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Abstract 
This paper reports a preliminary analysis of the 
processing overhead of the transport protocol TCP, done 
to estimate the possible performance range of the 
protocol. The analysis was performed by compiling a 
version of TCP and counting the number of the 
instructions in the common path. The analysis suggests 
that fewer than 200 instructions are required to process a 
TCP packet in the normal case. This number is small 
enough to support very high-speed transmission if it were 
the major overhead. The paper offers some speculation 
about the actual source of processing overhead in 
network protocols. 

1. Introduction 
While networks, especially local area networks, have 
been getting faster, perceived throughput at the 
application has not always increased accordingly. 
Various performance bottlenecks have have been 
encountered, each of which has to be analyzed and 
corrected. 

One aspect of networking often suspected of contributing 
to low throughput is the transport layer of the protocol 
suite. This layer, especially in connectionless protocols, 
has considerable functionality, and is typically executed 
in software by the host processor at the end points of the 
network. It is thus a likely source of processing overhead. 

While this theory is appealing, a preliminary examination 
suggested to us that other aspects of networking may be a 
more serious source of overhead. To test this proposition, 
a detailed study was made of a popuIar transport protocol, 
TCP’. This paper provides preliminary results of that 
study. Our tentative conclusion is that TCP is in fact not 
the source of the overhead often observed in packet 
processing, and that if properly implemented, could 
support very high speeds. 

2. TCP 
TCP, or Transmission Control Protocol, is the transport 
protocol from the Internet protocol suite. The Internet 
protocols are connectionless, so the network layer has 
minimal function. The functions of detecting and 
recovering lost or corrupted packets, flow control, and 
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multiplexing are performed at the transport level. TCP 
uses sequence numbers, cumulative acknowledgment, 
windows and software checksums to implement these 
functions. 

TCP is used on top of a network level protocol called 
Intemet, or IP2. This protocol, which is a datagram packet 
delivery protocol, deals with host addressing and routing, 
but that latter function is almost totally the task of the 
Intemet level packet switch, or gateway. IP also provides 
the ability for packets to be broken into smaller units, or 
fragmented, on passing into a network with a smaller 
maximum packet size. The IP layer at the receiving end is 
responsible for reassembling these fragments. For a 
general review of TCP and IP, see’ or4. 

Under IP is the layer dealing with the specific network 
technology being used. This may be a very simple layer 
in the case of a local area network, or a rather complex 
layer for a network such as X.25. On top of TCP sits one 
of a number of application protocols, most commonly for 
remote login, file transfer or mail. 

3. The Analysis 
This study addressed the overhead of running TCP and IP 
(since TCP is never run without IP), and the overhead of 
the operating system support needed by them. It did not 
consider the cost of the driver for some specific network, 
nor did it consider the cost of running an application. 

The study technique is very simple: we compiled a TCP, 
identified the normal path through the code, and counted 
the instructions. However, more detail is required to put 
our work in context. 

The TCP we used is the currently distributed version of 
TCP for Unix from Berkeley’. By using a production 
quality TCP, we believe that we can avoid the charge that 
our TCP is not fully functional. 

While we used a production TCP as a starting point for 
our analysis, we made significant changes to the code. 
To give TCP itself a fair hearing, we felt it was necessary 
to pry it apart from some protocol-independent overheads 
with which TCP is closely associated, especially in this 
implementat ion. 
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Chief among these is the data buffering technique for the 
Berkeley TCP. In this implementation, data is stored in a 
series of chained buffers, called m-bufs. This technique of 
chaining small buffers together was used to avoid the 
excessive waste that can occur with a simpler scheme 
which allocates a maximum size buffer for each packet. 
While m-bufs certainly avoid the problem of internal 
buffer fragmentation, there is a considerable overhead 
possibly associated with managing these buffers. 

We felt that this buffering scheme, as well as the scheme 
for managing timers and other system features, was a 
characteristic of Unix rather then the TCP, and it was 
reasonable to separate the cost of TCP from the cost of 
these support functions. At the same time, we wanted our 
evaluation to be realistic. So it was not fair to ignore 
altogether the cost of these functions. 

Our approach was to take the Berkeley TCP as a starting 
point, and modify it to better give a measure of intrinsic 
costs. One of us (Romkey) removed from the TCP code 
all references to Unix-specific functions such as m-bufs, 
and replaced them with working but specialized versions 
of the same functions. To insure that the resulting code 
was still operational, it was compiled and executed. 
Running the TCP in two Unix address spaces, and 
passing packets by an interprocess communication path, 
the TCP was made to open and close connections, and to 
pass data. While we did not test the TCP against other 
implementations, we can be reasonably certain that the 
TCP that resulted from our test was essentially a correctly 
implemented TCP. 

The compiler used for this experiment generated 
reasonably efficient code for the Intel 80386. Other 
experiments we have performed tend to suggest that for 
this sort of application, the number of instructions is very 
similar for a 80386, a Motorola 68020, or even a RISC 
chip such as the SPARC. 

4. Finding the Common Path 
One observation central to the efficient implementation 
of TCP is to observe that while there are many paths 
through the code, there is only one common one. While 
opening or closing the connection, or after errors, special 
code will be executed. But none of this code is required 
for the normal case. The normal case is data transfer, 
while the TCP connection is established. In this state, 
data flows in one direction, and acknowledgment and 
window information flows in the other. 

In writing a TCP, it is important to optimize this path. In 
studying the TCP, it was necessary to find and follow it 
in the code. Since the Berkeley TCP did not separate this 
path from all the other cases, we were not sure if it was 
being executed as efficiently as possible. For this reason, 
and to permit a more dirext analysis, we implemented a 
special "fast path" TCP. When a packet was received, 
some simple tests were performed, to see if the 
connection was in established state, if the packet had no 

special control fl-ags on, and if the sequcnce number was 
expected. If so, control was transferred to the fast path. 
The version of the TCP which we compiled and tested 
had this fast path, and it was this fast path we audited. 

There are actually two common paths through the TCP, 
the sending end and the receiving end. In general, TCP 
permits both ends to do both at once, although in the real 
world it happens only in some limited cases. But in any 
bulk data example, where throughput is an issue, data 
almost always flows in only one direction. One end, the 
sending end, puts data in its outgoing packets. When it 
receives a packet, it finds only control information: 
acknowledgments and windows. 

The other, receiving, end, finds data in its incoming 
packets and sends back control information. In this paper 
we will use these two terms, sender and receiver, to 
describe the direction of data flow. Both ends really do 
receive packets, but only one end tends to receive data. 

5. A First Case Study -- Input Processing 
A common belief about TCP is that the most complex, 
and thus most costly part, is the packet receiving 
operation. When receiving a packet, the program must 
proceed through the packet testing each field for errors 
and determining the proper action to take. In contrast, 
when sending a packet, the program knows exactly what 
actions are intended and has essentially to format the 
packet and start the transmission. 

A preliminary investigation tended to support this model, 
and so for our first detailed analysis, we studied the 
program which receives and processes a packet. 

There are three general stages to the TCP processing. In 
the first, the TCP checksum is verified. This requires 
computing a simple function of all the bytes in the 
packet. In the second, a search is made to find the local 
state information (called the transmission control block, 
or TCB) for this TCP connection. In the third stage, the 
packet header is processed. 

We chose not to study these first two stages. The 
checksum cost depends strongly on the raw speed of the 
environment and the detailed coding of the computation. 
The lookup function similarly depends on the details of 
the data structure, the assumed number of connections, 
and the potential for special hardware. In a later section, 
we will return to these two operations, but in the detailed 
analysis of this section, they are omitted. 

The following analysis thus covers the TCP processing 
from the point where the packet has been checksummed, 
and the TCB has been found. It covers the processing of 
all the header data, and the resulting actions. 

The packet input processing code has a rather different 
path for the sender and for the receiver of data. 
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The overall numbers are the following: 6. TCP Output Processing 
0 Sender of data- 191 to 235 instructions. 

0 Receiver of data -- 186 instructions. 

A more detailed breakdown provides further insight. 

Both sides contain a common path of 154 instructions. Of 
these, 15 are procedure entry and exit or initialization. 
For the receiver of data, an additional 15 instructions are 
spent sequencing the data and calling the buffer manager, 
and another 17 are spent processing the window field in 
the packet. 

The sender of data, which is receiving control 
information, has more steps to perform. In addition to the 
154 common instructions, it takes 9 to process the 
acknowledgment, 20 to process the window, 17 to 
compute the outgoing congestion window (so-called 
"slow-start" control), and 44 instructions (but not for each 
packet) to estimate the round-trip time. The round-trip 
delay is measured not for every packet, but only once per 
round trip. For short delay paths, where one packet can be 
sent in one round-trip, this cost could occur for every 
packet. For longer paths, the cost will be spread over 
several packets. 

From this level of analysis of one part of the code, it is 
possible to draw a number of conclusions. First, there are 
actually very few instructions required. In the process of 
making this study, we found several opportunities for 
shortening the path length. None of those are in this 
version. 

We subjected the output side of TCP to an analysis that 
was somewhat less detailed than the input side. We did 
not program a fast path, and we did not attempt to 
separate the paths for data sending and receiving. We 
thus have a single number that is a combination of the 
two paths, and which (by inspection) could be 
significantly improved by an optimization of the common 
path. 

We found 235 instructions to send a packet in TCP. 
While this number is actually greater than the cost of 
receiving a packet, we believe that the lack of 
optimization in this code precludes direct comparison 
with input processing. With equivalent attention to the 
code, the output side should be less costly than the input 
side. 

7. The Cost of IP 
In the normal case, IP performs very few functions. On 
input of a packet, it checks the header for correct form, 
extracts the protocol number, and call the TCP processing 
function. The executed path is almost always the same. 
On output, the operation is even more simple. 

The instruction counts for IP were as follows: 
0 Packet receipt -- 57 

0 Packet sending -- 61 

Second, a significant amount of code is involved in 
control of the protocol dynamics; computing the 8. Out ut Processing -- An Implementation 
congestion window and the round trip delay. These 
activities have nothing to do with the actual data flow. 
The actual management of the sequence numbers is very 
quick. But between 17 and 61 instructions are S P t  on 
computation of dynamic control parameters. 

The analysis made clear that some changes to the 
Protocol would Provide a slight Speedup. But these 
changes are not what is often proposed. 

Tricfc 
Output processing Seems much less complex than input. 
There is no question of testing for mal-formed packets, or 
looking up a TCB. The TCB is known, as is the desired 
action. 

To take advantage of this constrained environment, we 
programmed an optimization as part of the IP output 

One change concerns sequence numbers. TCP provides a 
sequence number for data, but not for individual packets. 
Control information is thus sequenced only indirectly, an 
approach which is functionally correct but which 
generates overhead. If every packet had a sequence 
number, 15 instructions could be removed from the 
processing of the window information. A reduction 
would also probably occur in the estimation of the round- 
trip delay. 

In a later section, we will return to a more global 
speculation on what these numbers mean. 

routine. 

IP places a fixed size 20 byte header on the front of every 
IP packet, plus a variable amount of options. Most IP 
packets carry no options. Of the 20 byte header, 14 of the 
bytes will be the same for all IP packets sent by a 
particular TCP connection. The IP length, ID and 
checksum fields (6 bytes total) will probably be different 
for each packet. Also, if a packet carries any options, all 
packets for that TCP connection will likely carry the 
same options. 

Based on this observation, we designed an IP layer which 
created a template 'IP header with the constant fields 
filled in, and associated this template with a TCP 
connection. When TCP wished to send a packet on that 
connection, it would call IP, passing it the template and 
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the length of the packet, and IP would block copy the 
template into the space for the IP header, fill in the length 
field, fill in the unique ID field and calcuIate the IP 
header checksum. 

The IP layer is also responsible for routing packets. 
Discovering a route to a host is an expensive operation 
which we do not want to perform on every packet, so we 
cache the route to a particular host. The route may 
change, however, and invalidating the cache can also be a 
tricky problem. We want to make sure that routing cache 
lookups are as fast as possible, and while invalidating the 
cache may be much slower without impacting overall 
TCP throughput, they should still be relatively efficient. 

The solution is to have each TCP connection have a 
timestamped cached routing entry. Routing entries are 
invalidated when an IP router sends an ICMP redirect 
(redirecting the IP to use a different router) to this host. 
The IF' layer should then store the host/router pair 
contained in the redirect in a routing table and set an 
intemal variable to the time that the redirect was 
received. Then when TCP asks the IP layer to transmit a 
packet, IP checks if the time the route was cached before 
the last ICMP redirect was received (which might have 
changed this route). If it was, the route is recomputed 
(with information from the stored routing table) and 
recached; otherwise the cached route is used. 

There may also be an entry point into the IP layer which 
TCP may use to request that a connection be rerouted (in 
case of excessive retransmissions, for instance). This 
function fits in easily with the caching model, but our 
TCP/IP implementation did not use or provide such a 
function. 

9. Support Functions 

9.1. The Buffer Layer 

The most complex of the support functions is the layer 
that manages the buffers which hold the data at the 
interface to the layer above. Our buffer layer was 
designed to match high-throughput bulk data transfer. It 
supports a allocate and.fiee function, and a simple get 
and put interface with one additional feature to support 
data sent but not yet acknowledged. All the bookkeeping 
about out of order packets was performed by TCP itself. 

The buffer layer added the following costs to the 
processing of a packet. 

Sending a data packet -- 40 instructions. 

Receiving a data packet -- 35 instructions . 
*Receiving an acknowledgment (may flee a 

buffer) -- 30 instructions. 

It might be argued that our buffer layer is too simple. We 
would accept that argument, but are not too concerned by 
it. All transport protocols must have a buffer layer. In 
comparing two transport protocols, it is reasonable to 
assume (to first order) that if they have equivalent service 
goals they will have equivalent buffer layers. 

A buffer layer can easily grow in complexity to swamp 
the protocol itself. The reason for this is that the buffer 
layer is that part of the code in which the demand for 
varieties of service has a strong effect. For example, some 
implementations of TCP attempt to provide good service 
to application clients that want to deal with data one byte 
at a time, as well as others that want to deal in large 
blocks. To serve both sorts of clients requires a buffer 
layer complex enough to fold both of these models 
together. In an informal study done by one of us (Clark) 
of another transport protocol, an extreme version of this 
problem was uncovered: of 68 pages of code written in C, 
which seemed to be the transport protocol, over 60 were 
found to be the buffer layer and interfaces to other 
protocol layers, and only about 6 were the protocol. 

The problem of the buffer layer is made worse by the fact 
that the protocol specifiers do not admit that such a layer 
exists. It is not a part of the IS0 reference model, but is 
left as an exercise for the implementor. This is 
reasonable, within limits, since the design of the buffer 
layer has much to do with the particular operating system. 
(This, in fact, contributed to the great simplicity of our 
buffer layer; since there was no operating system to speak 
of, we were free to structure things as needed with the 
right degree of generality and functionality. ) 

However, some degree of guidance to the implementor is 
necessary, and the specifiers of a protocol suite would be 
well served to give some thought to the role of buffering 
in their architecture. 

9.2. Timers and Schedulers 

In TCP, almost every packet is coupled to a timer. On 
sending data, a retransmit timer is set. On receipt of an 
acknowledgment, this timer is cleared. On receiving data, 
a timer may be set to permit dallying before sending the 
acknowledgment. On sending the acknowledgment, if 
that timer has not expired it must be cleared. 

The overhead of managing these timers can sometimes be 
a great burden. Some operating systems' designers did 
not think that timers would be used in this demanding a 
context, and made no effort to control their costs. 

In this implementation, we used a specialized timer 
package similar to the one described by Varghese6. It 
provides a very low cost for timer operations. In our 
version the costs were: 

Set a timer -- 35 

Clear a timer -- 17 
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Reset a timer (clear and set together) -- 4 1 

10. Checksums and TCBs -- The Missing 

In the discussion of TCP input processing above, we 
intentionally omitted a cost for computing the TCP 
checksum, and for looking up the TCB. We now consider 
each of these costs. 

The TCP checksum is a point of long-standing contention 
among protocol designers. Having an end-to-end 
checksum which is computed after the packet is actually 
in main memory provides a level of protection that is 
very valuable7. However, computing this checksum using 
the central processor rather than some outboard chip is a 
considerable burden on the protocol. In this paper we do 
not want to take sides on this matter. We only observe 
that "you get what you pay for." A protocol designer 
might ay to make the cost optional, and should certainly 
design the checksum to be as efficient as possible. TCP 
does not do this. 

There are a number of processing overheads associated 
with processing the bytes of the packet, rather then the 
header fields. The checksum computation is one of these, 
but there are others. In a later section we consider all the 
costs of processing the bytes. 

Looking up the TCB is also a cost somewhat unrelated to 
the details of TCP. That is, any transport protocol must 
keep state information for each connection, and must use 
a search function to find this for an incoming packet. The 
only variation is the number of bits that must be matched 
to find the state (TCP uses 64, which may not be 
minimal), and the number of connections that are 
assumed to be open. 

Steps 

Using the principle of the common path, however, one 
can provide algorithms that are very cheap. While we 
have not yet coded them, they are plausible and easy to 
estimate. 

The most simple algorithm is to assume that the next 
packet is from the same connection as the last packet. To 
check this, one need only pick up a pointer to the TCB 
saved from last time, extract from the packet and 
compare the correct 64 bits, and return the pointer. This 
takes less than 10 instructions. If this optimization fails 
too often to be useful, the next step is to hash the 64 bits 
into a smaller value, perhaps a 8 bit field, and use this to 
index into an array of linked lists of TCBs, with the most 
recently used TCB sorted first. If the needed TCB is 
indeed first on the list selected by the hash function, the 
cost is again very low. A reasonable estimate is 25 
insauctions. We will use this higher estimate in the 
analysis to follow. 

11. Some Speed Predictions 
Adding all these costs together, we see that the overhead 
of receiving a packet with control information in it 
(which is the most costly version of the processing path) 
is about 357 instructions. This includes the TCP and IP 
level processing, our crude estimate of the cost of finding 
the TCB, the buffer layer, and resetting a timer. Adding 
up the other versions of the sending and receiving paths 
yields instruction counts of the same magnitude. 

With only minor optimization, an estimate of 300 
instructions could be justified as a round number to use as 
a basis for some further analysis. If the processing 
overhead were the only bottleneck, how fast could a 
stream of TCP packets forward data? 

Obviously, we must assume some target processor to 
estimate processing time. While these estimates were 
made for an Intel 80386, we believe the obvious 
processor is a 32 bit RISC chip, such as a SPARC chip or 
a Motorola 88000. A conservative execution rate for such 
a machine might be 10 mips, since chips of this sort can 
be expected to have a clock rate of twice that or more, 
and execute most instructions in one clock cycle. (The 
actual rate clearly requires a more detailed analysis: it 
depends on the number of data references, the data fetch 
architecture of the chip, the supporting memory 
architecture, and so on. For this paper, which is only 
making a very rough estimate, we believe that a working 
number of 10 mips is reasonable.) 

In faimess, the estimate of 300 instructions should be 
adjusted for the change from the 80386 to a RISC 
instruction set. However, based on another study 
performed of packet processing code, we found little 
expansion of the code when converting to a RISC chip. 
The operations required for packet processing are so 
simple that no matter what processor is being used, the 
instruction set actually utilized is a RISC set. 

A conservative adjustment would be to assume that 300 
instructions for a 80386 would be 400 instructions for a 
RISC processor. 

At 10 mips, a processor can execute 400 instruction in 40 
us., or 25,000 packets per second. These processing costs 
permit rather high data rates. 

If we assume a packet size of 4000 bytes, which would fit 
in an FDDI frame, for example, then 25,000 packets per 
second provides 800 megabits per second. 

Figuring another way, if we assume an FDDI network 
with 100 megabits per second bandwidth, how small can 
the packets get before the processing per packet limits the 
throughput? The answer is 500 bytes. 

These numbers are very encouraging. They suggest that it 
is not necessary to revise the protocols to utilize a 
network such as FDDI. It is only necessary to implement 
them properly. 
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12. Why Are Protocols Slow? 
The numbers computed above may seem hard to believe. 
While the individual instruction counts may seem 
reasonable, the overall conclusion is not consistent with 
observed performance today. 

We believe that the proper conclusion is that protocol 
processing is not the real source of the processing 
overhead. There are several others that are more 
important. They are just harder to find, and the TCP is 
easier to blame. 

The first overhead is the operating system. As we 
discussed above, packet processing requires considerable 
support from the system. It is necessary to take an 
interrupt, allocate a packet buffer, free a packet buffer, 
restart the 1/0 device, wake up a process (or two or 
three), and reset a timer. In a particular implementation, 
there may be other costs that we did not identify in this 
study. 

In a typical operating system, these functions may turn 
out to be very expensive. Unless they were designed for 
exactly this function, they may not match the 
performance requirements at all. 

A common example is the timer package. Some timer 
packages are designed under the assumption that the 
common operations are setting a timer, and having a 
timer expire. These operations are made less costly, at the 
expense of the operation of unsetting, or clearing the 
timer. But that is what happens on every packet. 

It may seem as if these functions, even if not optimized, 
are small compared to TCP. This is m e  only if TCP is 
big. But, as we discovered above, TCP is small. If a 
typical path through TCP is 200 instructions, a timer 
package could cost that much if not carefully designed. 

The other major overhead in packet processing is 
performing operations that touch the bytes. The example 
associated with the transport protocol is computing the 
checksum. The more important one is moving the data in 
memory. 

Data is moved in memory for two reasons. First, it is 
moved to separate the data from the header, and get the 
data into the alignment needed by the application. 
Second, it is copied to get it from I/O device to system 
address space to user address space. 

In a good implementation, these operations will be 
combined to require a minimal number of copies. In the 
Berkeley Unix, for example, when receiving a packet, the 
data is moved from the U0 device into the chained m-buf 
structure, and then is moved into the user address space 
in a location that is aligned as the user needs it. The first 
copy may be done by DMA controller or by the 
processor, the second is always done by the processor. 

It is harder than one would wish to get these copy 
operations to run fast. Typically, one must use two 
instructions to move 4 bytes. A 4000 byte packet thus 
requires 2000 instructions, almost 20 times as many as 
needed to process the header. Even if one instruction is 
needed, it must be complex, with two index increments, 
(not an option with a RISC processor) and there must be 
2000 data refc .rences. 

The checksum has a similar cost. While there are only 
half the data operations (the data is read but not written), 
there are probably two instructions per 4 bytes. 

To avoid these costs, one might postulate a special 
controller, a relative of a DMA controller, that would 
perform memory-to-memory transfers without loading 
the processor, or perform checksums. This is a nice idea, 
but requires that the memory and bus of the computer 
have enough bandwidth to allow both the copy controller 
and the processor to run concurrently. This adds to the 
cost of the bus and the memory, which may not be 
justified unless the computer is to be optimized for 
network applications. 

To copy data, one must use two memory cycles, a read 
and a write.. In other words, the bandwidth of the 
memory must be twice the achieved rate of the copy. 
Receiving a packet thus requires four memory cycles per 
word, one for the input DMA, one for the checksum and 
two for the copy. 

A 32 bit memory with a cycle time of 250 ns., typical for 
dynamic RAMS today, would thus imply a memory limit 
of 32 megabits per second. This is a far more important 
limit than the TCP processing limits computed above. 
Our estimates of TCP overhead could be off by several 
factors of two before the overhead of TCP would intrude 
into the limitations of the memory. 

13. Some Dangerous Speculations 
If the operating system and the memory overhead are the 
real limits, it is tempting to avoid these by moving the 
processing outboard from the processor onto a special 
controller. This controller could run a specialized version 
of an operating system (similar to the one we postulated 
for this analysis) and could have a special high- 
performance memory architecture. By matching the 
memory to the special needs of packet processing, one 
could achieve high performance at acceptable cost. 

For example, since almost all the memory cycles are 
sequential copy or checksum operations, one could 
perform these in a way that takes advantage of the high- 
speed sequential access methods now available in 
dynamic memory chips. These methods, variously called 
"page mode", or "s@tic column mode", or "nibble mode", 
permit cycles of 40 or 50 ns. or faster, a great speedup 
over the normal cycle. Alternatively, one could use static 
memory, video RAM, or a more pipelined approach to 
achieve performance. 
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To our knowledge, this has not be attempted. There are 
products today that provide a outboard implementation of 
TCP. But they seem more intended to provide ease of use 
and portability rather than high performance. 

One might try for both ease of use and performance. The 
problem with this is the buffer layer, that un-architected 
layer above TCP that passes the data to the application. If 
TCP runs in an outboard processor, then the interface to 
the host will be in terms of the buffer. If this is high 
performance, it will probably be complex. That is the 
reality of buffer layers in host-resident implementations; 
splitting it between host and outboard processor will 
almost certainly make it worse. 

14. Observations 
Since this paper is about TCP, it is appropriate to note 
aspects of the protocol that add to the processing burden. 
The TCP checksum, as we hinted above, is one such case. 
In TCP, a single checksum field is used to protect both 
the TCP header and the date itself. This means that the 
checksum of the data must be computed first, before 
doing any header processing. 

In NETBLP, a protocol designed to optimize 
throughput, there are two checksum fields. One protects 
the header, the other the data. With this change, the 
header checksum is tested first, but the data checksum 
can be put off. It is put off, in fact, until the data is read 
from memory as part of the copy to remove the header. 
By combining the copy and checksum operation, one of 
the four memory operations is eliminated. A version of 
NETBLT (for the IBM AT) was actually coded this way, 
and the resulting version ran considerably faster that the 
one with a separate copy and checksum loop. 

14.1. Protocols In Silicon 
It has been proposed, for example by the designers of 
XTP9, that to achieve reasonable throughput, it will be 
necessary to abandon protocols such as TCP and move to 
more efficient protocols that can be computed by 
hardware in special chips. 

The designers of XTP must confront the problems 
discussed in this paper if they are to be successful in the 
quest for a high speed protocol processor. It is not enough 
to be better than TCP and to be compatible with the form 
and function of silicon technology. The protocol itself is a 
small fraction of the problem. The XTP protocol must 
still be interfaced with the host operating system and the 
rest of the environment. 

Our analysis suggests that TCP can do a creditable job 
given the right environment. What is needed is to move 
to an efficient processing environment, such as a high- 
performance outboard processor card with special 
memory and controllers for byte operations such as copy 

and checksum. In this context, a fast general purpose 
processor can still be used to perform the protocol 
processing. 

If high performance is possible with a programmable 
element using general protocols, it is highly desirable. 
The experience of the network community with TCP 
shows why. TCP is 15 years old this year. Yet we are 
still tinkering with it hying to get it right. The problem is 
not the data processing, but the algorithms that deal with 
the network dynamics. In our analysis, we found a 
significant part of the overhead was computing control 
parameters. The particular algorithm in our code was just 
developed in the last y d .  15 years after the first TCP 
proposal, and we can expect further changes with further 
experience. 

As we move to higher rates, we can expect similar 
experiences. These aspects of the protocol must not be 
cast in silicon, or we risk having something that cannot 
be made to work well, which is the primary goal that 
drives us to silicon. 

Our analysis suggests that putting protocols in hardware 
is not required. While a special processing environment 
will be needed, we can still use standard protocols and 
programmable controllers. 
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