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Abstract—Autonomic server provisioning for performance as-
surance is a critical issue in data centers. It is important
but challenging to guarantee an important performance metric,
percentile-based end-to-end delay of requests flowing through
a virtualized multi-tier server cluster. It is mainly due to
dynamically varying workload and the lack of an accurate system
performance model. In this paper, we propose a novel autonomic
server allocation approach based on a model-independent and
self-adaptive neural fuzzy control. There are model-independent
fuzzy controllers that utilize heuristic knowledge in the form
of rule base for performance assurance. Those controllers are
designed manually on trial and error basis, often not effective
in the face of highly dynamic workloads. We design the neural
fuzzy controller as a hybrid of control theoretical and machine
learning techniques. It is capable of self-constructing its structure
and adapting its parameters through fast online learning. Unlike
other supervised machine learning techniques, it does not require
off-line training. We further enhance the neural fuzzy controller
to compensate for the effect of server switching delays. Extensive
simulations demonstrate the effectiveness of our new approach in
achieving the percentile-based end-to-end delay guarantees. Com-
pared to a rule-based fuzzy controller enabled server allocation
approach, the new approach delivers superior performance in
the face of highly dynamic workloads. It is robust to workload
variation, change in delay target and server switching delays.

I. INTRODUCTION

Popular Internet services employ a complex multi-tier archi-

tecture, with each tier provisioning a certain functionality to

its preceding tier and making use of the functionality provided

by its successor to carry out its part of the overall request

processing [2], [3], [4], [5], [6], [19], [20], [23]. Autonomic

resource management aims to reduce the degree of human

involvement in the management of complex computing sys-

tems. It is critical and challenging due to rapidly growing scale

and complexity of multi-tier Internet services. Recent research

efforts relied on queuing-theoretic approaches [4], [19], [20]

and control-theoretic approaches [1], [5] based on explicit

system performance models for dynamic resource allocation.

However, it is difficult and time consuming to accurately

estimate system performance model parameters such as service

time, workload distribution, etc. Furthermore, system param-

eter variation, workload uncertainty and inherent nonlinearity

of performance versus resource allocation introduce additional

challenges to achieve an accurate system performance model.

End-to-end system delay is the major performance metric of

multi-tier Internet applications. It is the response time of a re-

quest that flows through a multi-tier computer system [8], [19],

Tier 3 − Database

(clustered or

          d1                                                              d2                                                                         d3 

          end−to−end delay bound

... ...

dispatcher

Tier 1 − Web

dispatcher

Tier 2 − Application

not clustered)

clients

Fig. 1. End-to-end delay in a virtualized multi-tier server cluster.

[22]. Figure 1 depicts a typical three-tier service architecture.

For load sharing, each tier is often replicated and clustered

based on server virtualization techniques. The queueing model

based approaches in [4], [20] and feedback control based

approaches in [1], [5] aim to guarantee the average delay of

requests. But they have no control on an important perfor-

mance metric, percentile-based end-to-end delay of requests.

Using the average delay as a performance metric is unable to

represent the shape of a delay curve [22]. Percentile-based

performance metric such as the 95th-percentile end-to-end

delay, compared to the average delay, has the benefit that is

both easy to reason about and to capture individual users’

perception of Internet service performance [8], [19], [22].

However, it is very challenging to assure a percentile-

based delay guarantee of requests of a multi-tier service.

Compared with the average delay, a percentile delay intro-

duces much stronger nonlinearity to the system performance

model. Queueing theoretic techniques have achieved notewor-

thy success in providing average delay guarantee on multi-

tier server systems [8], [19]. However, queueing models are

mean oriented. Control theoretic techniques were applied to

inherently nonlinear Web systems for performance guarantees

by performing linear approximation of system dynamics and

estimation of system parameters [1]. However, if the deployed

system configuration or workload range deviates significantly

from those used for system identification, the estimated system

model used for control would become inaccurate [14].

The work in [19] proposed an innovative approach for

assuring the 95th-percentile delay guarantee. It uses an ap-

plication profiling technique to determine a service time

distribution whose 95th-percentile is the delay bound. The

mean of that distribution is used as the average end-to-end

delay bound. It then applies the bound for the per-tier delay

target decomposition and per-tier server provisioning based

on a queueing model. There are two key problems, however.
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One is that the approach is model dependent. The second is

that the application profiling needs to be done offline for each

workload before the server replication and allocation. Due to

the very dynamic nature of Internet workloads, application

profiling itself can be complex and time consuming.

In this paper, we propose an autonomic server allocation

approach based on a model-independent neural fuzzy control

technique for the percentile based end-to-end delay guarantees

in virtualized multi-tier server clusters. Although we use the

95th-percentile for the analysis and case study, note that

the approach can be applied to any percentile based delay

guarantee. Like others in [7], [15], [19], we consider server

virtualization for high resource utilization efficiency and fast

server switching. There are model-independent rule based

fuzzy controllers that utilize heuristic knowledge for perfor-

mance assurance [8], [13], [21]. They use a set of pre-defined

rules and fuzzy membership functions to perform control

actions in the form of resource allocation adjustment. These

controllers have some drawbacks. First, they are designed

manually on trial and error basis, using heuristic control

knowledge. There is no specific guideline for determining

important design parameters such as the input scaling factors,

the rule base and the fuzzy membership functions. Second,

those design parameters are non-adaptive. They are often not

effective in the face of highly dynamic workloads. Therefore,

we design a novel self-adaptive neural fuzzy controller as a

hybrid of control theoretical and machine learning techniques.

The main advantages of the proposed server allocation

approach based on neural fuzzy controller are as follows:

1) It is robust to highly dynamic workload variation and

change in delay target due to its self-adaptive and self-

learning capabilities.

2) It is model-independent. The parameter variations of the

system performance and the unpredictability of dynamic

workloads do not affect the validity of the proposed

server allocation approach.

3) It is capable of automatically constructing the control

structure and adapting control parameters through fast

online learning. The controller executes resource alloca-

tion adjustment and learns to improve its performance

simultaneously.

4) Unlike other supervised machine learning techniques,

it does not require off-line training. Avoiding off-line

training saves significant amount of time and efforts

required to collect a large set of representative training

data and to train the system.

In addition, we address an important server switching cost

issue. Server switching by addition and removal of a virtual

server introduces non-negligible latency to a multi-tier service.

It affects the perceived end-to-end delay of users. It takes time

for a newly added server to adapt to the existing system. For

example, an addition of database replica goes through a data

migration and system stabilization phase [3]. A removal of a

server does not happen instantaneously, since it has to process

residual requests of an active session. To compensate for the

server switching delay, we perform two enhancements on our

neural fuzzy controller. First, we incorporate the effect of

server switching with the online parameter learning. Second,

we integrate a self-tuning component that adjusts its output to

pro-actively compensate for the server switching effect.

For performance evaluation, we build a simulation model.

We conduct extensive simulations to evaluate our server pro-

visioning approach, using a synthetic heavy-tailed workload.

Simulation results demonstrate the effectiveness of our new

approach in achieving the 95th-percentile end-to-end delay

guarantee for both stationary and highly dynamic workloads.

We perform the sensitivity analysis of our neural fuzzy con-

troller for various delay targets and compare its performance

with the rule based fuzzy controller used in [8], [13], [21]. The

new neural fuzzy controller delivers consistently better perfor-

mance for various delay targets. It, on average, outperforms the

rule based fuzzy control approach by about 30% and 60% in

terms of relative delay deviation and temporal target violation,

respectively. We also demonstrate the effect of input scaling

factor on the performance of the rule based fuzzy controller for

different delay targets. There does not exist one single scaling

factor that works best for different scenarios. It demonstrates

the need of a self-adaptive controller based on neural fuzzy

control. Finally, we show the robustness of the new server

provisioning approach to server-switching delays.

The rest of this paper is organized as follows. Section

II reviews related work in autonomic resource provisioning.

Section III presents the design of self-adaptive neural fuzzy

control for dynamic server provisioning. Section IV describes

the enhancement in the neural fuzzy controller for server

switching delays. Section V presents experimental results and

performance evaluation. Concluding remarks and discussion

about the future work are given in Section VI.

II. RELATED WORK

Autonomic resource management for performance assur-

ance in multi-tier Internet services is an important and chal-

lenging research topic. Recently, there are a few studies on

the modeling and analysis of multi-tier servers with queueing

foundations [4], [11], [12]. For instance, in [11], an analytical

model of a three-tier Web services architecture was presented.

Diao et al. described a performance model for differentiated

services of multi-tier applications [4]. Per-tier concurrency

limits and cross-tier interactions were addressed in the model.

Urgaonkar et al. designed an important dynamic provisioning

technique on multi-tier server clusters [19]. It sets the per-

tier average delay targets to be certain percentages of the

end-to-end delay constraint. Based on a queueing model, per-

tier server provisioning is executed at once for the per-tier

delay guarantees. There is however no guidance about the

decomposition of end-to-end delay to per-tier delay targets. It

relies on a queueing model with offline application profiling

for the 95th-percentile delay guarantee.

Feedback control was used for service differentiation and

performance guarantee on Internet servers [1], [5], [8], [13],

[14], [21]. For instance, a proportional integral controller based
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admission control proxy was developed in [5] to maintain the

average end-to-end delay target. An integration of queuing

model with feedback control was applied for average response

time control of web systems in [17]. However, using the

average response time as the performance metric is unable to

represent the shape of a response time curve [22]. Moreover,

those control techniques suffer from the inaccuracy of model-

ing dynamic workloads in multi-tier systems. For instance, Lu

et al. modeled a controlled Web server with a second order

difference equation whose parameters were identified using

the least square estimator [14]. The estimation was performed

for a certain range and characteristics of workload. However,

the estimated system model used for control would become

inaccurate if the real workload range deviates significantly

from those used for performance model estimation [14].

Fuzzy control was applied for Web performance guarantee

due to its appealing feature of model independence. In [21],

a fuzzy controller was designed for provisioning guarantee of

user-perceived response time of a web page. It demonstrated

that due to the model independence, the approach significantly

outperforms linear proportional integral controllers. In [8], we

designed a fuzzy controller for dynamic server provisioning

with end-to-end delay guarantee in a multi-tier server architec-

ture, together with a resource allocation optimization model.

Those controllers were designed manually on trial and error

basis. Furthermore, important design parameters such as input

scaling factors, rule base and membership functions are not

adaptive. Our preliminary research found that while those

approaches provide performance guarantees under stationary

workloads, they are not effective in the face of highly dynamic

workloads. In this paper, we design a self-adaptive neural

fuzzy controller which is capable of automatically learning its

structure and parameters using online measurement of request

response time.

Statistical machine learning techniques have been used for

measuring the capacity of Internet websites [13], [16], for on-

line hardware reconfiguration [2] and for autonomic resource

allocation [18], [23]. For instance, the work in [2] proposed a

reinforcement learning approach for autonomic configuration

and reconfiguration of multi-tier web systems. In our work,

we design a neural fuzzy controller as a hybrid of control

theoretical and machine learning techniques for autonomic

server allocation. It uses an online learning algorithm to self-

construct its structure and adapt its parameters based on live

incoming data. This saves significant amount of time and

effort required to collect a large set of representative training

data and to train the system. Furthermore, it avoids poor

performance of a typical online training process due to the

incorporation of feedback control.

III. A SELF-ADAPTIVE NEURAL FUZZY CONTROL

Our previous study in [8] found that a rule-based fuzzy

control approach for server provisioning provides very good

performance under stationary system workloads. It can assure

the 95th-percentile end-to-end delay guarantee on a typical

three-tier server cluster. However, Internet workloads are often
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Fig. 2. A highly dynamic workload for a three-tier Internet service.
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Fig. 3. End-to-end delay variation of a rule-based fuzzy controller.

highly dynamic in nature [3], [19]. We conducted simulation

of the rule based fuzzy control approach in the face of

a highly dynamic workload that is illustrated in Figure 2.

Simulation results in Figure 3 show significant deviation of the

95th-percentile end-to-end delay from its pre-specified target

1400 ms. We observe a relative delay deviation and temporal

target violation of 47% and 38% respectively. Temporal target

violation is a measure of percentage of times when the end-to-

end delay target is violated within the measuring time frame.

The rule based fuzzy controller is unable to adapt itself to

a highly dynamic workload since the rule base and fuzzy

membership functions are fixed at the design time through trial

and error. Moreover, its performance is sensitive to a statically

chosen parameter, the input scaling factor. This problem exists

for other rule-based fuzzy control approaches [13], [21]. For

autonomic computing in large-scale data centers, self-adaptive

server provisioning for performance guarantee is a critical

issue. In the following, we design a self-adaptive and self-

constructing neural fuzzy controller as a hybrid of control

theoretical and machine learning techniques.

Figure 4 shows the block diagram of a dynamic server pro-

visioning approach with a self-adaptive neural fuzzy control.

The task of the controller is to adjust server provisioning on

multi-tier clusters in order to bound the 95th-percentile end-

to-end delay Td to a specified target Tref . The controller has

two inputs; error denoted as e(k) and change in error denoted

as Δe(k). Error is the difference between the target and the

measured value of the end-to-end delay in the kth sampling
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Fig. 5. Schematic diagram of the fuzzy neural network.

period, which is target delay minus measured delay. The

output of the controller is the resource adjustment Δm(k) for

the next sampling period. The controller uses online learning

algorithms to automatically constructs its structure and adapts

its parameters.

A. Design of neural fuzzy controller

We design the neural fuzzy controller using a general four-

layer fuzzy neural network as shown in Figure 5. The various

layers of the neural network and their interconnections provide

the functionality of membership functions and rule base of

a fuzzy controller. Unlike a rule based fuzzy controller, the

membership functions and rules dynamically construct and

adapt themselves as the neural network grows and learns.

Hence, the proposed controller is robust to highly dynamic

workload variation. The fuzzy neural network adopts fuzzy

logic rules as follows:

Rj: IF x1 is Aj
1 .. and xn is Aj

n, THEN y is bj
where xi is an input, either to be e(k) or Δe(k). y is the

rule’s output. Aj
i is the linguistic term associated with the

ith input variable in the precondition part of the fuzzy logic

rule Rj . Linguistic terms are fuzzy values such as “positive

small”, “negative large”, etc. They describe the input variables

with some degree of certainty, determined by their membership

functions uAj
i
. The consequent part or outcome of the rule Rj

is denoted as bj . Each rule contributes to the controller output,

denoted as Δm(k) according to its firing strength.

The functions of the nodes in each layer are as follows:

Layer 1: Each node in this layer corresponds to one input

variable. These nodes only pass the input signal to the next

layer. The proposed neural fuzzy controller has two input

nodes corresponding to e(k) and Δe(k).
Layer 2: Each node in this layer acts as a linguistic term

assigned to one of the input variables in layer 1. These nodes

use their membership functions to determine the degree to

which an input value belongs to a fuzzy set. A Gaussian

function is adopted as the membership function as follows.

uAj
i
= exp(− (xi −mji)

2

σ2
ji

). (1)

Here, mji and σji are the mean and standard deviation of a

Gaussian function of the jth linguistic term associated with

ith input variable. As shown in Figure 5, let a node represent

a linguistic term A1
1 for the input variable x1, which is e(k).

Assume that its membership function uA1
1

has a mean m11

and standard deviation σ11 of -50 and 20 respectively. A1
1 is

a fuzzy value such as “negative small”, “negative large”, etc.

that corresponds to the numeric value of -50 with absolute

certainty. The degree of certainty is calculated by using the

membership function uA1
1
. If the measured error in the 95th-

percentile end-to-end delay e(k) is -40, the output of the node

will be 0.77 from Equation 1. Similarly, let another node

represent a linguistic term A1
2 for the input variable x2, which

is Δe(k). Assume that its membership function uA1
2

has a

mean and standard deviation of -30 and 10 respectively. If the

change in error Δe(k) is -30, the output of the node is 1.

Layer 3: Each node in this layer represents the precondition

part of one fuzzy logic rule. Each node multiplies the incoming

signals and outputs the product result, i.e., the firing strength

of a rule. The output of the jth rule node uj is obtained as

follows,

uj = uAj
1
· uAj

2
... · uAj

n
(2)

where n is the number of input variables. The outputs of Layer

2 will be the inputs to this layer. From the previous example,

the inputs to a node in this layer are 0.77 and 1. As a result,

the output of the node will be 0.77.

Layer 4: This layer acts a defuzzifier, which converts fuzzy

conclusions from Layer 3 into numeric output in terms of

resource adjustment Δm(k). The single node in this layer

sums all incoming signals to obtain the final inferred result.

That is,

y =

M∑
j=1

wj · uj (3)

where the link weight wj is the output action strength associ-

ated with the jth rule and y is the output of the neural fuzzy

controller. For example, if the link weight wj is 3, the output

Δm(k) of this layer will be 2.31 since uj is 0.77. This result

is intuitive because negative values of e(k) and Δe(k) imply

that the 95th-percentile end-to-end delay is greater than its

target and the situation is further worsening. Thus, the neural

fuzzy controller allocates more servers to reduce the error.

The magnitude of resource adjustment depends on various

parameters and interconnections of the neural fuzzy controller,
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which are determined and adapted dynamically as described

in the next section.

B. Online Learning of Neural Fuzzy Controller

The neural fuzzy controller combines fuzzy logic’s rea-

soning with the learning capabilities of an artificial neural

network. It is capable of automatically learning its structure

and parameters using online request response time measured

from a live system. Initially, there are only input and output

nodes in the neural network. The membership and the rule

nodes are generated dynamically through the structure and

parameter learning processes described as follows.

1. Structure Learning Phase: The structure learning tech-

nique decides to add a new node in layer 2 and the associated

rule node in layer 3, if all the existing rule nodes have firing

strength smaller than a certain degree threshold. Low firing

strength of rule nodes imply that the input data pattern of

error and change in error is not recognized by the existing

neural network. Hence, the neural network needs to grow. We

use a decaying degree threshold to limit the size of the neural

network. The new node at layer 2 will have a membership

function with a mean mnew
i equal to the input xi and standard

deviation σnew
i equal to a pre-specified or randomly generated

value.

To avoid the newly generated membership function being

too similar to the existing one, the similarities between the new

membership function and the exiting ones must be checked.

We use the similarity measure proposed in [9] to check the

similarity of two membership functions. Suppose uA(x) and

uB(x) are two Gaussian membership functions with means

mA, mB and standard deviations σA, σB respectively. Then

the similarity measure E(A,B) is given by:

E(A,B) =
|A⋂

B|
σA
√
π + σB

√
π − |A⋂

B| . (4)

Assuming mA ≥ mB ,

|A
⋂

B|) = 1

2

h2(mB −mA +
√
π(σA + σB))√

π(σA + σB)
(5)

+
1

2

h2(mB −mA +
√
π(σA − σB))√

π(σB − σA)
(6)

+
1

2

h2(mB −mA +
√
π(σA − σB))√

π(σA − σB)
. (7)

where h(x) = max(0, x). If the similarity measure between

the new membership function and all existing ones are less

than a pre-specified value, the new membership function

is adopted. Since the generation of a membership function

corresponds to the generation of a new fuzzy rule, the link

weight, wnew, associated with a new fuzzy rule has to be

decided. Generally, the link weight is selected with random or

pre-specified constant.

The structure learning phase dynamically determines proper

input space fuzzy partitions and fuzzy logic rules, depending

on the measured error and change in error in the 95th-

percentile end-to-end delay. This is in contrast to a rule based

fuzzy controller with heuristically designed rules, which uses

input scaling factors and a fixed set of membership functions

to statically determine the input space fuzzy partitions. Hence,

our neural fuzzy controller performs consistently well for a

wide range of error and delay targets.

2. Parameter Learning Phase: The parameter learning is

used to adaptively modify the consequent part of existing

fuzzy rules and the shape of membership functions to improve

the controller’s performance in the face of highly dynamic

workload variation. The goal of performance improvement is

expressed as a problem of minimizing an energy function,

E =
1

2
(Tref − Td)

2 =
1

2
(e(k))2 (8)

where Tref and Td are the target and measured values of

the 95th-percentile end-to-end delay. The learning algorithm

recursively obtains a gradient vector in which each element is

defined as the derivative of the energy function with respect to

a parameter of the network. This is done by means of the chain

rule. The method is referred to as the backpropagation learning

rule, because the gradient vector is calculated in the direction

opposite to the flow of the output of each node. The parameter

learning algorithm based on backpropagation is described in

the following.

Layer 4: The error term to be propagated is computed as

δ4 = −δE

δy
=

[
− δE

δe(k)

δe(k)

δy

]
=

[
− δE

δe(k)

δe(k)

δTd

δTd

δy

]
.

(9)

The link weight wj is updated by the amount

Δwj = −ηw δE

δwj
= −ηw δE

δy

δy

δwj
= ηwδ

4uj (10)

where ηw is the learning rate of the link weight. The weights

in layer 4 are updated according to the following equation.

wj(k + 1) = wj(k) + Δwj (11)

where k denotes the current sampling interval. Thus, the output

action strength or consequence associated with each fuzzy rule

is adjusted in order to reduce the error in the 95th-percentile

end-to-end delay.

Layer 3: Only the error term needs to be calculated and

propagated in this layer. That is

δ3j = − δE

δuj
=

[
−δE

δy

] [
δy

δuj

]
= δ4wj . (12)

Layer 2: The error term is computed as follows,

δ2ji = −
δE

δuAj
i

=

[
− δE

δuj

] [
δuj

δuAj
i

]
= δ3j

uj

uAj
i

. (13)

The update law for mji is

Δmji = −ηm δE

δmji
= 2ηmδ2ji

(xi −mji)

(σji)2
. (14)

The update law for σji is calculated as

Δσji = −ησ δE

δσji
= 2ησδ

2
ji

(xi −mji)
2

(σji)3
(15)
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where ηm and ησ are the learning-rate parameters of the mean

and the standard deviation of the Gaussian function, respec-

tively. The mean and standard deviation of the membership

functions in this layer are updated as following.

mji(k + 1) = mji(k) + Δmji. (16)

σji(k + 1) = σji(k) + Δσji. (17)

Thus, the position and the shape of the membership functions

are adjusted dynamically. The exact calculation of the Jacobian

of the system, δTd

δy in Eq. (9), cannot be determined due

to the unknown dynamics of the multi-tier server clusters.

To overcome this problem, we apply a delta adaptation law

proposed in [10] as follows,

δ4 ≡ e(k) + Δe(k). (18)

The proof of the convergence of the neural fuzzy controller

using Eq. (18) is similar to that in [10] and is omitted here.

IV. ENHANCEMENTS ON NEURAL FUZZY CONTROLLER

One major challenge in controlling a physical process is its

inherent process delay. For the dynamic server provisioning

process, it is the latency between allocating servers and

measuring the effect of the server provisioning on the end-

to-end delay. To compensate for the server switching delay,

we propose two enhancements for the neural fuzzy controller.

The first enhancement is on the parameter learning phase. In

the neural fuzzy controller, the parameter adjustment depends

on the measured error in the 95th percentile delay, current

weights and outputs of the fuzzy neural network nodes at

various layers. However, due to the server switching delay,

the current measurement of delay error may actually be caused

by the weights and outputs of the neural fuzzy controller that

existed a few sampling intervals earlier. In our enhancement,

we store the weights and outputs of the neural fuzzy controller

at each sampling interval. After a few sampling intervals

equivalent to the server switching delay, the stored values

are utilized for parameter learning using back propagation.

This enhancement ensures that the controller’s parameters are

adjusted considering the effect of server switching.

We further enhance the neural fuzzy controller by inte-

grating a self-tuning component that adjusts its output to

pro-actively compensate for the server switching effects. We

introduce an output scaling factor α in the range [0,1]. It

is multiplied by the output of the neural fuzzy controller to

determine the actual adjustment in server allocation.

Figure 6 shows the rule base for the scaling factor controller

α. The rule base is designed to perform on-line gain variation

of the neural fuzzy controller based on instantaneous behavior

of the system. The table shows the rules corresponding to

various regions of the system behavior as shown in Figure 7.

The preconditions of a rule is described by the linguistic values

of “e(k)” and “Δe(k)”, such as NL, NM, NS, ZE, PS, PM, and

PL. They stand for negative large, negative medium, negative

small, zero, positive small, positive medium and positive large

respectively. The outcome of a rule is described by linguistic

values of α, such as ZE, VS, SM, SL, ML, LG and VL. They

stand for zero, very small, small, small large, medium large,

large and very large. These rules are applied only to adjust the

scale of the neural fuzzy controller’s output. The granularity

of output in terms of server provisioning is still determined

by the self-adaptive neural fuzzy controller. A few important

considerations for the rule design are as follows:

1) When the error is large but has the same sign as the

change in error, α should be made very large to prevent

from further worsening the situation. This will amplify

the corrective action suggested by the neural fuzzy

controller in terms of server provisioning.

2) If the server switching delay is high, the controller may

not achieve expected output after allocating required

number of servers, and hence, may overreact by as-

signing too many servers in the next sampling period.

In such situations, usually the error is big but has the

opposite sign as compared to the change in error. This

is compensated by adjusting the output scaling factor to

a small value.

3) To improve the controller performance under load distur-

bance, α should be sufficiently large around the steady

state. For example, if the error is small and has the same

sign as a large change in error, α should be large to bring

the system back to steady state within a short time.

4) At a steady state, when the error is small and the change

in error is also small, α should be very small to avoid

oscillations around the equilibrium point.

V. PERFORMANCE EVALUATION

We evaluate the server provisioning approach based on

the self-adaptive neural fuzzy control in a typical three-tier
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TABLE I
WORKLOAD CHARACTERISTICS.

Parameter WebTier AppTier DBTier
si 20 ms 294 ms 254 ms
σ2
i 848 2304 1876
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Fig. 8. End-to-end delay assurance for a dynamic workload.

server cluster with extensive simulations. As others in [3], we

assume that the database tier can be replicated on-demand as it

employs a shared architecture. We generate a synthetic G/G/1

workload using Pareto distributions of request inter-arrival

time and service time. Pareto distribution representing a heavy-

tailed traffic has close resemblance to real Internet traffic that

is bursty in nature [8], [24]. We choose the workload char-

acteristics of a three-tier application reported in [19]. Table I

gives the characteristics. si and σ2
i are the average service

time and the variance of service time distribution of requests

at tier i, respectively. The workload is measured periodically

on a “control interval” of 3 minutes. Each representative result

reported is an average of 100 runs.
We use two performance metrics, relative deviation as

in [21] and target violation. Relative deviation is based on
square root mean of delay errors. It reflects the transient
characteristics of a control system and measures how closely
the 95th-percentile delay of requests follows a given target for
n sampling intervals. That is,

R(e) =

√∑n

k=1
e(k)2/n

Tref
. (19)

The relative deviation, however, does not differentiate whether
the actual end-to-end delay is greater than or less than the
target. It is indeed desirable that an actual end-to-end delay
is less than the target. To measure the temporal violation of
delay target, we define a metric of target violation

T (v) =

∑n

k=1
v(k)

n
(20)

where v(k) is one if the actual end-to-end delay is greater

than the target Tref , and zero if it is less than or equal to Tref .

A. Effectiveness of Neural Fuzzy Control Approach

We evaluate the effectiveness of the new approach for

performance guarantee under both dynamic and stationary

workloads. First, we use the highly dynamic workload shown

in Figure 2 and set the end-to-end delay bound to 1400 ms.
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Fig. 9. Server allocation for a dynamic workload.
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Fig. 10. End-to-end delay assurance for a stationary system workload.

Figure 8 demonstrates the effectiveness of the neural fuzzy

controller in assuring the 95th-percentile end-to-end delay

guarantee. Figure 9 shows the corresponding server allocation.

Note that the number of servers allocated to the web tier

remains fixed. This is due to the workload characteristics used

in Table I. The web tier has relatively small resource demand

compared to the application and database tiers. Hence, the

controller allocates more servers to the application tier and

database tier. New server provisioning approach achieves a

small relative delay deviation of 14% and target violation of

17% respectively. This is a significant improvement from the

performance of the rule based fuzzy controller for the same

workload scenario in Figure 3, where the relative delay devi-

ation and the target violation are 47% and 38% respectively.

The neural fuzzy controller is robust to highly dynamic

workload variation due to its self-adaptive capability. There

are a few spikes in the end-to-end delay due to sudden changes

in the applied workload. However, the neural fuzzy controller

achieves the delay guarantee in a very responsive manner.

Next, we apply a stationary workload with an average

request arrival rate of 12 requests per second. Figures 10

and 11 show the end-to-end delay variation and changes

in server allocation. The neural fuzzy controller is able to

guarantee the 95th-percentile delay target of 1000 ms within a

few sampling intervals, in spite of the fact that the controller

starts its operation with an empty structure. This is due to

its capability to self-construct its structure and to adjust its

parameters through fast online learning algorithm.
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Fig. 12. End-to-end delay assurance for a dynamic workload (target 1500 ms).
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Fig. 13. Performance comparison for various delay targets.
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Fig. 11. Server allocation for a stationary system workload.

B. Comparison With Rule Based Fuzzy Controllers

A rule based fuzzy controller has shown its merits in

achieving performance assurance through model-independent

resource allocation and dynamic output scaling factor tun-

ing [8], [21]. However, it shows inconsistent delay guarantee

and significantly more target violations in case of highly

dynamic workloads. That is mainly due to the fact that the rule

based fuzzy controller applies statically chosen input scaling

factor, rule base and membership functions that are manually

tuned for a particular workload and a delay target.

We compare the performance of our neural fuzzy controller

with a rule based fuzzy controller used in [8], [21]. We choose

an input scaling factor of 1/500 as it shows good performance

under a stationary workload for the rule based fuzzy controller.

Figures12 shows that the self-adaptive neural fuzzy controller

(NFC) is more robust to the dynamic workload variation com-

pared to the rule based fuzzy controller (RBFC) in assuring

the 95th-percentile end-to-end delay guarantee (1500 ms).

NFC outperforms RBFC by 76% and 33% in terms of the

relative delay deviation and the target violation respectively.

Its robustness to highly dynamic workloads is due to the self-

adaptive and self-learning capabilities.

Next, we conduct sensitivity analysis of two controllers for

various end-to-end delay targets. Figure 13(a) shows that the

relative delay deviation tends to increase with the increase in

the end-to-end delay target (from 800 ms to 1600 ms). This

is due to the fact that larger delay targets require few servers

for allocation, making it more difficult to achieve fine-grained

control on the 95th-percentile end-to-end delay. As shown in

Figure 13(b), the temporal target violation is small for medium

range of delay targets between 1000 ms to 1400 ms. The delay

targets higher than this range show more target violation due

to a small number of servers involved in the control action.

The targets in the lower range also results in larger target

violation, due to the fact that a controller takes more control

intervals to reach very low delay targets. Compared to the

rule based fuzzy controller, the new neural fuzzy controller

consistently achieves less delay deviation and target violation

for various delay targets. For quantitative comparison, we

take the performance of NFC as a baseline and define the

performance difference between the NFC and RBFC as

PDdeviation =
R(e)RBFC −R(e)NFC

R(e)NFC
(21)

PDviolation =
T (v)RBFC − T (v)NFC

T (v)NFC
(22)
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Fig. 14. Performance comparison for various input scaling factors with delay target 1400 ms.
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Fig. 15. Performance comparison for various input scaling factors with delay target 1000 ms.

If PD is positive, the NFC has better performance than

RBFC and vice versa. Figure 13 (c) shows that NFC out-

performs RBFC for all delay targets except 1100 ms. For that

case, the rule based fuzzy controller has slightly better perfor-

mance in terms of delay deviation because it is well suited for

that particular delay target. On average, NFC performs better

than RBFC by 32% and 59% in terms of delay deviation and

target violation respectively. The main reason is due to the fact

that it adapts itself to accommodate various range of inputs

instead of relying on statically chosen input scaling factor.

C. Effect of Input Scaling Factor

We now study the impact of the input scaling factor on the

performance of the rule based fuzzy controller, and compare

its performance with our neural fuzzy controller. Figures 14

and 15 show their relative delay deviation, target violation and

performance difference for end-to-end delay targets 1400 ms

and 1000 ms respectively. Results demonstrate that increasing

the scaling factor may improve the performance of the rule

based fuzzy controller for one delay target (1400 ms), but it

may degrade the performance for another delay target (1000

ms). In both cases, the performance of the neural fuzzy

controller is consistently better than the rule based control.

The rule based fuzzy controller is sensitive to the choice of

the input scaling factor, which attempts to partition the input

fuzzy space non-adaptively. In practice, a highly dynamic and

realistic workload increases the possibility that the inputs to

the fuzzy controller (i.e., error and change in error) may not

fit into the input space fuzzy partitions as intended. A change

in the end-to-end delay target further worsens the situation.

Hence, there does not exist one single scaling factor that works

best for different scenarios. Since the rule base and fuzzy

membership functions are also fixed at the design time through

trial and error, the rule based fuzzy controller is unable to adapt

itself to a highly dynamic workload. Thus, we need a self-

adaptive controller designed based on neural fuzzy control.

The main reason behind the superior performance of the neural

fuzzy controller in assuring the end-to-end delay guarantee is

its self-adaptive and online learning capability as compared to

trial and error based design of the rule based fuzzy controller.

D. Effect of the Server Switching Delay

We demonstrate the impact of the two control enhancements

designed in Section IV on the performance of the neural

fuzzy controller. We assume the times taken by addition and

removal of one virtual server at any tier of an application

are 16 seconds and 8 seconds respectively. Due to the server

switching delays, the controller may not achieve the expected

output after adding or removing servers from a multi-tier

cluster. Hence, it may overreact by assigning or removing too

many servers in the next control interval. This results in large

overshoot and undershoot of the 95th-percentile end-to-end

delay from the given target as illustrated in Figure 16 (a).

Then, we compensate the server switching effect by the two

enhancements on the neural fuzzy controller. Figure 16 (b) and

(c) show that the integrated neural fuzzy controller provides

more consistent assurance of the 95th-percentile end-to-end

delay guarantee. The improvements in relative delay deviation

and target violation are 47% and 66% respectively. It is due

to the fact that the enhancements consider the effect of server

switching delay to learn the parameters and to adaptively

change the output of the neural fuzzy controller.
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Fig. 16. End-to-end delay assurance with neural fuzzy control for a target of 1000 ms due to server switching delays.

VI. CONCLUSION

In this paper, we have designed a novel self-adaptive neural

fuzzy control based server provisioning approach to guaran-

tee the 95th-percentile end-to-end delay of requests flowing

through a multi-tier server cluster. The major contributions lie

in the design and evaluation of a model-independent and self-

adaptive control system for dynamic server provisioning. We

combine the strength of both machine learning and control the-

oretic techniques for robust performance assurance of Internet

applications in the face of highly dynamic and unpredictable

workloads. We further enhance the neural fuzzy controller to

compensate for the effect of server switching delays.

Simulation results demonstrate that the neural fuzzy con-

troller is robust to highly dynamic workloads and changes in

delay target. Compared to the rule based fuzzy controller, it

shows superior performance in achieving the end-to-end delay

assurance. While the simulations were conducted for 95th-

percentile end-to-end delay assurance, it can be easily tailored

for the average and other percentile delay targets. Importantly,

the neural fuzzy control demonstrated its promise of being a

self-adaptive approach for autonomic computing in virtualized

data centers. Our future work will be on the implementation

and evaluation of the approach in a prototype data center.
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