connection will likely carry the
same options.

Based on this observation, we designed an IP layer which
created a template 'IP header with the constant fields
filled in, and associated this template with a TCP
connection. When TCP wished to send a packet on that
connection, it would call IP, passing it the template and

286

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

the length of the packet, and IP would block copy the
template into the space for the IP header, fill in the length
field, fill in the unique ID field and calcuIate the IP
header checksum.

The IP layer is also responsible for routing packets.
Discovering a route to a host is an expensive operation
which we do not want to perform on every packet, so we
cache the route to a particular host. The route may
change, however, and invalidating the cache can also be a
tricky problem. We want to make sure that routing cache
lookups are as fast as possible, and while invalidating the
cache may be much slower without impacting overall
TCP throughput, they should still be relatively efficient.

The solution is to have each TCP connection have a
timestamped cached routing entry. Routing entries are
invalidated when an IP router sends an ICMP redirect
(redirecting the IP to use a different router) to this host.
The IF' layer should then store the host/router pair
contained in the redirect in a routing table and set an
intemal variable to the time that the redirect was
received. Then when TCP asks the IP layer to transmit a
packet, IP checks if the time the route was cached before
the last ICMP redirect was received (which might have
changed this route). If it was, the route is recomputed
(with information from the stored routing table) and
recached; otherwise the cached route is used.

There may also be an entry point into the IP layer which
TCP may use to request that a connection be rerouted (in
case of excessive retransmissions, for instance). This
function fits in easily with the caching model, but our
TCP/IP implementation did not use or provide such a
function.

9. Support Functions

9.1. The Buffer Layer

The most complex of the support functions is the layer
that manages the buffers which hold the data at the
interface to the layer above. Our buffer layer was
designed to match high-throughput bulk data transfer. It
supports a allocate and.fiee function, and a simple get
and put interface with one additional feature to support
data sent but not yet acknowledged. All the bookkeeping
about out of order packets was performed by TCP itself.

The buffer layer added the following costs to the
processing of a packet.

Sending a data packet -- 40 instructions.

Receiving a data packet -- 35 instructions .
*Receiving an acknowledgment (may flee a

buffer) -- 30 instructions.

It might be argued that our buffer layer is too simple. We
would accept that argument, but are not too concerned by
it. All transport protocols must have a buffer layer. In
comparing two transport protocols, it is reasonable to
assume (to first order) that if they have equivalent service
goals they will have equivalent buffer layers.

A buffer layer can easily grow in complexity to swamp
the protocol itself. The reason for this is that the buffer
layer is that part of the code in which the demand for
varieties of service has a strong effect. For example, some
implementations of TCP attempt to provide good service
to application clients that want to deal with data one byte
at a time, as well as others that want to deal in large
blocks. To serve both sorts of clients requires a buffer
layer complex enough to fold both of these models
together. In an informal study done by one of us (Clark)
of another transport protocol, an extreme version of this
problem was uncovered: of 68 pages of code written in C,
which seemed to be the transport protocol, over 60 were
found to be the buffer layer and interfaces to other
protocol layers, and only about 6 were the protocol.

The problem of the buffer layer is made worse by the fact
that the protocol specifiers do not admit that such a layer
exists. It is not a part of the IS0 reference model, but is
left as an exercise for the implementor. This is
reasonable, within limits, since the design of the buffer
layer has much to do with the particular operating system.
(This, in fact, contributed to the great simplicity of our
buffer layer; since there was no operating system to speak
of, we were free to structure things as needed with the
right degree of generality and functionality.)

However, some degree of guidance to the implementor is
necessary, and the specifiers of a protocol suite would be
well served to give some thought to the role of buffering
in their architecture.

9.2. Timers and Schedulers

In TCP, almost every packet is coupled to a timer. On
sending data, a retransmit timer is set. On receipt of an
acknowledgment, this timer is cleared. On receiving data,
a timer may be set to permit dallying before sending the
acknowledgment. On sending the acknowledgment, if
that timer has not expired it must be cleared.

The overhead of managing these timers can sometimes be
a great burden. Some operating systems' designers did
not think that timers would be used in this demanding a
context, and made no effort to control their costs.

In this implementation, we used a specialized timer
package similar to the one described by Varghese6. It
provides a very low cost for timer operations. In our
version the costs were:

Set a timer -- 35

Clear a timer -- 17

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

Reset a timer (clear and set together) -- 4 1

10. Checksums and TCBs -- The Missing

In the discussion of TCP input processing above, we
intentionally omitted a cost for computing the TCP
checksum, and for looking up the TCB. We now consider
each of these costs.

The TCP checksum is a point of long-standing contention
among protocol designers. Having an end-to-end
checksum which is computed after the packet is actually
in main memory provides a level of protection that is
very valuable7. However, computing this checksum using
the central processor rather than some outboard chip is a
considerable burden on the protocol. In this paper we do
not want to take sides on this matter. We only observe
that "you get what you pay for." A protocol designer
might ay to make the cost optional, and should certainly
design the checksum to be as efficient as possible. TCP
does not do this.

There are a number of processing overheads associated
with processing the bytes of the packet, rather then the
header fields. The checksum computation is one of these,
but there are others. In a later section we consider all the
costs of processing the bytes.

Looking up the TCB is also a cost somewhat unrelated to
the details of TCP. That is, any transport protocol must
keep state information for each connection, and must use
a search function to find this for an incoming packet. The
only variation is the number of bits that must be matched
to find the state (TCP uses 64, which may not be
minimal), and the number of connections that are
assumed to be open.

Steps

Using the principle of the common path, however, one
can provide algorithms that are very cheap. While we
have not yet coded them, they are plausible and easy to
estimate.

The most simple algorithm is to assume that the next
packet is from the same connection as the last packet. To
check this, one need only pick up a pointer to the TCB
saved from last time, extract from the packet and
compare the correct 64 bits, and return the pointer. This
takes less than 10 instructions. If this optimization fails
too often to be useful, the next step is to hash the 64 bits
into a smaller value, perhaps a 8 bit field, and use this to
index into an array of linked lists of TCBs, with the most
recently used TCB sorted first. If the needed TCB is
indeed first on the list selected by the hash function, the
cost is again very low. A reasonable estimate is 25
insauctions. We will use this higher estimate in the
analysis to follow.

11. Some Speed Predictions
Adding all these costs together, we see that the overhead
of receiving a packet with control information in it
(which is the most costly version of the processing path)
is about 357 instructions. This includes the TCP and IP
level processing, our crude estimate of the cost of finding
the TCB, the buffer layer, and resetting a timer. Adding
up the other versions of the sending and receiving paths
yields instruction counts of the same magnitude.

With only minor optimization, an estimate of 300
instructions could be justified as a round number to use as
a basis for some further analysis. If the processing
overhead were the only bottleneck, how fast could a
stream of TCP packets forward data?

Obviously, we must assume some target processor to
estimate processing time. While these estimates were
made for an Intel 80386, we believe the obvious
processor is a 32 bit RISC chip, such as a SPARC chip or
a Motorola 88000. A conservative execution rate for such
a machine might be 10 mips, since chips of this sort can
be expected to have a clock rate of twice that or more,
and execute most instructions in one clock cycle. (The
actual rate clearly requires a more detailed analysis: it
depends on the number of data references, the data fetch
architecture of the chip, the supporting memory
architecture, and so on. For this paper, which is only
making a very rough estimate, we believe that a working
number of 10 mips is reasonable.)

In faimess, the estimate of 300 instructions should be
adjusted for the change from the 80386 to a RISC
instruction set. However, based on another study
performed of packet processing code, we found little
expansion of the code when converting to a RISC chip.
The operations required for packet processing are so
simple that no matter what processor is being used, the
instruction set actually utilized is a RISC set.

A conservative adjustment would be to assume that 300
instructions for a 80386 would be 400 instructions for a
RISC processor.

At 10 mips, a processor can execute 400 instruction in 40
us., or 25,000 packets per second. These processing costs
permit rather high data rates.

If we assume a packet size of 4000 bytes, which would fit
in an FDDI frame, for example, then 25,000 packets per
second provides 800 megabits per second.

Figuring another way, if we assume an FDDI network
with 100 megabits per second bandwidth, how small can
the packets get before the processing per packet limits the
throughput? The answer is 500 bytes.

These numbers are very encouraging. They suggest that it
is not necessary to revise the protocols to utilize a
network such as FDDI. It is only necessary to implement
them properly.

288

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

12. Why Are Protocols Slow?
The numbers computed above may seem hard to believe.
While the individual instruction counts may seem
reasonable, the overall conclusion is not consistent with
observed performance today.

We believe that the proper conclusion is that protocol
processing is not the real source of the processing
overhead. There are several others that are more
important. They are just harder to find, and the TCP is
easier to blame.

The first overhead is the operating system. As we
discussed above, packet processing requires considerable
support from the system. It is necessary to take an
interrupt, allocate a packet buffer, free a packet buffer,
restart the 1/0 device, wake up a process (or two or
three), and reset a timer. In a particular implementation,
there may be other costs that we did not identify in this
study.

In a typical operating system, these functions may turn
out to be very expensive. Unless they were designed for
exactly this function, they may not match the
performance requirements at all.

A common example is the timer package. Some timer
packages are designed under the assumption that the
common operations are setting a timer, and having a
timer expire. These operations are made less costly, at the
expense of the operation of unsetting, or clearing the
timer. But that is what happens on every packet.

It may seem as if these functions, even if not optimized,
are small compared to TCP. This is m e only if TCP is
big. But, as we discovered above, TCP is small. If a
typical path through TCP is 200 instructions, a timer
package could cost that much if not carefully designed.

The other major overhead in packet processing is
performing operations that touch the bytes. The example
associated with the transport protocol is computing the
checksum. The more important one is moving the data in
memory.

Data is moved in memory for two reasons. First, it is
moved to separate the data from the header, and get the
data into the alignment needed by the application.
Second, it is copied to get it from I/O device to system
address space to user address space.

In a good implementation, these operations will be
combined to require a minimal number of copies. In the
Berkeley Unix, for example, when receiving a packet, the
data is moved from the U0 device into the chained m-buf
structure, and then is moved into the user address space
in a location that is aligned as the user needs it. The first
copy may be done by DMA controller or by the
processor, the second is always done by the processor.

It is harder than one would wish to get these copy
operations to run fast. Typically, one must use two
instructions to move 4 bytes. A 4000 byte packet thus
requires 2000 instructions, almost 20 times as many as
needed to process the header. Even if one instruction is
needed, it must be complex, with two index increments,
(not an option with a RISC processor) and there must be
2000 data refc .rences.

The checksum has a similar cost. While there are only
half the data operations (the data is read but not written),
there are probably two instructions per 4 bytes.

To avoid these costs, one might postulate a special
controller, a relative of a DMA controller, that would
perform memory-to-memory transfers without loading
the processor, or perform checksums. This is a nice idea,
but requires that the memory and bus of the computer
have enough bandwidth to allow both the copy controller
and the processor to run concurrently. This adds to the
cost of the bus and the memory, which may not be
justified unless the computer is to be optimized for
network applications.

To copy data, one must use two memory cycles, a read
and a write.. In other words, the bandwidth of the
memory must be twice the achieved rate of the copy.
Receiving a packet thus requires four memory cycles per
word, one for the input DMA, one for the checksum and
two for the copy.

A 32 bit memory with a cycle time of 250 ns., typical for
dynamic RAMS today, would thus imply a memory limit
of 32 megabits per second. This is a far more important
limit than the TCP processing limits computed above.
Our estimates of TCP overhead could be off by several
factors of two before the overhead of TCP would intrude
into the limitations of the memory.

13. Some Dangerous Speculations
If the operating system and the memory overhead are the
real limits, it is tempting to avoid these by moving the
processing outboard from the processor onto a special
controller. This controller could run a specialized version
of an operating system (similar to the one we postulated
for this analysis) and could have a special high-
performance memory architecture. By matching the
memory to the special needs of packet processing, one
could achieve high performance at acceptable cost.

For example, since almost all the memory cycles are
sequential copy or checksum operations, one could
perform these in a way that takes advantage of the high-
speed sequential access methods now available in
dynamic memory chips. These methods, variously called
"page mode", or "s@tic column mode", or "nibble mode",
permit cycles of 40 or 50 ns. or faster, a great speedup
over the normal cycle. Alternatively, one could use static
memory, video RAM, or a more pipelined approach to
achieve performance.

289

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

To our knowledge, this has not be attempted. There are
products today that provide a outboard implementation of
TCP. But they seem more intended to provide ease of use
and portability rather than high performance.

One might try for both ease of use and performance. The
problem with this is the buffer layer, that un-architected
layer above TCP that passes the data to the application. If
TCP runs in an outboard processor, then the interface to
the host will be in terms of the buffer. If this is high
performance, it will probably be complex. That is the
reality of buffer layers in host-resident implementations;
splitting it between host and outboard processor will
almost certainly make it worse.

14. Observations
Since this paper is about TCP, it is appropriate to note
aspects of the protocol that add to the processing burden.
The TCP checksum, as we hinted above, is one such case.
In TCP, a single checksum field is used to protect both
the TCP header and the date itself. This means that the
checksum of the data must be computed first, before
doing any header processing.

In NETBLP, a protocol designed to optimize
throughput, there are two checksum fields. One protects
the header, the other the data. With this change, the
header checksum is tested first, but the data checksum
can be put off. It is put off, in fact, until the data is read
from memory as part of the copy to remove the header.
By combining the copy and checksum operation, one of
the four memory operations is eliminated. A version of
NETBLT (for the IBM AT) was actually coded this way,
and the resulting version ran considerably faster that the
one with a separate copy and checksum loop.

14.1. Protocols In Silicon
It has been proposed, for example by the designers of
XTP9, that to achieve reasonable throughput, it will be
necessary to abandon protocols such as TCP and move to
more efficient protocols that can be computed by
hardware in special chips.

The designers of XTP must confront the problems
discussed in this paper if they are to be successful in the
quest for a high speed protocol processor. It is not enough
to be better than TCP and to be compatible with the form
and function of silicon technology. The protocol itself is a
small fraction of the problem. The XTP protocol must
still be interfaced with the host operating system and the
rest of the environment.

Our analysis suggests that TCP can do a creditable job
given the right environment. What is needed is to move
to an efficient processing environment, such as a high-
performance outboard processor card with special
memory and controllers for byte operations such as copy

and checksum. In this context, a fast general purpose
processor can still be used to perform the protocol
processing.

If high performance is possible with a programmable
element using general protocols, it is highly desirable.
The experience of the network community with TCP
shows why. TCP is 15 years old this year. Yet we are
still tinkering with it hying to get it right. The problem is
not the data processing, but the algorithms that deal with
the network dynamics. In our analysis, we found a
significant part of the overhead was computing control
parameters. The particular algorithm in our code was just
developed in the last y d . 15 years after the first TCP
proposal, and we can expect further changes with further
experience.

As we move to higher rates, we can expect similar
experiences. These aspects of the protocol must not be
cast in silicon, or we risk having something that cannot
be made to work well, which is the primary goal that
drives us to silicon.

Our analysis suggests that putting protocols in hardware
is not required. While a special processing environment
will be needed, we can still use standard protocols and
programmable controllers.

References
1.

2.

3.

4.

5.

6.

Information Sciences Institute, “Transmission
Control Protocol NIC-RFC 793”, DDN Protocol
Handbook,Vol. 2September 198 1, PP-
2.179-2.198.

Information Sciences Institute, “DARPA Internet
Program Protocol Specification NIC-RFC 791”,
DDN Protocol Handbook,Vol. 2September 1981,

Postel, J.B., Sunshine, C.A., Cohen, D., “The
ARPA Internet Protocol”, Computer Networks

Postel, Jonathan. B., “Internetwork Protocol
Approaches”, IEEE Transactions on
Communications.Vo1. Com-28No. 4April 1980,

Jacobson, V., “Congestion Avoidance and
Control”, Tech. report, Lawrence Berkeley
Laboratory, 1988.

Varghese, G. and Lauck, T., “Hashed and
Hierarchical Timing Wheels: Data Structures for
the Efficient Implementation of a Timer
Facility”, Proceedings of the Eleventh ACM
Symposium on Operating Systems Principles,
ACM Operating Systems Review, Austin, TX,
November 1987.

pp. 2.99-2.149.

5,VOl. 5NO. 4J~ ly 1981, pp. 261-271.

pp. 605-61 1.

290

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

7. Saltzer, J.H., Reed, D.P., Clark, D.D., “End-to-
End Arguments in System Design”, ACM
Transactions on Computer Systems.Vo1. 2No.
4November 1984, pp. 277-288.

Clark, D., Lambert, M., Zhang, L., “NETJ3LT A
High Throughput Transport Protocol”, Frontiers
in Computer Communications Technology:
Proceedings of the ACM-SIGCOMM ’87,
Association for Computing Machinery, Stowe,

Chesson, G., Eich, B., Schryver, V. , Cherenson,
A., and Whaley, A., “XTP Protocol Definition”,
Tech. report Revision 3.0, Silicon Graphics, Inc.,
January 1988.

8.

VT, August 1987, pp. 353-359.

9.

29 I

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 15, 2008 at 12:36 from IEEE Xplore. Restrictions apply.

