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Abstract

Connectivity is central to pervasive computing environ-
ments. We seek to catalyze a world of rich and diverse con-
nectivity through technologies that drastically simplify the
task of providing, choosing, and using wireless network ser-
vices; creating a new and more competitive environment for
these capabilities.

A critical requirement is that users actually benefit from
this rich environment, rather than simply being overloaded
with choices. We address this with an intelligent soft-
ware agent that transparently and continually chooses from
among available network services based on its user’s indi-
vidual needs and preferences, while requiring only minimal
guidance and user interaction. In this paper, we present an
overview and model of the network service selection prob-
lem. We then describe an adaptive user agent that learns
its user’s network service preferences from a very minimal,
intuitive set of inputs, and autonomously and continually
selects the service that best meets the user’s needs. Re-
sults from preliminary user experiments are presented that
demonstrate the effectiveness of our agent.

1. Introduction

Connectivity—ubiquitous, reliable, inexpensive, and es-
sentially invisible wireless access—lies at the heart of many
pervasive computing visions. We ask, how might we bring
truly ubiquitous connectivity closer to reality?

This paper presents the design and implementation of an
autonomous, cognitive personal agent for wireless access
service selection. The agent performs a critical function
within our larger research framework, the Personal Router
[23]. Our work is motivated by two visions: first, that
widespread wireless access to the Internet can be catalyzed
by a different economic model than the one currently in

place, and second, that an open market for a new genera-
tion of wireless devices and applications can be created by
such a wireless infrastructure.

The first vision is one that links economics and technol-
ogy. Wireless access requires both a mobile device,1 and a
set of base stations with which to communicate. How can
this infrastructure of base stations come into existence? The
investment model today is that high-speed wireless LANs
may be installed by private organizations within their own
facilities, but in the wider area, service is provided by a
large-scale provider who blankets (or sprinkles) a region or
a nation with towers.2

It need not be this way. An alternative is that anyone —
small businesses, individuals, cooperatives, local ISPs —
can easily put up base stations and sell access to the Inter-
net within small regions. With a suitable economic market,
demand would trigger deployment. These small providers,
together with today’s large-scale providers and dedicated
institutional networks, would create a rich, responsive, and
competitive infrastructure for wireless Internet access. Our
goal is to provide a technical and economic framework in
which to explore this option.

Successful realization of this vision depends on a num-
ber of technical capabilities. First, it must be possible for
the customer to move transparently and dynamically be-
tween different providers and service zones. This implies
that transport layer connections, security associations, and
the like survive the transition of the user from one provider
to another. Although these capabilities are not supported
gracefully in today’s Internet, a number of current research
and IETF efforts seek to address them. Our work comple-
ments and builds on these efforts.

1Or perhaps a Mobile Ad-Hoc Network.
2We note that a WLAN hotspot service that offers only the same limited

pricing models as a traditional cellular service is but a small step forward.
What is central to our vision is creating richness of competition and busi-
ness models, not the particular technology in use. Our work applies equally
to a WLAN, 3G, or mixed environments.
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More interesting is the need for this competitive, dy-
namic service environment to be presented to customers in
comprehensible terms. It is not enough that the user have a
choice between service providers. To truly benefit, a user,
or their agent, must be able to make this choice simply and
intuitively, and to re-evaluate the choice frequently as ser-
vice offerings change or the user moves about. Mechanisms
that involve manual intervention, detailed understanding of
application service requirements or network QoS offerings,
and similar complexities, are too burdensome to succeed.

What is needed is an automated service selection mech-
anism, driven by a high-level, intuitive, unobtrusive capture
of the user’s current requirements. This mechanism, by con-
sidering the user’s requirements as well as rules and service
descriptions made available by providers, transparently and
dynamically selects the most appropriate provider and of-
fered service at any given time. The development of such
a selection framework, together with its supporting inter-
faces, mechanisms, and economic models, is a central ob-
jective of our research. In this paper we describe our current
prototype selection framework, and present some prelimi-
nary experiments that validate its abilities.

The paper is organized as follows. Section 2 describes
the problem, and gives some background on our models of
the user and the network. Section 3 presents the architec-
ture of our agent and its computational learning model. We
present our experimental results in section 4. We give a dis-
cussion of related work in section 5. Section 6 concludes
with a brief discussion of ongoing work aimed at develop-
ing a more sophisticated decision agent.

2. The Service Selection Problem

This section provides a conceptual overview of the ser-
vice selection problem and the structure of the system we
have designed to address it. Figure 1 shows the general re-
lationship between the main elements that impact the selec-
tion decision. The Personal Router (PR) is a physical device
that, among other tasks, manages the network connectivity
between a user’s devices and the service providers in his en-
vironment. It communicates with providers to obtain infor-
mation about network services, and learns the user’s pref-
erences through an unobtrusive and intuitive user interface.
When the environment changes or the user would benefit
from a different service, the PR agent makes a new service
selection based on the information it has about the network
and user. In the subsections below we describe our model
for these interactions and discuss certain assumptions and
challenges within this model. This lays the foundation upon
which the agent architecture in Section 3 is based.

Figure 1. Conceptual Overview of Service Se-
lection

2.1. Network Model

We can imagine many different mechanisms for adver-
tising and selecting services, including negotiation and auc-
tion protocols. Regardless of the mechanism, we represent
the set of services available to the PR agent with the vari-
able �. This set of available services may change as the user
moves to new locations or service providers change their
offerings. Each of the available services � � � has an asso-
ciated service profile ���� describing its features, including
both performance and price information.

An ideal definition of a service profile is one for which
the user’s perception of a service’s usefulness in a particular
context is based solely on the features described by the ser-
vice profile. If this were the case, then the PR agent could
make accurate selections based only on information in the
service profile. In reality, however, it is not possible to cap-
ture all the variables that affect the user’s perception of a
service. We choose a specific, minimal set of parameters
that can be accurately characterized by providers and that
are closely related to the user’s perception of a service.

To describe the performance of a service, we use a two
bucket profile [32], describing a service in terms of its short
term and long term burst characteristics. A two bucket pro-
file consists of a token rate �, a burst size �, and a refill
interval �refill (called forced off in [32]) after which the
bucket is refilled if it is empty. This type of profile can de-
scribe a wide variety of services useful for different appli-
cation classes such as email, web browsing, and real-time
voice or video conferencing. Importantly, the two bucket
profile description at the network level corresponds well to
application performance at the user level for common ac-
tivities such as web browsing that exhibit an on/off heavy-
tailed traffic distribution. This close correspondence sug-
gests that the two-bucket profile description will also corre-
spond closely to the quality perceived by users for this class
of application.

Although a network service description contains several
parameters, it is often the case that for a particular class
of application and range of parameter values, one param-
eter becomes dominant in the user’s perception of the ser-
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vice quality. For example, as long as both packet loss and
latency are reasonably low, the perceived quality of a net-
work service for web browsing is almost entirely controlled
by the short-term average received bandwidth. In circum-
stances where this assumption is valid, consideration of a
single dominant parameter rather than the full profile may
simplify the task of the selection agent.

Along with quality attributes, service profiles contain in-
formation about the price of a service. Service providers
may choose complex pricing models with different initial
costs, pricing depending on congestion, user-specific pric-
ing, and the like. In the profile, however, we consider just
two cost attributes, price per minute �min and price per kilo-
byte �kb. The total price �total of a service to the user is
calculated by applying these price attributes to the duration
of usage � and the quantity of data transferred � accord-
ing to the equation �total � �min� � �kb�. This corre-
sponds to a linearization of the provider’s potentially com-
plex incremental (marginal) pricing model over the lifetime
of a service profile; if the linearization becomes too inac-
curate, the provider can advertise, and the PR can respond
to, a new profile with changed pricing. Combining the
quality and cost features described yields a service profile
���� � ��� �� �refill� �min� �kb� for a service �.

An important point is that service providers might not
advertise services accurately and truthfully. The task of val-
idating or estimating accurate service profiles is important
to the success of the PR agent, but is beyond the scope of
this paper. In the present work, we assume that the agent has
access to accurate service profiles. In the overall PR archi-
tecture, this assumption is validated by mechanisms such
as actual profile estimation (measurement of the delivered
service) and reputation management protocols. We also as-
sume that the PR can seamlessly switch between available
services without disruption using a mobility solution such
as mobile IP [22].

2.2. User Model

Users do not evaluate services purely in terms of the per-
formance and price features of service profiles. Instead, a
user is assumed to evaluate services subjectively in terms of
quality and cost. A user’s assessment of the quality and cost
of a service is assumed to be dependent on the user’s goals
and context. For example, a user may consider a high band-
width, high latency service to have high quality for bulk file
transfer but low quality for videoconferencing.

To accurately select services, we must identify the user’s
context. The correct service for the user depends on what
applications are running and the activity of the applications.
In order to make the space of user contexts manageable and
to improve performance, we presently assume that a user
only cares about the network performance of the currently

active foreground application and define the user context 	
as this application.3

Another factor that influences a user’s preferences is
their current goals and mindset. If the user wants to surf the
web and read the news, then they may prefer a low cost ser-
vice. If they urgently need to transfer a large file, then they
may want a high quality service even if it has high cost. We
model these changing goals with a trade-off between quality
and cost objectives, represented by 
 � ��� ��, where 
 � �
means the user only cares about cost, 
 � � means the user
only cares about quality, and values in between represent
intermediate weightings.

We make several decision theoretic assumptions about
user preferences. First, it is reasonable to assume that users
evaluate services based on subjective quality and cost in a
given context. That is, any two services which they per-
ceive to have the same quality and cost in that context are
perceived as equivalent. We assume that their orderings of
services over quality and cost are complete—given any two
services, the user can decide which one has higher quality
or that they are indifferent, and similarly for cost. Addi-
tionally, users’ cost and quality preferences are transitive—
if service A has higher quality than service B, and B has
higher quality than C, then they perceive A to have higher
quality than C. These assumptions allow us to represent
their perceptions of the quality and cost of a service � in
context 	 with quality and cost functions ��	� �� and ��	� ��,
representing the user’s orderings over quality and cost. The
user perceives service �� to have higher quality than �� in
context 	 if and only if ��	� ��� � ��	� ���, and similarly if
�� is cheaper than �� , then ��	� ��� � ��	� ���.

We model a user preferences with a utility function
���	� ��� ��	� ��� 
�. This efficiently represents user pref-
erences and enables the agent to reason about the quality
and cost of services in different contexts with different user
quality/cost trade-offs. The elicitation and construction of
such a function is at the core of not only the service se-
lection problem, but any decision problem. Classic solu-
tions to this problem (e.g conjoint analysis) have attempted
to achieve this by asking laboratory subjects pairwise ques-
tions over a large set of choices. However, as shown in [9],
the dynamicity and combinatorial size of the service selec-
tion problem means we cannot use classical solution con-
cepts for our problem. In fact, the best we can do, given our
concern with usability, is to construct a model of the user’s
utility function using sub-optimal information. As we will
show in the next section, these constraints impact the design
of the user-interface that carries information from the user

3This assumption is a simplification. A more complete approach would
consider different activities occurring within the same application, and
would also consider the needs of background applications as well as the
user’s foreground activity. Note, however, that adopting a more complex
model of context can be done without modifying the work described in this
paper.
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to the agent and vice-versa.
As mentioned earlier, the service profile does not capture

all the factors that influence user perceived quality and cost.
Assuming that service profile features are partially corre-
lated with ���� �� and ���� ��, profiles are useful in predict-
ing initial estimates for the value of services. The PR agent
refines its initial estimates based upon user experience with
the actual services.

3. Agent Architecture

We decompose the service selection problem into four
elements: 1) Devising an intuitive, effective user interface
to elicit from the user feedback useful for agent decision-
making; 2) Accurately evaluating services in terms of their
user perceived characteristics to guide the agent’s actions;
3) Deciding when to change services and which service to
select based on the user’s preferences, context, and goals;
and 4) Correctly predicting the value of new, previously un-
seen services based on previous observations. The solutions
to each respective subproblem are then modularized in to
the following set of components, implemented as an agent
architecture (see Figure 2): 1) the user interface (UI), 2) a
service evaluator, 3) a service change controller, and 4) a
service value predictor. Together, these components allow
the PR agent to learn the value of services from user feed-
back, adapt to changing user needs, and also estimate the
value of new services.

Change
Controller

Evaluator

Predictor

UIUser Service
Providers

F
q
(g,s),F

c
(g,s)

s, g, ∆c, ∆q
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V
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V
c
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F
q
(g,s): quality prediction

F
c
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Figure 2. Agent Architecture

3.1. User Interface

The design of the user interface is tightly constrained by
human factors such as ease of use and intuitiveness. Our
goal is that the UI require the smallest possible level of
attention from the user. In particular, it should never rise

above the level of a “background” cognitive task. This re-
quirement differs fundamentally from the goal of most UI
designs, which is to facilitate the task that is the focus of the
user’s attention.

The simplest approach is to request a single high-level
input: satisfaction or dissatisfaction with the current ser-
vice. This has the advantage of making service evaluation
easier since the PR agent does not need to track quality and
cost separately. However, it fails to capture the user’s dy-
namic quality/cost weighting. We allow the user to not only
express whether or not they are satisfied with the current
service, but also whether they desire a higher quality or
lower cost service. If the user is dissatisfied with a ser-
vice, it is either because it has low quality or high cost.
The UI provides two buttons for the user to express their
feedback � about the current service: a better button to in-
dicate � � ������, expressing dissatisfaction with the cur-
rent service’s quality level and requesting a higher quality
service; and a cheaper button for � � �������, expressing
dissatisfaction with the current service’s cost and requesting
a lower cost service. If the user is satisfied with a service,
they need not do anything (� � ���), expressed as no button
presses for some period of time. We assume that the longer
the user waits before pressing a button, the more likely they
are to be satisfied they with the quality and cost of a service.

If the user inputs � � ������, it is due to one or both
of the following reasons: either the user’s perceived quality
of the service � is lower than the PR agent’s estimate, or the
user’s quality/cost weighting � has increased. To the extent
that the button press is due to low �, the evaluator updates
its quality estimate for the service. To the extent that �

has increased, the change controller chooses higher quality
services. Similar reasoning applies to � � �������.

The user’s willingness to try new services may change as
well. The UI may provide a means for the user to express
this willingness via explore more and explore less buttons,
a slider, or attempt to infer it from their behavior. From the
input � the UI generates four outputs,��, ��, ��, and��,
the amount to change the quality estimate, cost estimate,
quality/cost weighting, and exploration level, respectively.

To help the user make their decisions, the UI must give
feedback to the user about critical, but otherwise hidden,
parameters such as the cost of a service. There are many
possible ways to give feedback about cost, including cu-
mulative cost, estimated cost per unit time, and estimated
cost per byte. Giving detailed technical information about
service parameters other than cost is likely to distract and
confuse the average user.

3.2. Service Evaluator

The function of the evaluator is to learn individual user
preferences in many different contexts, based on user feed-
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back. In particular, the task of the evaluator is to estimate
this perceived quality and cost for each service and activ-
ity. For each service � and user context � experienced by
the PR agent, the evaluator maintains quality and cost esti-
mates ����� �� � ��� �� and ����� �� � ��� ��, where 0 corre-
sponds to the worst possible quality or cost (slow or expen-
sive) and 1 is the best (fast or cheap). Since these estimates
should be based purely on the user’s perception of the ser-
vice, they are calculated from the �� and �� UI outputs
and not on any information in the service profile. The eval-
uator is adaptive, meaning its estimates of cost and quality
improve as it receives more user feedback. We implement
this adaptation with reinforcement learning [13]. The eval-
uator’s confidence in its learned estimates can be communi-
cated to other agent modules through an exploration value
�, allowing it to request more exploration (from the change
controller module (see below) when untried services exist
and less exploration when it has greater confidence in its
estimates.

3.3. Change Controller

The function of the change controller module is to decide
when to switch services and which services to select given
information from the service evaluator and from the user
interface. This switching choice is regulated by the user’s
context, the user’s weighting between quality and cost, and
the amount of exploration the user will tolerate. Since user
utility is a function of perceived quality and cost and a qual-
ity/cost weighting �, the change controller must have an
estimate of � and an approximate utility function to select
services. The change controller estimates the quality/cost
weighting based on �� inputs and then applies an addi-
tive linear utility function to the perceived quality and cost
of each available service. It then makes selections based
on a stochastic function of these utilities. Since the conse-
quences of sub-optimal decisions are minimal4 the change
controller may occasionally select a service with lower es-
timated utility in order to improve the evaluator’s estimates.
Some amount of exploration accelerates the learning pro-
cess, but too much exploration results in suboptimal selec-
tions [3]. The exploration level of the service evaluator and
�� from the UI affect this balance.

3.4. Service Value Predictor

Finally, to improve performance when previously unseen
services are encountered, the PR agent forms a model of
user utility to predict the value of new services based on
the �� and �� outputs from the UI and the current ser-
vice profile. The task of the predictor is to approximate

4The reasons for this are that the increased cost of a “bad” decision is
low, and the decision can be revisited quickly.

user perceived quality and cost as closely as possible given
a limited number of observations about their behavior and
service profiles. This assumes that there exist functions
����� 	���� and ����� 	���� correlated with the user per-
ceived quality ���� �� and cost ���� �� of a service �. The
predictor attempts to approximate these functions �� and
�� based on previous observations. Since the predictor is
only used for the initial estimate, predictions need not be
completely accurate. As long as its estimates allow the PR
agent to make better than random selections, the predictor
can improve performance. We utilize a multi-layer neural
network (MNN)[11] to compute the solution to this approx-
imation problem. MNNs were chosen because there exists a
tractable and optimal training algorithm (back-propagation)
that can approximate any arbitrary utility function. There-
fore in our implementation, when the PR agent encoun-
ters new services it attempts to approximate the user’s util-
ity function using a two-layer feed-forward neural network.
The PR agent trains the predictor on the �� and �� UI out-
puts, the current service profile, and the current activity. As
the neural network receives more training data, its predic-
tions will improve. Since the neural network requires a sub-
stantial amount of training data before it becomes useful,
the PR agent does not use it until it has accumulated enough
observations. Once the predictor is activated, the evaluator
can use it to initialize its quality and cost estimates for a
given service and activity.

4. User Experiments

To evaluate the adequacy of our approach, we tested the
agent’s ability to learn user preferences in a static and dy-
namic service environments in a series of short term con-
trolled user experiments. These preliminary experiments
had two objectives. The first was to determine if the PR
agent performs its function correctly, learning user prefer-
ences and selecting appropriate network services. Secondly,
we assessed the usefulness of automatic service selection in
the PR compared to manual selection.

Our experiments confirm that the PR agent can learn user
preferences and select services effectively. The agent also
performed similarly to manual selection on average, but re-
quired less user interaction to select a good service and re-
duced variance. The data we collected also gave us valuable
insight into how users interact with the PR agent in realistic
situations, helping us further tune and improve the system.
More studies are needed to conclusively determine the use-
fulness of the PR agent system. The experimental setup,
procedures and results are discussed below.
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4.1. Experimental Setup: Network and Users

The set of available services were generated using traf-
fic shaping in a software router. Services were defined by
three features: average data rate, cost per minute, and cost
per kilobyte. These features were chosen because, for an
important class of application and operating range, they are
consistent with the “single dominant quality parameter” as-
sumption discussed in Section 2.1. The values of these fea-
tures were chosen to mimic a range of realistic network ser-
vices, from inexpensive low quality services to expensive
high quality services. We chose to use seven quality lev-
els, corresponding to bandwidth levels commonly encoun-
tered by users in current 802.11b and broadband, modem,
and cellular data networks: 11Mbps, 1Mbps, 384Kbps,
128Kbps, 56Kbps, 28.8Kbps, and 9600bps. Costs were set
so that the user must choose services carefully to avoid ex-
pending all their credits.

Eight services were available in three simulated loca-
tions. For each location there was exactly one optimal ser-
vice that allowed the user to complete the experiment objec-
tives. All other services were either too costly or too slow.
Eight services were chosen because it is a large enough
number to make the task of correct service selection hard
enough for the subjects while enabling the PR agent to learn
service values within the time frame of the experiment.

Subjects were 17 students and staff of the MIT Com-
puter Science and Artificial Intelligence Laboratory. Sub-
jects were rewarded for their participation with $10 to $20
based on their performance.

4.2. Procedure

In order to evaluate the ease of use and effectiveness of
the agent and user interface the performance of the PR agent
was benchmarked against a manual selection policy. Sub-
jects were randomly assigned to one of two groups: 1) the
control group where subjects had to choose between ser-
vices manually by selecting from a menu displaying the
available services and their features and 2) the test group
where subjects used the PR agent to select between services,
requesting services using the better and cheaper buttons de-
scribed earlier. The final distribution of subjects to groups
was 8 to control and 9 to experimental conditions.

An experiment consisted of three phases. The first phase
controlled for task learning effects. Subjects were given ten
minutes to become familiar with the user interface, the pro-
cedure and the available services. The second phase con-
sisted of a static configuration of all eight services for a par-
ticular location and tested how well the PR agent could learn
an estimate of user preferences (estimation tests). The third
phase was identical to the second phase but tested for the
adequacy of the selected choices when the set of available

services changed from the set available in the second phase
(prediction tests). Within each phase the subjects had to
complete one or more tasks. For each task, the subjects used
a web browser to fully load a series of ten web pages within
five minutes while selecting a service using the mechanism
designated for their group. Each web page contained four
large image files. We chose this task because it approxi-
mates the network usage of a typical subject shopping or
looking for information on-line and makes use of the net-
work service in a realistic and familiar way. Subjects were
instructed that they would be charged for their network us-
age based on the cost of the current service. The task perfor-
mance of the subjects was given by the dependent variable
score, measured as the number of credits expended during
that task.

In each phase the simulated location and the set of avail-
able services changed. In Phase 1 the subject was placed
in Location 1 and was asked to perform their downloading
task twice for practice. In Phase 2, the PR agent was reset
and the subject chose services from Location 2. The sub-
ject was given two attempts at their task and was instructed
to try to minimize their score. Finally in Phase 3, the user
attempted to minimize their score in Location 3.

4.3. Results

Table 1 shows the summary statistics for experiments
that measured the adequacy of the agent’s estimation and
prediction learning mechanisms. Correlations were mea-
sured between independent variables ��� and ��� (mea-
suring the amount of bandwidth and cost per minute re-
spectively) and dependent variables � and �, the quality and
cost valuation as perceived by the user in Phases 2 (esti-
mation) and 3 (prediction) trials. The high correlations be-
tween the variables across both phases suggests that the PR
agent can learn both the quality and cost values based on
user feedback (in Phase 2) as well as predicting, although
less accurately in Phase 3, the value of new services as they
become available (in Phase 3). We expect that cost predic-
tions would take longer to learn in Phase 3 since there are
two service profile features affecting cost while only data
rate affects quality. These results suggest that the predic-
tor can provide useful estimates when services change, but
may require more time to learn before it can produce more
reliable results.

Figures 3 and 4 show the sorted and ranked distributions
of score percentiles across PR agent and manually selected
services in phase 2 trials. The value plotted is the score
under which a given fraction of the subjects scored. The
left-most data points are the lowest score for that try (hence
better, since the goal of the subject was to minimize expen-
diture) and the right-most data point is the highest score.

The results suggest that compared to manual selection
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Table 1. Correlation coefficients for learning
service estimates and prediction

Estimation Prediction
� vs. ��� �� � ����� �� � �����

� vs. ��� �� � ����� �� � �����

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

S
co

re

Percentile

Phase 2, Try 1
Phase 2, Try 2

Figure 3. Ranked and sorted distribution of
scores in Phase 2, PR agent selection

(Figure 4) the PR agent achieves comparable scores in
Phase 2 but with lower variance (Table 2). Figure 3 shows
that the performance of subjects who used the PR agent im-
proved in the second task of Phase 2. In Phase 2, the PR
agent improves the score achieved at almost all percentiles.
Figure 4 shows that there is no such improvement within
Phase 2 with manual selection, suggesting that the change
results from better estimates. Given more time to learn, we
expect that PR agent performance will improve further.

Figures 5 and 6 show the observed duration of usage of
each of the available services in Phases 2 and 3 as a fraction
of total usage time respectively. The data shows that both
the subjects who used an agent and subjects who used man-
ual selection chose the best service more frequently than
other services. In Phase 2, using service 2 results in the best
score. In Phase 3, service 7 is best. The figures show that
both approaches are capable of identifying and selecting the
best service. However, the data suggests that the agent does
not choose the optimal service as frequently as under man-
ual selection. Two possible causal hypothesis are: 1) the
agent’s learning is suboptimal for the given limited number
of trials (therefore performance should increase with more
trials) and 2) the reward or utility models of the change con-
troller are incomplete or inaccurate.

Figures 7, 8, and 9 show the observed distribution of
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scores in Phase 2, manual selection

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  2  3  4  5  6  7  8

U
sa

ge

Service

PR
Manual selection

Figure 5. Service usage duration, Phase 2

scores by percentile in Phases 2 and 3 for both the PR
agent and manual selection. The observed mean of scores
with PR agent selected services for Try 1 and 2 in Phase 2
were 1480 and 1430 respectively, with standard deviations
of 361 and 616. Conversely, mean scores for manual se-
lected services for Try 1 and 2 in Phase 2 were 1680 and
1600 respectively, with standard deviations of 722 and 747.
The observed mean scores for PR agent and manually se-
lected services in Phase 3 were 1680 and 1090 respectively,
with standard deviations of 1120 and 713. Table 2 summa-
rizes these statistics. The data shows that the average score
achieved by subjects who used the PR agent is slightly bet-
ter than that of subjects who used manual selection in Phase
2. In both tries of Phase 2 subjects using the PR agent sig-
nificantly reduced the variance in their scores, with scores
in low and high percentiles closer to the mean. This sug-
gests that service selection guided by the agent provides a
more predictable and consistent experience across subjects.
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Figure 6. Service usage duration, Phase 3
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Figure 7. Score distribution, Phase 2 Try 1

In Phase 3, the score varied widely for different subjects,
with some subjects scoring extremely well and others do-
ing poorly. An examination of the data revealed that this
disparity results from differences in usage during Phase 2.
Some subjects had trained the PR agent better during Phase
2, enabling the agent to make better selections in Phase 3.
This suggests that as subjects become more experienced at
using the PR agent, the agent’s performance improves sub-
stantially. More experiments are necessary to conclusively
determine the usefulness of the PR agent compared to man-
ual selection.

Verbal feedback from subjects also was collected. Man-
ual selection subjects remarked that it was difficult to re-
member the features of the different services. This suggests
that even if the PR agent performs similarly to manual se-
lection, users may prefer it simply because it requires less
cognitive effort. We used only eight services per location,
but in locations with more services we expect users would
have an even greater preference for automatic selection.
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Figure 8. Score distribution, Phase 2 Try 2
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Figure 9. Score distribution, Phase 3

5. Related Work

Our work in network service selection spans several
fields of research, including mobile and wireless networks,
network quality of service (QoS), intelligent agents, ma-
chine learning, and user modeling. Our research synthe-
sizes ideas from these fields to produce a novel machine
learning service selection approach.

Previous service selection researchers have developed
systems that use an agent to select network services for the
user, but they do not attempt to learn user preferences with
a simple and unobtrusive interface. In [2], the authors de-
scribe a mechanism for users to manually choose among a
fixed number of priority-level/price pairs. They study the
simulated behavior of multiple users on the load and per-
formance of such a network. Their work assumes that users
can accurately and rapidly choose the appropriate priority
level as the observed network performance changes. In this
paper, services are described by features more complex than
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Table 2. Score statistics

Try 1 Try 2
PR Manual PR Manual

Mean 1484 1676 1434 1600
Median 1564 1813 1318 1659

SD 360.7 722.0 616 747

a fixed set of priority levels and prices. Furthermore, our fo-
cus is not on the efficiency of the network but on ease of use
and user satisfaction.

The authors of [18] propose a user agent to select among
services in a diverse network environment. They describe
the framework for an agent that selects services based on
user expectations and application requirements, measures
the performance of the current service, rates services, and
shares this information with other agents. They do not im-
plement this system, describe the user interface, or give de-
tailed algorithms for selection and rating.

There has been previous research in wireless and mobile
networks on deciding how and when to switch network ser-
vice. While the 802.11 specifications [12] do not specify
a procedure for when handoffs should occur, a variety of
common approaches are taken. These include STA initiated
handoffs based upon signal strength information. Access
points may also initiate handoffs based upon their load.

Numerous prior works have shown that handoff between
wireless technologies (“vertical handoff”) [26] and systems
employing a variety of wireless networks and technologies
[15] is feasible. Commercial products employing multi-
mode wireless access technologies typically just prioritize
the radios and employ the highest priority radio at any
point in time [20]. In [30] the authors argue the need for
policy-enabled handoffs across such heterogeneous wire-
less networks. [28] describes a measurement based prior-
itization scheme for handovers in mobile cellular networks.
In Cellular IP [7], handoff is partly based on clients’ signal
strength measurements. In Mobile IP [21] handoff deci-
sions are based upon foreign agent advertisements. Mobil-
ity in wireless overlay networks has been studied in [14, 15].
Research on seamless and transparent handoffs includes
[4, 10, 22, 25, 29]. Software radios have a similar prob-
lem of determining which radio configuration to employ [8].
None of these approaches account for user preferences.

Our work builds on several well-studied user modeling
techniques. The authors of [33] give an overview of dif-
ferent ways to model and predict user behavior, including a
discussion of content-based and collaborative learning, lin-
ear models, Markov models, neural networks, and Bayesian
networks. In [31], the authors discuss the challenges of
machine leaning for user modeling, including the need for

large data sets, the need for labeled data, concept drift, and
computational complexity. Most of these approaches re-
quire a great deal of explicit feedback from the user. In
order to make our system unobtrusive and easy to use we
do not explicitly ask for ratings from the user and use im-
plicit rating instead, as described in [19]. That work exam-
ines methods for implicitly learning user preferences from
their behavior. We also incorporate aspects of previous ap-
proaches to measuring user perceived quality that make use
of feature-based models. The authors of [1, 24] describe
several methods to make recommendations based on the
features of items users previously rated.

We make use of AI techniques to learn user preferences.
The traditional approaches to modeling user utility include
conjoint analysis, in which users are asked to specify their
preferences over different goods [16, 17]. We reject this ap-
proach since users are unable to accurately evaluate a ser-
vice based on a description of their features; they must ex-
perience it before they can determine its utility. Instead we
use ideas from reinforcement learning to learn user prefer-
ences based on their behavior. Kaelbling gives an overview
of the field in [13]. Sutton and Barto provide an excellent
reference for reinforcement learning in [27].

The abstract model of service selection employed by
our agent resembles a partially observable Markov deci-
sion process (POMDP) [6, 5]. This gives us a framework
to reason about nondeterminism and unobservability in the
network and user and allows us to take advantage of the pre-
vious work in reinforcement learning with Markov models.

6. Conclusions and Future Work

A major challenge in any communication-rich environ-
ment is selecting the best network access service for a user’s
needs. To address this usability problem in service selection
we introduced the concept of the Personal Router agent. AI
based techniques were used to design an autonomous adap-
tive agent for learning user preferences in realistic network
environments and for different activities. The developed
agent was then empirically tested in a series of exploratory
experiments that assessed the learning capabilities as well
as the comparative performance of users using the PR agent
and manual service selection in a number of experimental
settings. We found positive learning effects and statisti-
cal and cognitive benefits for autonomous service selections
performed by the PR agent.

We are presently refining the work presented here in sev-
eral dimensions. First, we continue to empirically evaluate
different learning algorithms for more complex models of
the PR agent in environments with different numbers of ser-
vices available, changing user contexts, more complex net-
work services, uncertainty in network services, and chang-
ing user goals. We plan to perform long-term user studies
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to determine if performance improves as users become more
skilled at using the PR agent and the agent collects more ob-
servations about user preferences. Finally, after achieving a
satisfactory level of performance for the agent we plan to
extend the single agent decision mechanism to multi-agent
systems (MAS) using peer-to-peer networks, including the
exploration of distributed reputation, gossiping, epidemic,
and collaborative filtering mechanisms. This information
can help the PR agent initialize and verify the accuracy of
service profiles or estimate user preferences.

Finally, we note that our approach of using an unobtru-
sive learning agent to make decisions for a user facing a
complex environment applies to problems beyond wireless
network service selection. We believe that as computing
environments becomes more rich and pervasive, users will
increasingly face this situation. We see a growing need for
intelligent agents similar to the PR agent that can both learn
user preferences and act on a user’s behalf without disrupt-
ing or distracting them, and believe that the results of our
research will provide useful progress in this direction.
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