i

The following paper was originally published in the
Proceedings of the 7th USENIX Security Symposium
San Antonio, Texas, January 26-29, 1998

Expanding and Extending the Security Features of Java

Nimisha V. Mehta
The Open Group
Karen R. Sollins
MIT Laboratory for Computer Science

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Expanding and Extending the Security Features of Java

Nimisha V. Mehta
The OpenGroup*
Cambridge, MA 02139
Karen R. Sollins
MIT Laboratory for Computer Science
Cambridge, MA 02139

Abstract

The popularity of the web has had several significant
impacts, two of note here: (1) increasing sophisti-
cation of web pages, including more regular use of
Java and other mobile code, and (2) decreasing av-
erage level of sophistication as the user population
becomes more broad-based. Coupling these with
the increased security threats posed by importing
more and more mobile code has caused an empha-
sis on the security of executing Java applets. This
paper considers two significant enhancements that
will provide users with both a richer and more effec-
tive security model. The two enhancements are the
provision of flexible and configurable security con-
straints and the ability to confine use of certain stor-
age channels, as defined by Lampson[11], to within
those constraints. We are particularly concerned
with applets using files as communications channels
contrary to desired security constraints. We present
the mechanisms, a discussion of the implementation,
and a summary of some performance comparisons.
It is important to note that the ideas presented here
are more generally applicable than only to the par-
ticular storage channels discussed or even only to
Java.

1 Introduction

The April, 1997 edition of the Graphics, Visualiza-
tion and Users Study[18] reports that the number of
web based document authors using Java is increas-
ing. In addition, the authors report that the respon-
dents’ belief that they understand and trust Java’s

1 This work was performed while Mehta was at the MIT
Laboratory for Computer Science.

security is increasing. This is a self-selecting popu-
lation, listing their occupations in the fields of com-
puters, education, management, professional,
and other. This last category comprises only about
14% of the respondents, so the great majority of
respondents are probably fairly computer literate.
One must assume that a much larger percentage of
the population as a whole would fall into the other
category. We must also assume that as the “wired”
population increases, it also becomes more naive on
average. The reason is that more and more of that
“wired” population will come from that part of the
population that has less education about computers.
In particular, one of the most difficult set of issues to
understand and use correctly is those surrounding
mobile code and security. Thus, we as technologists
find ourselves with a dilemma. On one hand we wish
to increase functionality, ease of use, flexibility and
apparent simplicity to the user. On the other hand,
to do this the supporting mechanisms must become
increasingly complex and sophisticated.

Mobile code is not new. We have been moving code
in files for years. Interpreted languages such as Lisp
and Postscript have been particularly prone to mo-
bility. What is changing is how and when code
moves and who has what knowledge of its execu-
tion. The Web has made the most significant differ-
ence here. The naive user moves from one web page
to another, perhaps considering them to be rather
static resources. Meanwhile increasing numbers of
authors are including Java applets or other forms
of mobile code in their pages, to be executed on
the page reader’s machine. Although the majority
of these are not intended to be malicious, some may
be, and more may simply be prone to errors, leading
to potential dangers for the unknowing user.

In response, Sun Microsystems, the creator of Java,
the Java Virtual Machine, the Java Development

Network

Applet A Applet B

File F1

File F2

Figure 1: Conditional access and a covert channel:
Applet A is prevented from accessing the net if it
has accessed file F1. Later Applet B should be pre-
vented from accessing the net after accessing file F2,
which was written by A after reading F1.

Kit, etc. has made a concerted effort to close se-
curity loopholes. Wallach et al.[23] report on three
efforts in the Java environment, but outside Sun
Microsystems itself. The other providers of mo-
bile code are addressing the same problems. As a
proof of concept we have considered storage chan-
nel issues exclusively in Java, although the ideas
presented here should be easily portable to other
environments.

We began this work with a particular example prob-
lem in mind. See Figure 1. Consider applet A that
could do useful work for you the reader. In order
to do this work it needs to read file F1 and create
new files in your home directory, so you would like
to be able to give it permission to do that (1). Fur-
thermore, you consider file F1 to be private, so you
would like to insure that once A has read F1 it can
no longer have access to the network (2). Now sup-
pose that in addition to its job it also creates file
F2 (3). Unless you read the code, which is beyond
the means of most naive users, you may not know
about this additional file. Now at some later time
another instantiation of applet A or a second ap-
plet B is executed. If the security constraints are
not set up properly, this file may be a simple stor-
age channel for exposing some of the contents of F1
to the outside world (4, 5). In the work presented
in later sections, we disallow behavior of the sort
represented in step 4, in order to close that kind
of channel. In Section 6 we discuss how one would
allow step 4, but prevent step 5.

There are two significant features to this problem
that will be considered in this work: the provision

of a system for creating flexible and configurable
policies for mobile code, and extending the scope of
confinement as described by Lampson[11] to include
time-delayed storage channels.

There is an increasing need for a policy language
to improve flexibility and configurability of secu-
rity policies. Wallach et al. describe three schemes
for allowing applet access beyond the simple sand-
box model. In all three, constraints need to be ex-
pressed to describe permissions within the scopes of
the schemes. In the capability scheme the propa-
gation of capabilities must be restricted somehow,
while in the extended stack introspection approach
an access matrix must be generated, and in type hid-
ing there must be a specification of how the type of
each object is hidden for each principal. It is worth
noting that one can separate the issue of specifica-
tion of constraints from evaluation of them. In Sec-
tion 2, other approaches to languages are discussed.

In this work, we have taken the approach in the con-
straint language of addressing time-delayed storage
channels, denial of services, and Trojan horses by
means of history-based policies, object-based poli-
cies, subject-based policies and floating category la-
bels. The Java Development Kit 1.2 (JDK1.2)[5]
provides one such language although not quite ade-
quate for our needs. In parallel with that work, we
built ourselves a simple constraint language to meet
our immediate needs. Clearly ideas from one can be
merged into the other in the long run.

When Lampson described the confinement problem,
he described three sorts of channels, storage, legiti-
mate, and covert. Moskowitz and Kang[15] address
only covert channels and divide them into storage,
timing, and mized channels. What is happening
here is that there are two orthogonal axes along
which to describe the channels that are at the crux
of the confinement problem. These axes have to do
with original intention of use and mode of commu-
nication. Lampson was interested in distinguishing
between channels that were intended to be used as
communication channels, albeit perhaps contrary to
security policy, and those channels that were not in-
tended to be communication channels. Moskowitz
and Kang were moving along the other axis in dis-
tinguishing between channels “where the output al-
phabet consists of different responses all taking the
same time to be transmitted” from one in which the
alphabet consists of “different time values”.

The second problem we are addressing here falls into

Lampson’s definition of a storage channel, with a
twist. The particular problem is that timing de-
lays between input into the storage channel and out-
put may hide the existence of a confinement prob-
lem. As a proof of concept, this work focuses on
files within this context. We have created two dis-
tinct logging facilities one that tracks principals’
(applets’) accesses and one that tracks applets as
file owners. A central component of our approach is
the need for a constraint language and set of con-
straints that are evaluated in order to provide ade-
quate security.

This paper presents concepts. We have designed
and implemented them, for demonstration purposes,
but the contribution of this work is in the concepts,
not the realization. The paper will proceed as fol-
lows. Section 2 provides background and presents
some of the most closely related work. That is fol-
lowed by a description of the two logging facilities
needed to address the problem with respect to the
file system. Section 4 describes our constraint lan-
guage, followed by a section on implementation is-
sues and some preliminary performance numbers.
The ideas in the language could valuably be incor-
porated into an existing language, such as that de-
scribed by Gong[5]. It should also be noted that
since this effort was generally done as a proof of
concept, it was not tuned for performance, although
Section 5.5 presents some preliminary performance
numbers. The paper concludes with a discussion of
further issues related to this work. For a more com-
plete description of this effort see Mehta’s thesis[13].

2 Related Work

Any work in the security area is based on an enor-
mous background of previous work. One cannot give
complete credit to all the preceding work. Since
this work concentrates on extending the security
model for Java applets, we will review the secu-
rity models of the current major Web browsers. We
will not address the literature on logging, although
there has been a great deal in the areas of systems
and databases. We are using only simple, straight-
forward logging techniques here. In addition, we
will briefly examine prior work on authorization lan-
guages, followed by comparisons of our work with
other secure systems for mobile code. This will in-
clude a brief discussion of the applicability of tools
that statically analyze mobile code as an extension

of authenticating the source of an applet. We will
conclude this section with a review of the current
situation with respect to Java itself, focusing on the
specification of constraints.

2.1 Current Web Browsers

The three current browsers, Internet Explorer 4.0[14]
from Microsoft, Netscape’s Communicator 4.0[17],
and JavaSoft’s HotJaval8, 9] provide a variety of
mechanisms to authenticate and authorize Java ap-
plets. Although none is currently adequate for our
needs, they can be extended to satisfy our require-
ments as specified in this paper.

Netscape Communicator 4.0’s capabilities-based fea-
ture allows for an extension of an applet’s execution
space beyond the sandbox. Applets that want per-
missions beyond the normal sandbox, must notify
the browser of the capabilities they require. Un-
signed applets are confined within the limits of the
sandbox. When a signed applet arrives on the user’s
system, the user is notified of the identity of the
applet’s signer and of the capabilities that applet
requests. Adhering to the principle of least privi-
lege, the user can then give permission for only that
capability. The disadvantage of this design is that
the user must give permission for each applet in-
dependently. We are concerned that although ini-
tially users may consider the permissions seriously,
it will not be long before they stop paying attention,
and the utility of the authorization will be nullified.
Furthermore, since authorizations are given dynam-
ically, this does not allow for the creation of a co-
herent policy.

On the other hand, Microsoft’s Internet Explorer
4.0 (IE) allows users to set permissions statically
based on configurable “security zones” from which
applets arrive. IE allows the user to set “security
levels”, permitting extensions beyond the sandbox
for certain sets of applets. A High level would
not allow the applet to go beyond the sandbox, a
Medium level would allow it but only after warn-
ing the user, and a Low level would let the applet
wreak havoc. For example, applets from the “Re-
stricted sites zone” would be assigned a High secu-
rity level, while those from the “Trusted sites zone”
would be assigned to a lower level. Extending the
capabilities approach in Communicator 4.0, IE also
supports capability signing where the requested ca-
pabilities are listed within the applet’s digital signa-

ture rather than within it’s code. Nonetheless, IE
is still limited in the configurablity and flexibility of
specifying one’s policy to preserve confinement and
restrict resource consumption.

JavaSoft’s HotJava 1.1 supports users in configur-
ing their policies and constraints. As with the other
browsers this is based on the signature of an applet,
and is then configured by a collection of choices;
the user is provided with a checklist of choices. The
advantage of this scheme is that the user specifies
the constraints only once and is not required to give
explicit permission for each execution of each ap-
plet. The disadvantage is that the user still cannot
specify conditional rules, as is needed to address our
problem.

2.2 Authorization Languages

Other research[l, 7, 22] in designing generic autho-
rization languages for secure systems has been done
for both military and commercial use, but has not
yet been applied to specifying policies for mobile
code. This includes work on specifying Separation
of Duty policies as done by Sandhu[19], and work
on Adage[20] by The Open Group.

Sandhu’s efforts on designing control expressions for
creating Separation of Duty policies includes a mech-
anism for maintaining the history of transient and
persistent objects using a simple syntax. These poli-
cies limit the transactions that can be applied to a
particular object based on that object’s history. It
can be extended to write policies such as: “An ap-
plet cannot access a file written by another applet.”
However, separation of duty policies do not allow
one to create a policy which is dependent on mul-
tiple objects. For example, it cannot specify our
Chinese Wall policy that depends on two distinct
objects (networks and files): “an applet cannot con-
nect to the network after reading a protected file.”

The Open Group’s work on Adage, An Architecture
for Distributed Authorization, includes a general-
purpose authorization language that is quite flex-
ible and user-friendly. It has an extensive group-
ing mechanism to categorize subjects, objects, and
transactions. It also allows one to create Separation
of Duty policies and Chinese Wall policies easily.
However, although it maintains a history of trans-
actions, it currently cannot specify policies to limit
resource usage. Languages such as these can be ap-

plied for creating mobile code policies if they fulfill
the requirements specified in this paper.

2.3 Other Secure Systems for Mobile
Code

Other projects have attempted to create a secure
system with a configurable policy language for mo-
bile code. These include INRIA’s SIRAC project[6]
on an IDL-based protection scheme for mobile ag-
ents, Goldberg et al.’s Janus system[3] for confining
untrusted helper applications, and IBM’s Aglets[10].
A common goal among all of them is to create a se-
cure system for mobile code that makes use of its
features: the collaborative nature of mobile agents
or the usefulness of helper applications. However,
their common weakness is their limited policy lan-
guages.

In SIRAC’s scheme for protecting mobile Java ag-
ents, the agent’s protection policy is defined in an
extended Interface Definition Language. This work
focuses on protecting access to Java objects between
mobile agents by exchanging capabilities between
mutually suspicious agents. However, no mention is
made of how the language or the system can protect
the host’s system resources from the agents.

Goldberg et al.’s efforts on confining helper appli-
cations involves monitoring and restricting system
calls from untrusted applications. Although their
approach is language-independent, it is specific to
the Solaris operating system. They allow users to
specify their permissions (”allow” or ”deny”) on sys-
tem calls in a configuration file. However, because
the language is quite simplistic, it cannot express
policies in terms of resource consumption or histo-
ries.

The security model in IBM’s Aglets includes an au-
thorization language that allows the agent and its
host to specify their policies. Their policy language
is rich in that it includes mechanisms to specify
the privileges of groups and labelled objects includ-
ing ways to limit resource usage. However, no fur-
ther constraints based on the applet’s history can
be made.

On a different note, others have done research on
analyzing the remote code prior to its execution in
order to distinguish malicious code from benign pro-
grams statically. We have seen this, for example, in

the work on proof-carrying code (PCC)[16] and on
a malicious code filter (MCF)[12].

In Necula’s paper on PCC the code carries with it
an encoding of the fact that it complies with cer-
tain invariants or requirements. This constrains the
code in meeting various requirements. The sorts of
constraints about which Necula is concerned reflect
its internal behavior which would be independent of
the location at which the code will be executed. In
our case, the criteria will potentially be different at
each site, making it impossible to provide any proof
of meeting useful criteria at its source. If we could
offload some of the verification at the source that
would be a great benefit, but it is not clear how to
do that.

MCF makes use of program slicing and tell-tale signs
of system calls to statically test the behavior of mo-
bile code for certain malicious program properties.
Unlike PCC, the detecting of tell-tale signs on the
client end does not require the programmer to pro-
vide a formal specification of the code. One could
imagine extending MCF with a policy language to
allow a variant degree of code filtering for different
applets. Nonetheless, even if these static approaches
were extended to be more configurable, they can-
not make much use of object-based or history-based
policies since such policies can only be evaluated
during run-time.

2.4 Security Model in JDK 1.2

Because we are working in the Java context, we must
consider the current Java security architecture in
the Java Development Kit 1.2 (JDK1.2)[4, 5]. For
the purpose of brevity we will not review the basic
Java security features of the JDK here, but assume
that the reader knows or can learn those easily. We
also assume for the purposes of this work, that the
Java architecture works correctly, although due to
its complexity we realize that the community will
continue to find problems that will be addressed by
JavaSoft and others.

The goals or objectives were extended in the JDK1.2
to include a simpler policy configuration, a more
easily extensible access control structure, and an
extension of the security checks to include all lev-
els of Java programs, not just applets. The first
of these involves the definition and use of a sim-
ple configuration language for statement of policy

constraints. The second requires the addition of a
Check method to the Security Manager in order
to support the automatic handling of typed permis-
sions. Finally, the third objective is met by allowing
the same sorts of security checking for local code as
for mobile code, providing such functions as verifi-
cation of certification of the code, etc., rather than
simply letting local code run completely trusted.

From our perspective we did not want to modify
the Security Manager, so having JavaSoft provide
the Check method would simplify our task. The
specification language provides the ability to state
only static non-conditional rules. As such its seman-
tics are simpler than ours. There is also no model of
past behavior. The syntax is clearly somewhat dif-
ferent. For simplicity of implementation we chose
a simple S-expression type language. In JDK1.2,
Gong has chosen a syntax that is much more in line
with Java’s own syntax and allows for the declara-
tion of permission classes. As we will discuss further
below, one can easily extend the Java rule specifi-
cation language with features to support our ideas.
We envision a merging of our and JavaSoft’s con-
straint languages into one that embodies the fea-
tures of both.

Gong highlights in both his papers that one per-
spective on the model that the new Java security
architecture provides is that of security domains.
Each is defined by the scope of accesses permitted
to a principal. We are doing the same. In carrying
that description further, one can describe the prob-
lem of storage channels as follows. First, some of
those security domains may overlap. These enable
the potential storage channels. Second, the secu-
rity policies in the overlapped regions may be fuzzy,
permitting the potential communications channels
more invisibility, further enabling the use of them.
Our initial approach is to remove the existence of
those overlaps. As discussed in Section 6, with a
further extension one could allow the overlap, but
clarify the policies to be enforced in them and with
respect to the non-overlapped sections of those do-
mains. We did not pursue this view further with
respect to this piece of work, but it helps to clarify
the work on a more architectural level.

The remainder of this paper presents the work that
was actually done to address the problem described
above. In this context we were addressing two prob-
lems simultaneously, that of conditional constraints
and that of storage channels, especially those chan-
nels which span time by taking advantage of per-

sistent storage in the form of files. In order to do
this we found we needed two forms of logging, one
to log applets’ accesses to files and the other to log
applet “ownership” of files. The access log keeps
track of activity that is used in the evaluation of
conditional rules, while the ownership log tracks files
as potential storage channels. The use, realization,
and management of these logs is addressed first. We
can then describe the language used to express con-
straints, and finally implementation details and is-
sues, as well as performance. The paper concludes
with a discussion of possible extensions to and fur-
ther thoughts on this work.

3 Logging Facilities

To set a useful policy on applets, users need a way to
qualify applets not only by their identities (their ori-
gin, their signers, etc), but also by their actions. For
example, an applet that only accesses public infor-
mation can be considered a benign visitor while an
applet that tries to modify private system informa-
tion can be considered suspicious requiring a higher
level of security. In order to keep track of such ac-
tions by applets, a log needs to be maintained.

Logging will allow users to create conditional poli-
cies. For example, when determining whether an ap-
plet should be allowed to connect back to its host,
a user may want to allow this only if the applet
would not be able to compromise the user’s privacy.
In order to assess this safely, the user would need
to determine whether the applet had accessed any
private information. (This is better than having our
user blindly trust the applet if it came from a trusted
source, and distrust it if not.) Providing an audit-
ing mechanism on applets allows users to inspect
applets’ past histories and check whether any pri-
vate information was accessed. Of course users are
free to allow or disallow all access to their private
information, however, this logging feature provides
them a way to be selectively restrictive.

Secondly, logging allows a system to keep track of in-
formation transfers through storage channels. Such
inter-applet and intra-applet communication can be
detected by inspecting the past actions of applets.
An applet B that reads a file that was written (con-
taminated) by another applet A can be considered
to have communicated with applet A. By this trans-
action, applet B could have acquired knowledge of

any information gathered by applet A. The logging
feature allows us to detect and/or prevent such in-
formation exchange.

3.1 Logging Accesses

Each time an applet accesses a resource, that action
is logged for that applet. An applet’s past history
can be considered to be the union of all the log en-
tries for that particular applet. To allow the place-
ment of quotas on accesses, each log entry includes
a count totalling the number of accesses to a partic-
ular resource. For example, one can set a maximum
limit on the number of files to which an applet can
write, or the number of times network connections
are made.

3.2 Logging File Owners

Information exchange between applets via the file
system opens the possibility of information leakage
from higher privileged applets to lower privileged
ones as shown in Figure 1. Such communication
can be prevented at transfer 4 by introducing the
notion of applet file ownership. This essentially di-
vides the file system into applet domains. In other
words, each file written by an applet is associated
with its applet owner. Operationally, an applet be-
comes an owner of a file F once it has written to
a pre-existing (but not previously owned) file F, or
has created a new file F. This ownership lasts as
long as the applet’s stored information remains ac-
cessible, i.e. until the file is deleted (by the applet
itself or by the user.) In the strictest sense, files
owned by an applet cannot be read by other ap-
plets. This segregation of applets allows us to keep
an accurate record of what information an applet
has accessed. In our implementation, we have used
the conservative approach of preventing communi-
cation at transfer 4, however the possibility of al-
lowing file sharing and preventing communication
at transfer 5 is discussed in Section 6.

Although information exchange between applets can
also occur through other storage channels such as
via a network connection, we are more concerned
with communication via the file system. We assume
that normally users would want to allow applets to
continue accessing the file system even after they
have accessed protected information, while further

access to the network would have been prevented.
Hence, keeping a separate log for applet file owners
is done for efficiency reasons. However, one can still
create a policy to prevent two applets from using a
network port as a communication channel.

3.3 Log Storage and Cleaning

As long as the applet is a file owner, an applet’s log
should last through the stopping and restarting of
the applet, and through the exiting and reexecut-
ing of the browser. Once the applet is no longer an
owner of any files, it can be safely assumed that it
is no longer storing any information from its past
history and accesses, and thus it can start from a
clean slate. Thus, the algorithm for cleaning en-
tries in the logs is a function of whether the applet
currently owns any files.

4 Constraint Language

In order to implement our prototype, we defined a
constraint language. Our goals for this were that
it address the problem as described earlier of time-
delayed storage channels, allow for the control of
resource usage, and permit the owner to eliminate
certain Trojan horse programs. This was done by
providing the ability to write constraints which are
a combination of subject-based, object-based, and
history-based policy statements. An additional im-
portant feature is the ability to assign labels to ap-
plets dynamically. Subject-based policies are those
based on the identity of the subject or active en-
tity, in this case the applet signature, as embodied
in our global applet variables in Section 4.1, as is
done in other such languages. Object-based policies
are those based on the resource to which the applet
wants access. These are also discussed in Section 4.1
in the form of global resource variables. In extend-
ing the language significantly, we have added the
ability to write constraints in terms of the history
of the behavior of the applet, allowing the owner to
define denial of service behaviors, and limit them.
This feature is realized in the Any and All Past ex-
pressions described in Section 4.2. Finally, our lan-
guage allows for dynamic labelling of applets based
on source or history as described in Section 4.3. The
combination of such labelling and histories allows
for the identification of certain Trojan Horse ap-

plets as well as other untrustworthy applets. The
significant strength of this language is the ability to
combine these features into constraints.

4.1 Variables

Global variables are provided as a common vocab-
ulary for receiving information and setting permis-
sions. The identity of an applet can be accessed
through the variables:

Applet.Name,

Applet.CodeBase.Name,
Applet.CodeBase.Host .Name,
Applet.CodeBase.Host.IP,

Applet.Document.Name,
Applet.Document.Host.Name,
Applet.Document.Host.IP

Information about resources can be accessed through
the variables:

File.Name, File.Path, File.AbsPath,
File.Parent, File.Size, Host.Name,
Command .Name, Property.Name

Permissions on resources can be set (true or false)
through the variables:

File.read, File.write, File.delete,
Host.Connect.To, Host.Connect.From,
Command.Exec, Property.Read,
Property.Write, Window.Create

With JDK1.1’s java.security package, additional va-
riables can be further included to identify applets
by their digital signers, etc. In the future, if the
JVM can partition the CPU and memory usage by
applets, then the variables for CPU and Memory
can also be used.

4.2 Past Primitives

Two boolean procedures are provided for determin-
ing the usage of resources in the applet’s past his-
tory (Any and All). A procedure was needed that
would not only test whether a certain action had

occurred in the past, but that would allow the user
to request more information about those past ac-
cesses. This led to the following syntax for these
procedures:

(A1l <identifier> in Past <X> <predicate>)
(Any <identifier> in Past <X> <predicate>)

All is used to verify the truth of the <predicate>
for every <X> accessed in the past; while Any is
used to confirm the truth of the <predicate> for at
least one <X> accessed in the past. <X> can be
one of two things: 1) a resource or 2) an access. For
example, if <X> is File then it corresponds to all
the files that the applet has accessed in the past.
However, if <X> is File.Read, then it corresponds
to only the files that the applet has read in the past.
The <identifier> is used to provide a nomencla-
ture to identify the particular past resource inside
the <predicate>. When the identifier appears in
the <predicate>, it assumes the role of the current
past resource being tested. Information about the
resource can be requested within the <predicate>
by using any of the variables for resources. For
example, if <X> is File, and the <identifier> is
f, then when f.name and f.parent appear in the
<predicate>, they refer to information about the
past file currently in question. See the example in
Section 4.6 for a sample of this syntax.

4.3 Labels

We have also provided the variable Applet.Cate-
gory for the labelling of applets. This is a modifi-
able label which can be used to group applets dur-
ing runtime according to some condition. Having
labels makes it easier to identify a set of applets in
the access rules. A label can be based simply on
the applet’s origin such as a label for is-trusted-to-
access-my-mailbox. More powerfully, a label can be
set once an applet has done something in its history.
This can be used for keeping track of applets’ se-
crecy levels: has-read-protected-files, has-read-only-
public-files, has-not-read-any-files. Also, labels can
be applied to applets, as trust in them falls. For ex-
ample, the label suspicious can be set if the applet
has accessed more than a certain threshold of pro-
tected files. Policies for applets labelled suspicious
can then be more restrictive. See an example of this
in Section 4.6.

Labels have an ordinal ranking which can corre-

spond to secrecy levels. If there are any conflicts
in setting an applet’s label, the minimum of the la-
bel values is conservatively set.

4.4 Primitive Procedures

Various primitive procedures are provided to deter-
mine useful information during runtime. These in-
clude boolean operators (And, Or, Not) and com-
parison operators (<, >, =7, !=, <=, >=). Ad-
ditionally, procedures that do pattern matching on
strings (Match) and test whether an element is part
of a list (OneOf) are provided. Two procedures
for totalling the number of accesses to a particu-
lar resource are given (Count and CountAll). For
example, (Count File.Read) will return the total
number of times the applet read the file in question,
and (CountAll File.Read) will return the total
number of times the applet read any file. See the
example in Section 4.6 for a sample of their usage.

4.5 Rules Resolution

When a permission is to be checked for a particu-
lar resource, the user’s applet policy is referenced.
For efficiency reasons, instead of verifying all the
rules each time an access is to be granted, only the
rules that affect that access are verified. The excep-
tions are those rules that affect Applet.Category
(they are always re-evaluated) since the applet’s la-
bel can change at any time. For example, if per-
mission to read a system property is requested, only
those rules that assign Property.Read and/or Ap-
plet.Category are evaluated.

In evaluating the access permission for an applet, by
default, the access is false. If there are no rules al-
lowing the access, permission is not granted. If there
are such rules, the final permission is the ”and” of
all the permissions set by the rules. So if there is at
least one rule that denies access, the permission is
denied. This resolves any conflicts that may arise.

4.6 Example

The following is an example of a simple policy that
gives applets access to certain directories, to the net-
work, and to the windowing system, while limiting

their usage. The number of file writes is limited to
50, the size of these files is limited to 500K, the num-
ber of network connections is limited to 20, and the
number of windows that can be created is limited
to 50. In addition, trusted applets are given read
access to some protected directories. The policy
also makes use of the Applet.Category variable
in order to label trusted, contaminated (have read
protected files), and suspicious applets.

// Define directories.
(Define PublicDirs ("/Public/x"))
(Define ProtectedDirs ("~ /Mail/x*"
"~/Diary/*"))
(Define WriteableDirs ("/tmp"))
(Define ReadableDirs (WriteableDirs
PublicDirs))

// Define security labels.
(Define Suspicious 0)
(Define Contaminated 5)
(Define Trusted 10)

// Default permissions on applets.
// Reading files.
(If (and (!= Applet.Category Suspicious)
(One0f File.path ReadableDirs))
(File.Read = true))

// Writing files.
(If (and (!= Applet.Category Suspicious)
(One0f File.path WriteableDirs))
(File.Write = true)
(File.Delete = true))

// Connecting to the Network.
(If (!= Applet.Category Suspicious)
(Host.Connect.To = true))

// Creating Windows.
(Window.Create = true)

// Define trusted applets.
(Define TrustedSources ("web.mit.edu"
"lcs.mit.edu"))

(If (OneOf Applet.CodeBase.Host.Name
TrustedSources)
(Applet.Category = Trusted))

// Trusted applets get more privileges.
// Allow them to read protected files.
(If (and (=7 Applet.Category Trusted)

(One0f File.path ProtectedDirs))
(begin
(File.read = true)
(Applet.Category = Contaminated)))

// But keep protected information inside.
(If (=7 Applet.Category Contaminated)
(Host.Connect.To = false))

// Limit number of files created.
(If (>= (CountAll File.Write) 50)
(begin
(File.write = false)
(Applet.Category = Suspicious)))

// Limit file size to 500K.
(If (>= (CountAll File.Size) 500000)
(begin
(File.write = false)
(Applet.Category = Suspicious)))

// Limit connections to the network.
(If (>= (CountAll Host.Connect.To) 20)
(begin
(Host.Connect.To = false)
(Applet.Category = Suspicious)))

// Limit number of windows created.
(If (>= (CountAll Window.Create) 50)
(begin
(Window.Create = false)
(Applet.Category = Suspicious)))

5 Implementation

Our prototype that includes the above features is
developed on the Sun SPARC platform. We mod-
ified the Security Manager of the appletviewer in
Sun’s JDK1.0.2. Neither the JVM nor the system
classes are modified. Our implementation uses the
1.0.2 API of the Security Manager and is built with
the 1.1 JVM. In this section, we will first describe
the implementation of the Security Manager, the
rules, and the logs. We will then highlight a collec-
tion of further security issues and conclude with a
summary of our performance evaluation.

5.1 Applet Security Manager

The applet Security Manager is questioned by the
Java system classes when access to a system re-
source is requested. When one of the Security Man-
ager’s checkX methods is called, it uses the rules
and the logs to determine whether the permission
should be granted. Not all the checkX methods
in JDK1.0.2’s appletviewer’s security manager were
modified. ’checkCreateClassLoader’ and ’checkExit’
still throw security exceptions for applets since they
would otherwise introduce major security hazards.
Letting applets create their own classloaders would
imbalance the safe foundation set by the lower level
security in Java, and allowing applets to halt the
JVM seems unnecessary. In addition, checkLink
(which unconditionally throws a security exception)
is not modified in the current system; however, more
flexibility can naturally be provided in the future.

5.2 Rules

The rules are scanned and parsed using Sun’s Java
Compiler Compiler (JavaCC)[21]. Given lexical and
grammatical specifications, JavaCC generates Java
code that can parse the rules. The rules must con-
form to the grammar specified, otherwise a parsing
error would be raised. Other errors including mis-
matched types, global redefinitions, assignments to
read-only variables, illegal identifiers, negative ap-
plet categories, and so on, are also caught during
parsing.

5.3 Logs

The applet file owner logs and the applet access logs
are implemented using cached hashtables. The sizes
of the two caches are specified as constants which
can be easily modified. For now, they are arbitrarily
set to size 16. The caches use a least recently used
replacement policy.

In order to account for failure in the system, all the
data in the cache is written back to the log after
a certain number of events or minutes. In case the
system fails or is exited abnormally, these regular
writebacks will prevent major loss of information.
The loggers include constants to specify the maxi-
mum number of events and the maximum number

of minutes between writebacks. If the application
exits normally, writebacks are also done upon exit.

5.4 Security Notes

In the implementation of the system, certain secu-
rity issues needed to be addressed. As in Java, a
safe design is only a support structure for a secure
implementation. Five are highlighted here.

5.4.1 Error Resolution

How does one resolve various errors? Errors in-
clude I/O errors, parser errors, applet security er-
rors, other runtime errors (i.e. out of bounds, un-
known host), and other unexpected system errors.
Since this system involves the maintenance of mul-
tiple simultaneous running applets, we need to clas-
sify these errors into fatal system errors and applet-
specific errors. The first class of fatal system er-
rors includes those errors where the entire system
is halted, since otherwise, security violations would
occur. If the system is inside a web browser, then
the browser should halt all its Java operations when
encountering a fatal system error. The latter class
of applet-specific errors includes those errors where
only a particular applet’s execution is halted. These
errors that affect only one applet should not halt the
entire system. If the entire system were halted from
such an error, then that would allow an applet to
affect the execution of other applets by simply caus-
ing those errors (denial of service attack). It seems
apparent that only those errors which affect all ap-
plets and the security of the entire system should be
considered fatal system errors. This includes parser
errors and I/O errors from reading the rules, and
format and I/O errors from the file owner log. On
the other hand, a security violation by a single ap-
plet and a formatting or I/O error in a single ap-
plet’s access log need not affect the entire system.
Instead, these errors are signalled for the benefit of
the user and the execution of that applet is termi-
nated.

5.4.2 Applet Identification

How does one identify applets? In the appletviewer,
the host of the applet’s document is most commonly
specified using its DNS host name. In so doing, our

implementation simply identifies an applet by the
host name of its codebase. Since a server sometimes
uses multiple machines (and thus perhaps multiple
IP addresses) to reduce its load, our prototype does
not distinguish the same applet on the different ma-
chines. Identifying an applet by its host name (and
not its IP address) allows the applet to later ac-
cess its files. However, this leaves room for DNS
spoofing attacks, in which incorrect entries in a DNS
server lead to incorrect identification of applets.[2]
If the DNS server becomes infiltrated since the last
execution, then the correct identity of an applet
changes. This introduces a vulnerability to an ex-
ternal source: the DNS server.

On the other hand, the support for digitally signing
applets can address this. Instead of IP addresses or
DNS host names, the signature on the applets would
provide a secure mechanism for identification. This
functionality has now been included in JDK1.1’s
java.security package. However, one may want to
consider an applet that is updated to a newer ver-
sion to have the same identity as its older version so
that it may access its old files. This would require a
slight variant to digital signing where the identity of
the applet does not change with slight modification
to its code if the author and the origin remain the
same. Although this problem needs to be addressed,
we do not address it further in this work.

5.4.3 CheckX methods

The checkX methods in the Applet Security Man-
ager are called when system classes want to verify
whether the current thread (applet) has the author-
ity to access a certain resource. These methods are
provided to check access. However, calling a checkX
method does not necessarily mean that the given
applet has performed that action, but only that the
action was requested. Despite this, the current im-
plementation logs it as if the action was performed.
For example, the java.io.File.canRead method uses
the checkRead method to just check whether the
read permission should be allowed, although the file
may not even be read.

Web browsers can also give applets access to the
Security Manager, enabling applets to inquire about
their permissions using the Security Manager’s check-
X methods. This feature allows applet authors to
write more robust and useful code. However, with
our current implementation, the checkX methods

will log these inquiries as actual accesses. The out-
come is that applet’s accesses would be limited by
these extra loggings if the applet policy includes
rules that limit future accesses based on past ones.
For example, if a rule states that “an applet cannot
access more than 8 files,” the applet is able to access
only 4 files since the author’s checks prior to each ac-
cess would also be counted. This does not introduce
any security holes if past accesses only limit future
accesses. If this were not the case, then an applet
could merely call the checkX methods without ac-
tually accessing the resource but instead extending
its permissions. An example would be a rule that
states, “an applet can access this protected file only
if it has read this copyright.” The applet could sim-
ply call the checkRead method on the copyright, but
not read it.

To address this properly however, the Security Man-
ager in the JDK should have two types of meth-
ods: one for checking access (checkX) and another
for both checking and actually making the access
(checkLogX). The former can be used by applets
that want to know their permissions, and the latter
should be private to the system classes.

5.4.4 Eliminating Race Conditions

One needs to make sure that the system is not faced
with the same flaw as the one in fingerd where a ma-
licious attacker exploits the race condition between
checking the properties of an object and giving the
permission. Applying this to our scheme, let us say
there is a rule that states that an applet cannot con-
nect to the network if it has read a local file. Then
between the time the SM checks whether a thread
can access the network and the time when it gives
the permission, another thread of that applet reads
a file. So in the end, the multi-threaded applet was
able to circumvent the rule. In order to solve this
problem, one must synchronize the Security Man-
ager’s check for accesses by applet rather than by
thread.

5.4.5 Unix File System

We have currently limited our focus to the UNIX
file system. To be consistent with the capabilities
on the UNIX platform, giving write access to an
applet does not mean it has read access. In our
implementation, in order to allow an applet to read

and write, both permissions must be assigned to
true in the rule.

On another note, the JDK APT is limited in that the
file permissions on the UNIX system are inaccessi-
ble. Therefore, there is no way (other than writing
native code) of setting a file’s ACLs or discovering
whether a file’s SUID bit is set. This limits the
breadth of the policy one can place on an applet’s
access to the file system. Further, any files that
are newly created by the Java runtime are given
ACL permissions based on the user’s current umask
value. If the umask value does not prevent the cre-
ation of world-readable files, then all new files would
be world-readable. The file permissions cannot be
changed after its creation because of the limitation
in the Java API. Consequently, the log files created
by the system and files created by applets are de-
pendent upon the umask value.

5.5 Performance Analysis

We have analyzed the performance of our implemen-
tation by executing an applet that reads a line from
a file and writes a line to a file a certain number of
times. We measured the amounts of time for read-
ing and writing 1250 times, 2500 times, and 5000
times on a Sun Sparc 5. The experiment used a
sample policy that gives trusted applets access to
certain public directories while restricting the file
size to 100K and the file writes to 50. This sim-
ple test involved logging the past accesses, checking
the past accesses each time a read or write was to
be done, and analyzing the rules during runtime.
We compared our times with the times for JDK1.1’s
appletviewer whose Security Manager needed to be
slightly modified in order to allow reads and writes
to the file system. The results show that the amount
of time our extended system takes is 1.67 times that
of the regular appletviewer. In particular, our pro-
totype takes .131 seconds for each additional iter-
ation compared to the regular appletviewer’s .079
seconds. Performance can be improved with further
work in providing additional JVM native support
and by using a Just-in-Time compiler.

6 Conclusion

This paper has addressed the issues that arise with
making applets less restrictive by giving them more
access to a user’s operating system. We have at-
tacked this problem by 1) supplying a constraint
language that can specify conditional rules based on
past actions and 2) monitoring the actions of applets
through logging facilities. With these two features
the information exchange described in Figure 1 can
be easily detected and prevented.

Our implementation isolates applets by the notion
of file ownership and by disallowing applets from
reading files owned by other applets. However, as a
future extension of our work, this restriction can be
lifted if the sharing of files among applets is needed.
Such a capability would be useful if one wants to im-
plement applets that collaborate. For example, as
one applet organizes and arranges a user’s sched-
ule, another could graphically present the sched-
uler, while another could communicate with other
agents to make appointments. These teamplayer
applets would need to communicate with each other
and would need to share the common schedule files.
With file sharing in place, the communication con-
trol would be pushed down to step 5 of Figure 1.

One possible secure implementation of file sharing
would require associating a static security label with
each file in addition to the dynamic label associated
with each applet. The label on the file would denote
the security level of its contents, while the label on
the applet would correspond to the highest secu-
rity level of the information that it had accessed up
to that point. Then applets with the same security
level could access the same files without compromis-
ing the local system. This way, if applet communi-
cation occurs through the shared files, the applets
would have accrued the same security level of in-
formation. Such an implementation would require
extending the constraint language to allow users to
specify the security levels of files in a straightfor-
ward way, so that the rules would be less prone to
error.

Although in this paper we have primarily addressed
issues with applets communicating via the file sys-
tem, there are also other storage channels through
which applets can communicate. These include the
method calling between applets from the same docu-
ment through the procedures getAppletContext and
getApplet, and the spawning of new applets on the

local file system. More details about these storage
channels and how our prototype addresses them can
be found in Mehta’s thesis [13].

In conclusion, we believe that the addition of condi-
tional rules referencing past actions and complemen-
tary logging facilities will add significantly to the
usability of the Java security mechanism. These fea-
tures will also allow us to address the storage chan-
nels that exist in the system. Furthermore, these
features can be easily portable to JDK1.2 and other
mobile code systems. We have demonstrated rea-
sonable performance of this functionality in a pro-
totype implementation.

7

Acknowledgments

This work was supported by the Department of De-

fense Advanced Projects Research Agency under con-

tract number DABT63-94-C-0073 for work done at
MIT’s Laboratory for Computer Science.

References

[1]

2]

3]

[4]

[5]

[6]

D. D. Clark, D. R. Wilson, A Compari-
son of Commercial and Military Computer Se-
curity Policies, IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, April 1987,
pp. 184-194.

D. Dean, E. W. Felten, D. S. Wallach, Java
Security: From HotJava to Netscape and Be-
yond, IEEE Symposium on Security and
Privacy, Oakland, CA, May 1996, pp. 190-
200.

I. Goldberg, et al. , A Secure Environment
for Untrusted Helper Applications: Confining
the Wily Hacker, USENIX Security Sym-
posium, San Jose, CA, July 1996, pp 1-13.

L. Gong, Java Security: Present and Near Fu-
ture, IEEE Micro paper, 17(3), May/June
1997, pp. 14-19.

L. Gong, Java Security Architecture
(JDK1.2), Rev. 0.5, July 10, 1997.

D. Hagimont, L. Ismail, A Protection Scheme
for Mobile Agents on Java, ACM/IEEE In-

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

[8] JavaSoft,

ternational Conference on Mobile Com-
puting and Networking, Budapest, Hun-
gary, 1997.

S. Jajodia, A Logical Language for Expressing
Authorizations, IEEE Symposium on Secu-
rity and Privacy, Oakland, CA, May 1997,
pp. 31-42.

Sun Microsystems, Hot-
Java(tm): The Security Story, May 1995,
http://www.javasoft.com:/sfaq/may95/ secu-
rity.html.

JavaSoft, Sun Microsystems, Hot-
Java(tm) Browser, Version 1.1 Beta2
http://www .javasoft.com:/products/hotjava/
1.1.

G. Karjoth et al, A Security Model for
Aglets, IEEE Internet Computing, 1(4),
July/August 1997.

B. Lampson, A Note on the Confinement Prob-
lern, Communications of the ACM, 16(10),
October 1973, pp. 613-615.

R. Lo, K. Levitt, R. Olsson, MCF: A Ma-
licious Code Filter, Computers & Security
14 (6), 1995, pp. 541-566.

N. V. Mehta, Fine-Grained Control of
Java Applets Using a Simple Constraint
Language, MIT/LCS/TR-713, June 1997.
Also thesis for Master’s of Engineering, MIT.
June 1997.

Microsoft Corporation, Microsoft
Security Management Architec-
ture White Paper, May, 1997,

http://www.microsoft.com/ie/security /iedsec-
urity.htm.

I. S. Moskowitz and M. H. Kang, Covert
Channels — Here to Stay?, COMPASS 94,
Gaithersburg, MD, June 1994, IEEE Press, pp.
235-243.

G. Necula, Proof-Carrying Code, =~ ACM
SIGPLAN-SIGACT Symposium on
Principles of Programming Languages
Paris, France, January 1997, pp. 106-119.

Netscape Communications Corporation,
Securing Communications on the In-
tranet and Quer the Internet, July 1996,

http://www.netscape.com/newsref/128bit.html.

[18]

[19]

[20]

[21]

[22]

[23]

J. Pitkow and C. Kehoe, GVU’s
7th WWW User Survey, Geor-
gia Institute of Technology, April 1997,
http://www.cc.gatech.edu/gvu/usr_surveys/
survey-1997-04.

R. Sandhu, Transaction Control Ezxpressions
for Separation of Duties, 4th Aerospace
Computer Security Conference, December
1988, pp. 282-286.

R. T. Simon, M. E. Zurko, Separation of Duty
in Role-Based Environments, Computer Se-

curity Foundations Workshop, Rockport,
MA, June 1997.

Sun Microsystems, Inc. , Java Com-
piler Compiler, Version0.6(Beta), 1997,
http://www.suntext.com/JavaCC/.

L. van Doorn, et al., Secure Network Objects,
IEEE Symposium on Security and Pri-
vacy, Oakland, CA, May 1996, pp. 211-221.

D. S. Wallach et al., Extensible Security Ar-
chitectures for Java, Symposium on Oper-
ating Systems Principles, St. Malo, France,
October 1997.

