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Abstract—Pocket Switched Networks take advantage of social contacts to opportunistically create data paths over time. This work
employs empirical traces to examine the effect of the human contact process on data delivery in such networks. The contact occurrence
distribution is found to be highly uneven: contacts between a few node pairs occur too frequently, leading to inadequate mixing in the
network, while the majority of contacts occur rarely, but are essential for global connectivity. This distribution of contacts leads to a
significant variation in the fraction of node pairs that can be connected over time windows of similar duration. Good time windows tend
to have a large clique of nodes that can all reach each other. It is shown that the clustering co-efficient of the contact graph over a time
window is a good predictor of achievable connectivity. We then examine all successful paths found by flooding and show that though
delivery times vary widely, randomly sampling a small number of paths between each source and destination is sufficient to yield a
delivery time distribution close to that of flooding over all paths. This result suggests that the rate at which the network can deliver data
is remarkably robust to path failures.
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THE Pocket Switched Network (PSN) [1] proposes
to ferry data using human social contacts. At each

contact opportunity, mobile devices carried by the hu-
mans exchange data using short-range protocols such as
bluetooth or Wi-Fi. By chaining such contacts, the PSN
opportunistically creates data paths that connect a source
and destination over time. Intermediate nodes in the path
store data on behalf of the sender and carry it to the next
contact opportunity where it is forwarded further.

Although this store-carry-forward network can incur
long and highly variable delays, it has the advantage
of not requiring infrastructure setup or maintenance. It
is therefore useful when infrastructure is damaged (e.g.
after disasters), or does not exist (e.g. in remote areas).
Also, mobility increases network capacity at the expense
of delays, providing multi-user diversity gains [2]. A
PSN can be effective as a multi-hop “sneakernet” for
high-bandwidth applications that can tolerate delays.

A central question for the success of this approach is to
understand how human contact occurrences shape data
delivery. In this paper, we explore this issue using empir-
ical traces of human contacts. Our simulations discover
the quickest paths by flooding data at every contact
opportunity. We then study the achievable performance
of the contact network in terms of the fraction of data
delivered (delivery ratio), as well as the time to delivery.

The delivery ratio at the end of a time window is
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indicative of the fraction of node pairs connected during
the window and is therefore a measure of the connectiv-
ity achieved by the network. The empirically observed
cumulative distribution of delivery times can also be
interpreted as the evolution in time of delivery ratio,
normalised by the ratio eventually achieved at the end of
the time window1, and thus represents the rate at which
connectivity is achieved.

To explain our findings, consider an abstract model of
the PSN as a temporally evolving contact graph. Each
contact corresponds to a momentary undirected edge
and involves a two-way data exchange between the node
pair involved. Edges appear and disappear according to
some underlying stochastic process that corresponds to
the social contacts. The sequences of edges (contacts) that
occur constitutes a trace of the PSN.

An empirical contact occurrence distribution can be de-
fined for a trace, as the probability p(f) that an edge
(contact) constitutes a fraction f of the trace2. By con-
structing synthetic and time-shuffled traces from the
original, we show that delivery ratio evolves similarly
when the contact occurrence distribution is the same.

We then study how this distribution affects delivery
ratio in our empirical traces and find the distribution to
be highly skewed: Most node pairs meet rarely (fewer
than ten times), whereas a few node pairs meet much
more frequently (hundreds of times). The PSN’s ability
to connect two nodes over time depends crucially on the
rare contacts. In contrast, frequent contacts often occur

1. If the empirical probability that the delivery time is less than t is
r, then a fraction r of the data that eventually get delivered have been
delivered by time t.

2. i.e., the nodes that form the edge contact each other fn times in
a time window with n contacts.
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without there being new data to exchange, even when
flooding is the route selection strategy used. This inade-
quate intermingling of contacts increases the number of
contacts needed to achieve a given delivery ratio.

While it would appear from this macroscopic picture
that PSNs are largely inefficient, we find that over time
windows of fixed duration, there is a significant vari-
ation in the achieved delivery ratio. We discover that
in time windows in which a large fraction of data gets
delivered, rather than all nodes being able to uniformly
reach each other with the same efficiency, there is usually
a large clique of nodes that have 100% reachability among
themselves. We show how to identify such time win-
dows and the nodes involved in the clique by computing
a clustering co-efficient on the contact graph.

Finally, we examine the effect of path failures on data
delivery. Flooding finds a number of paths between each
source and destination. Unless all these paths fail, data
will eventually be delivered. However, since there is a
wide variation in the delivery time distributions of the
quickest and slowest paths between node-pairs, time to
delivery is expected to increase if some of the quicker
paths fail. To understand this, we examine the impact of
failing a randomly chosen subset of the paths found by
flooding between each sender and destination and find
that the delivery time distribution is remarkably resilient
to path failures.

Specifically, we study two failure modes among paths
found by flooding: The first, proportional flooding, ex-
amines delivery times when only a fixed fraction µ of
paths between a sender and destination can be used.
The second, k-copy flooding, assumes that at most a
fixed number k > 1 of the paths between a node-
pair survive. In both cases, we find that the delivery
time distribution of the quickest paths can be closely
approximated with relatively small µ and k. It is shown
that a constant increase in µ (respectively, k) brings the
delivery time distribution of proportional (k-copy) flood-
ing exponentially closer to the delivery time distribution
of the quickest paths found by flooding.

Since the delivery time distribution can be seen as the
rate of delivery ratio evolution, the above indicates that
the rate at which connectivity is achieved is not greatly
affected even if many of the paths fail for one reason
or another. The success of k > 1-copy flooding can also
provide a loose motivation for heuristics-based routing
algorithms that explore multiple paths simultaneously.

The rest of the paper is structured as follows: Sec. 1
presents the details of our simulations and motivates our
methodology. Sec. 2 discusses the effect of the order and
distribution of contact occurrences on data deliveries.
Sec. 3 shows how to exploit periods of good connectivity
by identifying cliques of nodes which can all reach each
other. Next we explore the time evolution of delivery
ratio by studying the delivery time distribution: In Sec. 4
we discuss components that contribute to delay on
successful paths and Sec. 5 shows that random sam-
pling closely approximates the quickest possible delivery

times. Sec. 6 discusses related work and Sec. 7 concludes.

1 SETUP AND METHODOLOGY

This section motivates the choice of traces, the simulation
setup and the performance measures used.

1.1 Traces
We imagine the participants of a PSN would be a finite
group of people who are at least loosely bound together
by some context—for instance, first responders at a
disaster situation, who need to send data to each other.
Multiple PSNs could co-exist for different contexts, and a
single individual could conceivably participate in several
different PSNs3.

Our model that PSN participants form a cohesive
group places the requirement that an ideal PSN should
be able to create paths between arbitrary source-
destination pairs. This is reflected in our simulation
setup, where the destinations for each source node are
chosen randomly. Also, our traces are picked to be close
to the limits of Dunbar’s number (=147.8, 95% confi-
dence limits: 100.2–231.1), the average size for cohesive
groups of humans [4].

The first trace comes from a four week subset of the
UCSD Wireless Topology Discovery [5] project which
recorded Wi-Fi Access Points seen by subjects’ PDAs.
We treat PDAs simultaneously in range of the same
Wi-Fi access point as a contact opportunity. This data
has N = 202 subjects. The second trace consists of
bluetooth contacts recorded from 1 Nov. 2004 to 1 Jan.
2005 between participants of the MIT Reality Mining
project [6]. We conservatively set five minutes as the min-
imum allowed data transfer opportunity and discarded
contacts of durations smaller than this cutoff. This trace
has contacts between N = 91 subjects.

The subjects in the MIT trace consist of a mixture
of students and faculty at the MIT Media Lab, and
incoming freshmen at the MIT Sloan Business School.
The UCSD trace is comprised of a select group of
freshmen, all from UCSD’s Sixth College. As such, we
can expect subjects in both traces to have reasons for
some amount of interaction, leading to a loosely cohesive
group structure. Prior work on community mining using
the same traces supports this [7].

It is important to emphasize that our focus is solely
on the capability and efficiency of the human con-
tact process in forming end-to-end paths. The precise
choice of the minimum data transfer opportunity is less
important—it is entirely possible that a new technology
would allow for faster node-node transfers. Indeed, our
results are qualitatively similar for other cutoff values
tested. Similarly, a different technology for local node-
node transfers could have different “reach,” allowing

3. Note that this is in contrast to a single unboundedly large network
of socially unrelated individuals as in the famous “small-world”
experiment [3] that examined a network essentially comprising all
Americans and discovered an average 5.2 (≈ 6) degrees of separation.
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more nodes to be in contact with each other simultane-
ously. Nevertheless, the substantial similarities (see rest
of the paper) between results based on two different
technologies and traces—the Wi-Fi based UCSD trace
and the bluetooth based MIT trace—gives us some con-
fidence that the results below may be applicable beyond
the traces and technologies we have considered.

1.2 Simulation setup and measurement
Setup: At the beginning of simulation, data is created,
marked for a randomly chosen destination, and asso-
ciated with the source node. An oracle with complete
knowledge of the future can choose to transfer data at
appropriate contact opportunities and thereby form the
quickest path to the destination. To simulate this, we
enumerate all possible paths found by flooding data at
each contact opportunity, and choose the quickest.

Performance measure: Consider the time-ordered se-
quence (with ties broken arbitrarily) of contacts that
occur globally in the network. Since there are N(N −
1) quickest paths between different sender-destination
pairs, a maximum4 of N(N−1) contacts in the the global
sequence of contacts act as path completion points. Of
these, Nd become “interesting” when there are d des-
tinations per sender. Since the destinations are chosen
randomly, we might expect that on average, if k path
completion points have occured, the fraction of these that
are interesting is independent of d: When d is greater,
more data gets delivered after k path completion points,
but there is also more data to deliver.

The above discussion motivates our method of mea-
suring the efficiency of the PSN: At any point in the
simulation, the delivery ratio, measured as the fraction of
data that has been delivered, or equivalently, the number
of “interesting” path completion points we have seen, is
taken as a figure of merit. The more efficient the PSN is,
the faster the delivery ratio evolves to 1, as the number
of contacts and time increase.

Unless otherwise specified, our experiments examine
delivery ratio evolution statistically averaged over 10
independent runs, with each run starting at a random
point in the trace, and lasting for 6000 contacts. We
confirm our intuition in Fig. 1, which shows that the
delivery ratio evolves similarly, whether d is 1 or a
maximum of N−1 destinations per sender. We note that
the graph also represents the fastest possible evolution
of the delivery ratio under the given set of contacts, due
to the use of flooding.

2 ORDER AND DISTRIBUTION OF CONTACTS

A PSN contact trace is determined by the distribution of
contact occurrences and the time order in which these
contacts occur. In this section, we examine how these
properties affect delivery ratio evolution.

4. The actual number could be lesser because a contact with a rarely
active node could complete multiple paths that end in that node.

Fig. 1. Fraction of data delivered as a function of the num-
ber of contacts, for the MIT and UCSD traces (number of
destinations per sender shown in brackets). The curves
for each network are clustered together, showing that the
delivery ratio evolves independently of the load.

Given two traces, the more efficient one will manage
to achieve a given delivery ratio with fewer number of
contacts. Our approach is to create a synthetic trace from
the original trace by disrupting the property we wish to
study. Comparing delivery ratio evolution in the original
and synthetic traces informs us about the effects of the
property.

Our main findings are that in both the traces we
examine, time correlations between contacts that occur
too frequently leads to non-effective contacts in which
no new data can be exchanged, and that the progress of
the delivery ratio as well as the connectivity of the PSN
itself are precariously dependent on rare contacts.

2.1 Frequent contacts are often non-effective
To investigate the effect of the time order in which
contacts occur, we replay the trace, randomly shuffling
the time order in which links occur. Observe in Fig. 2 that
the curve marked “shuffled” evolves faster than “trace”
implying that the delivery ratio increases faster after
random shuffling. The random shuffle has the effect of
removing any time correlations of contacts in the original
trace. Thus the improved delivery ratio evolution implies
that time correlations of the contacts in the original data
slowed down the exchange of data among the nodes,
causing them to be delivered later.

Manual examination reveals several time correlated
contacts where two nodes see each other multiple times
without seeing other nodes. At their first contact, one
or both nodes could have data that the other does not,
which is then shared by flooding. After this initial flood-
ing, both nodes contain the same data—subsequent con-
tacts are “non-effective”, and only increase the number
of contacts happening in the network without increasing
the delivery ratio.

To quantify the impact, in the curve marked “effec-
tive” on Fig. 2, we plot delivery ratio evolution in the
original trace, counting only the contacts in which data
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Fig. 2. Delivery ratio evolution for synthetically derived
variants of MIT (left), UCSD (right) traces. ‘Trace’ is
the original. ‘Shuffled’, the same trace with time order
of contacts randomly shuffled. ‘Effective’ replays ‘trace’,
counting only contacts where data was exchanged. ‘Link
distr’ is an artificial trace with the same size and contact
occurrence distribution as the original.
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Fig. 3. Contact occurrence distributions (log-log): A ran-
dom edge appears n times with probability p(n). To the
left of the dashed line at n = 45, the distributions for
both traces coincidentally happen to be similar. The inset
shows the difference when normalised by the number
of contacts in the trace. In the inset, a random edge
constitutes a fraction f of the trace with probability p(f).

could be exchanged. This coincides well with the time-
shuffled trace, showing that non-effective contacts are
largely responsible for the slower delivery ratio evolu-
tion in the original trace.

Next, we construct a synthetic trace that has the same
number of nodes as the original trace, as well as the
same contact occurrence distribution. By this, we mean
that the probability of contact between any pair of nodes
is the same as in the original trace. The delivery ratio
evolution of this trace, depicted as “link distr” in Fig. 2,
is seen to evolve in a similar fashion as the time-shuffled
trace. This indicates that once time correlations are re-
moved, the delivery properties are determined mainly
by the contact occurrence distribution.

2.2 Connectivity depends on rare contacts
The fact that three different traces (shuffled, effective,
and link distr), which are based on the same contact
occurrence distribution, essentially evolve in the same
manner leads us to examine this distribution further.

Fig. 3 shows that the contact occurrence distribution
has both highly rare contacts (involving node pairs that

(a) Robustness to cutoff: MIT (below), UCSD (above).
Max cutoff specifies a maximum cutoff for the fre-
quency of contacts, thus removing the most frequently
occurring ones. Min cutoff specifies a minimum fre-
quency of contacts—removing the rarest contacts
causes the number of nodes that are connected to
drop precipitously.

(b) Evolution of delivery ratio with contacts that occur
more than cutoff times removed. MIT (left), UCSD
(right). The network still remains connected, and man-
ages to deliver data with fewer contacts.

Fig. 4. Relative importance of rare and frequent contacts

meet fewer than ten times in the trace) as well as
frequent contacts (nodes which meet hundreds of times).
A randomly chosen contact from the trace is much more
likely to be a rare contact than a frequent one.

Fig. 4a shows that the rare contacts are extremely im-
portant for the nodes to stay connected. When contacts
that occur fewer than a minimum cutoff number of times
are removed, the number of nodes remaining in the trace
falls sharply. This implies that there are a number of
nodes which are connected to the rest of the nodes by
only a few rare contacts.

On the other hand, removing the frequent contacts
(by removing contacts occuring more than a maximum
cutoff number of times) does not affect connectivity
greatly. For instance, the MIT trace remains connected
even when the maximum cutoff is as low as 10 (i.e.,
contacts occurring more than ten times are removed).
This suggests that nodes which contact each other very
frequently are also connected by other paths, comprising
only rare edges.

Interestingly, Fig. 4b shows that with the most frequent
edges removed, achieving a given delivery ratio can
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Fig. 5. Distribution of delivery ratios over different time
windows (MIT). Allowing more time generally results in
more delivery, but there is significant variation. Each box
extends from the lower to upper quartile values, with a line
at the median. Whiskers extend from the box to show the
range. Outliers past the whiskers are plotted individually.

take fewer contacts. This appears paradoxical but can
be explained as follows: In terms of time, data delayed
waiting for the occurrence of a rare contact still take the
same amount of time to reach the destination, and data
previously sent on paths containing more frequent edges
alone are delayed, because they now have to be re-routed
over rare contacts. However, the reliance on rare contacts
allows “batch-processing”: Each node involved in the
rare contact has more data to exchange when the contact
happens, thus decreasing the overall count of contacts
taken to achieve a given delivery ratio.

3 DELIVERY OVER FIXED DURATION WINDOWS
The previous section showed that at a macroscopic level,
a PSN is a challenged network, with connectivity cru-
cially dependent on rare contacts, and frequent contacts
non-effective for data transfer. This section examines
time windows of fixed duration. It is observed that there
can be a large variation in the delivery ratio achieved
between windows of same duration. Time windows
which achieve a high delivery ratio are characterised by
unequal connectivity, with a large clique of nodes having
100% connectivity amongst themselves and much worse
connectivity among the other nodes.

Fig. 5 shows the distribution of delivery ratios
achieved by flooding data between every possible
source-destination pair over time windows of different
sizes. On average, allowing more time increases the
delivery ratio. This is expected because the number of
contacts can only increase over time. However, there
is still significant variation, especially within windows
of shorter duration, and the distributions are clearly
skewed (observe the positions of the median).

3.1 Large cliques correlate with good connectivity
Over fixed time windows, the temporal contact graph of
the PSN can be viewed as constructing a static reachabil-
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Fig. 6. Scatter plot showing a correlation between deliv-
ery ratio during random time windows of different sizes
and the mean number of paths connecting node pairs.
Squares, circles and triangles represent windows of one-
hour, one-day and 3 days, respectively (UCSD trace).
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Fig. 7. Delivery ratio in the contact graph correlates with
size of maximum clique observed in the reachability graph
(MIT trace, non-overlapping 3-day windows).

ity graph where a directed edge is drawn from node s to
t if the sender s can transfer data to destination t during
that window. The reachability graph is constructed by
flooding data during the window between every pos-
sible source-destination pair. We examine this graph for
clues about successful time windows which achieve high
delivery ratios.

A preliminary examination (Fig. 6) shows that the
average number of paths connecting a source and desti-
nation in the contact graph in the UCSD trace exhibits a
significant correlation with the achieved delivery ratio.
A similar result can be obtained for the MIT trace.

To uncover the reason, we focus on the MIT trace
and divide the entire duration of the trace into non-
overlapping 3-day windows and examine the reacha-
bility graph of each window for subsets of nodes with
large numbers of paths. We find that windows with
high delivery ratio tend to have a large subset of nodes
that form a clique in the reachability graph (Fig. 7). By
definition, each member of a clique in the reachability
graph can reach every other member of the clique,
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Fig. 8. CDFs of delivery times during a 3-day window with
a 46 node clique. The four categories shown are different
combinations of sender-receiver pairs when the source
(or destination) is inside (or outside) the clique. clique-
clique transfers are faster than other combinations (MIT).

leading to large numbers of paths when data is flooded.
While we expect delivery ratio to be high when the

reachability graph has a large clique (implying that
there is complete connectivity between a large fraction
of nodes), it is rather surprising that the converse is
true, viz. whenever the delivery ratio is high, there is a
large clique in the reachability graph. To understand the
implication, consider as example an arbitrarily chosen
3-day window in the MIT trace, with 77 active nodes,
a clique of size 46 and an overall delivery ratio of 0.68.
If nodes were equally connected, most nodes should be
able to reach ≈ 68% of the other nodes during this time
window. The clique implies that a subset of 46 nodes
(≈ 60% of the nodes) actually have 100% reachability
amongst themselves. The 31 nodes outside the clique
form 31 ∗ 30 source-destination pairs, of which only 59%
have paths between them. The table below details the
skewed reachability between these classes:

From\To: clique outside
clique 100.00% 78.61%

outside 76.44% 59.35%

In the same window as above, Fig. 8 looks at the
quality of the paths between nodes in the clique, outside
the clique, as well as the paths that go from source
nodes in the clique to destinations outside it, and vice-
versa. Plotting the cumulative distribution functions of
the delivery times of the quickest paths for each category
shows that data is transferred faster when both the
sender and receiver are members of the large clique.

Thus, during time intervals when there is a large
clique in the reachability graph, the PSN is very suc-
cessful, but only for the subset of nodes in the maximum
clique observed. It is hard to predict the nodes involved
because clique membership changes significantly (an
average of 33 nodes are added or deleted over successive
windows). Clique sizes also vary widely, with a mean
size of 28.8, and a standard deviation of 18.2.
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Fig. 9. Scatter plot showing the correlation between de-
livery ratio during random time windows of different sizes
and the clustering coefficient of the contact graph for
that time window. Squares, circles and triangles represent
windows of one-hour, one-day and 3 days, respectively
(MIT trace).

3.2 Clustering coefficient predicts delivery ratio
The clique occurs in the reachability graph, and can-
not be easily detected without flooding all paths and
performing extensive computation. We now show that
the “cliquishness” of the contact graph can serve as an
approximation.

Suppose a vertex v has neighbours N (v), with
|N (v)| = kv . At most kv(kv−1)/2 edges can exist between
them (this occurs when v is part of a kv-clique). The
clustering coefficient [8] of the vertex, Cv , is defined
as the fraction of these edges that actually exist. The
clustering coefficient of the graph is defined as the
average clustering coefficient of all the vertices in the
graph. In friendship networks, Cv measures the extent
to which friends of v are friends of each other, and hence,
approximates the cliquishness of the graph.

Fig. 9 shows that the average clustering coefficient
of the contact graph correlates well with the delivery
ratio achieved during time windows of various sizes.
In practice, a node can compute its current clustering
coefficient by obtaining a list of recent contacts from each
node it meets. The average clustering coefficient of the
network can be approximated by propagating current
local estimates, for example, by adapting a distributed
algorithm to compute aggregates, such as [9].

By using clustering coefficient as a predictor for de-
livery ratio, senders (or other nodes on their behalf)
can make informed decisions about how to deliver data.
For instance, a node which observes a low clustering
coefficient can aggressively send multiple copies, resend
the same data over time, or even bypass the PSN entirely
and use a more expensive infrastructure-based commu-
nication mechanism such as a satellite connection.

4 UNDERSTANDING PATH DELAYS
We move from considering the fraction of data delivered
to the time taken to deliver data. This section focuses
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(a) Delivery time:
Roughly exponential
(MIT, 3 day window)

(b) Hop Delay: Roughly
exponential (UCSD, 12
hr window)
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(c) No. of hops: Poisson
(MIT, one week window)
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(d) No. of paths (also
degree): Neg. Binomial
(UCSD, 6 hr window)

Fig. 10. Distributions related to successful paths. Each Q-Q plot shows fit through correspondence between sample
deviates generated according to the theoretical distribution (predicted) and empirical (actual) values. Closeness to
predicted=actual diagonal indicates better fit. Different combinations of trace and time window sizes are used to show
generality of fit.

H Hop delay, or time to next hop. Time until a path expands by one more node. H ∼ Exp(rate = ν)
N Number of edges per path. N ∼ Poisson(mean = λ)
L Number of paths between a random src-dest pair (also node degree). L ∼ NegBin(mean = η, dispersion = θ)
D Path delay for a random path
D∗ Delivery time (minimum path delay across all paths between a randomly chosen source & destination)
GX(s) Probability-generating function of X
MX(s) Moment-generating function of X . MX(s) = GX(eX)

TABLE 1
Summary of notation used to characterise components of path delay and delivery times

on understanding the delays on unicast paths that form
during a fixed time window. Paths are discovered by
flooding data from every sender to every destination, as
described in Sec. 1.

In our method of flooding, every non-destination
node (including the source) forwards data to each non-
destination node it meets that does not yet have a copy
of the data, but receives a data item at most once. The
destination node accepts all copies it gets, but does not
forward the data further. Note that this does not uncover
all the paths that form over time in the contact graph.
Rather, since each non-destination node receives data at
most once, a tree of paths, rooted at the source, forms
over time. We call this the “flood-tree”.

First, we examine the quickest paths. Then, we obtain
an expression for path delay on any path discovered by
flooding, in terms of the delay per hop and number of
hops. Finally, we look at the distribution of the number
of paths between all possible source-destination pairs.
The ultimate goal is to obtain an approximate expression
for delivery time, as the minimum of the path delays of
a random number of paths.

4.1 Delivery time: path delay on the quickest path

Delivery time is the time taken by the first path to reach
the destination. Hence, it is the minimum of the path
delays along all paths connecting the source and destina-
tion over time. Although there is a huge difference in the
path delays of the first (quickest) and the last (slowest)
paths that form during a time window, the Quantile-
Quantile plot in Fig. 10a shows that delivery time dis-
tribution for the quickest paths is almost exponential.
Thus, most source-destination pairs have quick paths.

[10], [11] derive analytical expressions which are

similar in spirit. However, these assume a constant (av-
eraged) contact rate, whereas the contact rates in our
empirical traces are highly heterogeneous (see Sec. 2).
Plugging in the average contact rate from the empirical
traces into those expressions yields bad fits. Appendix A
extends Sec. 4.2 and derives Chernoff bounds for the
delivery times.

4.2 Characterising path delays
Next, we examine all successful paths, and express path
delay in terms of the delay per hop and number of hops.

4.2.1 Hop delay (H)
The hop delay distribution captures the time that elapses
between successive hops on the same path. Fig. 10b
shows that the UCSD curve can be fitted to an exponen-
tial distribution with rate ν ≈ 0.0001, giving a mean time
of 2.6 hours to next hop. A similar fit can be obtained
for the MIT curve.

For both the MIT and UCSD traces, the fit for the
entire curve is approximate (“raw”, in Fig. 10b), with
goodness of fit varying between different time windows.
The fit can be improved by removing outlier values
which are likely an artifact of the data set (“smoothed”
in Fig. 10b). While the fit is not exact in many windows,
we will assume that H is exponential, to simplify the
analysis in the following section. This does not limit the
applicability of our analysis. We will later show that the
key results of Sec. 5 will apply equally for any other
distribution which has a moment-generating function.

Note that there is no conflict between the nearly ex-
ponential distribution of hop delays and the previously
reported power laws (with exponential tails) for inter-
contact time distribution [12], [13]. Inter-contact time is
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the time between repeated meetings of the same pair
of nodes, whereas hop delay measures the time taken
by the flooding process: from the time a node receives
some data to the time it meets a new node that does not
already have a copy of the data. The longer the duration
a node carries the data, the greater the chance that data
has already been flooded to the nodes it meets. Because
of flooding, the hop delay distribution decays rapidly,
unlike the inter-contact time distribution.

4.2.2 Number of hops (N )
Several factors work together to limit the number of hops
in a successful path. First, we only consider paths that
form during a fixed time window. Second, the small-
world nature of the human contact graph makes for
short paths to a destination; and paths are frozen at
the destination because the destination does not forward
data further. Third, each node can join the flood-tree
at most once. As the tree grows, the number of nodes
available to grow the tree and extend a path decrease.
Thus extremely long paths are rare. Fig. 10c shows that
the number of hops in paths that reach the destination
during a one week time window of the MIT trace closely
follows a Poisson distribution (The mean number of
hops is λ = 5.58 in this window, and has been found
to vary between 5–6 in different windows tested.). A
similar fit can be obtained for the UCSD trace.

4.2.3 Path delay (D)
From the above empirically found distributions, we can
derive the distribution of the path delay D on a random
path as the sum of N hop delays. Thus, D can be
written in terms of its moment-generating function (see
Table 1 for notation and a summary of the component
distributions):

MD(s) = GN (MH(s)) = eλ( ν
ν−s−1) (1)

The average path delay is simply M ′D(0) = λν−1. Ap-
plying a Chernoff-type bound,

P [D ≥ t] ≤ min
s>0

e−stMD(s) = min
s>0

eλ( ν
ν−s−1)−st (2)

Minimizing by setting s = ν −
√
λν/t, we get (for t <√

λ/ν)
P [D ≥ t] ≤ e−(

√
νt−
√
λ)2 (3)

Remark 1: The form of (3) indicates that the path
delay on a random path is also close-to-exponentially
distributed.

4.3 Characterising the number of paths (L)
Since each node joins the flood-tree at most once, there
can be at most N−1 nodes (nodes other than destination)
on the tree. Therefore there can be at most N − 1 paths
reaching a destination during the time window.

The actual number of paths depends on the number
of unique nodes met by the destination: If the PSN is

well mixed and the window is long enough, eventually
all intermediate nodes become reachable from the source
and get attached to the flood-tree. Thus the number of
paths to a destination is determined by the number of
distinct neighbours met by the destination over the time
window.

Fig. 11. Median number of successful paths reaching a
destination node correlates with the number of distinct
neighbours it has. Diagonal shows x axis=y axis. (MIT,
one week window)

Fig. 11 empirically confirms this argument, by show-
ing that the median (mean can also be used, instead)
number of paths reaching a destination correlates with
the number of distinct neighbours it has. As a conse-
quence of this “eventual reachability” phenomenon, the
distribution of the number of paths to a destination is
simply given by the degree distribution of the who-
met-whom graph of the PSN, taken over the entire time
window.

Fig. 10d shows that the degree distribution (and the
number of paths) in the UCSD trace fits a negative
binomial distribution. A similar fit can be obtained for
the MIT trace.

The fact that the number of group members that an
individual has contact with (the number of neighbours
seen) follows the same distribution in both the traces,
across time windows of different sizes suggests the
possibility of an underlying stochastic mechanism.

The negative binomial is a versatile distribution that
can arise in a number of ways [14]. One possible way
the negative binomial arises is as a continuous mixture
of Poisson distributions where the mixing distribution
of the Poisson rate is a gamma distribution. The model
assumes that people acquire new neighbours according
to a Poisson process with rate λp. Heterogeneity in
the population is modeled by drawing λp from some
population distribution P (λp). If P (·) follows the gamma
distribution

P (λp = λ) =
e−(λ/η1)(λ/η1)(η2−1)

η1Γ(η2)
,

then the observed distribution of the number of neigh-
bours seen by individuals in the group would fit the
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negative binomial distribution. One interpretation [15] of
this is that people acquire new neighbours by searching
for people satisfying some personal criterion. People
continue to acquire new neighbours until they have η2
partners. Each potential new partner satisfies the search
criterion independently with a probability pc, which
defines the scale parameter η1 = (1− pc)/pc.

5 EVALUATING THE EFFECT OF FAILURES

Many studies on Pocket Switched Networks, including
ours, implicitly assume that every contact on any path
which occurs can be used to successfully transfer data.
In reality, many factors could prevent a path from being
useful: An intermediate node may run out of storage;
the time available during a contact opportunity may not
be sufficient; or a node can simply fail.

Since only one path between every source-destination
pair needs to succeed for data delivery, individual path
failures do not greatly impact the delivery ratio achieved
at the end of a time window (unless all paths between a
source-destination pair fail, disconnecting the network).
However, it can affect the rate at which the delivery
ratio evolves: Suppose the quickest path between a pair
of nodes would have arrived at t1, but cannot be used
because of a failure. If the first usable path connects the
nodes at time t2 > t1, then between t2 and t1 the fraction
of data delivered is decreased on account of the path
failure. In other words, there is a delay in data delivery,
which temporarily shifts the cumulative distribution of
delivery times to the right.

Given a sequence of contacts, flooding achieves the
best possible delivery times by exploring every contact
opportunity and thereby finding the path with the mini-
mum path delay. This section looks at the degradation in
the delivery time distribution when not all of the paths
found by flooding can be explored.

Specifically, we study two failure modes: The first,
proportional flooding, explores a fixed fraction µ of the
paths found by flooding between each source and desti-
nation. We show that a constant increase in the fraction
of paths explored brings the delivery time distribution
of proportional flooding exponentially closer to that of
flooding over all paths. The second failure mode, k-copy
flooding, explores no more than a fixed number k > 1
of the paths found by flooding between each source
and destination. Again, a constant increase in k brings
the delivery time distribution exponentially close to the
optimal delivery time distribution of flooding all paths.
Empirically, even small values of k (e.g., k = 2 or k = 5)
closely approximate delivery times found by flooding.

The results of this section imply that the human con-
tact network is remarkably resilient to path failures and
the delivery ratio evolves at a close-to-optimal rate even
when the majority of paths fail and only a small fraction
or a small, bounded number of paths can transport
data to the destination. Note that we only admit paths
from the original flood-tree, and do not include new

paths that repair failures by joining the affected nodes
to the flood tree at later contacts. Thus our results in fact
underestimate the resilience of the network.

The success of k-copy flooding can provide a loose mo-
tivation for routing algorithms that use multiple paths
between each sender and destination pair since this
could obtain a close-to-optimal delivery time distribu-
tion. However, heuristics-based routing algorithms may
not find the same paths as found by flooding. Thus, the
correspondence is not exact.

5.1 Proportional Flooding
Consider an arbitrary source-destination pair. We will
model the path delays between them as being chosen in-
dependently and identically from the distribution in (1).
Suppose copies of the data are sent along l randomly
chosen paths between them. The obtained delivery time
D∗l is the minimum of the path delays across all l paths.
Using (3) we can write

P [D∗l ≤ t] = 1−
l∏
i=1

P [D ≥ t] ≥ 1− e−l(
√
νt−
√
λ)2 (4)

Note that the above assumes that the l path delays are
independent. In reality, paths found by flooding all fan
out from a single source node, and the first few hops,
close to the source, are typically shared with other paths,
violating the independence assumption. Therefore, the
model in this section is to be considered only as a simple
formulation designed to gain insight into proportional
flooding. It is worth mentioning however that in the
empirical data sets, we frequently find that the major
component of path delay is contributed by the part of
the paths closest to the destination, which are not shared
with other paths. Also, in the case when only a few paths
on flood-tree are being randomly sampled, the number
of hops shared is limited.

Consider source-destination pairs with L = m paths
connecting them. Full flooding finds the quickest of
all m paths and obtains a delivery time distribution
P [D∗L ≤ t|L = m]. Proportional flooding chooses a frac-
tion µ of them. From (4), the difference ∆(t;µ), in the de-
livery time distributions between full and proportional
flooding, is upper bounded by

∆(t;µ) ≤ P [D∗L ≤ t|L = m]− 1 + e−µm(
√
νt−
√
λ)2

(5)

Remark 2: A constant increase in µ has an exponential
effect on ∆: For any t, if µ is increased by some constant,
the fraction of data delivered by proportional flood-
ing during [0, t] becomes exponentially closer to that
delivered by full flooding. Thus, proportional flooding
quickly becomes very effective as µ is increased.

While the above is not unexpected given the model
and the resulting distributions as obtained in Sec. 4.2,
this observation can be generalised: For a hop delay
distribution with moment-generating function MH(s),
(1)–(5) can be rederived to get

∆(t;µ) ≤ P [D∗L ≤ t|L = m]− 1 + exp(µmFH(t)), (6)
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Fig. 12. K-S statistic (D) measuring the difference be-
tween the delivery time distributions of full flooding and
proportional flooding for different µ. X-axis is linear, Y-axis
is log-scale.

where FH(t) = λMH(smin(t)) − smin(t)t − λ and smin(t)
minimises s in (2)5. Thus the exponential decrease in
∆ with a constant increase in µ is obtained as long as
FH(t) < 0. In other words, our results hold when there
are a Poisson number of hops in paths formed over fixed
time windows, for any hop delay distribution H that has
a moment generating function and satisfies FH(t) < 0.

Also, since
∂∆
∂µ

= mFH(t)eµmFH(t) < 0,

∆ decreases when µ is increased. Furthermore, the rate
of decrease is higher for smaller µ – increasing µ from
µ = 0.1 to µ = 0.2 results in a greater decrease than an
increase from µ = 0.6 to µ = 0.7.

Fig. 12 empirically shows the difference between
D∗(t), the delivery time distribution obtained by flood-
ing over all paths, and D∗µ(t), the delivery time distribu-
tion for proportional flooding using a randomly selected
fraction µ of paths between every source and destina-
tion. The difference is measured using the Kolmogorov-
Smirnov statistic given by D = maxt (D∗(t)−D∗µ(t)).
Note that the Y-axis is log scale; a constant increase in µ
shows an exponential decrease in D.

5.2 From proportional to bounded number of paths
Sec. 4.3 showed that the number of paths to a desti-
nation (L), is a random variable that is well modeled
by the negative binomial, a positively (or right) skewed
distribution. Thus a majority of sender-destination pairs
have a small (fewer than average) number of paths, but
a minority have a large number of paths, which pulls the
average higher. The expected number of paths that need
to work for successful proportional flooding is given by
µE [L], which is higher than it would be if the minority
of node pairs with large numbers of paths were not
considered. In the worst case, when there are (N − 1)
paths between a sender and destination, proportional
flooding works only if µ(N − 1) of these are functional.

5. When H is exponentially distributed, we get FH(t) =

−
(√

νt−
√
λ
)2

. Plugging this value into (6) yields (5).
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Fig. 13. k-copy flooding: Nodes are connected by multiple
paths with different delays (CDFs of the quickest and
slowest are shown). Yet, randomly choosing at most k
of the paths to each destination closely approximates the
quickest, even for small k. (MIT trace, one week window)

This suggests an alternate bounded cost strategy that
explores at most a fixed number, k, of the paths be-
tween every sender and destination. We call this k-copy
flooding. Unlike proportional flooding, k-copy flooding
explicitly limits the number of paths explored, and there-
fore can tolerate a larger number of path failures in
the worst case, when there are a large number of paths
between a node-pair.

Fig. 13 shows empirically that in our data sets, even
for small k (= 2, 5), the delivery time distribution of k-
copy flooding starts to closely approximate full flooding.
To see why, consider the equivalent fraction µ

k
of paths

in proprotional flooding that gives the same expected
number of paths as k-copy forwarding:

k∑
l=0

lP [L = l] + kP [L > k] = µ
k
E [L] (7)

Suppose k is increased by a constant h, resulting in a
new equivalent fraction µ

k+h . (7) becomes

k∑
l=0

lP [L = l] +
h∑
j=1

(k + j)P [L = k + j]

+(k + h)P [L > k + h] = µ
k+hE [L]

Regrouping, we get

k∑
l=0

lP [L = l] + k

 h∑
j=1

P [L = k + j] + P [L > k + h]


+

h∑
j=1

jP [L = k + j] + hP [L > k + h] = µ
k+hE [L]

Comparing with (7), we can write

µ
k
E [L] +

h∑
j=1

jP [L = k + j] + hP [L > k + h] = µ
k+hE [L]



11

Thus the increase in the equivalent fraction of paths is

µ
k+h − µk ≥

h

E [L]

 h∑
j=1

P [L = k + j] + P [L > k + h]


= h (P [L > k] /E [L]) (8)

Remark 3: A constant increase in k is equivalent to at
least a (scaled) constant increase in the fraction of paths
explored by proportional flooding. Thus, as a simple
consequence of Remark 2, a constant increase in the
number of paths explored in k-copy forwarding moves
its delivery time distribution exponentially closer to that
of full flooding.
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Fig. 14. Proportional flooding with µ2 = 0.15 of paths
has similar delivery times as k = 2-copy routing. Similarly
k = 5 corresponds to µ5 = 0.5. (MIT, one week window)

This explains why exploring at most a small number
k of paths has a delivery time distribution approaching
that of flooding over all paths. Fig. 14 empirically shows
the equivalent fractions µk for the k = 2 and k = 5 cases
discussed previously. Appendix B derives a closed form
for µ

k
when the number of paths L is negative binomial.

5.3 Resilience and load balancing
The results above suggest that the human contact net-
work is remarkably resilient to path failures and the
network’s optimal rate of data delivery can still be ap-
proximated even when many of the paths do not succeed
in delivering data. To conclude, we briefly elucidate this
from the perspective of intermediate node failures.

The source and destination rely on the rest of the
network to serve as intermediate nodes and form con-
necting paths. The use of multiple paths provides a
degree of resilience against path failures, since only one
of the paths needs to succeed. Deterministic strategies
that selectively favour particular next hop nodes or
even particular paths can potentially overburden certain
intermediate nodes that end up getting selected more
often, but randomised strategies such as the ones we
discuss are more resilient and have fewer bottlenecks.

For any strategy, we can measure the burden placed
on a given intermediate node by any given source
(respectively, destination) by counting the number of
paths of the sender (destination), chosen according to

the strategy, in which the node figures as an intermediate
hop. We call this number the betweenness centrality of
the node for a given source (destination).

Source nodes (destinations) with very few central
nodes are vulnerable to being disconnected if the central
nodes fail. As Fig. 15 shows, deterministic strategies such
as picking the quickest possible path can result in a
network that is sparse in central nodes. A randomised
strategy results in more central nodes and thus renders
the network more resilient against failures. A sender
(destination) that has few central nodes is also likely to
face congestion if the central nodes hit capacity bottle-
necks. The availability of more central nodes opens the
possibility of load balancing in such cases.

6 RELATED WORK

Conceptually, PSNs are Delay-Tolerant Networks [16],
and generic results from that framework apply. For in-
stance, a forwarding algorithm that has more knowledge
about contacts is likely to be more successful [17], and
the best performance is achieved by an oracle with
knowledge of future contacts.

Nevertheless, the fact that our underlying network
is made up of human contacts and is less predictable
has a large impact: For instance, reasonably predictable
traffic patterns of buses allow a distributed computation
of route metrics for packets in vehicular DTNs [17],
[18]. Similarly, fixed bus routes allow the use of throw-
boxes [19] to reliably transfer data between nodes that
visit the same location, but at different times.

The variability of PSNs has naturally led to a statistical
approach: The inter-contact time distribution of human
social contacts has been used to model transmission
delay between a randomly chosen source-destination
pair [12], [13]. In this work, we take a more macroscopic
view and look at the ability of the PSN to simultaneously
deliver data between multiple source-destination pairs.
This leads us to look at the distribution of the number
of contacts between randomly chosen source-destination
pairs, and find that this distribution is not only crucial
for global data delivery performance, but also for the
connectivity of the PSN itself.

This paper uses variants of flooding to obtain a better
understanding of achievable data delivery properties of
human contact networks. However, unbounded flooding
is expensive. To mitigate this, various routing protocols
have been proposed. These typically use various ad-hoc
metrics, such as betweenness centrality [20], history of
previous meetings [21], and inferred community struc-
ture [22]. Computing such metrics can be costly and the
computation can be inaccurate due to the high variability
inherent in PSNs. Our results point to simpler techniques
that could exploit time windows of good connectivity or
the use of multiple paths.

[10], [11], [23] model the performance of epidemic
routing and its variants. In particular, they derive a
closed form for delivery time distribution, and show



12

0 20 40 60 80

source

0

20

40

60

80
ce

n
tr

a
l 
n
o
d
e
s

(a) Central nodes on deterministically picked paths

0 20 40 60 80

source

0

20

40

60

80

ce
n
tr

a
l 
n
o
d
e
s

(b) Central nodes on 5 randomly chosen paths

Fig. 15. Scatterplots showing node numbers of source on the X-Axis, and on the Y-Axis, nodes numbers which cross a
threshold (=5) betweenness centrality for the corresponding sources. Left figure shows the central nodes when paths
are picked according to a deterministic strategy (the quickest path). Right figure shows the central nodes when up to
five paths are randomly selected. The random strategy selects more central nodes and spreads the load more evenly.
A similar set of figures can be obtained by looking at the most central nodes for a given destination. (MIT trace, one
week window)

it to be accurate for certain common mobility models.
However, several simplifying assumptions are made, in-
cluding an exponential inter-contact time between node
pairs. Unforunately, human contact networks are known
to have power law inter-contact times with exponen-
tial tails [12], [13]. Furthermore, [10], [11], [23] use a
constant contact rate, whereas our studies show that
human contacts are highly heterogeneous. [24] considers
heterogeneous contact rates between mobile devices but
only in the context of establishing an epidemic threshold
for virus spread.

The number of paths found by flooding is crucial
to the success of proportional and k-copy flooding.
Counting differently, [25] reports a phenomenon of
“path explosion” wherein thousands of paths reach a
destination shortly after the first, many of which are
duplicates, shifted in time. In contrast, duplicate paths
are prevented in our method of counting, by having
nodes remember if they have already received some
data, resulting in a maximum of N − 2 paths between a
source and destination.

The power of using multiple paths has been recog-
nised. Binary Spraying, which forms the basis for two
schemes (spray and wait, spray and focus) has been
shown to be optimal in the simple case when node move-
ment is independent and identically distributed [26].
[27] noted that among routing schemes evaluated, those
using more than one copy performed better. Further-
more, all algorithms employing multiple paths showed
similar average delivery times. The success of k-copy
flooding suggests a possible explanation for this result.
Similarly, [28] finds that the delivery ratio achieved by
a given time is largely independent of the propensity
of nodes to carry other people’s data. They suggest the
existence of multiple paths as an explanation. At an
abstract level, the refusal of a node to carry another

node’s data can be treated as a path failure. Thus Sec. 5
corroborates [28] and provides a direct explanation.

We mention in passing that our finding of large cliques
in the reachability graphs is loosely analogous to the
giant strongly connected component in the WWW graph
that accounts for most of its short paths [29]. Similarly,
our finding that the human contact graph is resilient to
path failure is echoed in the attack tolerance demon-
strated for static graphs of many complex networks [30].

7 CONCLUSION

This work examined the data delivery properties of
human contact networks using empirical traces of con-
tacts between loosely connected groups of people. The
ability to deliver data was measured by the fraction of
data delivered by flooding data between every possible
source-destination pair.

The effectiveness of the network in delivering data
is determined by the contact occurrence distribution
and order of occurrence of contacts. The contact occur-
rence distribution exhibits an interesting dichotomy with
many contacts occurring rarely, and a few occurring very
frequently. At a macroscopic level, this suggests that
delivery of packets is difficult: The connectivity of the
network is crucially dependent on rare contacts occur-
ring, and inadequate mixing of data due to repeated
occurrences of frequent contacts increases the global
count of contacts required for connecting a given fraction
of node pairs.

However, different time windows of same duration
can achieve significantly different delivery ratios. Suc-
cessful time windows are a result of unequal connectiv-
ity and are characterised by a large clique of nodes that
can all reach each other. It was demonstrated that the
successful time windows as well as the clique members
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can be identified by looking at the clustering co-efficient
over the contact graph.

We then examined distributions of random variables
that contribute to the delay on paths that successfully
connect source nodes to their destinations. Among other
results, it was found that the number of hops on a
path follows a Poisson distribution. Primarily as a con-
sequence of this, it was shown that the human contact
network exhibits a remarkable resilience to random path
failures. Increasing the number or fraction of paths ex-
plored between source and destination by a constant
brings the delivery time distribution exponentially close
to the optimal. Thus, the network can continue to deliver
data at a near optimal rate even when a large number
of random path failures occur.

The results of this work could be used to adopt
a principled approach to the development of routing
algorithms for Pocket Switched Networks, rather than
relying on heuristics as motivation. For instance, one
possibility is to exploit periods of good connectivity by
computing the current clustering co-efficient. Similarly,
randomised sampling amongst paths considered could
lead to better resilience and load balancing properties.

APPENDIX A
CHERNOFF BOUNDS FOR DELIVERY TIMES

Using (4), the delivery time distribution D∗ of all source
destination pairs can be bounded from below by

P [D∗ ≤ t] =
∑
l

P [D∗l ≤ t|L = l]P [L = l]

≥ 1− E
[
e−L(

√
νt−
√
λ)2
]

= 1−ML

(
−(
√
νt−

√
λ)2
)

(9)

where ML is the moment generating function of L.
Assuming that L is a negative binomial with mean η
and dispersion θ,

P [D∗ ≤ t] ≥ 1−

 1

1 + η
θ

(
1− e−(

√
νt−
√
λ)2)

θ

(10)

Similarly, we can use a Chernoff bound for P [D ≤ t] =
P [t−D ≥ 0] ≤ estMD(−s) = e−(

√
νt−
√
λ)2

, where
s =

√
λν/t − ν gives the best bound. Substituting for

P [D ≥ t] = 1− P [D ≤ t] in (4)

P [D∗ ≤ t|L = l] ≤ 1−
(

1− e−(
√
νt−
√
λ)2
)l

(11)

and performing the same calculations, we obtain a lower
bound for D∗.

P [D∗ ≤ t] =
∑
l

P [D∗ ≤ t|L = l]P [L = l]

≤ 1− E
[(

1− e−(
√
νt−
√
λ)2
)L]

= 1−GL
(

1− e(−(
√
νt−
√
λ)2)

)
(12)

When L is a negative binomial, as above,

P [D∗ ≤ t] ≤ 1−

 1

1 + η
θ e
−(
√
νt−
√
λ)2

θ

(13)

APPENDIX B
DERIVING AN EQUIVALENT FRACTION µ

k
FOR

L ∼ NEGBIN(η, θ)

This section derives an equivalence between k-copy
forwarding and proportional flooding, from the general
form (7), when the degree distribution (equivalently, the
number of paths to a destination) is L ∼ NegBin(mean =
η,dispersion = θ). The probability mass function for L
can be written as [31]:

P [L = l; η, θ] =
Γ(θ + l)
(l)! Γ(θ)

(
θ

η + θ

)θ (
η

η + θ

)l
First, using p = θ/(η + θ), we have [31]

P [L > k] = 1− P [L ≤ k] = 1− Ip(θ, k + 1) (14)

where Ix(a, b) = B(x; a, b)/B(a, b) is the regularized
incomplete Beta function. Next,
k∑
l=0

lP [L = l] =
k∑
l=1

Γ(θ + l)
(l − 1)! Γ(θ)

pθ(1− p)l

= θ
(1− p)
p

k∑
l=1

Γ(θ + 1 + l − 1)
(l − 1)! Γ(θ)

pθ+1(1− p)l−1

= θ
(1− p)
p

k−1∑
l′=0

P [L = l′; η, θ + 1]

= ηIp(θ + 1, k) (15)

Substituting (14) and (15) into (7),we get

µ
k

= Ip(θ + 1, k) +
k

η
I1−p(k + 1, θ) (16)
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