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Preface

The ARCS series of conferences has over 30 years of tradition reporting top-notch
results in computer architecture and operating systems research. It is organized
by the special interest group on “Computer and System Architecture”of the GI
(Gesellschaft für Informatik e.V.) and ITG (Informationstechnische Gesellschaft
im VDE Information Technology Society). In 2010, ARCS was hosted by Leibniz
University Hannover.

This year’s special focus was on heterogeneous systems. The conference’s
topics comprised design aspects of multi-cores and memory systems, adaptive
system architectures such as reconfigurable systems in hardware and software,
customization and application-specific accelerators in heterogeneous architec-
tures, organic and autonomic computing, energy-awareness, system aspects of
ubiquitous and pervasive computing, and embedded systems.

The call for papers attracted about 55 submissions from all around the world.
Each submission was assigned to at least three members of the Program Com-
mittee for review. The Program Committee decided to accept 20 papers, which
were arranged in seven sessions. The accepted papers are from Belgium, China,
France, Germany, Italy, Spain, Turkey, and the UK. Two keynotes on heteroge-
neous systems complemented the strong technical program.

We would like to thank all those who contributed to the success of this confer-
ence, in particular the members of the Program Committee (and the additional
reviewers) for carefully reviewing the contributions and selecting a high-quality
program. The Workshops and Tutorials were organized and coordinated per-
fectly by Michael Beigl and Francisco J. Cazorla Almeida. Our special thanks go
to the members of the Organizing Committee for their numerous contributions:
Rainer Buchty set up the conference software. Thomas B. Preußler designed and
maintained the website. David Kramer and Martin Schindewolf took over the
tremendous task of preparing this volume. We especially would like to thank
Yvonne Bernard, Jörg Hähner, Björn Hurling, and Jürgen Brehm for taking
care of the local arrangements and the many other aspects of preparing the
conference.

February 2010 Christian Müller-Schloer
Wolfgang Karl

Sami Yehia
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HyVM - Hybrid Virtual Machines - Efficient Use
of Future Heterogeneous Chip Multiprocessors

Karsten Schwan, Ada Gavrilovska, and Sudha Yalamanchili

Georgia Institute of Technology

Abstract. The HyVM project is developing system support for future
heterogeneous chip multiprocessors. Such hybrid hardware platforms of-
fer opportunities in terms of improved power/performance properties,
but pose challenges to systems technologies due to heterogeneous pro-
cessing cores, non-uniform memory access, and complex software stacks.
The HyVM project is creating new hypervisor- and system-level abstrac-
tions in support of providing a uniform program execution model for
future hybrid computing platforms. Rather than treating accelerators
as external devices, the model anticipates future integrated systems by
providing sets of virtual processing units for use by both accelerator and
commodity programs, offering the resource management support needed
to efficiently execute such parallel multi-core applications, and supply-
ing the tool chains needed, at hypervisor level, to permit applications
to freely use arbitrary combinations of accelerator and commodity cores.
The talk will overview the HyVM project, review results that range from
efficient methods for virtualizing accelerators, to online techniques for
managing heterogenous system resources, to JIT binary translation for
dealing with diverse accelerator targets. The effort is driven by both
commercial and high performance applications targeting future hybrid
machines.

C. Müller-Schloer, W. Karl, and S. Yehia (Eds.): ARCS 2010, LNCS 5974, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



How to Enhance a Superscalar Processor to

Provide Hard Real-Time Capable In-Order SMT

Jörg Mische, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer

Institute of Computer Science
University of Augsburg

86159 Augsburg, Germany
{mische,guliashvili,uhrig,ungerer}@informatik.uni-augsburg.de

Abstract. This paper describes how a superscalar in-order processor
must be modified to support Simultaneous Multithreading (SMT) such
that time-predictability is preserved for hard real-time applications. For
superscalar in-order architectures the calculation of the Worst Case Ex-
ecution Time (WCET) is much easier and tighter than for out-of-order
architectures. By a careful enhancement that completely isolates the
threads, this capability can be perpetuated to an in-order SMT architec-
ture. Our design goal is to minimise the WCET of the highest priority
thread, while releasing as many resources as possible for the execution
of concurrent non critical threads. The resultant processor executes hard
real-time threads at the same speed as its singlethreaded ancestor, but
idle issue slots are dynamically used by non critical threads. The modi-
fications to enable SMT are demonstrated by CarCore, a multithreaded
embedded processor that implements the Infineon Tricore instruction set.

1 Introduction

The common way to construct a simultaneous multithreaded (SMT) processor
is to take a superscalar out-of-order processor and allow it to fetch from multiple
threads [1]. This procedure is simple, the fetch stage must be modified and the
number of registers should be enhanced, but there are only minor modifications
at the internal logic of the pipeline. Despite its simplicity, this combination
greatly improves processor throughput [1]. But there are two drawbacks of out-
of-order SMT processors: they consume a lot of chip area and energy and it is
hard to predict the Worst Case Execution Time (WCET) because of the dynamic
allocation of processor resources, making this kind of SMT improper for hard
real-time applications.

We eliminate these drawbacks by taking an in-order superscalar processor
as base architecture for an alternative implementation of SMT, called In-Order
Simultaneous Multithreading. The Intel Atom processor [2] is a well-known rep-
resentative of this class of SMT processors, although it only benefits of a smaller
transistor count and lower energy consumption than comparable out-of-order
SMT processors. The second advantage, the deterministic behaviour that allows
for tight WCET analyses is addressed in this paper. By adding strictly prioritised

C. Müller-Schloer, W. Karl, and S. Yehia (Eds.): ARCS 2010, LNCS 5974, pp. 2–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



How to Enhance a Superscalar Processor 3

multithreading capabilities that completely isolate threads from each other, the
tight WCETs of superscalar in-order processors can be preserved, while the util-
isation and energy-efficiency of the processor is increased by concurrent threads.

The contributions of this paper are:

– an in-order SMT processor that isolates the highest priority thread (HPT),
– the execution of the HPT as if the underlying processor was a singlethreaded

superscalar processor to keep the WCET analysis tight,
– a detailed description how the pipeline must be modified to enable SMT and
– a prototype of an SMT processor with TriCore instruction set architecture.

The resulting architecture is called CarCore and we already published articles
on other aspects of the architecture: [3] describes how lower priority memory ac-
cesses are delayed to avoid influence on the HPT and it presents a scheduler that
executes multiple hard real-time threads by time slicing the HPT. In [4] a soft
real-time scheduler with direct IPC control based on the CarCore architecture
is introduced and [5] discussed the integration of scratchpad memories.

The rest of the paper is organised as follows: the next section presents the
related work and section 3 explains the TriCore architecture and the differences
to the baseline singlethreaded CarCore processor. In section 4 the enhancements
to enable SMT are described in detail. Section 5 discusses our evaluation results
and section 6 concludes the paper.

2 Related Work

Tullsen [1] defined SMT as multithreading for superscalar pipelines. He did not
specify the execution order, but he used an out-of-order processor as base ar-
chitecture and so did most of the later SMT researchers. Consequently, most of
the work on real-time and SMT is also based on out-of-order pipelines [6,7,8,9].
But the unpredictability of out-of-order pipelines does not allow hard real-time
execution, only soft real-time scheduling is addressed.

Although Hily [10] already showed in 1999 that in-order SMT increases total
throughput, while out-of-order execution only boosts one single thread and is less
cost-effective, only few studies focus on designing SMT processors with in-order
pipelines [11]. Similar results were published by Moon [12], who discovered, that
static partitioning and execution in-order has only little negative effect on the
performance while significantly reducing design complexity. Other studies that
divide the pipeline into an out-of-order front-end and an in-order back-end [13]
or that restrict certain parts of the pipeline to in-order execution [14] approved
the advantages of in-order execution.

Zang et al. [11] investigated issue mechanism for in-order SMT processors.
Their processor has a 7 stage pipeline and can issue up to 6 instructions from
6 concurrent threads. A well-known commercial processor that has an in-order
SMT architecture is the Intel Atom [2] with a two-way in-order pipeline. But
none of the mentioned works address hard real-time execution, to our knowledge
our project is the first on hard real-time for in-order SMT processors.
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The Real-time Virtual Multiprocessor (RVMP) [15] issues multiple instruc-
tions from multiple threads to multiple pipelines, but it assumes multiple iden-
tical pipelines and statically maps threads to pipelines. Therefore multiple hard
real-time threads can be executed, but the throughput is not increased, as idle
pipeline slots cannot be used dynamically by other threads.

The Precision Timed (PRET) Architecture [16] is another example of a hard
real-time capable multithreaded processor, but again the schedule is very static:
there are 6 threads and they are executed in fixed order, hence every thread gets
exactly one sixth of the execution time. If a thread is stalled, the cycle cannot
be used by another thread, as the PRET architecture supports only precisely
timed hard real-time threads, no other threads with softer timing demands can
be executed to increase throughput.

3 Baseline

Exemplary we use a TriCore compatible processor to present the SMT enhance-
ments, but they can easily be transferred to other superscalar in-order architec-
tures. TriCore-specific parts are explicitly marked.

3.1 TriCore Architecture

The Infineon TriCore [17] is a microcontroller that is commonly used in
safety-critical applications of the automotive industry. It combines a real-time
capable load-store microcontroller architecture with DSP instructions. The
instruction set comprises more than 700 instructions. Besides the common arith-
metic, logic, branch and load-store instructions it provides instructions for so-
phisticated logic, context saving, load-modify-store, packed arithmetic, saturated
math and multiply-accumulate. The processor consists of a three-way superscalar
in-order pipeline with four stages. If an address, an integer, and a loop instruc-
tion appear in this order in the instruction stream, they are issued within one
cycle, even if they are data-dependent.

3.2 Simplifications for Single-Threaded CarCore

As baseline for the SMT enhancement we implemented a cycle-accurate System-
C model and a synthesisable VHDL model of a Tricore-compatible processor. It
differs from the original Infineon TriCore in the following aspects:

Instruction Subset. Special DSP instructions and addressing modes which are
never generated by the Hightec [18] compiler are not supported. This reduces
the number of instructions to 433, but there is no impact on the execution
time, as only pure C code without assembler code snippets is used.

Later Address Calculation. CarCore calculates branch target and memory
access addresses in the execute stage, one stage later than TriCore. Hence
the branch and memory delay slots are increased by one, but the critical
path of the very complex and slow decode stage is shortened resulting in a
higher overall clock rate.
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Fig. 1. Block diagram of the CarCore architecture

No Branch Prediction. The HPT does not benefit of a branch prediction,
because it only decreases the average, not the worst case execution time.
For lower priority threads the benefit is likewise low, as between the branch
instruction and the first target instruction usually HPT instructions must be
executed anyway. Omitting the speculative execution replaces wasted mis-
predicted instructions by instructions of lower priority threads that increase
the overall throughput.

No Loop Pipeline. The TriCore loop pipeline that speeds up special loops is
not implemented, as the compiler can use it only in a few special cases and
with multithreading the latencies can be used to execute concurrent threads.

No Dedicated Context Save Memory. According to the TriCore instruc-
tion set architecture, at a subroutine call, 16 registers have to be saved. To
speed this up, the Tricore has a special memory area with a very wide bus
for context saving. In our version we use the standard memory bus, therefore
a function call is about ten times slower.

4 SMT Enhancements

To enable multihreading, some parts of the processor must be duplicated for
every thread: the register set, the program counter and the instruction window.
To manage these instruction windows where fetched instructions are buffered
and to decide which instruction from which thread should be issued to which
pipeline, a further pipeline stage is added, the Real-Time Issue (RTI) stage.
Special attention demands the fetch stage, which is in charge of preventing the
lower priority threads from delaying the hard real-time capable HPT. The same
reason applies to the memory controller that should issue memory accesses in
the same prioritised order like the RTI issues instructions. The other pipeline
stages remain unchanged, besides an additional signal that passes the thread
number through the pipeline, in order that the write back stage writes to the
appropriate register file. Fig. 1 shows the resulting architecture.
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4.1 Instruction Fetch

The execution of an instruction typically occupies one pipeline stage for only
one cycle and issuing multiple instructions from one thread is only reasonable, if
there are enough instructions available. Hence the number of instructions that is
fetched per cycle must be equal or greater than the number of instructions that
can be issued concurrently. As the number of concurrent instructions is equal
to the number of pipelines, this number must be multiplied with the maximum
instruction length to get the required fetch bandwidth.

Assuming a zero cycle memory latency, it takes two cycles from the decision,
that a new fetch must be initiated (in the issue stage) until the arrival of the data
at the instruction window (again in the issue stage). Therefore the instruction
windows (IW) must be large enough to hold at least two times the fetch width.
Each additional memory latency further increases the size of the IW by the fetch
width. If the instruction width varies and the instructions are not aligned to the
borders of the fetch words, the size must be further increased.

A concrete example with the CarCore architecture: There are two pipelines
and an instruction can be 16 or 32 bits wide. Accordingly, fetching 64 bits should
provide at least enough instructions for one cycle. If in cycle t+0 the RTI issues
two instructions to the pipelines it removes at most 64 bit from the IW and
recognises that it should be refilled and initiates a fetch. During cycle t + 1 the
memory is accessed and the RTI must take the next 64 bits from the IW. In
cycle t+2 the fetched data arrives at the RTI, so the data can be directly issued
to the pipelines. But 128 bits are still not enough, as TriCore instructions must
only be aligned to 16 bit boundaries, consequently four instructions could cover
three 64 bit words and the minimum IW size is 192 bits.

With the proposed fetch width and instruction windows size optimal execution
of the highest priority thread (HPT) can be guaranteed. But what about the
other threads? The HPT only fully occupies the fetch stage, if there is code
that uses every pipeline in every cycle and if these instructions are of maximum
length. As the evaluation shows, this is almost never the case. Whenever the
IW of a thread is full, the fetch logic tries to fetch for the thread with the next
highest priority. Again, the evaluation shows that empty IWs are only a minor
reason for not executing a lower priority thread.

There are two possibilities to optimise the fetching: The first one called ENOUGH
exactly counts how much instructions are in the IW and how they are mapped
to pipelines. If there are enough instructions to cover two cycles, further fetches
to this thread are delayed, no matter if the IW is already full or not. The AHEAD
logic stops fetching when it recognizes a branch somewhere within the IW. This
optimisation is only applicable if there is no branch prediction and if there are
at least two pipeline stages between fetch and branch decision.

An example for the CarCore architecture with three stages between fetch and
branch decision (RTI, decode and execute): If in cycle t + 0 only the branch
is in the IW, the RTI issues it and removes the instruction from the IW. In
cycle t + 1 the AHEAD logic recognises that there is no longer a branch in the
IW and permits to fetch the next instruction. In cycle t + 2 the next instruction
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Algorithm 1. Policy of the Real Time Issue Stage
Input: number of threads T , number of pipelines P

thread0 has the highest priority, threadT−1 the lowest
Output: assignment of instructions to pipelines in pipelinep

pipelinep ← ∅ ∀0 ≤ p < P
for 0 ≤ t < T do

instr ← next instruction of threadt

for 0 ≤ p < P do
if (pipeline of instr = p) ∧ (pipelinep = ∅) then

pipelinep ← instr
instr ← next instruction of threadt

end if
end for

end for

word arrives at the RTI and is ready for issuing, while the branch instruction is
now in the execute stage, calculating the branch target and checking the branch
condition. In cycle t + 3 the RTI receives the signal, if the branch is taken or
not and can issue the next instruction if it is not taken. The next instruction
arrives even one cycle early at the RTI, but this is necessary in the CarCore
architecture, as a single instruction could span two 64 bit words and then the
cycle is needed for the second half of the instruction.

Both techniques save unused fetches and therefore increase the fetch band-
width of lower priority threads without influencing the HPT performance. They
are effective if the instruction length varies or only part of the pipelines are
occupied within one cycle.

4.2 Real-Time Issue

The real-time issue (RTI) stage receives the fetched instructions from the fetch
stage and inserts it into the instruction window of the appropriate thread. Then
the instructions in the windows are analysed and instructions are assigned to
pipelines. To decide, in which pipeline an instruction should be executed, the
opcode contains a field, where the number of the appropriate pipeline is stored.
Instructions that could be issued in parallel must be located in ascending order
within the instruction stream. As long as the value of the pipeline field of the
next instruction is higher than the former one, it can be issued concurrently.
When the pipeline number of an instruction is lower or equal to the number
of the preceding instruction, the latter instruction is the first instruction of the
next cycle.

The assignment strictly depends on the priorities of every thread. Starting
with the thread with the highest priority, the RTI tries to issue simultaneously
as many instructions as possible. Then instructions from the thread with the
second highest priority are issued, if the desired pipeline is not occupied yet.
Algorithm 1 explains the issue strategy in pseudo code.
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Additionally the RTI manages multicycle instructions. They are implemented
as microcode sequences that can be interrupted at any position within the se-
quence. This interruptibility is important, otherwise low priority threads would
delay higher priority threads for several cycles, once they were able to start their
microcode sequence.

In this paper we assume that the priorities are fixed, but it is also possible
to provide a new priority mapping from an external module in each cycle. With
this technique, sophisticated scheduling algorithms for multiple hard real-time
threads [3] or overlapping IPC controlled threads [4] can be implemented.

4.3 Prioritised Memory Controller

The easiest way to deal with memory accesses is to add a memory stage in
the pipeline between execute and write-back stage, as it is implemented in the
classical DLX pipeline [19]. But then there might be a read-after-write data
dependency after a load instruction that cannot be solved by forwarding. De-
pending on the instruction set, the check if there is really a dependency can be
difficult (for TriCore it is), therefore stalling the thread for one cycle anyway
(and using the cycle for a lower priority thread) is an acceptable solution. After
a store no bubble cycle must be inserted.

In TriCore the bubble cycle is avoided by calculating the address in the decode
stage and accessing memory in the execute stage, but this cannot be applied here,
as CarCore calculates the address in the execute stage (to achieve better stage
balance, see section 3.2). If a memory access takes multiple cycles, say it has
a latency of M , singlethreaded processors stall the complete pipeline until the
access is completed, but this cannot be applied here, as this would prevent all
other threads from being executed, even the highest priority thread.

A straight enhancement of the memory stage idea would be to add M memory
stages (plus the one memory stage mentioned earlier). To avoid data dependen-
cies, the thread must be stalled for M + 1 before the next instruction of the
same thread might be issued. But there is one more problem: if two memory
instructions of different threads are issued in successive cycles the second mem-
ory instruction will arrive at the memory controller when it is busy because of
the first instruction. Consequently, after the RTI issued a memory operation, no
other memory operation from any thread may be issued for M cycles.

To save the enormous hardware costs of multiple memory stages, we applied
a technique called Split Phase Load. For a memory write the additional memory
stages are not needed, as nothing must be written back, only the stalling of the
threads is important. Hence only a solution for loads must be found: the load is
split into two microinstructions, the address calculation and the register write
back. When the RTI recognises a load instruction, it issues the first microin-
struction that calculates the address in the execute stage and forwards it to the
memory controller. When the memory controller receives the data it notifies
the RTI and it issues the second microinstruction that writes the data from the
memory to the register set in the write back stage. The notification can even be
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threads ALUTs regs MHz

1 14808 3857 27.17
2 21129 5968 26.10
3 27519 8061 24.38
4 31603 10125 17.55
5 39325 12195 11.10
6 45400 14271 8.52
7 49082 16378 7.00

 0

 10000

 20000

 30000

 40000

 50000

 1  2  3  4  5  6  7
 0

 10

 20

 30

 40

 50

M
H

z

#threads

ALUTs
regs
freq

Fig. 2. CarCore hardware characteristics depending on the number of threads

sent some cycles earlier in order that the second microinstruction arrives at the
write back stage at the same cycle as the data arrives from memory.

To avoid the restriction of the other threads, not to issue memory operations,
Address Buffers are added. There is one address buffer per thread located in
the memory controller. After a store or the first microinstruction of a load the
thread is temporarily suspended from further issuing instructions. When the
memory instruction arrives at the memory controller the address is saved in
the address buffer of the appropriate thread. Whenever a memory operation is
completed, the memory controller looks at the address buffers in priority order
and starts a new memory operation if there is a valid entry. At the same cycle the
memory controller notifies the RTI to resume issuing instructions of the thread
whose data word had just arrived. Depending on the kind of instruction the RTI
continues with the second microinstruction of a load or the next instruction after
a store.

There is another advantage of the Split Phase Load / Address Buffer tech-
nique: the memory latency can vary and there is no upper bound. If the mem-
ory access is fast, the second microinstruction of the load is issued earlier, if it
takes longer, the second microinstruction (respectively the next instruction af-
ter a store) is issued later. So multiple memories with different access times are
supported.

5 Evaluation

We started our SMT enhancement with a singlethreaded SystemC model of
the CarCore and enhanced it to support multithreading. The final SystemC
model was translated to VHDL for FPGA synthesis. There are separate data and
instruction memory buses, each 64 bits wide. In the FPGA model the memory
latencies are fixed to 0 for the instruction memory (internal on-chip RAM) and
4 cycles to the off-chip data memory.

Fig. 2 shows the size of the CarCore on an Altera Stratix II EP2S180F1020C3
device. The numbers of Adaptive Lookup Tables (ALUTs) and register bits
grow nearly linear with the number of threads. Each thread requires about 6000
ALUTs and 2000 registers and the base processor adds about 9000 ALUTs and
2000 registers.
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When executing multiple threads, the HPT reaches exactly 100% of its sin-
glethreaded speed, hence a WCET analysis for a singlethreaded simplification
of our architecture is also valid for the HPT in the multithreaded architecture
[3]. The speed of the threads with lower priorities falls exponentially to about
50, 35 and 20 percent of singlethreaded performance (measured in Instructions
Per Cycle, IPC), see [3] for a more detailed discussion.

We used the Hightec GNU C/C++ compiler for TriCore [18] to compile bench-
mark programs from the EEMBC AutoBech 1.1 benchmark suite [20] (a2time,
canrdr, aifirf, rspeed) and the Mälardalen WCET group [21] (crc, fft1, mm).
1000 task-sets of 8 threads were randomly assembled from these seven bench-
mark and executed for one million cycles each. The given figures are the average
values of these 1000 runs.

5.1 Reasons for Stalling Threads

The reasons why a thread cannot issue any instructions in a certain cycle can
be divided into five classes:

branch. Fixed latency of a branch: 2 cycles
memfix. Minimum latency of a memory access: 3 cycles
membusy. Additional stall cycles, when a memory instruction cannot be exe-

cuted, because the memory is busy with an operation from another thread.
pipeline. The desired pipeline is already occupied by a higher priority thread.

(never applies to the HPT)
fetch. The instruction window is empty.

Fig. 3 shows the distribution of the reasons for not issuing instructions of the
highest priority thread (HPT), depending on the memory latencies. The x-axis
gives the reason for a delay and the numbers on the x-axis indicate the memory
latencies: the first number is the latency of the instruction memory, the second
one the latency for data memory.
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Even with minimum latencies (0/0), more than 80% of unused cycles are
due to memory delays (fetch or memfix). Not surprisingly the percentage is
increased when the latencies are increased. Each additional cycle of instruction
memory latency increases the percentage of fetch stalls by 8%, therefore a fast
instruction connection (via scratchpad or instruction cache) is inevitable.

The bars marked with plus show additional membusy latencies. These ap-
pear, when the HPT is executed together with other threads (for the bars without
a plus, the HPT was executed without concurrent threads). If a lower priority
memory access takes multiple cycles and begins in the cycle preceding the cy-
cle when a HPT memory access should start, the former occupies the memory
controller for multiple cycles and therefore delays the HPT thread.

This effect violates the complete isolation (and thus the hard real-time ca-
pability of the HPT), but it can be avoided by either modifying the WCET
analysis and assuming twice the memory latency or the lower priority memory
accesses can be delayed when a HPT memory access is on the way through the
pipeline (then the distribution of reasons is the same as in the corresponding
case without the plus).

The later technique is called Dominant Memory Access Announcing (DMAA):
when a memory access of the HPT is recognized at the beginning of the pipeline,
it is announced immediately to the memory controller that consequently delays
all memory accesses until the HPT memory access arrives and can be invoked.
Therefore all memory accesses between issue stage and memory controller are
delayed and if the distance between them is longer than the memory latency,
the HPT is never influenced by lower priority memory accesses (for details
see [3]).

Applying the DMAA technique, Fig. 4 shows the average distribution of stall
reasons against the priority. The fixed latencies (which dominate the stall reasons
of the HPT) are less important for lower priority threads. For these threads,
the influence of fetch and pipeline conflicts grows significantly. If the memory
latency is more than zero (rightmost group of Fig. 4), this stall reason dominates
for lower priority threads.
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5.2 Instruction Fetch Optimisation

To decrease the fetch conflicts and hence increase the performance of lower prior-
ity threads, we introduced the AHEAD and the ENOUGH fetch policies. They reduce
the number of fetches of the HPT without affecting its real-time behaviour. The
AHEAD logic occupies 18 ALUTs per thread slot, ENOUGH 44 and both together
require 60 ALUTs per slot, an acceptable size compared to 6000 ALUTs for a
whole thread slot.

Fig. 5 shows the percentage of fetch cycles executing the benchmarks sin-
glethreaded on the CarCore. The percentages vary significantly depending on
the benchmark. Both optimised policies reduce the number of fetches by about
5 to 10 percent and as the average of the benchmarks shows, ENOUGH is on av-
erage better than AHEAD, but not for all. Very interesting is the combination of
both policies: their sets of eliminated fetches are nearly distinct, hence it is not
surprising that the numbers of eliminated fetches could nearly be added if com-
bining both. But for some benchmarks the savings of the combination is even
bigger than the sum of the single savings. Regrettably the explanation of this
complicated interaction goes beyond the scope of this paper.

6 Conclusion

We explained how a singlethreaded superscalar TriCor compatible processor can
be enhanced to provide SMT while still allowing the execution of one hard real-
time thread with several non real-time threads concurrently in the background.
The techniques described can easily be transferred to any other superscalar in-
order processor. The latency of the memory is the main reason for stalling threads
and thus the biggest problem of the architecture. Currently our group is inte-
grating scratchpad memory into the CarCore, to ease this problem. First results
are available in [5].
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Abstract. Register renaming is a widely used technique to remove false data 
dependencies in contemporary superscalar microprocessors. The register re-
name logic includes a mapping table that holds the physical register identifiers 
assigned to each architectural register. This mapping table needs to be recov-
ered to its correct state when a branch prediction occurs. In this paper we  
propose a scalable rename table design that allows fast recovery on branch pre-
dictions. A FIFO scheme is applied with a distributed rename table structure 
that holds a variable number of checkpoints specific to each architectural regis-
ter. Our results show that although the area of the rename table is increased, it is 
possible to recover from a branch misprediction in at worst 2 cycles. 

Keywords: Register renaming, branch prediction, rename table, speculation  
recovery. 

1   Introduction 

Superscalar microprocessors use aggressive techniques like out-of-order execution 
and dynamic scheduling in order to boost performance. Data and control dependen-
cies between the instructions are the major limiting factor on performance during the 
processor design process. Some data dependencies are in fact not real but result from 
the lack of architectural registers at compile time and hence are called the “false data 
dependencies”. In order to remove these false data dependencies and reduce the num-
ber of stalls in the pipeline, many of the contemporary microprocessors employ the 
technique called “register renaming”. 

In register renaming, a new physical register is assigned for each instruction that 
produces a result. A register alias table (RAT) is used in the rename stage of the pipe-
line to keep track of the assignments between the architectural registers and the physi-
cal registers. Usually this table (also called the “rename table”) is implemented by 
using an entry for each architectural register. The rename table holds the precise state 
of the processor and has to be recovered in the case of an unexpected event, such as a 
branch mispredicton or exception. Since the time required for restoring the contents of 
the table add to the branch misprediction penalty, it is crucial that the table is recov-
ered as soon as possible. Different schemes exist in the literature to rollback the 
branch speculation, of which the most used techniques include checkpointing the 
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rename table, walking forward and backwards on the reorder buffer or waiting until 
the commit time of the mispredicted branch instruction [2][9]. Each of these schemes 
have various pros and cons in terms of circuit complexity and misprediction penalty. 

In this paper we propose a new implementation of the rename table that allows fast 
recovery on a branch misprediction. We propose to use a FIFO structure for each 
architectural register and recover the tail pointers when a branch misprediction oc-
curs. Our design is less complex than taking a full checkpoint of the rename table, and 
has smaller restoration latency when compared to the schemes that walk through the 
reorder buffer. 

2   Register Renaming 

Register renaming requires a new physical register to be assigned to each and every 
result producing instruction. Fig. 1 shows an example of how the register renaming is 
performed. Note that R1 is overwritten by the second ADD instruction which is in 
fact not dependent on the first ADD. This false dependency is removed by assigning 
different physical registers to two ADD instructions. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Example of Register Renaming 

The second ADD instruction in Fig. 1 removes its write after write (WAW) and 
write after read (WAR) dependencies by writing its result to a separate physical regis-
ter. However, this is not enough to maintain precise execution; any younger instruc-
tion that needs to access R1 has to be aware of the fact that the value it needs to read 
resides in P95. The rename table is used for this purpose; the table includes an entry 
for each architectural register that holds the location of the most recent instance of the 
register. Consequently, as the rename table holds the precise state of the processor, 
any fault on this table will result in a system crash.  

Ideally the rename table idea works perfectly. Each instruction that produces a re-
sult checks the availability of a physical register and allocates a register. Afterwards, 
the result producing instruction updates the rename table to inform the consumers that 
will later check this table to obtain the location of their architectural source registers. 
In superscalar machines, multiple instructions need to be renamed each cycle, which 
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mandates multiple updates to the rename table in the same cycle. Multiple updates to 
the same entry of the rename table are avoided by using a series of comparator cir-
cuits to check for dependencies. 

3   Speculation Recovery in the Rename Table 

Although the idea of rename table works fine in regular conditions, some recovery 
effort is needed when the processor employs some kind of speculation. All of the 
contemporary microprocessors employ branch prediction to alleviate the negative 
effects of deep pipelining on processor performance [3][5]. When a branch mispredic-
tion occurs, all of the instructions following the branch instruction in the reorder 
buffer are squashed from the issue queue and the reorder buffer. However this is not 
enough to recover the precise state as the modifications on the rename table also have 
to be rolled back to its state just before the faulting branch instruction. 

Different schemes exist in the literature and are implemented in real processors to 
recover the rename table on a branch misprediction. This schemes can be divided into 
two groups depending on their dependence on a retirement rename table (also called 
the commit rename table). 

3.1   Schemes That Use a Separate Commit Rename Table 

Commit rename table is used to hold the locations of the last committed instances of 
the architectural registers. Its structure is the same with the speculative rename table; 
contains one entry for each architectural register. Every instruction that leaves the 
reorder buffer at the commit stage updates this table with its destination physical 
register tag.  

1. Wait: It is always the safe choice to wait until the faulting branch reaches the top 
of the reorder buffer. When the branch commits, the commit rename table is copied 
to the frontend (speculative) rename table. This scheme is not preferred for many 
branches since a large number of cycles may pass before the branch itself commits. 

2. Walk forward: When the misprediction occurs, start from the head of the reorder 
buffer and pseudo commit all instructions to construct the commit rename table. 
When the faulting branch is reached, the commit rename table is precise. After-
wards the commit rename table is copied to the frontend rename table. Usually the 
number of pseudo committed instructions is equal to the commit width of the ma-
chine. If the faulting branch is far away from the head of the reorder buffer, branch 
misprediction penalty increases. 

3.2   Schemes without a Separate Commit Rename Table 

3. Walk backward: When a misprediction occurs, start from the tail of the reorder 
buffer and undo the changes of each instruction on the speculative rename table. 
The number of instructions processed each cycle is equal to the commit width of 
the machine. If the faulting branch is far away from the tail of the reorder buffer, 
the misprediction penalty is high. This scheme also requires that every instruction 
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holds the previous mapping of the corresponding architectural register in its reor-
der buffer entry. 

4. Checkpointing: The circuitry of the rename table is modified to include some 
shadow copies of the rename table. Whenever a branch instruction passes the re-
name stage, a copy of the rename table is created. If the branch is mispredicted, the 
corresponding checkpoint is copied to the speculative rename table. This scheme 
enables the recovery of the rename table state in a single cycle. However the circuit 
level complexity limits the number of checkpoints that can be implemented given a 
clock frequency. Also, the limited number of checkpoints limits the number of 
branch instructions that can be inside the reorder buffer of the processor since a 
branch cannot proceed if a free checkpoint is not available when it arrives at the 
rename stage. 

It is previously shown that walking backwards on the reorder buffer outperforms 
the other schemes (except for the checkpointing scheme which has its own circuit 
level difficulties) in terms of instructions per cycle for spec 2000 benchmarks [2]. 

4   Proposed Rename Table Structure 

During a processor design process, it is desirable to keep the number of cycles  
required to recover the rename table at minimum with minimum circuit level com-
plexity. In other words, a processor designer would want the performance of check-
pointing with a very simple circuit. For this purpose, we propose a new rename table 
structure that is capable of storing the history of physical register assignments for 
each architectural register. 

Fig. 2 shows the proposed rename table structure. A separate circular FIFO queue 
is used for each architectural register to store the physical register assignments. 
Whenever a new instruction that targets an architectural register as destination arrives 
at the rename stage and allocates an available free physical register, the tag of the 
allocated register is inserted into the corresponding FIFO queue by using the corre-
sponding tail pointer. The tail pointer always shows the most recent instance of the 
corresponding architectural register. Subsequent dependent instructions always read 
their source locations from the registers pointed by the tail pointers. 

 

 
 

Fig. 2. Proposed Rename Table Structure 
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Fig. 3. Amount of register usage in the Spec2000 benchmark suite, light area represents maxi-
mum usage, dark area represents average usage 

Conditions for vacating entries inside the FIFO queues vary according to the im-
plementation of register renaming inside the processor. In P6 architecture the reorder 
buffer entries also serve as physical registers and a separate architectural register file 
exists to hold the architectural state. Therefore the head pointer is updated when an 
instruction that targets the corresponding architectural register commits. On the other 
hand, in architectures, which use a unified register file that holds both the physical 
and architectural state, such as the Intel’s Pentium 4 [3], Alpha 21264 [5] and MIPS 
R10000 [7], a physical register is released only when an instruction that renames the 
same architectural register commits. In the proposed rename structure, the head 
pointer of the corresponding architectural register is updated (incremented by one 
unless the pointer is at the end of the buffer) whenever a physical register that holds 
an instance of the architectural register is released. 

Since each architectural register has its own circular FIFO buffer in the proposed 
structure, the number of entries in each FIFO queue may vary. The number of entries 
for each architectural register can be determined by observing the common behavior 
of programs and compilers. If an instruction targets an architectural register and the 
corresponding FIFO queue does not contain any available entries, the pipeline stalls 
and the frontend waits until an entry is available for the instruction. In order to mini-
mize the performance degradation due to the proposed rename structure, the FIFO 
queues have to be sized appropriately, so that the pipeline does not get stalled fre-
quently. Fig. 3 shows the average and maximum number of renamed instances of each 
general purpose architectural register in the simulated x86 architecture. As the results 
reveal, some of the registers are employed more than the others. For example, register 
rax has the most concurrent instances on average. This result shows that a larger FIFO 
queue has to be used for rax. 

The number of entries in each FIFO queue can be at most equal to (the number of 
physical registers – the number of architectural registers). This is because of the fact 
that each architectural register has to have a physical location and the same physical 
register cannot be assigned to two different architectural registers at the same time. 



20 G. Aşılıoğlu, E.M. Kaya, and O. Ergin 

5   Recovering from Branch Mispredictions 

The proposed structure allows rapid recovery of the rename table as all of the specula-
tive register assignments are available in direct mapped SRAM bitcell array. In the 
case of a branch misprediction, fixing the tail pointers is enough to recover the re-
name table. Different schemes can be employed by using the proposed rename table 
structure to rollback the speculation on a branch instruction. For a processor that waits 
until the faulting branch reaches the top of the rename table, there is no need to keep a 
commit rename table since when the branch reaches the top of the ROB, the head 
pointers for each architectural register will point to the precise state. In fact, the head 
pointers in the proposed structure form the commit rename table when they are used 
together which alleviates the need to store a separate commit rename table as imple-
mented in some modern microprocessors. 

Walk backward and walk forward schemes get easier to implement with the  
proposed design since nothing in the rename table is overwritten during the rename 
process. During the walk backward operation, the processor just decrements the cor-
responding tail pointer of the architectural register that is targeted by the squashed 
instruction. When the faulting branch instruction is reached, the tail pointers of all 
FIFO queues are restored. 

Checkpointing becomes simpler at the circuit level by using the proposed rename 
table design. Regular checkpointing requires a shadow copy taken at each branch 
instruction. This is accomplished by implementing each bit of the rename table as a 
shift register. Since the number of checkpoints limits the number of branch instruc-
tions that can reside inside the processor concurrently, having more checkpoints is 
desirable. However, as the number of checkpoints increases, the logic depth for an 
individual shift register increases, which results in a higher rename table latency and 
limits the frequency of the processor. The use of the proposed scheme allows imple-
menting the checkpointing scheme more easily without any need for shift registers. 
Instead of checkpointing the entire table on each branch, the tail pointers for each 
architectural register are stored in a table whenever a branch instruction arrives at the 
rename stage. This table is indexed by the branch identifiers and has to be imple-
mented as a circular FIFO queue since nested branch instructions may require squash-
ing multiple branch instructions in program order. 

Fig. 4 shows the structure of the checkpoint table used to store the information for 
each branch instruction. For each entry, a tail pointer is stored for each architectural 
register. Since the size of each FIFO queue can be at most equal to the number of 
physical registers, each stored tail pointer can be represented with log2(number of 
physical registers). For a processor with 256 registers, tail pointers are 8-bits long, 
resulting in 64 bits for each entry in the checkpoint table. Therefore the latency of this 
structure is similar to the register file itself depending on the number of branches 
allowed inside the processor. Whenever the outcome of a branch is mispredicted, the 
processor accesses the checkpoint table with branch index and reads the stored tail 
pointers. The tail pointer registers of the rename table are overwritten by the tail 
pointer values read from the checkpoint table in order to recover the rename table to 
the cycle just before the faulting branch instruction. Depending on the circuit level 
implementation and the clock frequency of the processor, restoring the rename table 
may take one or two cycles. While it can be possible to fix the tail pointers in the  
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same cycle with the reading of information from the checkpoint table, for a pipelined 
implementation, the processor may read the tail pointers in the first cycle and restore 
the rename table in the second cycle. 

6   Hardware Implementation 

The rename tables, like any regular memory structure used in contemporary micro-
processors, are implemented by employing SRAM bitcells. While in the architectures 
that make use of waiting or walking forward/backward schemes plain SRAM bitcells 
are enough for implementation, each bitcell is needed to have a shift register capabil-
ity in order to use checkpoints inside the rename table. If there are 16 checkpoints 
allowed inside the processor each bit of the rename table needs to be a 16-bit shift 
register. 

Our proposed rename table scheme removes the shifting complexity at bitcell level 
and implements all of the FIFO queues with plain SRAM bitcells. Each FIFO queue is 
in fact a small payload RAM that has the same bit-width as a rename table but has a 
larger number of entries. 

In the baseline 4-way architecture the rename table must have 4 write ports (in case 
4 instructions rename different architectural registers) and 8 read ports (in case each 
instruction has a different set of architectural source registers). This structure is ac-
cessed after the dependency checking logic detects any possible multiple renames in a 
single cycle. Our solution does not alter the dependency checking logic but offers a 
different storage mechanism for the register mappings. 

In an architecture with N architectural registers, our proposed scheme mandates the 
use of N FIFO tables that are made of SRAM bitcells. Each table is a regular payload 
RAM with regular decoder circuits that allow random access. However the inputs to 
these decoders are wired to the tail pointer register of the corresponding FIFO instead 
of taking the values from incoming instructions. The instructions that are renamed 
only write their tags though the regular bitlines to the entry (or entries) automatically 
selected by the tail pointer register. Note that although, in a 4-way machine, up to 4 
values can be written to a FIFO in the same cycle, only one value is read. Therefore 
each FIFO structure needs 4 write ports and 1 read port. Also, it should be noted that 
although the structure can be accessed randomly like a regular register file, the access 
is not random; at each cycle the value that is pointed by the tail pointer is read and if 
the corresponding architectural register is renamed up to 4 values are written to the 
following entries. The tail pointer is updated after the new register assignments are 
written. All of the FIFO queues are circular buffers. Therefore the tail pointer points 
to the top of the structure after reaching the bottom. 

 

 

 
Fig. 4. The Checkpoint Table used for branch instructions 
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The head pointers of each FIFO queues are also separate registers that are updated 
from the commit stage of the pipeline. When an instruction is committed and removed 
from the reorder buffer it simply increments the head pointer of its destination archi-
tectural register. Note that instructions do not access the payload area from the com-
mit stage but they only access the head pointer register. 

Processor is stalled at the rename stage if the contents of the head pointer register 
is just one over the contents of the tail pointer register for an architectural register that 
needs to be renamed. Since these registers are just incremented unless there is an 
exception (such as a branch misprediction), they are better be implemented as a 
counter with parallel data loading capability. 

The checkpoint table that is needed to recover the contents of the pointer register in 
case of an exception or misprediction is a plain payload structure that only holds the 
values of the registers just at the time a branch reaches the rename stage. That struc-
ture is implemented by using SRAM bitcells and it is smaller than a register file 
which makes it possible to access this structure in less than a cycle. 

Complexity is moved to the pointer registers in the proposed scheme since these 
registers are actually counters but they also need a logic for immediate data loading 
and comparison of head and tail pointers. There is also a control logic that allows the 
reading and writing of values by using only the contents of the tail pointer.  

7   Results and Discussions 

In order to get an accurate idea of the performance impact of the proposed technique 
we used the PTLsim simulator [8] that is capable of simulating x86 instructions. We 
ran the spec 2000 benchmarks for 1 billion committed instructions. Table 1 shows the 
simulated processor configuration. 

The simulation was run with checkpointing and walk-backwards recovery mecha-
nisms already included in PTLsim. The FIFO tests were based on a modification of 
the checkpointing algorithm which imposed penalties to the cycle count of the simula-
tion when the allocated queue was filled, and performed similar to checkpointing 
when the queues had available space. 

Table 1. Simulation Parameters 

Parameter Configuration 

Machine width 4-wide fetch, 4-wide issue, 4-wide commit 
Window size 32 entry issue queue, 48 entry load queue, 32 entry store queue, 128–

entry ROB 

Function Units 
 

Latencies 

Integer ALU (2), Load unit (2), 
FPU (2), Store Unit (2) 
Integer ALU (1), ALU Multiplication (4), ALU Bit scans(3),  ALU 
Division (32), FPU Arithmetic (6), FPU Vector Arithmetic (1) 

L1 I-Cache 32 KB, 4-way set-associative, 64 byte line, 1 cycle hit time 
L1 D-Cache 16 KB, 4–way set–associative, 64 byte line, 1 cycle hit time 
L2 Unified Cache 

 
L3 Unified Cache 

256 KB , 16–way set–associative, 64 byte line, 6 cycles hit time 
4 MB, 32–way set–associative, 64 byte line, 16 cycles hit time 

Branch Predictor Meta predictor using bimodal and two-way 
Memory 140 cycles hit time 
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Fig. 5. Performance comparsion of the proposed scheme against regular checkpointing and 
walk-backwards scheme 

Fig. 5 shows the performance comparison of the proposed renaming scheme when 
compared against regular checkpointing. The results for the walk-back scheme is also 
shown on the graph. The y-axis of the graph is the percent decrease of IPC. Zero on 
the y-axis means that the method has the same IPC as checkpointing. For the pro-
posed scheme there are two graphs: one labeled as fifo ipc and one labeled as fifo ipc 
adjusted. For the first bar, we used a constant FIFO size of 16 for each architectural 
register, whereas for the adjusted bar we adjusted the size of the FIFO queues of each 
architectural register according to the average and maximum values shown in Fig. 3. 
In the latter case, the sizes of the FIFO queue were set to numbers between 16 and 32. 
We assumed a recovery time of 2 cycles for the proposed scheme although it may be 
possible to recover in one cycle depending on the circuit level implementation. 

Results in Fig. 5 show that checkpointing always outperforms walking through the 
reorder buffer and the proposed scheme almost meets the performance of checkpoint-
ing although it limits the number of instances of the architectural registers that can be 
present inside the processor. Interestingly increasing the sizes of the FIFO queues did 
not provide any significant performance benefits. 

8   Conclusion and Future Work 

In this paper we proposed a FIFO-queue-based rename table design that is scalable 
and allows faster and simple branch misprediction recovery. Each architectural regis-
ter is assigned a FIFO queue that holds every speculative physical register assign-
ment. By using another checkpoint table that holds the tail pointers for each queue, it 
is possible to recover the rename table in a single cycle by just using the regular 
SRAM bitcells rather than shift registers. Our design simplifies the circuits used for 
constructing the rename table especially for processors that employ checkpointing. 

If implementing the regular checkpointing scheme is feasible in terms of circuit 
complexity, proposed scheme is not a good alternative; using the regular checkpoint-
ing is a better choice. However, the proposed renaming scheme offers the power of 
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checkpointing when the checkpointing is not feasible at the circuit level. This is a 
result of the fact that our new scheme decouples the rename table recovery from the 
number of instructions whose modifications on the rename table needs to be undone. 
The proposed checkpointing scheme also offers the use of the speculative rename 
table and the commit rename table together in a single structure. 

In the future, we plan to remove the rename table all together and apply the pro-
posed scheme to the register file. This will result in a distributed register file structure 
with one bank of registers for each architectural register. In this future case, there 
won’t be any need for a rename table or a free list as the physical register identifier 
for a free register request will come only from a single source (the FIFO of the corre-
sponding architectural register) and the instructions that need to read the physical 
register mapping of their source architectural registers will read the tail pointer of the 
corresponding FIFO queue. 
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Abstract. This paper describes the design of a garbage collection (GC)
module, which introduces modern GC features to the domain of embedded
implementations. It supports weak references and feeds reference queues.
Its architecture allows multiple concurrent mutators operating on the
shared managed memory. The garbage collection is exact and fully concur-
rent. It combines a distributed root marking with a centralized heap scan
of the managed memory. It features a novel mark-and-copy GC strategy
on a segmented memory, thereby overcoming the tremendous space over-
head of two-space copying and the compaction race of mark-and-compact
approaches. The proposed GC architecture has been practically imple-
mented and proven using the embedded bytecode processor SHAP as a
sample testbed. The synthesis results for settings up to three SHAP mu-
tator cores are given and online functional measurements are presented.

1 Introduction

The automatic reclamation of memory space no longer in use is an essential fea-
ture of modern software platforms. Widely known as garbage collection (GC), it
completely drains a prominent source of programming errors and dramatically
increases programmer productivity. Despites its inherent costs in processing time
and memory bandwidth, it has even been adopted in the embedded platform do-
main. Also there, the increasing system complexity calls for higher programmer
productivity and increased product confidence.

In addition to general time-to-market and design cost requirements, a few
additional design constraints are of prominent importance especially in the em-
bedded platform domain. Embedded systems should be frugal and just offer the
needed performance with the smallest feasible silicon and the least possible power
consumption. However, the specified performance is also often required strongly
to be delivered so that services are guaranteed to meet their deadlines. These
aspects motivate the designated and optimized implementation of essential func-
tionalities despites of the additional design effort. The garbage collection is one
example for such an optimization target, which has already been approached by
several research groups.

While garbage collection automates the management of one essential system re-
source, the heap memory; many other resources (files, locks, queues, sockets etc.)
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remain subject to the careful manual management by the programmer. Implemen-
tors of the objects encapsulating such resources often seek to secure the proper
release of these resources as by the help of the automated memory management.
The drawbacks of the traditional concept of the finalizer method (especially the
fact that it can be circumvented by simple method overriding) has helped to es-
tablish the concept of reference queues. They provide a notification mechanism
relying on proxy objects, which establish a weak reference to their targets that do
not prevent their garbage collection.

Besides the advantages over classical finalizers, weak references even without
associated reference queues enable new flavors of reachability. These can be used
to mark certain associations as nice to have but not critical. This allows the
caching of larger reconstructible data while still allowing the GC to reclaim the
occupied memory whenever needed.

Both finalization and weak references enjoy thorough support in the Java2Stan-
dard Edition (J2SE). Weak references even come in three flavors: soft, weak and
phantom, which support caching as well as pre-finalization and post-finalization
notification. In the Java2 Micro Edition (J2ME), only the Connected Device Con-
figuration (CDC) requires the same set of features. The Connected Limited De-
vice Configuration (CLDC) for more constrained devices only knows about the
single weak flavor of references and adopted it only with version 1.1. Finalization
is avoided altogether. Thus, it is not at all suprising that, so far, hardware-assisted
GC implementations have not supported any of these enhanced features.

This paper proposes a designated concurrent hardware GC architecture that
supports weak and soft references as well as reference enqueuing as known from
the J2SE. Without finalization support, the phantom references collapse seman-
tically with the weak ones1. This makes them obsolete in a CLDC setting.

The proposed GC implements a copying approach within a segmented mem-
ory so as to reduce the 100 percent space overhead of classical copying GC
significantly. It further employs designated tap units on the internal mutator
components to collect the root reference set without explicit mutator assistance.

In the remainder of this paper, Sec. 2 gives an overview on the previous work
undertaken on hardware-assisted GC implementations. Sec. 3 describes the pro-
posed GC architecture. Its practical implementation is evaluated by Sec. 4 based
on its integration into SHAP [1]. Sec. 5, finally, concludes this paper.

2 Related Work

Systems with minimal hardware support for their GC implementations were
built already in the late 1970s and early 1980s as native LISP machines [2,3],
1 In contrast to the other flavors of weak references, the Java API particularity

requires the unretrievable target of a phantom reference to be cleared program-
matically in order to become unreachable in spite of an alive phantom reference
to it. This particularity appears to stem from the avoidance of a software patent
(http://forums.sun.com/thread.jspa?threadID=5230019). It, in fact, prevents a
complete semantic blend of weak and phantom references, which is, however, of no
conceptional importance.
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which featured type-tagged memory words to identify pointers and hardware-
implemented read and write barriers.

The later Garbage Collected Memory Module by Nilsen et. al [4,5] implements
an object view upon the memory space. Upon request from the mutator, which
needs to provide a list of the root objects, it employs a copying approach for
an independent garbage collection. Although well documented, this system has
never been prototyped [6].

Srisa-an et. al [7] describe a mark-and-sweep accelarator backed by alloca-
tion bit vectors. Additional 3-bit reference counting within similar bit vectors
is suggested for the fast reclamation of low-fanin objects. The scalability of this
approach is achieved by the caching of partial vectors as directed by an unde-
tailed software component. Also, this architecture was merely simulated as C++
model and has not been included in any synthesized design.

The Komodo [8] architecture and its successor jamuth [9] support a very
fine-grained, low-cost thread parallelism on instruction level. This architecture
enables the non-intrusive execution of background system threads, one of which
can be designated to the garbage collection. Different implementations of mark-
and-sweep algorithms based on Dijkstra’s tri-color marking are described.

Meyer [10] described a RISC architecture, which features separate register sets
and storage areas for pointers and other data. This enables a clear distinction
among these data types as required for an exact garbage collection. A micro-
programmed co-processor, finally, implements the actual GC with a copying
approach [11]. The required read barrier is later backed by designated hardware
so as to reduce its latency significantly [6].

Gruian and Salcic [12] describe a hardware GC for the Java Optimized Pro-
cessor (JOP) [13]. The implemented mark-and-compact algorithm requires the
mutator to provide the initial set of root references. As objects may be moved
during the compaction phase, read and write accesses to them must be secured
by appropriate locks. The mutator may otherwise proceed with its computation
concurrently to the garbage collection. Reference and data fields inside heap ob-
jects are distinguished by appropriate layout information associated with each
object’s type. Root references on the stack are determined conservatively only
excluding data words that do not resemble valid reference handles.

In summary, several embedded GC implementations built on designated ar-
chitectural resources and may thus be called hardware-assisted. The controlling
algorithms are typically implemented in software albeit regularly on a level as
low as microcode. The implementations are frugal and do not provide any fea-
tures beyond the plain automatic memory management. Thus, these systems are
obsolete even for the implementation of the current CLDC 1.1.

3 Garbage Collector Design

3.1 Fundamental Design

The desired GC architecture should provide several functional features. First of
all, it is to abstract the memory to a managed object heap with high-level object
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Fig. 1. Memory Management Unit: Structural Overview

creation and field access operations. It is further to support weak references
as defined for the CLDC 1.1. Finally, it should be capable to serve multiple
mutators.

The GC task obviously grows more complex with the support of weak refer-
ences. In order to keep its implementation maintainable and extensible, the FSM
implementation of SHAP’s former memory manager [14] was abolished. Instead,
several options for software-programmed solutions were explored. The obvious
solution to simply duplicate SHAP itself was soon dismissed as its high-level
Java programming greatly relies on the memory object abstraction that first
needs to be established by this component. The continuous access to low-level
memory would further require a unnatural if not abusive use of the language.
Last but not least, the microcode implementation used by SHAP would estab-
lish a significant overhead when compared to the still rather compact memory
management task. A reduced variant duplicating only the core microcode en-
gine, finally, disqualifies due to the low achieved gain in abstraction level. Thus,
the search was narrowed to compact RISC cores with a functional C toolchain,
specifically, to the OpenFIRE [15] and the ZPU [16].

Both of these cores are freely available but quite contrary in philosophy. While
the OpenFIRE is a full-fledged RISC engine, the ZPU takes a very frugal approach.
It turned out that the ZPU with a few replacements of emulated by implemented
instructions was well-sufficient for the task of memory management. It further
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provides the strong advantages of a concise design structure, lower resource de-
mand and a high achieved clock frequency. In fact, an OpenFIRE solution would
require a second slower clock domain or the reduction of the overall system clock
by 40%. Consequently, it was the ZPU microarchitecture, which we chose to be at
the heart of our memory management.

As illustrated in Fig. 1, the ZPU assumes the central control of the mem-
ory management as memory control unit (MCU). It is surrounded by several
special-purpose hardware components implementing time-critical subtasks. The
connection to the system Wishbone bus enables the slow administrative com-
munication with the mutator cores. This not only serves the communication of
statistics data but is also used for delivering weak reference proxies to the run-
time system for their possible enqueuing into reference queues so that our design
supports this feature in addition to the CLDC requirements.

The memory access of the mutator cores are prioritized over GC-related ac-
cesses. The garbage collector, thus, operates on cycle stealing, a very fine-grained
utilization of otherwise idle memory bandwidth.

The overall GC cycle is summarized in Fig. 2. It is initiated and supervised
by the MCU. Individual tasks are, however, backed by dedicated hardware com-
ponents containing small specialized state machines.

3.2 GC Strategy

The organization of the heap memory must enable both the prompt allocation
of objects as well as a steady recycling of unused memory. We chose a simple
yet efficient bump-pointer allocation scheme. While it guarantees an instant
allocation, it also requires the compaction of the used memory as to re-generate
the continuous allocation region.
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The classical compaction approaches are two-space copying [17] and mark-
and-compact, which is used by JOP’s hardware-assisted GC [12]. We, instead,
propose a novel mark-and-copy approach operating on a segmented memory.
This approach avoids both the tremendous space overhead of two-space copy-
ing as well as the compaction race of a concurrent mark-and-compact where
each allocation shrinks the allocation area while also adding to the compaction
work.

The segment life cycle depicted in Fig. 3 is managed by the MCU. Designated
hardware modules assist the allocation and the compaction and operate on seg-
ments assigned by the MCU. The time-critical allocation is, thus, fully decoupled
from the MCU, and even the exchange of the allocation segment is buffered by
FIFOs. The compaction process, on the other hand, is mostly controlled by the
MCU itself. Merely, the object movement is implemented as hardware service
provided by the memory access management. This low-level integration enables
transparent mutator access even to objects being copied.

The MCU regularly initiates heap scans to detect dead objects. While their
references handles are recycled immediately, their occupied memory is only
marked as such. Segment utilization statistics are maintained to identify sparsely
used segments whose surviving objects are evacuated into an evacuation segment
before the segment is returned to the pool of empty ones. Similar to the allocation
segment, the evacuation segment is populated compactly using bump-pointer al-
location and is only exchanged upon the first unsuccessful migration.

This proposed algorithm enables continuous allocation and concurrent gar-
bage collection. A race between allocation and collection has been avoided as
both are operating in distinct segments. The copying effort is reduced to sur-
viving objects co-residing with garbage in the same segment. Segments with
only short-lived operational objects are freed as a whole without any copying
work. Segments with accumulated old long-lived objects will remain untouched.
In addition to the spontaneous formation of object generations, the collector can
accelerate this trend by the use of generational evacuation segments.

The critical parameter of the proposed approach is the segment size. Firstly,
it restricts the size of the largest allocatable object. Secondly, small segments
increase the management overhead in terms of segment exchanges and state
information. On the other hand, large segments force a coarse-grain memory
management with a potentially significant space overhead approaching the be-
havior of a copying collector. Hence, a set of well over 4 segments should be, at
least, available.

Having decided for a moving GC, measures must be taken to ensure the stable
identification of each object throughout its life cycle even in the possibility of its
displacement. This is achieved through fully-transparent handles, which are the
only identifications of objects ever known to a mutator. The memory manager
internally maps a handle to a state record comprising the current storage location
of the referenced object, the sizes of its reference and data areas as well as some
GC information.
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3.3 Exact Garbage Collection

Targetting the employment in constraint embedded devices, it is essential to pro-
vide an exact GC. A conservative collection is simply no option as its impreciseness
would have to be paid for with additional usually spare memory resources.

The exact garbage collection must be capable of a clear distinction between
references and primitive data. This may be achieved either by the direct tagging
of data words or by administrative metadata. The latter option is the more
economical on the heap where only instances of well-defined class layouts reside.
Adopting the bidirectional class layout of the SableVM [18] further allows to
reduce the required metadata to the sizes of the primitive storage growing with
positive offsets and of the reference storage growing with negative offsets from
the object’s base address.

Our GC architecture features distributed tapping modules to collect the root
set of references from the mutators. These must also be able to identify refer-
ences precisely within the tapped storage elements. In our adaptation for SHAP,
we chose the tagging approach for the internal stack and registers as the data
contained therein does not follow a only handful of structural blueprints.

3.4 Object Graph Marking

Our architecture builds upon a decentralized collection of the root set. Each
mutator core is extended by its own root scan unit, which collects the references
contained in the local registers and stack into a mark table. As shown in Fig. 1,
all mutator cores are arranged in a ring on a GC bus, which is mastered by the
MMU. This unit issues commands onto the ring and receives their acknowledge-
ments as they return on the other end. This ring also serves the gradual merger
of the contents of the individual root tables into the global root set. While the
MMU transmits an empty table, each core ORs the received table with its own
table contents before forwarding it along the ring. The final result is entered into
the central mark table inside the MMU.

The local root scans operate concurrently to their associated mutator core.
Once finished, they are deactivated for the remainder of the GC cycle so that fur-
ther modifications of the local root sets are not logged. This is safe as the mutators
only gain access to other references by loading them from objects – which were,
thus, reachable from the original root set – or by creating new ones. Objects allo-
cated during the GC cycle are already implicitly marked by the allocation engine.

After the completion of all root scans, the actual computation of the reach-
able subgraph is performed by the heap scan. Our optimized variant of the well-
established tri-color marking uses the mark table to tell reached from unreached
objects. The colors red and green further distinguish the reachable objects into
scanned and unscanned ones. The meaning of these colors alternates and is deter-
mined by the color of the active GC cycle. Initially, all references are unscanned
and have the color opposite to the current cycle. Upon being scanned, a reference
assumes the cycle color. References to newly-allocated objects are immediately
assigned the active color as they do not contain valid references and need not be



32 T.B. Preußer, P. Reichel, and R.G. Spallek

S W Reference Handle

0 0

0 1

Strong
Soft
Weak
undefined

StrengthTag

31 30 29 0

11

1 0

Fig. 4. Reference Strength Tags

SoftReference WeakReference PhantomReference

Reference ReferenceQueue
* 0..1

Fig. 5. Hierarchy of Reference Proxy Classes

scanned. The heap scan is completed when all reachable and, thus, marked refer-
ences have assumed the cycle color. After disposing of the remaining unmarked
and, thus, unreachable references, the meaning of the colors is exchanged and the
initial condition that all references are of the opposite color is re-established for
the next GC cycle.

While the completion of the scan could be detected by another walk through
the mark table that does not produce any marked reference without cycle color,
we implemented a simple but effective optimization. Each time a previously
unmarked reference is marked in the mark table, it is also copied into a mark
FIFO. This FIFO is read to determine objects that still have to be scanned
during the heap scan. Only when it runs empty, the mark table is re-walked to
search for additional work but only if the walk just completed did produce a
FIFO overflow. As all work has been safely finished when the FIFO sufficed, a
final unproductive walk of the table is no longer needed.

The heap scan must account for conccurent modifications of the object graph
by the mutators. In particular, it must be ensured that no mutator ever gets hold
of a reference that then remains unmarked. This situation might occur when a
reference field of a still unscanned object is read and overwritten by a different
value before it is scanned. To keep the effected subgraph safely alive, a write
barrier is implemented to intercept reference writes and to enter the overwritten
references into the mark table.

In the context of multiple mutators, the write barrier is implemented using
an atomic swap operation on the backing memory as to outrule a race condition
among possibly concurrent read-write sequences on the same storage location.
Although only required for the heap scan, we chose to activate the write barrier
even prior to the initiation of the local root scans. This choice relaxes the phase
transition from root to heap scan and avoids its system-wide synchronization
through an atomic rendezvous.

3.5 Weak Reference Support

In contrast to their regular strong counterparts, weak references do not keep
their referents alive. An object may become eligible for garbage collection in
spite of the existence of paths via weak references to it. If the collector decides
to discard the referent of a weak reference, the reference must be deprived of
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its capability to retrieve the referent, which is usually achieved by clearing it to
null. Reference queues may establish an additional notification scheme allowing
cleared references to be enqueued for processing by an application thread.

The Java 2 Standard Edition knows of several different strengths of weak refer-
ences, which gives rise to the class hierarchy shown in Fig. 5. While the CLDC 1.1
only requires the WeakReference, our architecture additonally supports their
soft variant and reference queuing.

Weak references are implemented as proxy objects containing a special ref-
erence member initialized from a strong reference provided to the constructor.
The garbage collector must be enabled to recognize these special references in
order to treat them appropriately in the heap scan and to clear them when it is
about to collect their referents.

Instead of providing the GC with information about the hierarchy of the ref-
erence classes, we designated two bits of the reference word to tag the supported
weak reference types as shown in Fig. 4. While these bits are generally cleared,
they are set by the constructors of reference objects. This approach even enables
a more flexible use of weak references outside the hierarchy of the reference classes.

During the heap scan, weak references are not followed. The treatment of soft
references is decided once at the beginning of a GC cycle according to the current
memory utilization so that they are followed as long as free storage is available.The
objects containing unfollowed references are, however, enlisted during the scan.Af-
ter its completion, this list of proxies is scanned for references to unreached refer-
ents. Any one found will be cleared, and the effected proxy will be communicated
to the mutators for its possible enqueuing into a reference queue. For this purpose,
the SHAP runtime system forks a designated service thread that maintains the
communication with the memory manager via its Wishbone connection.

Special care is to be taken upon the retrieval of a strong reference from a weak
proxy. Assume that an object only remains reachable through a weak reference. As
long as the garbage collector does not discover this condition, the reference is not
cleared but totally valid. The invocation of the get() method on the
WeakReference proxy object will return with a normal strong reference to the
referent effectively resurrecting the object from the brink of death. A race condi-
tion may, however, arise when such a resurrection interferes with an ongoing heap
scan. It must be ensured that the reference to be returned by get() is either en-
tered into the mark table prior to the completion of the heap scan or invalidated by
returning null. Not knowing whether an ongoing heap scan will render the refer-
ent strongly-reachable or not, a consistent resurrection with a mark table entry is
attempted first. Only if the scan has finished in the meanwhile, the actually deter-
mined reachability is evaluated. If necessary, nullwill be returned in conformance
to the inevitable clearing of the original reference field.

4 Evaluation in SHAP

The described design was implemented for SHAP and integrated into the runtime
system through adapted microcode implementations accessing the port to the
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Table 1. Device Utilization of Reference Platform

Cores FFs LUTs BRAMs

1 3206 7813 10
2 4465 11396 17
3 5720 14963 24
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memory access manager as well as through regular Wishbone I/O for less time-
critical operations. The latter also provides fundamental statistical data that we
used for this evaluation. The runtime library was extended to enable application
access to the new features and to provide implementations for the reference
proxy and the reference queue classes. It was also turned into the first client of
the weak reference support by the implementation of resource pools, which, for
instance, enable the proper interning of strings.

The reference design was implemented on a Xilinx Spartan-3 XC3S1000, which
is capable of holding up to three SHAP cores next to the memory management
unit. The utilization of this reference platform is summarized in Tab. 1. As in-
dicated, the demand on active resources grows linearly with the number of in-
tegrated SHAP cores. While most of the basic core-independent flip-flops and
LUTs may be attributed to the central memory management, global Wishbone-
attached IO accounts for about a quarter of it. The three Block RAMs outside
the cores are used as MCU storage also containing the GC program and the
global mark table.

The processing of living weak reference proxies constitutes a processing over-
head as they are enlisted during the heap scan to be revisited thereafter in order
to verify that their referents have been reached or to clear and enqueue them.
This overhead grows linearly with the number of living proxy objects. This is
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shown in Fig. 6 for several scans of a heap with an identical object population,
which merely differs in the number of weak reference proxies pointing to liv-
ing objects. While the heap scan merely slows down marginally, the overhead
becomes clearly visible in the succeeding weak reference processing. The lower
impact on the heap scan is due to its hardware-assisted implementation inside
the memory access management.

The distinguished treatment of soft references according to the current mem-
ory utilization is illustrated in Fig. 7. Initially, a set of few but large objects is
allocated and made solely soft-reachable. Then, small objects are created contin-
uously and kept reachable so that the memory fills up. While the large objects
are initially kept alive, the available empty segments will eventually fall short of
the threshold of two segments so that the soft references will be treated like weak
ones by the GC. Consequently, the large objects are collected and the memory
utilization relaxes.

5 Conclusions

This paper has demonstrated that the integration of advanced GC features
is feasible even for small embedded bytecode processors. The presented solu-
tion makes thorough use of hardware acceleration wherever applicable while
employing a main C-programmed software control for easy maintenance. The
presented solution implements a concurrent garbage collector with the support
of multiple mutators. Even going beyond the requirements of the CLDC 1.1, it
includes the support for soft references and reference enqueuing. The practi-
cal implementation of the garbage collector was proven in the SHAP bytecode
processor.
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Abstract. Power and resource management are key goals for the success
of modern battery-supplied multimedia devices. This kind of devices are
usually based on SoCs with a wide range of subsystems, that compete in
the usage of shared resources, and offer several power saving capabilities,
but need an adequate software support to exploit such capabilities.

In this paper we present Constrained Power Management (CPM), a
cross-layer formal model and framework for power and resource man-
agement, targeted to MPSoC-based devices. CPM allows coordination
and communication, among applications and device drivers, to reduce
energy consumption without compromising QoS. A dynamic and multi-
objective optimization strategy is supported, which has been designed to
have a negligible overhead on the development process and at run-time.

1 Introduction

New generation of mobile devices are usually based on platforms using a Multi-
Processor System-on-Chip (MPSoC) which is composed of many subsystems and
surrounded by a broad set of peripherals. Each subsystem is typically charac-
terized by several working modes (WMs), with corresponding different levels
of Quality-of-Service (QoS) provided and power consumptions profiles. Modern
hardware technologies increased the capability to reduce both dynamic and static
power consumptions [1]. However, several mechanisms to save power at circuit
level require an adequate software support to be effectively exploited. Indeed,
to properly satisfy applications’ QoS demands it is required to track system re-
sources availability and usage which directly impact on energy consumptions.
Moreover the need for support of heterogeneous usage scenarios makes the man-
agement of resources and power saving a challenging design goal.

This work introduce the general idea behind the definition of a system-wide
power and performances optimization strategy, to be implemented at OS level.
This solution has been designed to be sufficiently portable among different plat-
forms, without compromising too much its accuracy and efficiency, and easily
adapt to all possible different device usage scenarios. We prove that a hierarchical
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distributed control is particularly suited to meet the goals of both adaptability
and portability, without unduly compromising the effectiveness of control and
its efficiency. A formal model to tackle the performances vs. power consumption
trade-off is sketched. Finally, “Constrained Power Manager” (CPM), a Linux
kernel framework implementing this model, is evaluated on a real-world multi-
media mobile platform.

The rest of the paper is organized as follow. In the next section we briefly
present an overview of the previous works. In Sec. 3 the proposed distributed
control model is presented while in Sec. 4 some experimental results are reported.
Conclusions and research directions are drawn in Section 5.

2 Related Works

Techniques to reduce power consumption in computing systems range from phys-
ical layers design up to higher software abstraction levels [2,3]. Considering a
classification based on the abstraction levels, the main techniques proposed in
literature fall into five categories: pure hardware, pure OS, cooperative OS, ap-
plication level and cross-layer adaption approaches.

The ’pure hardware’ approaches mainly address the processor DVFS. These
techniques are based on specific hardware support that measure the current
CPU load and configure its frequency according to the inferred system utiliza-
tion. Examples are the Transmeta’s LongRun technology, the Intel’s Wireless
Speedstep Power Manager and the ARM’s Intelligent Energy Manager (IEM).
All these approaches are completely transparent from the user-space, cannot
exploit knowledge on future workloads and disregard specific application needs.

The ’pure OS’ techniques basically try to improve the memoryless hardware
approaches in two main directions: by exploiting OS scheduler knowledge (e.g.,
[4]) and by allowing software system designer to compare different optimiza-
tion policies [5]. A number of other works has focused techniques for the power
optimization of specific subsystems, e.g.,disks, network cards and displays.

In ’cooperative OS’ approaches, the OS tries to exploit some “application
hints” to increase the level of knowledge about tasks’ requirements. At this
level of abstraction that we find the first comprehensive approaches that try to
optimize the system-wide configuration considering all of its components [6,7].

The ’application level’ approaches, rather than a partnership between the OS
and the applications, try to exports the entire burden of PM to the user level,
resembling the philosophy of the Exokernels. Application adaption techniques
trade power consumption with quality or data fidelity (e.g., [8]). Others tech-
niques propose complete optimization frameworks, such as the Odyssey OS [9]
or the Chameleon’s application-level PM architecture [10].

The development of holistic approaches, that aggregate data from multiple
layers, is nowadays a popular research topic. Indeed, a number of approaches
based on ’cross-layer adaptations’ have already been proposed. Unfortunately,
available solutions are frequently designed only for the energy optimization of
real-time multimedia tasks with fixed periods and deadlines [11], require appli-
cation modifications to feed some meta-informations to the optimization layer



Hierarchical Distributed Control of Power and Performances 39

[12] or are based on complex models to be build off-line and thus not easily
portable across different platforms [13]. In this class we can find also some Linux
kernel framework, but they resulted to be too much simple (QoSPM) or with
scalability limits (DPM [14]).

3 Constrained Power Management

The design of a cost-effective solution, for system-wide power and performances
optimization, requires to tackle the problem at all the abstraction levels, consid-
ering both low-level architectural details and high-level application requirements.

The proposed approach supports the identification of an optimal trade-off
between expected performances and reduce power consumptions, especially fo-
cusing on mobile multimedia embedded systems. Our technique is based on the
concept of Constrained Power Management (CPM) presented in this section.

3.1 Hierarchical Distributed Control

The CPM is an optimization technique based on a hierarchical distributed
control model. An overall view of the proposed solution is depicted in Fig. 1.
To overcame the complexity of centralized approaches, our solution splits the
system-wide control problem into two different sub-problems: low-level devices
local controls and an higher-level distributed agreement control. Drivers run a
device specific fine-tune policy, based on the system requirements and working
conditions, which exploits the detailed knowledge on the specific device capabil-
ities. The global optimization policy instead is implemented at a higher abstrac-
tion level and exploits both low-level informations, related to resource availability
and hardware capabilities, and high-level informations related to application’s
QoS requirements.

Among the high-level global optimization policy and the multiple low-level
local optimization policies, we focused our attention on the upper layer. This
choice has a double motivation, on one hand it is the more interesting part, the
other many local optimization policies have already been investigated. The upper
layer is the more interesting because being the more abstract layer, the designed
solution will be completely platform independent and thus it can be directly
implemented within a portable framework. Instead, lower layer’s policies must
be strictly related to the devices and thus they require a detailed analysis of each
specific device class, which could itself require a complete study. Moreover, as
described in the prior-art, many researches have already focused on the definition
of local optimization policies for different classes of peripherals.

3.2 Cross-Layer Framework Design

From a design perspective CPM is a cross-layer technique which involves three
different levels: a low-level abstraction layer, a middle-level modeling layer and
finally an high-level optimization layer. The first two layers allow respectively to
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Fig. 1. A bird-eye-view of the proposed system-wide control architecture. The main
system components are represented by platform code, drivers and the optimization
framework code itself. These components either define or use some entities: System-
wide Metrics (ASM/PSM), Device Working Modes (DWR) and Feasible System Con-
figurations (FSC). Policies are both locally and globally defined and are implemented
as modular components and can be changed at runtime.

abstract a real platform and to model that abstraction, thus getting a platform
independent system description. The last layer use this description to build an
efficient and portable optimization strategy. A representation of these layers,
their components and the relationships among them is depicted in Fig. 2.

The Abstraction Layer provides a suitable abstraction for: resources, archi-
tecture and devices. System resources, regardless of their nature either hard-
ware (e.g., frequencies) or not (e.g., latencies), are represented by the concept
of “System Wide Metrics” (SWM). The “metrics” term was chosen to remark
their numerical interpretation within the model abstraction: SWMs represents
the possible optimization objectives. Thus, the set of all available SWMs de-
fines a “System-Wide Configuration Space” (SWCS) which can be explored to
search the optimal configuration. The architecture abstraction, satisfying the
’fine-detail’ requirement, allows to represent some platform specific details within
the model. This is achieved by specializing the SWM into: “Abstract System-
Wide Metric” (ASM) and “Platform System-Wide Metric” (PSM). The former
are abstract metrics, which can be exposed to user-space without compromising
solution portability, while the latter are platform specific metrics, that allow
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Fig. 2. A real computing system, with many different devices and applications, is
so complex that it is not convenient to model all this complexity in order to solve
the consumption and performances optimization problem. Therefore we perform an
abstraction and modeling to properly support the optimization technique.

the framework to consider target system details (e.g., devices dependencies).
Finally, each device in the system is described within the model by a set of
“Device Working Region” (DWR). A device generally can have different WMs,
which correspond to different resources usage and supported QoS. WMs could
be as simple as ’device on’ and ’device off’, or even more complex such as all the
different operating frequencies of a CPU or the different connection protocols
supported by a 3G modem. What exactly are the WMs of a device is defined by
the corresponding driver. Thus, a DWR is an abstract representation of a device
WM and it is defined by a set of ranges on each SWM which is sensible for the
considered device. A device is “sensible” to a SWM if any change of its value
can imply a reconfiguration of the device and vice versa. In instance, a DVFS
driver for the control of the processor clock frequency is sensible to a SWM like
’CPU Frequency’.

The Model Layer takes as input the information representing the system re-
sources and capabilities, exploiting the abstraction defined in the lower layer,
and generates as output an architecture independent representation of all the
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“Feasible System-wide Configurations” (FSC) available for the target system,
that we named: FSC model. A FSC is a region on the SWCS, thus is defined
by a set of validity ranges for each SWM, where it is granted that each device
could be configured to operate in a WM that does not have any conflict with any
other device. These regions are particularly important because they grant that
any inter-dependency among devices is safely solved. Though a number of inter-
esting theoretical techniques can be defined to identify at run-time what is the
optimal system configuration, according to both the available resources and the
required performance, every outcome is useless if it cannot be actually applied to
the real system because of implicit inter-dependencies or hardware constraints
ignored by the optimization policy itself. Indeed an optimized configuration can-
not be identified regardless of its feasibility. Thanks to their interesting property,
the identification of all system’s FSCs is especially important. Considering this,
the optimization technique proposed is based on the ’a-priori identification’ of
all and only the system feasible configurations. Thus, any optimization policy
that will be developed on top of this framework, it will be granted to operate on
a set of real and valid configurations and consequently each result can be safely
applied to real system.

The Optimization Layer exploits the system view offered by the underlying
FSC model to support the global optimization policy of the proposed hierarchi-
cal distributed control. This is obtained by the definition of a strategy to assign
a “weight” to each feasible configuration according to the running optimization
policy. The weight associated to FSC is defined to be a sufficiently abstract met-
ric which can be easily adapted for a generic multi-objective optimization. The
run-time tracking of application requirements is another goal of this layer. The
abstract system model, based on the concept of FSC and their representation
in the SWCS, is properly exploited at this layer to translate application re-
quirements on constraints for the research of the optimal configuration. Indeed,
application requirements are translated on constraints for the optimization prob-
lem which could invalidates some FSCs. Thus, this layer provides support for
both: FSC pre-ordering, according to the optimization objectives of the running
policy, and optimal FSC selection, considering user-space requirements to filter
out run-time invalidated FSC.

3.3 Formal Validation of the Optimization Policy

The hierarchical distributed control problem can be conveniently reformulated
using an appropriate formal model. A transposition of this type has been done
not only to provides a rigorous description of the problem and a formal proof
of the solution quality, but also allows to identify more easily a possible alter-
native solution strategy by taking into account the particularities of the specific
formulation. We have reformulated the problem using Linear Programming.

A simple representation of the LP formulation is depicted in Fig. 3. In this
simple scenario we consider a system with three devices (d1, d2 and d3) and
two SWMs (p1 and p2). The available FSCs are only three, but at run-time
it could happen that some of them (FSC3 in the example) are invalidated by
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Fig. 3. Example of LP formulation for the global optimization problem

the constraints representing application requirements. The optimization policy
is represented in the LP formulation by an objective function og which identi-
fies the direction of a multi-objective optimization in the domain of the SWM.
Indeed, the global optimization policy is defined by the composition of multiple
objectives, each one corresponding to a different SWM metric with an associated
optimization priority. It is possible to prove that the solution of the LP prob-
lem, O in the example, can always be mapped to one ore more FSC. These will
represent the feasible configurations which are optimal w.r.t. the running policy.

3.4 Framework Implementation

The formal representation of the problem certifies the goodness of the config-
uration identified. Moreover, it also suggests an efficient implementation of the
optimization algorithm which is composed by three steps:

1) FSC Identification: at boot time all the drivers register to CPM by exposing
their DWRs using the abstraction layer interface. Thereafter, all the FSCs can
be automatically identified by the model layer.

2) FSC ordering: a multi-objective optimization policy is settled by simply
defining the optimization priority for each metric in the configuration space,
i.e. by associating a “weight” to each SWM. Thus, starting from the set of all
FSCs which are identified by the model layer, it is possible to pre-order the
solutions of the optimization problem. In the previous example, according to the
optimization policy represented by the vector og, the solutions ordered starting
from the best one are: FSC3, FSC1 and finally FSC2.

3) FSC selection: at run-time the requirements asserted by applications are ag-
gregated and properly translated into constraints for the optimization
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Fig. 4. CPM: overhead of FSC identification and selection

problem. These constraints are used to invalidate all FSCs that violate them.
The optimal feasible solution is the first one valid in the list of the ordered FSCs.
In the previous example, FSC3 is invalidated by the assertion of the constraint
v3 and so the optimal solution is the next one valid: FSC1.

4 Experimental Results

The proposed optimization model has been implemented in the “Constrained
Power Manager” (CPM), a Linux framework based on kernel 2.6.32. This imple-
mentation has been used as a workbench for a worst-case complexity analysis of
the developed optimization algorithms, using a demo-board with the Nomadik
STn8815 MPSoC by STMicroelectronics. In this section we present: first the test
results, and then a use-case to demonstrate the application of the framework in
a real usage scenario targeting the power and performance optimization of a
multimedia mobile device.

4.1 Overhead’s Evaluation

We have measured the execution time of the algorithms for the identification
and the selection of FSCs obtaining the results in Fig. 4. These overhead mea-
surements refer to a 60s execution of the use-case and focus on the worst-case.

This measures prove the negligible impact of the framework with respect to
a system not using it. Indeed, the identification algorithm shows a maximum
of 2.5% overhead for a quite complex system with 4096 feasible configurations,
which is much more than the 415 of the considered use-case. This means that
over the 60s of use-case execution, around 1.5s are devoted to the framework
execution. However it should be considered that this algorithm runs just one
time at system boot and can be easily replaced by a look-up table. Indeed,



Hierarchical Distributed Control of Power and Performances 45

especially in embedded systems, where the platform’s configuration for a final
product does not change, all the FSC can be pre-computed and then just loaded
at boot time.

While the identification algorithm has a complexity which is exponential in
the number of the FSCs, the selection algorithm not only has a better (linear)
complexity but is also three orders of magnitude better in absolute values. This
is also another important result, because the identification algorithm is the one
executed more frequently, i.e. each time a new requirement is asserted by an
application. The experimental setup considered one run every 10 seconds and
the measurements show a really negligible overhead which is always less than
0.01%.

4.2 Use Case Definition

The presented use case shows the benefits of using CPM to manage resources
such as the Internet connection bandwidth according to the actual applications
demand. Moreover it shows how CPM can keep track of dependency between
subsystems. The STn8815 SoC has an ARM host CPU and two accelerators
for multimedia: an audio DSP (DSP A) and a video DSP (DSP V). The host
CPU is clocked by a signal identified with CPU CLK, while the DSPs are clocked
with a signal labeled DSP CLK. The SoC architecture is characterized by a strict
dependency between CPU CLK and DSP CLK which constrains the operational
frequency of the accelerators.

We considered the following ASMs in the use case:

– connection bandwidth: a resource on which applications compete. An additive
function is used to aggregate the requirements, asserted by applications, and
identify a constraint on the QoS level for this resource.

– audio and video codecs : an information that is related to multimedia content
that the application has to play, thus it directly impacts on the operating
mode of the DSPs.

The PSMs (DSP CLK and CPU CLK) are platform specific informations defined
in the platform code to keep track of hardware inter-dependencies described so
far. Finally, the driver of each involved device defines its own DWRs as repre-
sented in Tab. 1a, while the platform code define the architectural constraints
represented in Tab. 1b.

The use case begins with the user selecting a video stream content to be
played. As soon as the download of audio and video data starts, the player ap-
plication collects informations about the connection bandwidth required to have
good playback (264 Kbit/s)1, the audio codec (mp3) and video codec (h.263)
of the encoded content and set a QoS requirement on the corresponding ASMs.
These requirements are expressed as a lower bound value on the ASM bandwidth
and as a single value on the ASMs audio codec and video codec.

1 i.e., no jitters and buffer underruns.
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Table 1. Devices’ operating modes and platform constraints. Each device defines its
operating modes (a) by mapping them on SMWs’ ranges: DSP CLK (lower bound)
and BANDWIDTH (upper bound). The platform code defines some constraints (b) to
track dependencies between CPU CLK and DSP CLK.

(a) Operating Modes

SWM Audio DPS
PCM MP3 WMA OGG

DSP CLK 0 50 70 100

SWM Video DPS
OFF MPEG4 H.263 H.264

DSP CLK 0 40 60 100

SWM 3G Modem
GPRS EDGE1 UMTS EDGE2 HSDPA

BANDWIDTH 57.6 236.8 384 473.6 7200

(b) Constraints

Platform
CPU CLK DSP CLK

19.2 19.2
100.8 100.8
201.6 100.8
264.0 132.0
302.4 75.6
393.6 98.4
451.2 112.8

The assertion of these constraints invalidates the current FSCs. Thus, CPM co-
ordinates the selection of a new candidate FSC and the corresponding DWRs are
communicated to the modem and DSPs for a distributed agreement. The required
codecs are bound to a specific DSP CLK frequency: 50MHz for DSP A and 60MHz
for DSP V. The platform constraints (Fig. 1b) allow to manage the dependency
with the CPU CLK which is setup to support the desired frequency. Therefore the
CPU frequency optimization policy will be able to scale the processor frequency
according to the imposed constraint (not less than 100.8MHz). After the agree-
ment, the candidate FSC is activated and all involved subsystems will move to
the new working mode, e.g., the modem switches from GPRS to EDGE1.

The use-case continues and during the playback, it starts an application that
downloads data from the web, e.g., an email update application. This new down-
load application asserts a requirement on the bandwidth for an amount of 200
kb/s. Since the ASM bandwidth is of type additive, the aggregation function
takes into account all the previously asserted requirements and aggregates with
a sum. Thus, 464 kbit/s becomes the new active constraint on the bandwidth
and thus a new FSC is selected, which brings the modem device to move to the
EDGE2 working mode in order to satisfy the requirements.

Finally, the video stream playback ends and the corresponding requirements
on bandwidth and codecs are de-asserted. This leads to a new aggregation on the
bandwidth, which results in a subtraction of the value on the ASM bandwidth.
At this point only the download application is still active and a new FSC is
selected and activated.

4.3 Discussion on Use Case Results

System resources management. The declaration and aggregation of requirements
allows to keep a correct and precise view of used and still available system
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resources. This could be exploited to configure the hardware devices on the best
feasible operating mode that supports the resources demand. A positive effect of
this method is the energy saving that could be achieved by selecting, for each QoS
demand, the optimal working mode not only with respect to a multi-objective
performances optimization policy but also considering the system-wide power
consumption, which can be associated to every FSC.

Dependency tracking. CPM allows to track hardware dependencies among dif-
ferent subsystems of a SoC that may prevent a correct operation of a system.
Instead of patching each device driver to adapt to the platform, developers de-
clare platform DWRs to solve dependencies issues. In that way code portability
is improved.

Identification of Feasible System-wide Configurations. The automatic computa-
tion of the FSCs allows to identify all the feasible working points of an entire
platform. This is done by exploiting the information defined, independently, in
each device driver code. Other approaches to PM require to code all the working
points by hand. Considering that in the presented use case the total number
of FSCs was 415, we understand how interesting is the ability to automatically
compute these point. Thus, this is a relevant result by itself. Moreover, it im-
proves the portability of the solution across different platforms because allows
to reuse drivers defined informations.

Additive aggregation. This is a new concept, introduced in CPM, to solve a lim-
itation present in the implementation of QoSPM where even for resources that
are intrinsically additive (e.g., bandwidth) the aggregation function is of type
min/max: not allowing to keep a correct view of system resources and bring-
ing to select devices’ WMs that actually can’t support the QoS level required,
e.g., if two applications require 300 kb/s each, QoSPM aggregates with the max
thus with a final value of 300 Kb/s, i.e. an incorrect view of the resource’s
requirement.

5 Conclusions

We have presented CPM, Linux kernel framework for system-wide power and re-
sources’ optimization. The proposed method efficiently implements a well-known
formal technique to solve optimization problems. The cross-layer design of the
framework allows to collect and aggregate QoS requirements from the applica-
tion layer and to coordinate the reconfiguration of device drivers working mode.
A system-wide optimization, of both perceived performances and energy con-
sumption, is supported by the definition of a global dynamic and multi-objective
policy.

As revealed both theoretically and experimentally, the CPM approach allows
to capture energy savings while fulfilling QoS constraints, thanks to a system-
wide cross-layer dynamic optimization. Work is in progress, within a FP7 EU-
funded project, to extend the approach towards multi-core architectures.
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Abstract. This paper presents the use of decentralized self-organization con-
cepts for the efficient dynamic parameterization of hardware components and 
the autonomic distribution of tasks in a symmetrical multi-core processor  
system. Using results obtained with an autonomic system on chip simulation 
model, we show that Learning Classifier Tables, a simplified XCS-based  
reinforcement learning technique optimized for a low-overhead hardware im-
plementation and integration, achieves nearly optimal results for dynamic work-
load balancing during run time for a standard networking application at task 
level. Further investigations show the quantitative differences in optimization 
quality between scenarios when local and global system information is included 
in the classifier rules. Autonomic workload management or task repartitioning 
at run time relieves the software application developers from exploring this NP-
hard problem during design time, and is able to react to dynamic changes in the 
MP-SoC operating environment. 

1   Introduction 

1.1   Multi-core Processing 

Single-chip multi-processors became the mainstream architecture template for ad-
vanced microprocessor designs across a wide spectrum of application domains. Intel, 
the market leader for general purpose computing, abandoned its traditional strategy to 
primarily scale microprocessor performance through continued increase in core clock 
frequency and introduced parallel dual-, quad- and recently octal-core (Nehalem) 
Xeon processors [1] instead. In their research labs, Intel integrated the 80 core Tera-
Scale processor [2] with a 2D network on chip and sophisticated 3D memory stack 
access. SUN Niagara, ARM MPCore, IBM Cell Broadband Engine, Nvidia GeForce, 
the CSX700 from ClearSpeed, and the TILE64 from Tilera are other examples of a 
non-exhaustive list of massively parallel multi-core architectures for use in mobile 
communications, graphics processing, gaming, industrial automation and high-
performance scientific computing. While progress in deep sub-micron CMOS tech-
nology integration enabled the physical realization of this vast amount of nominal 
processing capacity on a single chip, the application programmer community – across 
all of the above mentioned systems – is minimally supported by tools and methods to 
efficiently exploit the available parallel resources [3]. We regard this circumstance a 
major challenge for a fast and efficient adoption of multi-core processors. 
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Fig. 1. Two-Layer ASoC Architecture 

One of the key difficulties in efficiently executing an application composed of mul-
tiple, parallelizable tasks is to find an appropriate task distribution across available 
processing resources. Various approaches have been proposed to aid the designer in 
accomplishing this at design time, such as [4] which advocates the use of neural net-
works and support vector machines to map parallel programs onto multiple cores. 
Other approaches perform such a mapping at run time, but do not make use of learn-
ing techniques to improve mapping performance based on past experiences [5]. Com-
bining the two, approaches such as [6] collect training data from function executions 
at run time, but perform any learning in additional design cycles offline. Numerous 
other publications propose similar solutions, however we are not aware of any  
existing approaches that make use of machine learning techniques to optimize task 
distribution in hardware at run time. In this paper we will therefore explore the appli-
cability of the autonomic system on chip paradigm (ASoC, presented in the following 
section) to autonomously and dynamically partition individual tasks of a SW applica-
tion among a set of homogenous processor cores at run time. Other optimization goals 
achievable using ASoC, such as reliability gain, power reduction or performance 
improvements, can then easily be included to fashion a complete reliable and efficient 
system on chip. 

1.2   Autonomic Systems on Chip 

The Autonomic System on Chip (ASoC) paradigm [7] proposes a two-layer architec-
ture as shown in Figure 1. The functional layer corresponds to an ordinary SoC com-
posed of various functional elements (FEs), such as CPU cores, bus interconnects, 
memory and I/O interfaces, etc. The autonomic layer contains a number of autonomic 
elements (AEs) used to optimize the corresponding FE’s performance, power con-
sumption and reliability. In order to achieve this, the AE monitors various aspects of 
the FE’s operation (e.g. utilization). The resulting monitor signals are passed to an 
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evaluator, which determines appropriate actions to be taken by an actuator (e.g. fre-
quency adjustment). Finally, each AE contains a communication interface to share 
data with other AEs on the autonomic layer. This allows the AE evaluator to take into 
account global information when deciding on an action to perform, which results in 
better global optimization as demonstrated in section 3. 

2   System Overview 

The application chosen for this paper is Internet Protocol (IP) packet forwarding for a 
variety of packet header and payload processing scenarios under variable traffic  
workloads. In addition to being a common operation performed by modern network 
processors, packet forwarding lends itself well to the demonstration of autonomic 
enhancements, since it is easy to influence the system’s workload by varying the 
incoming packet rate, type and size. In addition, since individual packets are relatively 
small and quick to process, a large number of packets can be processed in a relatively 
short amount of time. Not only does this reduce the required simulation time; it also 
allows for frequent changes in the system’s functional behavior to demonstrate the 
adaptivity and learning capabilities of the autonomic layer. 

From a more general perspective, IP packet forwarding is a representative example 
for a class of applications with the following properties: The application consists of a 
set of N tasks, T1 to TN, with every task having different processing requirements in 
terms of instructions per task (inst/Ti). Tasks can be traversed (partially) sequentially, 
conditionally or in iterative loops. The application is triggered by external events with 
varying parameter sets determining the system’s overall workload. Mapping N tasks 
to a set of M homogeneous processing elements P1 to PM with the objective to achieve 
equal workload distribution corresponds to a function partitioning problem of expo-
nential complexity, O(MN), which can’t be solved with exact methods (e.g. ILP) for 
real-world problem dimensions. Instead of applying conventional partitioning heuris-
tics (e.g. hierarchical clustering, Kernighan-Lin, simulated annealing or Tabu search) 
to explore limited partitioning alternatives during design-time, we propose adaptive 
run-time learning techniques to evaluate a much larger set of alternatives during run-
time and to thus approach a globally optimal solution. 

2.1   Functional Layer 

The simulated hardware system used throughout the remainder of this paper is de-
picted in Figure 2. The yellow (unfilled) shapes make up the functional layer, while 
the blue (gray) rectangles represent the autonomic layer’s evaluator. The evaluator 
consists of a Learning Classifier Table (LCT) [8] whose role is detailed in section 
2.3.3 below. The underlying functional layer is a fairly simple, bus-based MP-SoC. 
Packets arrive and are transmitted over an Ethernet MAC (bottom center), are stored 
in memory (bottom right), and are processed by one or more of the CPUs (top). An 
interrupt controller (bottom left) is responsible for triggering processing tasks in the 
CPUs. 

In simulation, the MAC actually functions as a packet generator, injecting different 
packet types and sizes into the system at varying rates. The memory is modeled  
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Fig. 2. Autonomic MP-SoC Network Processor Architecture 

 
abstractly using fixed access delays to improve simulation performance, and could 
correspond either to an internal memory or to a memory controller connected to an 
off-chip RAM. 

2.2   Application Software 

The main focus of this paper is on workload management, which becomes more com-
plex and “interesting” with an increasing number of processing tasks. In order to pre-
serve maximum flexibility and the ability to run the application on a generic MP-SoC 
platform (shown in Figure 2), as many packet processing functions as possible are 
implemented as software tasks that can be moved freely among the system’s CPUs. 
This also includes tasks such as transferring data between the MAC and memory, 
which alternatively could be accomplished easily – and perhaps more efficiently – by a 
dedicated hardware DMA controller. 

In our application, every packet passes through five stages of execution: 

Task 1: Transfer packet from MAC to memory 
Task 2: Determine type of processing to be done on present packet 
Task 3.1 through 3.N: Perform one of N packet header or payload processing tasks 
Task 4: Reorder packets for in-order transmission 
Task 5: Transfer packet from memory to MAC 

While Tasks 1, 2, 4 and 5 are identical for every packet, Task 3 can be different for 
different packet types. 

In principle, this task assembly allows for two orthogonal programming models on 
a generic hardware platform as introduced in Figure 2: Either balance incoming pack-
ets across all currently idle CPUs and execute all tasks for a packet on one and the 
same CPU (Run to Completion (RTC) model), or distribute the tasks among all CPUs 
and let each packet traverse the CPUs in a pipelined fashion (Pipelined model). Both 
models have unique characteristics, and both have advantages and disadvantages. 
RTC treats all cores as independent processing elements, thus eliminating the need for 



 Autonomic Workload Management for Multi-core Processor Systems 53 

complex task partitioning among cores. RTC is easily scalable, but relies on no packet 
data sharing being required, and that the nature of the application leans towards 
event / packet balancing. Pipelining requires equal workload sharing of tasks among 
processing elements in order to achieve optimized throughput and efficiency (avoid-
ing pipeline “bubbles”). On the positive side, the pipelining model is applicable to a 
larger class of parallel applications, achieves a smaller instruction footprint and sup-
ports local state and data caching. 

2.3   Autonomic Layer 

The autonomic layer used for this paper’s simulations contains an autonomic element 
for each of the system’s three CPUs. Autonomic elements for the bus, memory, MAC 
and interrupt controller are not included, as the CPUs are currently our primary target 
for optimization. However, AEs for the remaining functional elements are being con-
sidered for future development. 

Along with an LCT evaluator, the CPU AEs contain several monitors and actuators 
to interact with the associated CPU FE. Each of these will be discussed in more detail 
in the following sections. 

2.3.1   Monitors 
Two local monitors keep track of the current CPU frequency and utilization, and are 
multiplied together to produce a third monitor value – the CPU’s workload: 

 LoadCPU = UtilCPU · FreqCPU (1) 

Whereas the utilization indicates the percentage of cycles that the CPU is busy (i.e. is 
processing a packet rather than waiting in an idle loop), the workload indicates the 
actual amount of work that the CPU is performing per unit of time (useful cycles per 
second). Since the resulting value is helpful in comparing the amount of processing 
power being contributed by each CPU, it is shared with the other AEs over the AE 
interconnect. The workload information can then be averaged over all three CPUs, 
and by comparison with its own workload allows each CPU to determine whether it is 
performing more or less than its “fair share” of work. The difference between the 
CPU’s and the average workload therefore provides another useful monitor value. 

2.3.2   Actuators 
In order to allow the AE to effect changes in CPU operation, two actuators are pro-
vided. The first of these simply scales the frequency by a certain value. Note that this 
is a relative change in frequency, i.e. the new frequency value depends on the old, 
which makes it easier to provide classifier rules that cover a larger range of monitor 
inputs. For example, with relative rules it is possible to express the statement “when 
utilization is high increase the frequency” using a single classifier rule, which would 
not be possible with an absolute actuator that sets the frequency to a fixed value. 

The second actuator triggers a task migration from the AE’s CPU to one of the 
other CPUs. After migration of a task, any further interrupts to start the execution of 
that task will be serviced by the target CPU instead. If a task migration is triggered 
while the task is already running, execution of the task is completed first (non-
preemptive task migration). This minimizes the amount of state information that 
needs to be transferred from one core to another, reducing the performance impact of 
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migrating tasks. In the current implementation, the task to be migrated is chosen ran-
domly, as no monitoring is done to determine the workload of individual tasks, and 
therefore all tasks appear identical to the AE. The task is migrated to the CPU with 
the lowest workload. This targeting method requires no additional exchange of infor-
mation, since workload information is already shared over the AE interconnect to 
allow calculation of the system’s average workload. For simulations in which no 
global information is available, the target CPU is chosen randomly. 

2.3.3   Evaluator 
Choosing an appropriate action to be performed based on the incoming monitor  
signals is the responsibility of a learning classifier table (LCT) evaluator. LCT is a 
reinforcement based machine learning technique specifically designed for efficient 
integration in a HW system. LCT can be considered a “light-weight” XCS [9], the 
state of the art SW method for reinforcement learning classifier systems. LCT has 
previously been successfully applied for SoC robustness optimization under intermit-
tent IP component failures [8]. In the following we will describe the rules and objec-
tive function used by the LCT for the network processor system presented in this 
paper. 

Before a completed autonomic system can be deployed, an initial set of rules must 
be created and loaded into the system’s LCTs. This initial rule set should cover the 
full input range of the utilization, frequency and relative workload monitors described 
above, with each rule proposing either a task migration or an increase or decrease in 
frequency. Overlapping rules are expressly permitted, allowing the LCT to choose 
which rule to apply. By keeping track of how well a certain rule performs, and by 
updating the fitness of that rule accordingly, the LCT learns to use the rule that has 
previously shown the best results in a certain situation. 

Although the LCT can learn which rules are detrimental and can thereby avoid us-
ing them, it is preferable if the initial rule set has already undergone a filtering process 
to maximize the effectiveness of a newly deployed system. Figure 3 shows the gen-
eral method that was used to generate the initial rule set for this paper. A non-critical 
sample system is initialized with random rules, and subjected to various representa-
tive traffic scenarios that might be expected in the field. When the system stabilizes, 
indicating that beneficial rules can be distinguished from counterproductive ones by 
means of their fitness, the current rule sets are extracted and stored. Thereafter, the 
system is loaded with new random rules and the process is repeated. If the system 
does not stabilize within a certain amount of time, the system is reset without storing 
the rule tables. 

After a sufficient number of successful runs, the rules of all resulting rule sets are 
sorted by fitness, and a selection of the fittest rules is made for inclusion in the result-
ing rule set. This step is currently performed manually, but will eventually be auto-
mated with appropriate tools as part of our future work. The resulting rule set can then 
be used to replace the random initial rules and repeat the process. After one or more 
iterations of this process (just one was sufficient for generation of the initial rule set 
used by the simulations in section 3), the resulting rule set is ready for use as the ini-
tial rule set of the deployed system. 

Determining the fitness of a rule, both during the initialization phase described 
above and during regular MP-SoC operation, is accomplished through the use of an  
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Fig. 3. Generation of the initial rule set 
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objective function, which evaluates all available monitor signals to determine how 
well the system is currently functioning. First, a delta value is calculated for each 
monitor signal to indicate how close that signal is to its optimal value (low values are 
desirable): 

 frequencyfrequency ∝δ  (2) 

 ( )nutilizationutilizatio −∝ %100δ  (3) 

 averagelocalworkload workloadworkload −∝δ  (4) 

The function used for each of these values is determined by the designer, and ex-
presses the designer’s optimization goal. For this paper, we would like each CPU to 
have as low a frequency as possible, which keeps the power consumption of the sys-
tem low (voltage is automatically scaled in relation to the frequency). Likewise, we 
want the CPU utilization to be as high as possible, so that no processing cycles are 
wasted in an idle loop. Finally, the workload of all CPUs should be similar to avoid 
temperature hot spots and to ensure similar aging across all components. Depending 
on the available monitor signals and the designer’s optimization goals, other delta 
functions may be chosen. 

Combining the individual delta functions is accomplished by a simple weighting 
scheme, which yields the system’s objective function: 

 workloadnutilizatiofrequencyobjective wwwf δδδ ⋅+⋅+⋅= 321  (5) 

The weights can be chosen according to which optimization goal is most important; 
for this paper each delta function is weighted equally. 

Although the objective function provides a value indicating how well the system 
is performing at some instant in time, in order to determine the worth of a certain 
rule we need to calculate a reward R that compares the objective value sampled 
before and after the rule was applied. As shown in Figure 4, if the previous objec-
tive value OT-1 is larger than the new objective value OT, indicating that the system 
has gotten closer to its optimal state, a positive reward is chosen based on the mag-
nitude of the change. Otherwise, a negative reward is returned. This reward is then 
used to update the fitness of the applied rule, which allows the LCT to make use of 
past experience when determining which rule should be applied during similar 
situations in the future. 
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3   Simulation Results 

Given the network processor MP-SoC presented above, this section presents simula-
tion results that compare a classical system implementation with one enhanced by an 
autonomic layer. In order to show the adaptive nature of the autonomic system, vari-
ous types of packet bursts, each consisting of 1000 packets, are sent in alternating 
fashion to the input MAC for processing. The packet inter-arrival rate is fixed at 4 μs, 
resulting in a burst duration of 4 ms independent of the packet processing duration. 
For each of the incoming burst scenarios, the system must either adapt to meet the 
processing requirements, or maintain a sufficient reserve of processing power to be 
able to cope with even the largest and most processing intensive packets. 

All systems used below are based on a common base system configuration. The 
hardware components and their functionality, as well as the software tasks used for 
packet processing were described in sections 2.1 and 2.2, respectively. Unless stated 
otherwise, the initial task distribution is such that one CPU is responsible for ingress 
path processing (Tasks 1 and 2), one CPU is responsible for payload processing (Task 
3), and the third CPU is responsible for egress path processing (Tasks 4 and 5). The 
initial CPU frequencies are chosen such that the system would be able to handle all 
burst scenarios without requiring parameter adaptation. Those systems containing 
autonomic enhancements use the monitors, actuators and LCT evaluator presented in 
section 2.3. 

3.1   Comparison of Autonomic and Static Systems 

The simulation results shown in Figure 5 compare the objective value and frequency 
adjustment of four different system configurations. The first two systems are static 
without any autonomic enhancements, where the first corresponds to the base system 
configuration described above. In the second static system, both the task distribution 
and CPU frequency were hand optimized with prior knowledge of the incoming 
packet traffic. The results of this optimized system demonstrate how an ideally pa-
rameterized static system compares to a system with autonomic enhancements. 

The two autonomic systems are both based on the common system configuration, 
but are differentiated by the monitor signals available to them. While the second sys-
tem uses the AE interconnect to share workload information globally among the CPU 
AEs, the first autonomic system must base its optimization decisions solely on local 
monitor information. Both systems remain capable of migrating tasks, however. 

In comparison to a static system, the trend of the objective value clearly shows the 
benefits of an autonomic system regarding fulfillment of the objective function cho-
sen in section 2.3.3. The autonomic system with global information is able to main-
tain system operation within approximately 10% of the optimum for all incoming 
traffic scenarios. Although the hand optimized static system is able to top this for the 
fifth and most processing intensive traffic scenario, it is not able to maintain such a 
high level of optimization across all bursts. This is a direct consequence of the fact 
that a system optimized for one scenario is not necessarily optimized for other scenar-
ios. Whereas the designer must choose a certain scenario for which the static system  
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Fig. 5. Objective value and average CPU frequency of static and autonomic systems across 
various traffic scenarios. Lower values are better. 

is optimized during design time, the autonomic system can optimize itself during run 
time to whatever scenario it is confronted with. Not only does this provide decent 
optimization for a much larger set of foreseeable and unforeseeable scenarios, it also 
relieves the designer of having to optimize all aspects of the system at design time. 

Examining the trend of the average CPU frequency confirms the problem that a 
static system must meet the worst case processing requirements in order to remain 
functional over all workload scenarios, thereby wasting processing power during 
periods of lower activity. Except for processing of the most workload intensive fifth 
burst, the autonomic system is able to achieve an equal or lower average CPU fre-
quency than the hand optimized system. The benefits of global information also be-
come visible here, as the locally optimized system is not able to share the workload 
across the CPUs as effectively, requiring an increased average CPU frequency to meet 
the processing requirements. 
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Fig. 6. Objective value and average CPU frequency of dynamic and autonomic systems across 
various traffic scenarios. Lower values are better. 

3.2   Comparison of Autonomic and DVFS Systems 

Figure 6 compares the globally optimized autonomic system presented in the previous 
section with two systems that employ dynamic voltage and frequency scaling 
(DVFS). DVFS allows the non-autonomic system to adjust its operating frequency in 
a fashion similar to the autonomic frequency actuator. The pipelined dynamic system 
corresponds to a DVFS-enhanced version of the hand-optimized static system from 
section 3.1. The dynamic run-to-completion system combines all tasks necessary for 
the processing of a packet onto a single CPU, allowing each of the system’s three 
CPUs to completely process any packet type. 

Looking at the objective function at the top of Figure 6, it can be seen that the auto-
nomic system achieves results quite similar to those of the dynamic run-to-completion 
system. The difference in objective and frequency values for the first burst is due to 
the fact that only two CPUs are utilized by the run-to-completion system, since the 
processing time of the incoming packets is less than twice the interarrival rate. The 
first CPU has therefore completed processing before the third packet arrives, which 
means that at least one CPU is idle at any point in time. This results in two CPUs 
performing all the work, and keeps their workload high enough that the DVFS con-
troller does not further reduce their frequency. Since the minimum frequency of a 
CPU in these simulations is 50 MHz, even for one that is idle, this results in a  
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Fig. 7. Packet latency across various traffic scenarios 

system-wide average frequency which is larger than that of the pipelined and auto-
nomic systems, which split the load across all three CPUs. This also increases the 
delta value for workload (recall equation 4 from section 2.3.3) of the run-to-
completion system, which further worsens the system’s objective value. 

Figure 7 shows the impact that the autonomic enhancements have on the packet la-
tency, a global system behavior of which the autonomic evaluator is neither aware, 
nor has a direct influence over. At the beginning of each burst, the packet latency of 
the autonomic system shows a brief increase as the system adapts itself to the change 
in workload. Thereafter, the autonomic enhancements optimize the system such that 
the packet latency remains nearly constant at 10 µs across all traffic scenarios. During 
the sixth burst, where the packet latency rises slightly above this value, the autonomic 
system continues to search for a more preferable system configuration, but is inter-
rupted prior to finding one by the following burst. 

4   Conclusion and Future Work 

In this paper, we have demonstrated the applicability of self-organization concepts 
and HW-based machine learning techniques for the run-time binding of SW tasks to 
homogeneous multi-core processors. SW application developers can follow estab-
lished design flows for functional partitioning of applications into sub-functions 
(tasks) without being forced to consider the underlying parallel MP-SoC HW archi-
tecture. LCT-based hardware evaluators take care of balancing CPU workloads 
among available processing resources, without requiring a special programming lan-
guage or fundamental OS modifications. It has been shown that the autonomic system 
is capable of parameterizing a pipelined architecture so that it performs similarly to a 
comparable, DVFS-enabled run to completion architecture. The resulting system 
combines the benefits of both architecture types, while delegating solution of the 
disadvantages, most notably the difficulty of efficiently distributing the workload of a 
pipelined system, to the autonomic layer. 

Further work is planned for the completion of an FPGA hardware prototype to ver-
ify the presented simulation results in a functional MP-SoC, and to show that resource 
overheads are as small as preliminary synthesis results seem to indicate. We also plan 
to fully investigate the stability of the resulting system, although our simulations so 
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far have shown that with a reasonable initial rule set, optimization generally occurs 
only for a short period following a change in workload, after which the system behav-
ior enters a stable state. Finally, in addition to the autonomic elements connected to 
the CPU cores, further AEs are planned for the bus, memory and I/O modules. This 
will enable the parameterization of all system components, and provide additional 
global monitor signals to allow an even better optimization of the autonomic system. 
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Abstract. In this paper we introduce and elaborate a biologically inspired 
methodology for robot walking gait pattern self-synchronization using ORCA 
(Organic Robot Control Architecture). The firefly based pulse coupled biologi-
cal oscillator concept has been successfully applied for achieving self-organized 
synchronization of walking robot gait patterns by dynamically prolonging and 
shortening of robot’s legs stance and swing phases. The results from the ex-
periments done on our hexapod robot demonstrator show the practical useful-
ness of this biologically inspired approach for run-time self-synchronizing of 
walking robot gait pattern parameters.  

Keywords: self-synchronization, organic robot control architecture, dynami-
cally prolongation and shortening of robot’s walking gait patterns, emergent  
robot gait synchronization, firefly synchronization, decentralized robot control 
architecture, robot gait pattern self-synchronization. 

1   Introduction 

The increasing complexity of technical and robotic systems and complicated robotic 
systems modeling [1] [2] has introduced a need for development and applying new 
concepts and methodologies towards creating self-capable, more robust and depend-
able systems. To achieve this, engineers have used different biologically and organi-
cally inspired approaches [3][4]. For example for the domain of joint leg walking 
robots some of the algorithms for motor control and walking gait pattern generations 
have been inspired and developed on observations seen within animals [5] and func-
tioning of the neural circuitry [6]. In that context research has been done on Central 
Pattern Generators (CPG) - related to nerve cells in animal’s spinal cord dedicated for 
generating periodic leg movement in animals and their application for robot control 
[7] [8] [9]. Additionally to this research various combinations have been also experi-
mented on using artificial neural networks and genetic algorithms for robot gait pat-
tern generation and gait control [10] [11] [12] [13]. However, just predefining some 
robot leg movements or generating gait patterns is sometimes not adequate for robust  
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Fig. 1. ORCA - Organic Robotic Control Architecture 

and fault-tolerant robot operation and it is usually an exhausting task on analyzing all 
the situations the robot may operate in. Self-organizing robotic systems on the other 
hand would overcome such problems by dynamically adapting to the situation without 
any complete pre-defining and modeling of the robotic system. 

We have done research on combining our ORCA - Organic Robotic Control Archi-
tecture (Fig. 1) [14] with organically inspired approaches in order to achieve a self-
organizing walking robotic system. ORCA architecture is modular architecture that 
consists of several OCU (Organic Control Unit) and BCU (Basic Control Unit)  
elements. The OCUs are related to monitoring tasks and observing the correct func-
tioning of BCUs. BCUs are related to tasks such as: motor control, sensors, leg gait 
generation, etc. 

The system is said to be self-organizing when the overall behavior of the system is 
a result of emergence, and not of a pre-ordained design [15]. The emergent property 
[16] [17] [18] of the systems arises as a result of simple local interactions of the com-
ponents of the system and it cannot be anticipated even from complete information 
about the individual components constituting the system.      

One type of emergence is synchrony, which is a collective organized behavior that 
occurs in populations of coupled oscillators [19]. Synchrony can be also observed in 
nature within fireflies and their flashing [20] [21].  

In this paper we present the results of investigations done on applying biologically 
inspired synchronization for achieving self-synchronization for gait pattern parame-
ters by joint-leg walking robots using the distributed and fault-tolerant robot control 
architecture - ORCA. 

The rest of the paper is organized as follows: In the second chapter we give a short 
overview on firefly-based synchronization as biological inspiration for our concept. 
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In the third chapter we introduce our robot demonstrator on which we conduct the 
experiments and we present how the ORCA architecture is mapped to the morphology 
of the six-legged robot OSCAR in this self-synchronizing approach. In the fourth 
chapter we describe in detail our concept for self-synchronization of robot gait pat-
terns. In the fifth chapter we present the results from real experiments done on our 
hexapod robot. 

2   Firefly Flashing Synchronization 

Firefly flashing is an example of synchronization seen in nature.  Neuropsychological 
studies of the mechanism of flashing within fireflies [22] [23] has shown that rhyth-
mic flashing of the male fireflies is controlled by a neural timing mechanism in the 
brain that gives a constant frequency of the flashing. Several studies [24] [25] have 
shown that external light, such as the light from other neighboring fireflies has an 
effect on firefly’s flashing rhythm. In [26] [27] [28] results from experiments were 
presented that suggest that the external flash signal received from another firefly re-
sets the flash-timing oscillator in the brain and therefore provides mechanism for 
synchronization of fireflies flashing.  

In general, when one firefly sees the flashing of another neighboring firefly it shifts 
its rhythm of flashing in order to get in synchrony with another firefly’s flashing. As a 
result a synchrony in firefly flashing takes place.  

Such ideas of biologically inspired synchrony have been practically applied in en-
gineering domains and mostly for achieving self-organized synchronization in net-
works [29] [30] [31]. For the domain of robotics, research has been conducted on 
synchronizing the behavior of robots in multi-robotic systems [32]. On the other hand, 
we are here interested on applying the firefly biologically inspired synchronization 
within one single robotic system – our hexapod walking robot.  

The idea behind this is that we consider the robot’s legs as individual units that can 
interact like fireflies and synchronize their gait patterns.   

3   Robot Demonstrator - OSCAR (Organic Self Configuring and 
Adapting Robot)  

We have conducted the experiments for firefly inspired gait pattern self-
synchronisation on our 18 DOF, hexapod robot OSCAR (Organic Self Configuring 
and Adapting Robot) [33] [34] shown in Fig. 2 (a). The robot has six legs, with three 
servos per leg - named as alpha, beta and gamma (see Fig. 2), feet sensors, onboard 
control hardware and other sensors like ultrasonic, infrared, etc. Depending on their 
spatial location on the leg, the servos on the robot’s legs are related to: protraction and 
retraction; elevation and depression; extension and flexion. In Fig. 2 (b), swing and 
stance phases of the robot’s leg and their trajectories are presented.  The swing and 
stance movements of the legs are essential for the robot movement. In the swing 
phase, the leg is moving from the posterior extreme position (PEP) to anterior ex-
treme position (AEP) – shown in the same figure. In the stance phase, the leg is mov-
ing from AEP to PEP, which produces thrust that moves the robot over the ground.  
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      (a)     (b) 

Fig. 2. (a) Hexapod robot OSCAR (Organic Self Configuring and Adapting Robot); (b) Robot’s 
leg swing and stance phases and their trajectories 

The swing and stance phases are characterized with the length of their respective 
trajectories. The lengths of swing and stance trajectories have direct influence on the 
speed with which the robot is moving over the terrain. The longer the trajectories of 
swing and stance, the bigger the distance travelled by the leg on the ground.  

The tripod walking gait is the fastest and commonly observed gait by insect walk-
ing and lately transferred to robot walking, where in every moment of time three legs 
are in swing phase and the other three are in stance phase. This is shown in Fig. 3 
(a).The legs of our hexapod robot and their numbering are shown on the robot model 
in Fig. 3 (b). 

    
        (a)                 (b) 

Fig. 3. (a) Tripod gait pattern; (b) Model of hexapod robot OSCAR with legs numeration. The 
arrow is showing the front direction of the robot. 

Our firefly synchronization approach has also been designed to be used for robot 
walking using the ORCA architecture and emergent gait patterns (decentralized robot 
control). Each leg consists of an OCU (Organic Control Unit) which performs moni-
toring of the BCU (Basic Control Unit) actions. The BCUs are related to generating 
gait patterns, controlling of leg servo joint movements, etc. They send feedback  
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signals to an OCU which monitors the ‘health’ status of the leg. The BCU related to 
leg gait generation sends synchronization signals to other BCUs of other neighbouring 
legs. This is represented in Fig. 4. The self-synchronization achieved by this is ex-
plained in the next section. 

Therefore, besides the possibility for gait pattern generation in an emergent way 
[33], also the synchronization of walking gait patterns is achieved in a decentralized 
and self-organizing way. Such a decentralized leg control architecture is very impor-
tant for developing fault-tolerant robotic systems.  

 

Fig. 4. Decentralized robot leg control architecture for gait pattern self-synchronization  

4   Walking Robot Gait Pattern Self-synchronization Inspired by 
Firefly Flashing Synchronization 

The idea behind the synchronization of the gait patterns is that sometimes the gait 
pattern of the robot can change while the robot is walking. This may happen for ex-
ample when the emergent walking pattern is used for the robot’s walking and some 
situations appear like: the leg is approaching some rock and some sensor (ultrasonic, 
infrared, etc.) related to the leg’s movement “informs” the leg that it should change 
the length of its stance/swing phase in order to overcome the obstacle. In that case the 
other legs have to synchronize their stance/swing phase as well. A similar situation 
may occur when perhaps the servo related for protraction of the leg gets somehow  
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blocked and it can only move within a very limited range. In that case the other legs 
within the robot should also synchronize the length of their stance/swing phases. 

The self-synchronization that we are introducing in this paper is inspired by firefly 
synchronization seen in nature, i.e. when one firefly sees the flashing of another 
neighbor firefly it shifts its rhythm of flashing in order to get in synchrony with an-
other firefly’s flashing. In our robot this would be translated to when one leg changes 
(by shortening or prolonging) its own gait, then the other neighboring legs adapt to 
this change by shortening or prolonging of their own gait as well. One more rule that 
we add to this is that the prolongation takes place only in their stance phase of the leg 
and the shortening of the gait takes place only in the swing phase of the leg.   

As result, the walking gait of each of the robot’s legs adapts to the change of walk-
ing gait of the neighboring legs, and by that the synchronization of walking gait pat-
terns is achieved without using global coordination for the change of the gait pattern 
by each of the robot’s legs. 

The principle of functioning of this concept is shown in Fig. 5. There are two col-
umns: “Synchro By Prolongation” and “Synchro By Shortening” describing the con-
cept of self-synchronization when the length of the stance phase is prolonging or 
when the length of the swing phase is shortening. Each of the columns has a, b, c, d 
figure subparts, where it is shown how the synchronization of the gait patterns takes 
place by each of the legs. The lines at the legs show if the leg is in a stance phase – 
with “U” shaped line, or is in a swing phase - “∩” shape. The number of dots on the 
line represents the duration of the stance or swing phases. For example 3 dots will 
represent 3 length units of the swing and stance phase. The length units by the real 
robot movement can be translated into degrees of the movement of the leg. For  
example length of 3 units may represent 30 degrees of protraction leg movement, or 
similar. 

For describing our concept we assume that all the legs at start have the same swing 
and stance parameters, i.e. 3 length units. In Fig. 5 in column “Synchro By Prolonga-
tion” - subfigure (a) the leg number 3 prolongs its stance phase from 3 length units to 
4 length units. In subfigure (b) that follows in the same column, using the firefly in-
spired synchronization the neighbor legs numbered 2 and 4 in their stance phase syn-
chronize their gait length from 3 length units to the length of the gait of leg 3 i.e. 4 
length units. In subfigure (c) in the same column, the synchronization wave spreads 
further to the other neighbor legs numbered 1 and 5 which also synchronize in their 
stance phase their length from 3 length units to 4 length units. In subfigure (d) in the 
same column, the leg numbered 0 in its stance phase synchronizes its length parame-
ter from 3 length units to 4 length units. With this step, the self-synchronization of the 
walking gait pattern is finished and the robot continues to walk further with all legs 
having gait 4 length units resulting in a greater speed of the robot over the ground.  In 
Fig. 5 in column “Synchro By Shortening” a self-synchronization of the gait pattern is 
shown when the legs are shortening the length of the gait within their swing phases. 
In subfigure (a) in the same column, the leg number 2 decreases its gait length in the 
swing phase from 3 length units to 2 length units. In the subfigure (b) in the same 
column the next cycle is represented where the other neighbor legs numbered as 1 and 
3 are decreasing their gait lengths in their swing phases from 3 length units to 2 length 
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units. In subfigure (c) in the same column, the legs numbered 0 and 4 are the next 
ones that are shortening their gait length from 3 length units to 2 length units. At the 
end also the leg numbered 5 is getting in synchronization and shortens its gait length 
from 3 length units to 2 length units. This is represented in subsection (d) of the same 
column. With this ends the self-synchronization of the gait pattern by the robot’s legs 
and the robot continues to walk with slower pace due to the decreased length of the 
swing and stance phases. The synchronization time depends on the final gait length 
units to which the legs synchronize their swing and stance phases. And the stability of 
the whole synchronization process depends on how often such synchronization gets 
started by some external influences in some rather short time domain. 

 

Fig. 5. Self-synchronization by shortening and prolongation of walking gait patterns 

5   Results from the Experiments  

In order to prove our biologically inspired concept for self-synchronization of robot’s 
legs gait parameters we have conducted several experiments on our hexapod robot 
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demonstrator OSCAR - Fig. 2 (a). The results from experiments are represented in 
Fig. 6 (a, b, c). In figures Fig. 6 (a), (b), (c), the x-axis represents the time in seconds 
and the y-axis represents the swing / stance phases by the robot’s legs. )SW-swing 
phase; ST-stance phase.) 

Normally we perform our experiments on our hexapod robot using emergent gait 
patterns generated in a distributed manner by each of the robot’s legs mapped suitably 
into the ORCA architecture. However, in these experiments we have chosen to use the 
insect-inspired tripod gait walking pattern [35] [36] (which can be simulated with 
centralized robot control) just to better represent the results of our experiments done 
on self-synchronization. In this case swing/stance phases by robot’s legs can be easily 
distinguished on the figure resulting from experiments, in contrast to emergent type of 
walking where the gait pattern often changes and therefore might obscure the idea of 
this research. Another factor that has been brought in the experiments is that the start 
of the synchronization is not done by some external influence, but this start has been 
pre-programmed so the experiments can be focused on principle of the synchroniza-
tion process itself.  

The experiments were defined as following: 
Fig.6 (a): The first experiment is about self-synchronization by prolongation of the 

robot’s swing and stance phases. The robot starts to walk with a parameter length of 1 
for the swing and stance phases. At first this parameter gets changed by the leg num-
ber 3 at time 23s during its stance phase. Then in the next cycle the neighboring legs 2 
and 4 in the stance phase prolong their length parameters during their stance phases at 
time 28s. After this, at time 33s, the legs numbered 1 and 5 also synchronize their 
swing and stance length units to 2 in their stance phases. At time 38s also the leg 
numbered 0 synchronizes its length of swing and stance to 2 length units. In a similar 
fashion the self-synchronization and prolongation of stance and swing phases is fur-
ther done for each of the legs prolonging from 2 length units to 3 length units. At the 
end a gait pattern gets self-synchronized with length units 3 for the swing and stance 
phases. 

Fig.6 (b): In the second experiment a shortening of the gait pattern takes place 
from 5 length units to 3 length units over the course of the experiment. The robot 
starts to walk with length parameter of 5 for swing and stance phases. At first at a 
time 17s the leg number 2 decreases its swing phase the swing / stance parameter 
from 5 length units to 4 length units. After that, in the second cycle the legs numbered 
1 and 3 at time 22s in their swing phases decrease their stance / swing parameters to 
length of 4 units. Then follows the synchronization by legs numbered 0 and 4 at time 
27s in their swing phases and they synchronize their length parameters to length of 4 
units. At time 32s also leg number 5 synchronizes its stance / swing length parameter 
to length of 4. In similar fashion the self-synchronization also continues for stance / 
swing lengths up to 87s of time when all the legs have the length of the stance / swing 
parameter of 3. 

Fig.6 (c): In this experiment we have performed dynamic self-synchronization of 
the robot walking gait pattern starting from stance / swing parameter length of 1 then 
increasing to parameter length of 3 and then decreasing again to stance / swing pa-
rameter length of 1. The first change of the parameter occurs by the leg number 5  
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(a) 

 
(b) 

 
(c) 

Fig. 6. (a) Self-synchronization by prolongation of the robot’s swing and stance phases; (b) 
Self-synchronization by shortening of the robot’s swing and stance phases; (c) Self-
synchronization by prolongation and shortening of the robot’s swing and stance phases 



70 B. Jakimovski, B. Meyer, and E. Maehle 

within its stance phase at time 20s. After this cycle, the next parameter change occurs 
by neighboring legs 0 and 4 in their stance phases at about 30s increasing from length 
parameter of 1 to length parameter of 2. In the next cycle the legs numbered 1 and 3 
in their stance phases get synchronized to parameter length of 2 at about 35s. The 
synchronization continues within the leg number 2 which adjusts its parameter from 
length 1 to length 2 at 40s. In similar fashion the self-synchronization continues in the 
same experiment also for prolongation of the stance / swing phases from length pa-
rameter 2 to length parameter 3 for each of the legs. At time 95s all the legs are in 
synchronization having the stance / swing length parameter of 3.   

Similar to the prolongation, the shortening of stance / swing parameters in the same 
experiment takes further place and the length parameters by all the legs get shortened 
from length 3 to length 1 within their swing phases. With this last experiment we have 
demonstrated that also dynamic self-synchronization by increasing and decreasing of 
the gait parameters can be performed one after another during the walking of the 
robot. 

6   Conclusion 

In this paper we have introduced a biologically inspired approach for gait patterns 
self-synchronization by joint leg walking robots. Throughout the paper we have de-
scribed the relation to the firefly synchronization and by schematic representation of 
the self-synchronization by prolongation and shortening we have explained the prin-
ciples of this concept.  

The results for experiments done on our hexapod robot OSCAR have proved that 
this approach can be practically applied for achieving a self-synchronization of the 
walking robot gait patterns using a decentralized robot control architecture. Such a 
concept can be also very useful for gait generation and speed adaptation for fault-
tolerant walking machines where legs sometimes get malfunctioned during the robot’s 
operation.  

Further work will include conducting more real case experiments in order to test 
the adaptability and robustness of the proposed methodology. Additional investiga-
tions will be also done on improving the information flow in such a decentralized 
robot control architecture. 
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Abstract. This paper describes a job distribution system which focuses on  
standard desktop worker nodes in inhomogeneous and unreliable environments. 
The system is suited for general purpose usage and supports both batch jobs and 
object-oriented interactive applications using standard Internet technologies. 
Advanced scheduling methods minimize the total execution time and improve 
execution efficiency, specialized to deal with unreliable failing worker nodes. 
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1   Introduction  

During the last 15 years, Personal Computers (PCs) spread more and more. Being 
irreplaceable in office and university service, they are also widely used in home areas. 
Today, a standard PC is equipped with a multi-core multi-GHz CPU and at least 2–4 
MB of main memory. When used for its common dedication – office applications, 
email or web surfing – this power remains unused, because the box nearly all the time 
waits for user input. 

In the course of the ubiquitous Internet almost every PC is connected to, many 
projects were built to utilize this idle time, BOINC [1] or zetaGrid [2], for example. 
To build up a local area desktop grid, there exist systems like Condor [3] or Alchemi 
[4] sometimes using flexible algorithms to distribute individual applications to a pool 
or desktop PCs. But they are not necessarily suitable to utilize the idle time of normal 
Internet-connected PCs, and, in general, not programming language independent. 

The idea of JoSchKa (Job Scheduling Karlsruhe) [5] is to distribute the jobs in a 
request/response way: A central managing server has knowledge of about all jobs, 
while small autonomous background applications running on the worker-PCs query 
for them, similar to the tuple-spaces in [6]. When asked for a job, the server uses 
sophisticated (and in the scope of public resource/desktop computing unique) me-
thods to select one suitable job matching the agent’s characteristics, and responds to 
the agent what has to be done. The agent then has to download all specified files, 
execute the given command and transfer all result files back to the server (Fig. 1). 
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Fig. 1. JoSchKa principle 

Typical features of JoSchKa are fully autonomous agents running on heterogene-
ous worker nodes and the support for any programming language (it has to be execut-
able on the worker node, of course). The management communication and even the 
file transfer rely on HTTP only, there is no common file system. So the nodes can be 
run behind firewalls and NAT routers without problems. To support the users, there 
are both a graphical user interface for batch job upload and management, and a mod-
ern object-oriented API to develop interactive parallel applications. 

In the following chapter, the server and its two mainly used distribution methods 
are described briefly. In the next sections, the agent and the user interface are de-
scribed shortly, followed by its relation to organic computing and some practical 
experiences. The paper finishes with an outlook related to cloud computing. 

2   Server 

The server is the central component in the JoSchKa system. It has to deal with the up-
/download of files, the management of the jobs and the decision, which one to select 
for a node if the agent running on this node polls for a job. 

The file transfer interfaces used by the agents are standard HTTP-based interfaces, 
the ones for the user are SMB-based, due to convenient drag and drop file transfer. 
The most complex interface is the interface used to exchange management and con-
trol data, perform job queries, upload job description and so on. This interface is a 
SOAP-based webservice [7] using HTTP as transfer protocol. 

The agents on the nodes address the SOAP-interface only. So they can be run be-
hind firewalls and NAT routers. As a result, the server is not able to distribute the jobs 
or send other management data to the agents using a pushing-style but it has to react 
on queries by the agents and send commands as a response to these queries. If the 
server wants to tell something to an agent (“execute this job:…”), it has to wait for 
the agent performing a request for exactly this information (“job available?”). If an 
agent queries for a job, the server first creates a candidate list containing all jobs 
which are able to be run on the node. To this, the server performs some checks with 
every job in the database (the server manages a record of 22 values per job; the de-
tailed description of the data model is omitted here): 
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• Do the platform specifications of the job and the agent match (operation sys-
tem or memory requirements, for example)? 

• Does the type of the job match with the type queried by the agent? 

• All specified source files are physically available for download? 

• If the job has predecessors defined, are they all finished? 

If all tests evaluate to true, the job is added to a candidate list from which the sche-
duler has to select one single job. But before describing the selection process, it is 
necessary to explain why it is even a problem to select a suitable job and why not 
just selecting any job. Many publications (like [8, 9]) are dealing with intelligent 
scheduling algorithms, but they all are running on a reliable cluster or a super com-
puter and generally have full knowledge about the nodes and the jobs’ runtime re-
quirements. None of the common desktop job distribution systems like BOINC, 
Condor or Alchemi try to observe the nodes and to exploit this additional know-
ledge, especially to improve the total system performance. Here, we have to distri-
bute jobs to heterogeneous, unpredictably failing nodes. So other methods are 
needed, especially a monitoring of the nodes is essential. These methods are  
described in the following sections. 

2.1   Fault Tolerance 

When using a dedicated cluster, one can be sure that every node executes its jobs 
without failing before the current running job is finished. But when the nodes are part 
of an unsecure pool or if they are used as standard desktop computers we have to face 
with failures and unfinished jobs, because users normally shut down or reboot the 
PCs. So there are some mechanisms integrated to counteract this problem: 

• The upload of intermediary results from the agent to the server and 

• a heartbeat signal from the agent to the server. 

The user has to activate the intermediary upload explicitly. If active, the agent uploads 
all new or changed result files in periodic intervals. So one can decide if a job has to 
be stopped or – in case of a node failure – started again. But this decision hast to be 
made by the user and of course depends on the characteristics of the problem the jobs 
are working on. If the user does not block a failed job explicitly, the server starts it 
again after a certain time period. For every job, the server manages an internal coun-
ter, which is periodically decreased by 1. Every time the agent which executes the job 
sends the periodic heartbeat signal, the counter is set back to its maximum value. If 
the node with the agent shuts down, the heartbeat for this job will be missing and the 
counter reaches zero. Then the server creates a new ID for the job and marks it avail-
able for a new run. Due to programming mistakes or other software errors it may 
happen that jobs fail even on reliable nodes. A special mechanism takes care of res-
tarting only for a finite number of times. Jobs which are failing too often are blocked 
automatically by the server until the user fixes the problem and removes the lock 
manually. The acceptable number of failures until auto-blocking can be changed by 
the user. 



76 M. Bonn and H. Schmeck 

2.2   Node Monitoring 

A central assumption during the design of JoSchKa was the heterogeneity of the 
nodes. They not only differ with respect to their hard- and software configuration, but 
also in their reliability characteristics. Some nodes process every job successfully but 
others break down in an unpredictable manner. They may also change their reliability 
or switch from unreliable to robust and vice versa. Imagine a PC in a student pool, 
which runs nonstop for many hours in the night, but gets rebooted very often at day-
time, when students use this PC. 

To assess the behavior of the nodes a monitoring component was developed. The 
goal is to reach the ability to predict the behavior of the node in the near future [5]. 
Amongst others, the following values are monitored and calculated for each node, 
respectively: 

ܤ ,The relative CPU power of the node compared to the others :ܤ • א Թ. 

ܷݒܽ ,The average uptime in wall clock minutes :ܷݒܽ • א Գ. 

• ܷܽܿ: The current uptime in wall clock minutes, ܷܽܿ א Գ. 

• ܴ: A synthetic reliability index of the node, ܴ א ሾ−1,1ሿ. 
In the following, let ܣܹܧሺݒ௡, … ,  ଵሻ be the exponential weighted average, whichݒ
processes the single input values ݒ௜ considering their age. It is defined recursively: ܣܹܧሺݒ௡, … , ଵሻݒ = ෤௡ݒ = ௡ݒߙ ൅ ሺ1 − ߙ ෤௡ିଵ withݒሻߙ א ሾ0,1ሿ and ݒ෤ଵ =  ௜ areݒ ଵ. Theݒ
sorted by age, ݒ௡ is the youngest. More formally, the values for a single node ݅ א ሼ1, … , ݈ሽ are calculated as follows: 

௜ܤ • = ∑ ௥஻ೕ೗ೕసభ௟ڄ௥஻೔ , where ܤݎ௜  denotes the time span (in wall clock milliseconds) the 

node needs to process a fixed arithmetic-logical benchmark. This benchmark is 
done by the node in periodic intervals. 

ݒܽ • ௜ܷ = ,௧ೠݑ൫ܣܹܧ … ,  .௨ uptimesݐ ௝ are the nodes’ lastݑ ଵ൯, where theݑ

• ܽܿ ௜ܷ = ௡ܶ௢௪ − ௜ܶ , where  ௡ܶ௢௪ denotes the current wall clock time and ௜ܶ  de-
notes the starting wall clock time of the node. 

• ܴ௜ = ,௧ೝݎ൫ܣܹܧ . . ,  ௥ݐ ௝ are reliability criteria for the lastݎ ଵ൯, where theݎ
processed jobs. If a job is done successfully, then ݎ௝ = 1, if failed ݎ௝ = −1. 

In practice, we chose ݐ௨ = ௥ݐ = 10 and ߙ = 0.25. These data which are collected by 
the server for each single node can be summarized as follows: For each node, we now 
know, 

• how fast it can work compared to all other nodes (ܤ), 

• how long it is available (on average) before it breaks down (ܷܽݒ), 

• how long it is up since its last boot (ܷܽܿ) and 

• how reliable it behaved when processing the last jobs (ܴ). 

This knowledge is used by the different distribution strategies, which are described in 
the following section. 
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2.3   Basic Job Distribution Strategies 

As pointed out, the JoSchKa system is not designed for specialized clusters (although 
it can be run there too, of course), but to distribute jobs within a pool of strongly vary-
ing nodes. The nodes differ in performance but mainly they differ in their reliability. 
It is possible that a node works perfectly reliably for many days, but gets suddenly 
rebooted repeatedly and unpredictably. Then, long running jobs can’t be processed 
any more on such a node. On the other hand, it would be a waste of valuable uptime, 
if a reliable node just processes jobs which are finished after a few minutes. So, if the 
distribution system disposes of many jobs which belong to many different users, it’s 
obvious to distribute the jobs in an intelligent way. The goal is to minimize the break-
down-caused waste of processing time and to be concerned with fairness to the users, 
too. No user should feel disadvantaged. 

At first, we describe the basic distribution strategies, in the following section (si-
mulation) they are evaluated. JoSchKa uses various (combined) strategies, for lack of 
space we only show two of them here: The simplest algorithm and the one which 
normally is used in practice. 

(a) Balanced (fair) distribution: Every user gets the same share of nodes to process 
his jobs. 

(b) Uptime-based distribution: The decision, which job is selected for a polling 
agent is based on the agent’s uptime behavior. 

Normally, the scheduler does not differentiate between individual users, but single 
JobTypes. A job type is a user-defined subset of his jobs. So the different needs of 
an individual user who has his jobs grouped to probably more than one job type can 
be satisfied much better. If the number of known agents is less than the number of 
types, the scheduler does differentiate only the users, the different job types of the 
same user are aggregated to guarantee a fair distribution. In the following it is as-
sumed that the system has knowledge of about ݈ nodes and ݊ jobs to be processed. 
The jobs belong to ݉ individual types or users, respectively. Let ݈, ݊, ݉ א Գ and ݉ ൑ ݊. Furthermore 

݅ ,௜ܬ • א ሼ1, … , ݊ሽ denotes job ݅, 
ܬ • ௞ܶ, ݇ א ሼ1, … , ݉ሽ denotes job type ݇ (or user ݇, if ݈ ൏ ݉), 

• ݆ܶ: ሼ1, … , ݊ሽ ՜ ሼ1, … , ݉ሽ with ݆ܶሺ݅ሻ = ݇ denotes the type index of job ݅ and 

ݒܽ • ௞ܶ  denotes the (exponentially weighted) average runtime of the finished jobs 
belonging to type ܬ ௞ܶ, measured in wall clock minutes. 

Balanced Distribution 
Let ݊ܩܰܫܭܴܱܹݎ௞ א Գ be the number of jobs of type ܬ ௞ܶ, which are running when a 
node asks for a job. The scheduler selects the job ݅ which is minimizing ݊ܩܰܫܭܴܱܹݎ௝்ሺ௜ሻ. In other words, a node always gets a job of the type with the least 
jobs running. 

As a result, at any time every type/user gets the same number of nodes to work for 
it/him. This fairness only shifts when a user has not enough unprocessed jobs to keep 
the balance. 
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Uptime-based Distribution 
As the name of this strategy suggests, this selection algorithm mainly considers the 
uptime values of the nodes. In practice, a typical node is available for a certain time 
period, but then it gets shut down with increasing probability. This proceeds every 
day in the same (or similar) manner. The values ܽݒ ௜ܷ  and ܽܿ ௜ܷ, which are deter-
mined for each node ݅ help to predict how long an asking node will still be availa-
ble. From these values, a further value, ܽܶܧܩܴܣܶݒ, is calculated. The closer the 
current uptime gets to the average uptime, the shorter are the jobs which have to be 
selected. If the node’s uptime exceeds its average uptime, the scheduler little by 
little selects longer-running jobs, depending on the node’s total reliability. To ac-
count for the possible different CPU performances among the nodes, the relative 
benchmark index is finally integrated to scale the average runtime. In other words, ܽܶܧܩܴܣܶݒ estimates how long the average runtime ܽݒ ௞ܶ of a job type ݇ maximal-
ly should be, to get a job of this type successfully done by the considered node 
before it becomes unavailable. ܽܶܧܩܴܣܶݒԢ = ൜ ݒܽ| ௜ܷ − ܽܿ ௜ܷ|, ܽܿ ௜ܷ ൑ ݒܽ ௜ܷሺܴ௜ ൅ 1ሻ ڄ |ܽܿ ௜ܷ − ݒܽ ௜ܷ|, ܽܿ ௜ܷ ൐ ݒܽ ௜ܷ with ܴ௜ א ሾ−1,1ሿ ܽܶܧܩܴܣܶݒ = Ԣܶܧܩܴܣܶݒܽ ڄ ௜ܤ  
To estimate, which job type has to be selected, the average type runtimes are sorted 
(having ܽݒ ௜ܶ ൏ ݒܽ  ௝ܶ , ݅ ൏ ݆) and the corresponding mean values are calculated: ܽܯܶݒ௞ = ଵଶሺܽݒ ௞ܶ ൅ ݒܽ ௞ܶାଵሻ 

Finally, the ultimate run length target value ܴܸܶܮ is calculated: ܴܸܶܮ = Ԣܸܶܮܴ ൅ Ԣܸܶܮܴ ሺ−2,2ሻ   where݀݊ݎ = ൜ ,כܶݒܽ ܶܧܩܴܣܶݒܽ| − |כܶݒܽ ൏ ܶܧܩܴܣܶݒܽ| − ,כܯܶݒܽ|כܯܶݒܽ ܶܧܩܴܣܶݒܽ| − |כܶݒܽ ൒ ܶܧܩܴܣܶݒܽ| − |כܯܶݒܽ with |ܽܶܧܩܴܣܶݒ − |כܶݒܽ = min௞ିଵ ܶܧܩܴܣܶݒܽ| − ݒܽ ௞ܶ|    and |ܽܶܧܩܴܣܶݒ − |כܯܶݒܽ = min௞ ܶܧܩܴܣܶݒܽ| −  |௞ܯܶݒܽ
In other words, from the total set of average job type runtimes and their pair-wise 
mean values the single value ܴܸܶܮԢ is selected which is closest to the previous calcu-
lated ideal value ܽܶܧܩܴܣܶݒ. Then the individual job ܬ௜ is selected and delivered 
which minimizes หܴܸܶܮ − ݒܽ ௝்ܶሺ௜ሻห. For clarity, the whole strategy is explained by an 
example now. We assume jobs of four types/users ܬ ଵܶ, … , ܬ ସܶ being in the data base. 
We also assume the following average runtimes (in minutes): ܽݒ ଵܶ = 10, ݒܽ ଶܶ = 60, ݒܽ ଷܶ = 180, ݒܽ ସܶ = 200 

Furthermore, the following monitoring values of an asking node are assumed to be 
estimated so far: ܷܽݒ = 240, ܷܽܿ = 220, ܤ = 2, ܴ = 0 
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This results in ܽܶܧܩܴܣܶݒ = ሺ240 − 220ሻ ڄ 2 = 40. The average job runtime closest 
to this value is ܽݒ ଶܶ = 60, the closest mean value is ܽܯܶݒଵ = భమሺܽݒ ଵܶ ൅ ݒܽ ଶܶሻ = 35. 
So we get ܴܸܶܮԢ = 35. Because of ܴܸܶܮ = Ԣܸܶܮܴ ൅ rndሺ−2,2ሻ, the node gets a job 
of the (randomly chosen) type ܬ ଵܶ or ܬ ଶܶ. Fig. 2 explains the example. 

 

Fig. 2. Uptime-based distribution example 

Due to the usage of the mean values and the randomization, the system performs a 
stochastic selection between the two best suited job types, if the ideal target value ܽܶܧܩܴܣܶݒ resides in the mean of two neighbored job types. The example shows 
also, why the largest average runtime (ܽݒ ௠ܶ, in the example ܽݒ ସܶ) is excluded 
when calculating ܴܸܶܮ. Otherwise, the nodes with the largest remaining uptime 
would work for the user with the longest running jobs only. In other words, a node 
gets  

• a job of type ܬ ௞ܶ if ܽܶܧܩܴܣܶݒ lies in the interval ܫ௞ or 

• a job of type ܬ ௞ܶ or ܬ ௞ܶାଵ (selected randomly), if ܽܶܧܩܴܣܶݒ lies in the inter-
val ܫ௞,௞ାଵ. 

The interval bounds for the example above are graphically shown in Fig. 3. In gener-
al, the intervals are described as follows (݉ types, ݇ א ሼ1, … , ݉ − 1ሽ): 

௞ܫ • = ൣభమሺܽܯܶݒ௞ିଵ ൅ ݒܽ ௞ܶሻ, భమሺܽݒ ௞ܶ ൅ ଵܫ ௞ሻ൧, whereܯܶݒܽ = ቂ0, ଵଶሺܽݒ ଵܶ ൅  ଵሻቃܯܶݒܽ
௞,௞ାଵܫ • = ൣభమሺܽݒ ௞ܶ ൅ ,௞ሻܯܶݒܽ భమሺܽܯܶݒ௞ ൅ ݒܽ ௞ܶାଵሻ൧, where ܫ௠ିଵ,௠ = ቂଵଶሺܽݒ ௠ܶିଵ ൅ ,௠ିଵሻܯܶݒܽ ∞ቂ 

 

Fig. 3. Interval bounds example 
 

1ܶݒ3ܽܶݒ4ܽܶݒܽ 2ܶݒܽ xܶݒܽ x x
1ܯܶݒܽ 2ܯܶݒܽ 3ܯܶݒܽ

ܶܧܩܴܣܶݒܽ ܷݒܽ| = − ܽ ܷܿ| ∙ 2 ܷܽܿ ܷݒܽ|ܷݒܽ − ܽ ܷܿ|

ܸܶܮܴ

1ܶݒ3ܽܶݒ4ܽܶݒܽ 2ܶݒܽ xܶݒܽ x x
1ܯܶݒܽ 2ܯܶݒܽ 3ܯܶݒܽ

1ܫ 1,2ܫ 2ܫ 2,3ܫ 3ܫ 3,4ܫ
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2.4   Simulation 

To test the strategies, a simulator was developed. It allows seeing how the system 
would behave in a specific job and node situation. Every simulated node has to be 
parameterized in XML: 

 which the node estimates in the beginning (see ܤݎ The bench value :ݎ݁ݓ݋݌ •
2.2) and sends to the server. 

 The number of simulation steps the node is capable to :2݌݂݋ݎ݁ݖ ,1݌݂݋ݎ݁ݖ •
work without failure. 

-Within this time span the failure probability increases linear :2݌݂ܿ݊݅ ,1݌݂ܿ݊݅ •
ly (after the period of working reliable). 

• ݂݈ܽ݅1, ݂݈ܽ݅2: The maximum probability (which is finally reached after the in-
creasing period) for this node to fail during every simulation step. 

 .The number of nodes which are parameterized in this manner :ݐ݊ܿ •

First, all nodes are simulated using the parameters 1݌݂ܿ݊݅ ,1݌݂݋ݎ݁ݖ ,ݎ݁ݓ݋݌ and ݂݈ܽ݅1. After the first third of the simulation is done, all nodes switch to the second 
parameter set (2݌݂ܿ݊݅ ,2݌݂݋ݎ݁ݖ ,ݎ݁ݓ݋݌ and ݂݈ܽ݅). Hence, it is possible to check the 
behavior of the scheduling algorithm in case of a change in the reliability characteris-
tics of a node. For clarity, the simulated characteristic is explained by an example: 
 

 <clients>   
  <client cnt="5" power="4000" 
   zerofp1="60" incfp1="40" fail1="3" 
   zerofp2="20" incfp2="90" fail2="1"/> 
  … 
 </clients> 

 

Fig. 4. Reliability behavior example 

The five such configured nodes would perform as if they had done the initial 
benchmark in 4000 milliseconds. After startup, they would work 60 steps without 
failure and then, within a period of 40 steps, fail with increasing probability per step, 
up to a maximum value of 3% per step. After failing, the period would start again 
from the beginning with 60 new reliable steps. After the first third of the total simula-
tion, the nodes would switch to the second parameter set (20, 90, 1). 

Every simulated job type (݆݁݌ݕݐܾ݋) can be parameterized by the number of its jobs 
 of a job belonging to this type (if running (݊݋݅ݐܽݎݑܾ݀݋݆) the average duration ,(ݐ݊ܿ)
on a node with ݎ݁ݓ݋݌ = 5000) and the number of simulation steps (ݏ݌݁ݐݏ) the simu-
lator has to execute after adding these jobs: 
 

݂݈ܽ݅ = 3%
݌݂ܿ݊݅ ݌݂݋ݎ݁ݖ40 = = 60 ݐ
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 <simulation> 
   <step cnt="4000" jobtype="job_10" jobduration="10" steps="0"/> 
  <step cnt="800" jobtype="job_50" jobduration="50" steps="0"/> 
  <step cnt="200" jobtype="job_200" jobduration="200" steps="0"/> 
  <step cnt="100" jobtype="job_400" jobduration="400" steps="5990"/> 
 </simulation> 

 

Out of the many simulated configurations, the one shown above indicates perfectly 
(Fig. 5, Fig. 6), what one could achieve by using intelligent distribution strategies: 
Even in difficult situations (in practice, the real future behavior of the nodes and the 
real future runtimes of the jobs are fully unknown in principle!) the so called makes-
pan is improved. The makespan describes the overall time needed to process all avail-
able jobs. We simulated a very heterogeneous set of 120 nodes (to save space, their 
XML specification is omitted here). 

The following diagrams show for each job type the amount of jobs which are done 
at a specific simulation step. Every type produces a total workload of ݆݊݋݅ݐܽݎݑܾ݀݋ ݐ݊ܿڄ = 40000 steps, so in an ideal distribution case all types should reach the 100%-
line at the same time. This would state that every user gets the same amount of (suc-
cessfully used) computing power. 

 

Fig. 5. Balanced and uptime-based distribution, no redundancy 

Fig. 5 compares the balanced and the uptime-based distribution. Using the uptime-
based strategy, the makespan improves significantly. It also explains how the uptime-
distribution achieves this improvement: the short jobs are used to fill the remaining 
uptimes until the expected failure of the nodes. 

But the diagrams also show a problem which typically occurs, when the system has 
to distribute long running jobs only. Then, they are processed by the not well-suited 
nodes, too. As the number of available jobs drops further, it could happen that reliable 
nodes will not get a job because all jobs are already running (maybe on the unreliable 
nodes). This is caused by the fact the server always delivers a job, independent on the 
polling node’s quality. To guarantee the execution of the jobs by the reliable nodes, 
an additional, strategy-independent, redundant job execution was implemented: When 
an agent asks for a job and no free jobs are available, the server delivers one which is 
already running. 
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Fig. 6. Balanced and uptime-based distribution with redundancy 

Fig. 6 shows the improvement achieved by the redundant delivery. The balanced 
strategy gains a large makespan improvement. The uptime-based mode improves  
too, but less significantly, because it finishes the long running jobs earlier, even with-
out redundant delivery. So the negative effect mentioned above does not occur as 
strongly. 

In practical scenarios, a mixture of the balanced and the uptime-based strategies, 
controlled by a parameter ݂݈ܽ݅݁ݒ݈݁ݎ א ሾ0,1ሿ, is used: 

(1) As necessary for the balanced strategy, for each job type ܬ ௞ܶ, ݊ܩܰܫܭܴܱܹݎ௞ ܬ Գ (the number of running jobs ofא ௞ܶ) is estimated. 

(2) If min௞ ௞ܩܰܫܭܴܱܹݎ݊ max௞ ௞ܩܰܫܭܴܱܹݎ݊ ൏ ⁄݈݁ݒ݈݁ݎ݂݅ܽ , the balanced strat-
egy is used. 

(3) Otherwise, the scheduler selects the best uptime-based job. 

So the degree of balance/fairness is configurable and normally set to 0.1–0.3. 

3   Agent and Usage 

Initially, this section describes the autonomous component of the system, the agent 
which runs on the worker nodes, and then gives a short overview of the graphical tool 
needed by the user to manage his jobs. 

3.1   Agent 

The agent is the component that is running on the worker nodes. It requires no user-
interaction and behaves totally autonomously, so it can be started as a background 
service, optionally with an integrated auto-updating mechanism, and performs the 
following tasks: 

(1) Initially, it has to determine the local system parameters that are essential for job 
selection and execution. These are the installed memory, the CPU architecture 
(x86/x64), the availability of some runtime environments (.NET, Mono, Java, 
Python, Perl, GAMS), and the operating system (Windows or Unix-like). 

(2) It starts the working loop with a query to the server for a job. If the server re-
sponds with a job description, the agent downloads the specified files. 
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(3) The agent starts the job with low operating system priority and waits for its 
completion. During the execution, it periodically contacts the server to submit a 
“heartbeat”. Standard and error out are redirected, if desired by the user. 

(4) When the job has finished with no error, all result files and the standard/error out 
data are uploaded to the server. 

(5) If all files are transferred successfully, a final commit is sent to the server. Then, 
and only then, the job is accepted as successfully done and the agent proceeds by 
sending the next job query to the server (step (2)). 

3.2   Parallelization and Management Tool 

It is very easy for a developer to distribute concurrent jobs using JoSchKa. When 
using the batch system, the application has to be split in single pieces; each of them 
must (formally) be described by: 

• a set of input files ܫ = ሼ݅ଵ, … , ݅௡ሽ, 

• a command (or script) ܥ to be executed on the worker node and 

• a set of output files ܱ = ሼ݋ଵ, … ,  ௠ሽ which are produced by the command or݋
the script respectively. 

If a problem is decomposable to such units ܬ = ሺܫ, ,ܥ ܱሻ, and ܥ is executable on the 
worker nodes, it can be distributed and run as batch jobs by the described system. 

A user, who wants to create a more interactive parallel application, create jobs pro-
grammatically and react directly on their results, can use the JoSchKa thread API for 
.NET to create a parallel program. With this API it is possible to dynamically upload 
program code to the server, start threads executing this code and query their results. 
So, developing a distributed program is similar to the development of a multi-
threaded local application. 

Due to the lack of space, more details about the API and the graphical management 
tool are omitted, we just give a simplified API class diagram (Fig. 7) and a screenshot  
 

 

Fig. 7. The JoSchKa thread API classes 
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Fig. 8. Job management tool 

of the frontend showing the state of the submitted jobs, their execution status and a 
context menu providing some management functions (Fig. 8). For more information, 
please refer to [5]. 

4   Relation to Organic Computing 

Organic Computing (OC) [10] focuses on self-organizing systems adapting robustly 
to dynamically changing environments without losing control. It proposes a generic 
observer/controller architecture, which allows self-organization but enables reactions 
to control the overall behavior to the (technical) system [11]. We have both a system 
under observation and control (SuOC), and observing and controlling components, 
which are available for monitoring and influencing the system. The observer has to 
measure, quantify and predict further behavior of the monitored entities. The aggre-
gated values are reported to the controller, who executes appropriate actions to influ-
ence the system. The overall goal is to meet the user’s requirements. The user himself 
can influence the system by manual changing the objective function or by directly 
accessing the observed/controlled entities (Fig. 9). 

The described situation of computational jobs, heterogeneous unreliable job ex-
ecuting worker nodes and a distribution system like JoSchKa is a perfect example for 
such an organic system. The user-given job data and the worker nodes represent the 
system under observation and control. In an autonomous way, they execute the jobs, 
while failing and rebooting in an uncontrollable way. 
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The monitoring compo-
nent of the JoSchKa 
tem has the role of an 
observer while the job 
selection component 
(scheduler) behaves as an 
OC controller. It does not 
control the nodes directly, 
of course, but with its 
intelligent job assignment 
(based on the observer’s 
measured values and pre-
dicted node-behavior) it 
helps achieving all users’ 
goals: The completion of 
all jobs (i. e. the produc-
tion of result files) as fast 

and early as possible. The users can influence the system by manually blocking or 
deleting their jobs using the management GUI; but normally they do not have to, 
because the nodes and the distribution system act fully autonomous. 

5   Practical Experiences and Outlook 

Since 2006, JoSchKa runs on PCs of a computer pool of the Faculty of Economics 
and Business Engineering of the Karlsruhe Institute of Technology (KIT) and on 
some other small pools, completed by a few servers. The pool PCs are standard Win-
dows or Linux desktops, equipped with 3 GHz CPUs and 1–2 GB of memory. Since 
then, the nodes finished about 250 000 jobs, mainly belonging to naturally inspired 
optimizing algorithms and organic computing simulations [12]. The students working 
interactively on the desktop did not notice the permanent load. As showed in [5], the 
execution time of standard desktop applications does not slow down when running a 
CPU-intensive background task with lowest process priority. 

The students and the scientific staff of our faculty benefit well by JoSchKa: Stu-
dents normally write their optimizing programs in Java on a Windows platform, as 
they learned it during their education. But the Unix-based HPC or Grid platforms of 
the computing centre require C/C++ or – even worse – Fortran, so the usage of them 
is quite difficult, especially at the end of a students’ thesis work, when time runs out. 
The convenient handling of JoSchKa gave them the possibility to run the simulations 
concurrently on multiple worker nodes, even when a distributed execution was initial-
ly not intended. 

Due to the raising availability and usage of cloud computing [13] providers (Ama-
zon EC2/S3, Google AppEngine or Microsoft Azure, e. g.), it’s imaginable to extend 
JoSchKa for cloud usage in the near future. If a user needs unsatisfiable computing 
resources, it should be possible to dynamically create them by using a virtual infra-
structure as provided by a cloud service. The system tries to estimate how many new 
machines are necessary and how they have to be equipped (hard- and software), and 

SuOC
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system status
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(Node Monitor)
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organic system
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Fig. 9. The generic O/C architecture
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tells the user the price for these virtual machines. If he agrees, the virtual machines 
are cloned from templates; configured according the user’s needs, and started to ex-
ecute the agents. So JoSchKa would not only react on the dynamic behavior of fixed 
machines, but also would extend/reduce them dynamically (and thus acting as a real 
intervening organic controller), if needed. 

References 

[1] Anderson, D.: BOINC: A System for Public Resource Computing and Storage. In: 5th 
IEEE/ACM International Workshop on Grid Computing, Pittsburg, PA, pp. 365–372 
(2004) 

[2] Wedeniwski, S.: ZetaGrid – Computations connected with the Verification of the Rie-
mann Hypothesis. In: Foundations of Computational Mathematics Conference, Minneso-
ta, USA, August 2002 (2008) 

[3] Litzkow, M., Livny, M., Mutka, M.: Condor – a Hunter of idle Workstations. In: 8th In-
ternational Conference on Distributed Computing Systems, pp. 104–111 (1988) 

[4] Luther, A., Buyya, R., Ranjan, R., Venugopal, S.: Peer-to-Peer Grid Computing and 
a.NET-based Alchemi Framework. In: Guo, L.Y. (ed.) High Performance Computing: Pa-
radigm and Infrastructure. Wiley Press, New Jersey (2005) 

[5] Bonn, M.: JoSchKa: Jobverteilung in heterogenen und unzuverlässigen Umgebungen. 
Dissertation an der Universität Karlsruhe (TH), Universitätsverlag Karlsruhe (2008) 

[6] Gelernter, D.: Generative Communication in Linda. ACM Transactions on Programming 
Languages and Systems 7(1), 80–112 (1985) 

[7] Dostal, W., Jeckle, M., Melzer, I., Zengler, B.: Service-orientierte Architekturen mit Web 
Services. Spektrum Akademischer Verlag (2005) 

[8] Tsafrir, D., Etison, Y., Feitelson, D.: Backfilling using System-generated Predictions ra-
ther than User Runtime Estimates. IEEE Transactions on Parallel and Distributed Sys-
tems 18(6), 789–803 (2007) 

[9] He, Y., Hsu, W., Leiserson, C.E.: Provably efficient two-level adaptive Scheduling. In: 
Frachtenberg, E., Schwiegelshohn, U. (Hrsg.) JSSPP 2006. LNCS, vol. 4376, pp. 1–32. 
Springer, Heidelberg (2007) 

[10] DFG Priority Program 1183 Organic Computing (2005),  
  http://www.organic-computing.de/SPP (visited September 2009)  

[11] Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic 
observer/controller architecture for Organic Computing. In: Christian Hochberger and 
Rüdiger Liskowsky, INFORMATIK 2006 – Informatik für Menschen! GI-Edition –  
Lecture Notes in Informatics (LNI), vol. P-93, pp. 112–119. Bonner Köllen Verlag (2006) 

[12] Richter, U., Mnif, M.: Learning to control the emergent Behaviour of a multi-agent Sys-
tem. In: Proceedings of the 2008 Workshop on Adaptive Learning Agents and Multi-
Agent Systems at AAMAS 2008 (2008) 

[13] Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing: Web-basierte dynamische  
IT-Services. Auflage, vol. 1. Springer, Berlin (2009) 

 



On Deadlocks and Fairness

in Self-organizing Resource-Flow Systems�
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Abstract. Systems in which individual units concurrently process indi-
visible resources are inherently prone to starvation and deadlocks. This
paper describes a fair scheduling mechanism for self-organizing resource-
flow systems that prevents starvation as well as a distributed deadlock
avoidance algorithm. The algorithm leverages implicit local knowledge
about the system’s structure and uses a simple coordination mechanism
to detect loops in the resource-flow. The knowledge about the loops that
have been detected is then incorporated into the scheduling mechanism.
Limitations of the approach are presented along with extension to the
basic mechanism to deal with them.

1 Introduction

In a resource-flow system agents handle resources by receiving them from another
agent, processing them and handing them over to another agent. An instance of
this are flexible manufacturing systems. If agents can only process one resource
at a time and there are no buffers available, such systems are prone to deadlocks.
If the agents are arranged in a way that an agent can receive a resource it had
already processed before, the resource has been processed by agents arranged
in a loop. This loop can fill up with resources, in a way that the agent can not
give its currently held resource to another agent and can thus not accept a new
resource. Such a situation is depicted in Fig. 1.

This paper introduces a deadlock avoidance mechanism that leverages the
implicit knowledge available to the agents in self-organizing resource-flow sys-
tems modelled with the Organic Design Pattern (ODP) [16] and incorporates
the mechanism into a fair scheduler for this system class. The local knowledge of
the agents along with the structure that is given by the definition of the resource
flow allows the algorithm to be efficient both in terms of messages sent and in
computational time required while effectively avoiding deadlocks and preventing
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Fig. 1. A situation prone to deadlocks induced by cyclic resource processing

starvation without the need to globally analyse the system or trace the state of
all agents during runtime.

The paper is structured as follows: Sect. 2 defines the terms associated with
deadlocks and introduces how deadlocks can be dealt with. Sect. 3 shows how
liveness hazards are dealt with in literature and Sect. 4 describes the system
class the proposed approach is applicable to. Sect. 5 then introduces a fair role-
selection algorithm that is extended with a deadlock avoidance mechanism in
Sect. 6. Limitations of this mechanism and ways to overcome them are outlined
in Sect. 7 and Sect. 8 concludes the paper.

2 Background and Definitions

There are a number of different liveness hazards that can occur in concurrent
systems. The definitions of these hazards often vary a great deal between different
authors and domains. Therefore, the following brief definitions introduce the
terms as they are used in this paper.

Deadlocks. A deadlock is a situation wherein two or more competing actions
are waiting for the other to finish, and thus neither ever does. Coffman et
al. [10] give four conditions that must hold for a deadlock to occur:
1. “Mutual exclusion” i.e., agents claim exclusive control of the resource

they require;
2. “No preemption” i.e., resources cannot be forcibly removed from the

agents holding them until processing of the resources is completed;
3. “Wait for condition” i.e., Agents hold resources allocated to them, while

waiting for additional ones;
4. “Circular wait” i.e., a circular claim of agents exists, such that each agent

holds one or more resources that need to be given to another agent in
the claim.

Livelock. A liveness failure is referred to as a livelock when an agent although
not blocked cannot proceed further and keeps retrying. As an example con-
sider two mobile agent’s who obstruct each others paths. Both decide to give
way to the other at the same time and move to the right leading again to
an obstruction. Now both decide at the same time to move to the left and
the process keeps repeating leading to no agent moving forward. Another
example is the ’after you after you’ politeness protocol.
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Starvation. Starvation occurs when an agent is continuously denied access to
a resource. Bustard et al. illustrate the starvation problem using the dining
philosophers problem in the field of autonomic computing [8]. It can also be
characterized as a special case of livelock [21].

Fairness. Fairness in its most general definition guarantees that a process will
eventually be given enough resources to allow it to terminate [26]. This
is usually achieved by implementing a scheduling mechanism. Especially in
distributed systems that share resources, the ability to terminate may depend
on other components or on interacting with them. Fairness is classified into
weak and strong fairness where weak fairness implies that a component will
eventually proceed if it can almost always proceed and strong fairness implies
that a component which can proceed infinitely often does proceed infinitely
often [11].

There are three different ways on how potential deadlocks can be dealt with.
Their applicability depends on the structure of the systems under consideration
and the assumptions that can be made about them.

Deadlock Prevention prohibits circular waits among agents while the system
is not running. The strength of the approach is also its greatest weakness:
a prevention mechanism requires global knowledge of the system and all its
reachable states which often yields a straightforward often-simple control
law but acquiring this knowledge can be difficult and computationally in-
tractable. Additionally, limiting concurrency to prevent any deadlock state
from occurring can be overly conservative, potentially leading to low utiliza-
tion of system resources.

Deadlock Avoidance suitable governs the resource flow to prevent circular
waits. This is a dynamic approach that can utilize the knowledge of the cur-
rent allocation of resources and the future behaviour of processes to control
the release and acquisition of resources. The main characteristic of deadlock
avoidance strategies is that they work during runtime and base their deci-
sions on information about the resource and agent status. More precisely, a
deadlock controller inhibits or enables events involving resource acquisition
or release by using look-ahead procedures.

Deadlock Detection and Resolution monitors the agents and/or the flow of
resources and detects deadlocks at runtime. Resources can then be removed
from the system or put into buffers to resolve the deadlock. This strategy can
in general allow higher resource utilization than that prevention or avoidance
methods can offer. However, it should only be used when deadlock is rare
and detection and recovery are not expensive and much faster than deadlock
generation.

3 Related Work

Deadlocks have been dealt with in several domains that are concerned with
software-systems, e.g. deadlocks which are inherent in databases that use locking
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mechanisms [5] and involve detecting cycles in the wait-for graphs when the
dependency relations between agents are known locally by using serialization
techniques or resource allocation logic in operating systems [10]. However, the
primary realm of related work that is relevant for the self-organizing resource-
flow systems considered in this paper stems from the domain of manufacturing
control and Flexible Manufacturing Systems (FMS). For an overview of such
approaches, see, [14].

Several proposed Deadlock Prevention strategies are based on the use of
transition systems, mostly Petri nets. [19] provides a mechanism to generate an
automated supervisor to check for deadlocks in the given Petri nets and hence
prevent them from occurring. A survey of techniques using Petri nets has been
made by Zhi Wu Li et al. [23] with respect to AGV (Automated Guided Vehicle)
systems in manufacturing. Siphon based policies are shown to achieve a good
balance of the best of all properties of the Petri net based methods [18]. However
all these techniques rely on known interactions between the agents (mostly the
AGVs in the referred cases) and restrict transitions to states that could lead to a
deadlock based on a universal control policy generated during Petri net analysis.

The methods discussed above all require a global view of the system, offline
computation or computation during the design phase. The deadlock prevention
approach establishes the control policy in a static way, so that, once established,
it is guaranteed that the system cannot reach a deadlock situation if the system is
not changed [13]. Serial execution of the processes on the resource like scheduling
in the case of software processes or threads involves assumptions or knowledge of
the time of execution which might not be available. The computations required
can become infeasible for large scale systems.

Deadlock Avoidance mechanisms using Petri nets [33,17] restrict the max-
imal number of parts that can be routed into the system. The Petri nets are
either constructed upfront or constructed dynamically which involves a com-
munication overhead. A Petri net allows to check at each state whether the
next state would lead to a deadlock or not. This analysis can be used to obtain
suitable constraint policies for the system [3,33]; a similar mechanism has also
been utilized for deadlocks in software programs [30] using supervisory control of
Petri nets. A resource-allocation graph can be used to construct a local graph to
check for deadlocks based on a global classification of agents into deadlock risk
and deadlock free agents and combines the restrictions of deadlock prevention
with the flexibility of deadlock avoidance [34]. [6] also uses a resource-allocation
graph in which resource allocation and release is modelled by the insertion and
deletion of edges. Deadlock avoidance is achieved by prohibiting actions that
would lead to the insertion of an edge that would make the graph cyclic. If the
components of a system know the nature of all the jobs they will be performing
and all the components they will be communicating with in advance, deadlocks
can be avoided in a distributed fashion [27].

Deadlock Detection and Resolution [28] often involves construction of a
wait-for graph [7]. A wait-for graph is a graph to track which other agent an agent
is currently blocking on. Maintaining such a global picture or agent state involves
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a lot of communication overhead while locally distributed deadlock detection
schemes like Goldman’s Algorithm [15] pass information locally to agents in the
form of tables or other data sets. Ashfield et al. [2] provide dedicated agents
for deadlock initiation, detection and resolution in a system with mobile agents.
Deadlock Recovery Mechanisms using buffers [32] or rollback propagation [31]
have been proposed.

Livelocks are closely related to deadlocks [1] but have not been dealt with
as rigorously as deadlocks have been. A combination of different formal methods
is used in [9] to check a system for livelock freedom at design time. Similarly,
[20] introduces a type system that can be used to prove that processes and their
communication are deadlock- and livelock-free.

In [22], the author examines different characterizations of fairness in trace-
based systems and explores the practical usefulness of generalized fairness prop-
erties. [4] introduces least fairness, a property that is sufficient to show freedom
of starvation as well as the concept of conspiracy that describes how concurrent
processes interact to induce starvation. Parametric fairness, a fairness measure
based on a probabilistic model is used in [29] to show that most executions of
concurrent programs are fair. Markov Models are used to study unfairness and
starvation in CSMA/CA protocols [12].

4 Self-organising Resource-Flow Systems

In order to analyse, specify, model, and construct self-organising resource-flow sys-
tems, the Organic Design Pattern (ODP) has been developed [16]. It describes
self-organizing systems in terms of agents that process resources by applying ca-
pabilities according to roles. Roles are data structures that contain a precondition,
a list of capabilities to apply and a postcondition ODP is part of a methodology
that contains a design guideline, the pattern description with its static and dy-
namic parts as well as methods and tools for formally verifying properties of sys-
tems modelled with ODP. In the following, only the relevant parts of the pattern
will be described. More information can be found in the cited resources.

4.1 Set-Based Description of ODP

An ODP system consists – among other things – of a set agents of the agents
in the system, a set capabilities which is the set of all capabilities in the system
and a set roles which denotes the set of all possible roles in the system. An agent
ag ∈ agents consists of two sets of agents (inputag and outputag), the former
one defining the agents from which ag may accept resources and the latter one
to which ag may give resources, as well as a set capag of capabilities the agent
can apply and a set rolesag which determine the function of the agent in the
system. A condition c is an element of the set conditions, containing an agent to
exchange a resource with, a sequence of capabilities1 that have been applied to a
1 In this definition, capabilities is treated as an alphabet whose symbols can form

words which describe the state, task and capabilities to apply to a resource.
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resource and a sequence of capabilities that have to be applied to an agent (also
called the task to be performed on the resource). A role r ∈ roles is composed
of a precondition that describes where a resource comes from, its state and task
when it is accepted by the agent, a sequence of capabilities to apply on the
resource, and a postcondition that describes to which agent the resource has to
be given and its state and task after processing.

ODP systems are reconfigured by changing the allocation of roles to agents.
Whenever an agent can not fulfil its capabilities any more or is no longer avail-
able, a new allocation of roles to the agents is calculated (e.g. by employing con-
straint satisfaction techniques [25]) and the newly calculated roles are adopted
by the agents. This ensures that as long as all the capabilities that are required
to process resources are still available in the system, a valid configuration can
be found.

The role that has been applied to process a resource by agent agproc is also
used to determine which agent agnext it has to be given to. agproc sends agnext a
message informing it of the intent to transfer a resource. The message contains
information about the resources status that can be used by the agnext to deter-
mine the role whose precondition fits the resource status and the sending agent.
The role that has been derived is then stored in a map in which the agproc is
the key and the role is the value. The set of values in this map is used at a later
point to select the next role to be executed by agnext. Sect. 6.2 describes the
message reception and role selection process formally.

4.2 Liveness in Self-organising Resource-Flow Systems

Preventing starvation of an agent is straight-forward: it has to be ensured that
the resource the agent holds is eventually taken by another agent. This can be
ensured by a role-selection mechanism that will eventually select each applicable
role. Dealing with deadlocks, however, is a more complicated matter.

Systems with a flow of physical resources are prone to deadlocks whenever
they are in a configuration that establishes a cycle in the resource-flow graph.
In Sect. 2, four different characteristic conditions for deadlocks were mentioned.
The first three of these (mutual exclusion, no preemption, and wait-for condition)
are always true in ODP systems as resources can not be shared between agents
but are claimed exclusively by an agent for processing, processing of a resource
is always completed before it is available to another agent, and an agent has
to wait for a subsequent agent to take the resource away before it can process
another one. Thus, the only way to deal with deadlocks in ODP systems is to
break the “circular wait” property. A circular wait occurs when two or more
agents are arranged in a loop and each agent waits for the subsequent agent to
take the resource it has been offered.

All centralized approaches of deadlock prevention and avoidance suffer from
the same limitations: pre-calculating all states a system can reach is very ex-
pensive and in many cases computationally infeasible even for relatively small
cases. Supervising the state of all agents involves a massive amount of commu-
nication and limits the agents’ autonomy considerably. Additionally, ensuring a
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consistent state to make decisions about applicable state transitions is by no
means simple and may require the introduction of synchronization between
agents, thus severely reducing system performance. A centralized solution also
always suffers from standard problems: it is a bottleneck and a single point of
failure. Finally, a distributed solution can be employed regardless of an existing
centralized entity, that, e.g., handles reconfiguration.

Deadlock detection might be feasible in resource-flow systems as there are
distributed mechanisms available (see [28] for a survey). However, the resolution
mechanisms proposed are hardly adaptable to resource-flow systems. Rollback
propagation [31] is not applicable since resources undergo an irreversible set of
operations. Use of buffers [32] has to be avoided as in many applications agents
can not store resources and it can not be assumed that there are spare agents to
temporarily hold resources. A conceivable mechanism for deadlock resolution is
to let an agent dump the resource it currently holds, which is undesirable because
resources are potentially valuable and should be processed to completion.

5 A Fair Role-Selection Mechanism

The main purpose of a fair role-selection mechanism is to avoid starvation. As
described above, starvation occurs if an agent is waiting for a resource to be taken
by another agent and this never happens. In ODP terminology, the agent agrec

that is the receiver of the resource never executes the role rx that would take
the resource from the sending agent agsen. The scheduling algorithm described
below thus ensures that each role that is applicable is eventually executed.

Definitions and Initialization: An agent contains the following data struc-
tures: a map of roles associated to agents that sent a request to the current
agent requests ⊆ agents × roles, a map applicationT imes ⊆ roles × N that
stores the value of the counter at the point in time when a role has last been
executed and contains one value per role (∀(r1, t1), (r2, t2) ∈ applicationT imes :
r1 = r2 → t1 = t2), and a number counter ∈ N that counts the number of
times the agent executed a role. These structures are initialized as requests = ∅,
applicationT imes = {∀r ∈ roles|(r, 0)}, and counter = 0.

Reception of Message: Whenever an agent agsen is ready to transfer a re-
source to an agent agrec, agsen sends a message m = (agsen, c) where c is
the postcondition of the role that agsen executed. agrec executes a function
getRole : agents × conditions → roles+ as appRoles = getRole(agsen, c) where

getRole(agsen, c) = {r : r ∈ rolesagrec ∧
r.precondition.from = agsen ∧
r.precondition.state = c.state ∧
r.precondition.task = c.task}

and updates the requests set: requests = requests∪ {(agsen, r)}∀r ∈ appRoles.
Each tuple in requests is also associated with the timestamp of its reception
which can be retrieved by ts : agents → N.
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Choose a Role: Whenever agrec has to decide which role to execute next, it goes
through requests and applies for each of the roles stored in it a fitness function
f : Roles → N. In its simplest form, f is instantiated as f(r) = (counter − t)
where (r, t) ∈ applicationT imes. This will yield the highest value for the role
that has not been executed the longest, thus ensuring that each role that is
applicable will eventually be executed if f(r) is maximized.

Formally, the selection of the role to execute is done by evaluating a function
max : (agents×roles)+ → (agents×roles) which yields (a, r) = max(requests)
where

max(requests) = (ag, rnext) if ∀(ag′, r′) ∈ requests :
f(r′) < f(rnext) ∨ (f(r′) = f(rnext) ∧ ts(ag) ≤ ts(ag′))

The agent then chooses rnext as the next role to execute. The incorporation of
ts ensures that even if two or more requests evaluate to same fitness value, max
yields an unambiguous result, namely the oldest request.

Update: Once a role has been selected for execution, the agent needs to update
its structures to reflect the changes by setting t = counter where (rnext, t) ∈
applicationT imes, requests = requests \ {(ag, rnext)}, counter = counter + 1.

6 Distributed Deadlock Avoidance

The basic principle of the deadlock avoidance algorithm is very simple: If a loop
is detected, determine the size of the loop n and allow only n − 1 resources to
be processed by the n agents that are part of the loop at any one time.

The algorithm described below, however, constitutes a kind of local simula-
tion of the surroundings of an agent and works in a distributed fashion. It is
therefore applicable for systems with a centralized and a distributed configu-
ration mechanism. Thus, it is more versatile than a centralized loop detection
mechanism, but suffers some limitations because of its distributed nature and
the limited knowledge that is available at the agents.

6.1 Distributed Loop Detection

The algorithm is split in two parts: The first part is run locally on each agent
after it has received a new role allocation (i.e. after it has been reconfigured). It
determines whether the agent potentially is the entry of a loop. The second part
then verifies this assumption by sending a message that will eventually reach a
sink – meaning that the agent is not part of a loop – or return to the sending
agent – meaning of course that the agent is part of a loop.

Loop Estimation: Define a set S : roles × roles as follows:

S = {(ri, rj) | ri.precondition.state � rj .precondition.state ∧
ri.precondition.task = rj .precondition.task ∧
ri, rj ∈ roles ∧ ri �= rj}
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where ‘�’ is the list prefix operator. Also define a function min as

min(S) = abs(|pq| − |pr|), if ∀ (pk, pl) ∈ S : abs(|pq| − |pr|) ≤ abs(|pk| − |pl|)
where pi = ri.precondition.state, for i ∈ {k, l, q, r}. This allows to determine
whether a loop exists and give an estimate of the length of the loop:

|S| ≥ 1 ⇒ loop = true∧ nest = min(S)

This algorithm also yields an estimate nest for the number of agents in the loop
that is an underestimate when we assume that each agent applies at most one
capability.

Loop Determination: To determine the actual size of the loop and to eliminate
potential loops the agent agorg creates a message m that has a list of agent
identifiers magents initialized with the identifier of agorg, a boolean flag msink

that determines if the message has reached a sink and that is initialized with
false, the postcondition of role rj in mcondition, and the tuple (ri, rj) ∈ S in
mroles. The message is sent to the agent in the output of the condition2.

When an agent agi receives a loop-detection message, it uses the getRole()
function to find the role that would be chosen if the sending agent had delivered
a request to take a resource. agi then adds its own identifier to magents. If agi

is not a sink, i.e. the role chosen by agi does contain a postcondition, it replaces
mcondition by the postcondition of the selected role and forwards the message to
the agent that is set as the output in the chosen role. In case agi is a sink, it
sets msink to true and returns the message to its originator, i.e., the first entry
in magents

3.
Eventually, the message will return to the original sender agorg, either because

it passed through the loop (in which case msink will be false) or because it
reached a sink and was returned. If a sink was reached, a loop does not exist and
S can be updated: S = S \ {mroles}. Otherwise, the actual length of the loop is
determined by counting the elements in magents and updating the agent-global
n that contains the number of agents in the smallest loop the agent is part of. n
is updated only if the number of elements in magents is less than the current n.

The loop determination part of the algorithm terminates when all messages
send out by agorg have returned to agorg.

6.2 Extension of the Scheduling Mechanism to Avoid Deadlocks

If a minimal loop size n has been calculated, the role-selection algorithm pre-
sented in Sect. 5 can be extended as follows:
2 We assume that agents operate in a stable communication environment and message

loss is thus not considered.
3 In case direct communication is not possible, the message is passed back along the

way it reached the sink. If an agent agj receives a message with msink set to true,
it looks up the agent that is in front of agj ’s agent identifier in magents and sends
the message to this agent.
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1. Define executions : roles × roles × N

2. Initialize executions = {∀s ∈ S|(s, 0)}
3. Choose:

f ′(r) =

{
0, if ∃((ri, rj), x) ∈ Executions : ri = r ∧ x ≥ n − 1
f(r), otherwise

4. Update:

∀((ri, rj), x) ∈ executions :

{
x = x + 1 if rnext = ri

x = x − 1 if rnext = rj

The fitness function f ′(r) ensures that role ri is only executed if the difference
between the number of times ri and rj have been executed is less than n − 1.
If role ri is not executed because of this condition, the entry in requests will
be evaluated again the next time a role is selected. If a resource leaves the loop
(i.e., rj is executed), the difference becomes less than n − 1 and ri is eligible
for execution again. Loop-induced deadlocks are thus avoided while the fairness
guarantees are still upheld.

If ∀(ag, r) ∈ requests : f ′(r) = 0 (i.e., no role can be executed at the moment
without causing a deadlock), the agent stays idle until requests is updated by a
new request and the role-selection algorithm is executed again.

7 Alternatives and Extensions

The basic mechanism described above works for many systems. However, there
are situations that can not be dealt with as easily. This section describes these
situations and how the mechanism can be adapted to accommodate more com-
plex system structures and concurrent, distributed reconfiguration.

7.1 Dealing with Distributed Reconfiguration

Usually, the cycle detection algorithm would be executed whenever an agent
receives a new configuration. However, in some systems with a distributed re-
configuration algorithm, the agents of a cycle might be reconfigured without
the agent at the entry of the cycle even noticing. The process might break the
cycle, change the number of agents in it or alter the cycle’s structure in other,
unforeseen ways. If the agent at the entry point upholds its deadlock avoidance
strategy, there might thus be deadlocks occurring.

To counter this kind of situation, two strategies are conceivable. Firstly, after
a reconfiguration occurred, information about this can be distributed to adjacent
nodes and the algorithm can be run after receiving this information. Secondly,
the agent at the entry point just runs the cycle detection periodically. As the
algorithm requires only few messages and very little computational effort, this
approach seems more efficient and also avoids problems with consistency and
information dissemination in large-scale systems.
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7.2 More Than One Entry Point into a Loop

A situation where a loop has several entry points is depicted in Fig. 2. It is
most likely to occur when some agents of the loop do not apply a capability but
just forward the resource and if there are two independent upstream resource
processing lines that produce resources with the same state.

Fig. 2. Examples of loops of three agents and two entry points

It is possible that resources enter the loop at two different points thus causing
a congestion. Such a situation can only be remedied if the two agents that let
resources into the loop are cooperating to limit the number of resources processed
in the loop. The requirement can be described as follows: if a loop consists of
n agents and has n − k entries where n − 1 < k ≥ 0, the agents at the entries
have to coordinate to ensure that a maximum of n − 1 resources are within the
loop.

If an agent agi sent out a loop detection message and at a later point receives
such a message originating from another agent agj , agi can suspect that aj is an
entry point to the same loop. After agi and agj determined they are part of a
loop, they can exchange information about the loops they are part of and thus
establish their relationship. During productive phases, the agent at the exit of
the loop (say, agi) can award the other agent (agj) a quota of resources aj may
allow into the loop. After a resource has been allowed into the loop, agj will
inform agi. When agj’s quota is exhausted and agi has detected that resources
exited the loop again, agj will be granted a new quota.

Although it is suspected that this simple coordination mechanism scales well
for loops with more than two entry points, an investigation of such situations as
well as a detailed description of the mechanism will be left as future work.

7.3 Bifurcations

An agent can have two roles with the same precondition but different postcon-
ditions, e.g. to balance the load for the successive agents. In such a case, the
resource-flow graph bifurcates and the loop-detection message has to be sent to
both outputs of both postconditions. As the originating agent agorg now has to
expect more than one message as a reply to its cycle detection message, it has
to be informed about the bifurcation. agorg then waits until the original message
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and all bifurcated message return. It is then able to establish the length of the
minimal loop it is part of by the mechanism described above.

This theoretically rather simple procedure becomes tedious when implemented.
The main problem is that it is not certain when a message will arrive at aorg. If
the message that went through a cycle arrives before the message that indicates a
bifurcation, the agent might have finished its cycle determination already. Special
cases might have to be introduced to deal with such a situation.

7.4 Multiple Tasks

If resources with several tasks are processed in a system simultaneously, circular
waits can now be induced by roles that are dealing with different tasks as shown
in Fig. 3. However, such waits do not necessarily occur in every system with
more than one task. If resources flow only in one direction through the system
or if each agent is configured to handle only one task, the proposed approach
is still applicable. In the general case, an extended loop detection mechanism
would be able to detect circular waits induced by the processing of resources
with different tasks and reduce this problem to the case of loops with several
entry points. This, however, is left as future work.

Fig. 3. Cycles induced by roles dealing with multiple tasks

8 Discussion and Conclusion

This paper described mechanisms for fair scheduling and deadlock avoidance
based on local knowledge and minimal communication that are suitable for large
scale dynamic system with a changing structure. In comparison to the approaches
in literature this method is not limited by the computational time that is required
to construct and simulate a global graph, works during runtime of the system and
specifies the concrete application of the knowledge about potential deadlocks in
the context of the scheduler. It also does not involve a massive amount of message
passing and does not undermine the self-organizing and autonomous properties
of a system and its entities respectively.

Although some details of extensions for more complex system structures are
not yet fully elaborated, the approach already proves useful and has been imple-
mented in the ODP Runtime Environment [24] on a case study of an adaptive
production cell. The preliminary results are very encouraging and the open issues
will be evaluated and solved with the help of this implementation.
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Abstract. We present an example of the use of analytical models to pre-
dict global properties of large-scale information technology systems from
the parameters of simple local interactions. The example is intended as
a first step towards using complex systems modeling methods to control
self-organization in organic systems. It is motivated by a concrete appli-
cation scenario of information distribution in emergency situations, but is
relevant to other domains such as malware spread or social interactions.
Specifically, we show how the spread of information through ad-hoc inter-
actions between mobile devices depends on simple local interaction rules
and parameters such as user mobility and physical interaction range. We
show how three qualitatively different regimes of information ‘infection
rate’ can be analytically derived and validate our model in extensive
simulations.

1 Introduction

In this paper we present a specific example of the adaptation of an analytical
complex system model to a self-organizing IT system. We show how logistic
models from epidemiology can be applied to describe the spread of information
or malware between mobile phones carried by people moving in a crowd. We
derive the dependence of information penetration on crowd density, radio range,
and motion speed. We show a ‘phase transition’-like behavior: information is
being spread with the speed either linearly increasing with the radio range,
almost constant, or approximately exponentially. Another parameter-dependent
emergent effect is the transition between local but dying ‘information bubbles’
and a continuous spread of information. The model is validated using extensive
simulations showing good agreement with analytical predictions.
The value of the research presented in this paper is threefold:

First, on application level, it is part of a large, interdisciplinary EU project (SO-
CIONICAL, http://socionical.eu) to understand and exploit self-organization in

C. Müller-Schloer, W. Karl, and S. Yehia (Eds.): ARCS 2010, LNCS 5974, pp. 101–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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large-scale systems in which intelligent mobile devices interact with each other and
with humans. A specific application scenario within the project is the study how
sensing, communication, and cooperation between mobile devices (e.g., sensor en-
abled smart phones) can be used to steer crowd behavior in emergency situations
(e.g., to speed up evacuation or prevent panic). Ensuring that information can be
effectively spread between the devices in an ad-hoc fashion (infrastructure, even
including mobile phones, cannot be assumed to work in such situations, as the
case of the London subway bombings has shown) is a key requirement. Another
obvious application of our model is the spread of malware through peer-to-peer
interactions between mobile devices.

Second, on theoretical level, it extends previous approaches on information
and virus spread (see [1,3,8,9] for related work) by specifically considering the
effects of mobility and radio range. We provide an analytical solution for the
‘infection ratio’ (which is the key parameter in system description) and validate
our results in extensive simulations.

Third, in the area of organic computing, so far little attention has been given
to the use of analytical complex system models as means of understanding and
controlling the evolution of self-organizing IT systems (see [5] for some discus-
sion). The system that we are investigating is easily mapped to the corresponding
model, as information spread is obviously closely related to the spread of dis-
ease. Nonetheless, it is a good initial example of a design where global properties
and phase transitions can be analytically derived from the rules for simple local
interactions. We see it as a first step in the direction of using analytical models
as means of achieving control in self-organized systems.

2 The Scenario

This work is part of a large project to investigate large-scale, complex inter-
actions between intelligent mobile devices and humans in their environment.
In essence, it aims to apply models and concepts from complexity science and
organic computing to ambient intelligence environments. Ambient intelligence
research to date has concentrated on how individual intelligent devices interact
with a single user or small groups of users. The questions that we ask include:
How can such devices influence collective behavior? What sort of global effect
can emerge from the coupled interactions and feedbacks between many different
users and devices? How can we predict such global effects (and thus design sys-
tems in the sense of controlled emergence) from local interaction rules embedded
in each individual device?

A key issue underlying many of the research questions that we are addressing is
the spread of information. Assuming that devices forward information to others
in their physical proximity according to certain rules: How will information
spread on a global scale? Can we, in the sense of controlled self-organization,
use simple control parameters like user mobility and interaction range to ensure
(or prevent) rapid spread?
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The specific application that has motivated this work is disaster management.
For example, as described in a London Assembly Meeting Report1, during the Lon-
don subway bombings mobile phone communication broke down and lack of infor-
mation has been a key problem for many of the people stuck inside the stations and
trains. Thus, the ability to propagate information through the crowd in an ad-hoc
fashion would have been of significant use. In more advanced scenarios that we are
examining, phones are able to sense crowd motion and environmental conditions
and propagate them throughout the crowd to optimize evacuation ([4]).

Other applications include social interactions (e.g., ‘flash mobs’), media dis-
tribution and the spread of malware.

2.1 Model Assumptions

For the simulation and modeling, some simplifying assumptions have been made.
All mobile agents (representing, e.g., persons with cellular phones) are placed in
a square board of a fixed size. To reduce the boundary effect of agents hitting the
walls, the sides of the square are wrapped left-to-right and up-to-down (periodic
boundary conditions), so that the actual simulation is being carried out on a torus.

At the beginning, the agents are placed uniformly on the board and only
a fraction of agents has some interesting information or malware to be spread
(status: infected), while all others are initially uninfected. The direction of
motion of each agent is chosen randomly. Each agent moves along a straight line
for a random number of steps. The length of the straight paths varies randomly
from a few steps to half the size of the board. After that, the direction of the
agent and the length of its straight path is randomly changed, and the procedure
is repeated. The achieved motion is random and – at the same time – resembles
the movement of agents in a crowd.

Each mobile agent carries a mobile device and is surrounded by the device’s
radio range. The radio range is modeled by a flat disc. If an uninfected device
collides with the radio range of an infected device, it will also get infected im-
mediately and change its status to infected. With a certain probability, in each
simulation step, an agent will reset its infected mobile device, and thus, will get
rid of the infection without getting immune.

The model parameters can be summarized as follows: (1) number of agents:
N (since it is assumed that all agents carry only one device, N is equal to
the number of devices), (2) initial infection ratio: I ∈ [0 . . . 1] (probability that
a device will be infected initially), (3) system length: L unit lengths (overall
area of L × L square unit lengths under consideration, kept constant in the
presented scenario), (4) radio (interaction) range: R, (5) velocity of agents: v (in
unit lengths per simulation step), and, optionally, (6) device reset probability:
P ∈ [0 . . . 1] (probability that an agent will reset its infected mobile device within
a simulation step).

1 see http://www.london.gov.uk/assembly/resilience/2005/77reviewdec01/

minutes/transcript.pdf
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Fig. 1. (a): Plotting a(t) against t for T = 0 and different values of K and P . (b):
Relative number of infected devices a(t) versus simulation steps t for various number
N of agents and radio ranges R. The plot illustrates the definition of the time scale.

2.2 Logistic Model

A common model for the spread of diseases is the logistic model (see, e.g., [2]).
This model also gets more and more attention from researchers in the field of
computer science and engineering (see, e.g., [6] and [7]). In our scenario, the
logistic equation takes the following form:

a′(t) = K a(t) (1 − a(t)) − P a(t). (1)

Equation (1) can be motivated as follows. The maximum change in the infection
ratio a(t) (0 � a(t) � 1) within an infinitesimal time interval around time t is
given by the number of infected agents a(t) at time t times the infection ratio
K. Thus, K is the unimpeded infection rate that applies to the case when P = 0
and there is only one infected agent, and hence, each collision of this agent that
occurs during the time interval leads to a new infection. The maximum change
is delimited by the saturation effect caused by the finite number of agents to be
infected, modeled by the factor (1 − a(t)) and by the number P a(t) of infected
agents that reset their device within the time interval.

By solving the differential equation (1) we get

a(t) =
K − P

K
(
1 + e−(K−P )(t−T ) − Re−(K−P )(t−T )

) ,

where T is the location parameter that fixes the time when 50% of all agents is
infected, i.e., a(T ) = 0.5, in the case P = 0. In Fig. 1(a), a(t) is plotted against
time t for T = 0 and various values of K and P according to (1).

The slope of the logistic curves shown in Fig. 1(a) at t = 0 can be obtained
from (1):

a′(0) = K a(0) (1 − a(0)) − P a(0) = K/4 − P/2. (2)

Thus, knowing the value P , K can be obtained by investigating the slope of the
curves at t = 0. The fix points are the expected values of a(t) in steady state
t → ∞, i.e., a′(t) = 0. In our case, lima→∞ a(t) = (K −P )/K. This value can be
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Fig. 2. (a): Simulation results: infection ratio K plotted versus radio range R for N =
512, L = 2000 and 2 � R � 75. Vertical lines c1 and c2 mark the separations of the
three regimes. (b): First regime – scaled simulation results for various N compared
with the analytical value of K computed according to (4).

used to determine a suitable value for P depending on K. However, computing
K by running simulations for each possible parameter set is unsatisfactory. In
the following we deal with the primary concern of the paper, that is, achieving
the closed-form equation for K that is based merely on scenario’s parameters.

3 Model and Simulation

For the evaluation, the relative number a(t) of infected devices at time t (sim-
ulation step) is of main interest. In Fig. 1(b), a(t) is plotted versus t for four
simulation runs with various values of N . The other model parameters are cho-
sen as follows. The initial infection ratio I is chosen equal to 1/N , which means
one infected agent. The devices’ radio range R is fixed to 10 unit lengths. The
velocity v of the agents is one unit length per time unit. The time axis (hori-
zontal axis) is chosen such that a(0) = 0.5. It can be seen that all curves show
qualitatively the same behavior. However, the quantitative slope of the curves
depends on the number of agents. Actually, as it will be shown later in more
detail, the slope depends on the density of agents ρ = N/L2 and on the system
parameters that are kept constant in Fig. 1(b), like the agents’ speed v and the
radio range R.

In the following, we focus on the case P = 0 and I = 1/N , i.e., devices are
not reset and exactly one device is initially infected. Figure 2(a) depicts the
results of the simulation for 512 agents, radio ranges varying from 2 to 75,
board size L = 2000, and velocity v = 1. The calculated values of the unimpeded
infection ratio K, depicted on the vertical axis, are obtained from (2). For each
value of R, the median of the slope a′(0) at t = 0 is obtained from polynomial
approximations for 50 simulation runs.

Simulation results shown in Fig. 2(a) reveal three distinct regimes with differ-
ent dependences of the parameter K on R. At first, the infection ratio K grows
linearly with radio range R. In the second regime the value of K remains almost
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constant. This is a very surprising result. Finally, in the third regime, the infec-
tion ratio starts to grow very rapidly with R. The three regimes are analyzed
and described analytically in the following sections.

3.1 First Scaling Regime

In the first regime, we consider the case of very small radio ranges. Thus, agents
travel long distances between coming into contact with each other and the in-
fected and uninfected agents are typically spread uniformly across the board
(see Fig. 3(a)). In order to derive the R dependence of K, we note that the
unimpeded infection rate K specifies the expected number of new infections per
time unit if no reset is involved. Hence, each collision of an infected agent with
another agent has a high probability to cause a new infection, since the other
agent is usually uninfected. By collision we mean that the distance between the
two agents becomes as small as R. To calculate the expected number of collisions
within one time step, we adapt the mean free path approach well-known from
the kinetic theory of gases for a two-dimensional setting, agents of different sizes,
and non-negligible radius of infected agents.

Consider an infected agent moving along a straight path with speed v̄. During
the next time unit the agent’s radio range R will reach a previously untouched
area of size v̄ · 2R. All previously uninfected agents in this area will then be
infected. The mean number of agents in the area is given by its size times the
mean density of agents,

K = (v̄ · 2R)N/L2. (3)

Note that v̄ is not equal to the infected agent’s velocity v in general, since both,
infected and uninfected agents, are moving. Since in the presented scenario also
the uninfected agents move randomly, v̄ has to be calculated as the expected
relative velocity of the uninfected agents with respect to the infected agent.

Therefore, we consider a reference system in which the infected agent is at
rest. Without loss of generality, we can assume that it is moving to the right
with velocity v1 = (v, 0) (the two components of the vector indicating the speeds
in x and y direction, respectively). In the considered moving reference system,
the speed of the uninfected agents is thus given by v(ϕ) = v2 − v1 = v (cosϕ −
1, sinϕ) where 0 � ϕ < 2π denotes the (random) direction of motion of the un-
infected agent in the original resting reference system. Consequently, the average
absolute value of v is equal to

v̄ =
1
2π

∫ 2π

0

|v(ϕ)| dϕ =
1
2π

∫ 2π

0

v

√
(cosϕ − 1)2 + sin2 ϕ dϕ

=
v

2π

∫ 2π

0

√
2 − 2 cos(ϕ) dϕ =

4v

π
≈ 1.2732 · v.

Hence, the unimpeded infection rate K can be calculated based on (3):

K = 8vRρπ ≈ 2.5465 · vRρ. (4)
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(a) (b)

Fig. 3. Cross-over c1 between the first and the second regime for 512 agents, infection
ratio a(0) = 0.5, R = 8 (a) and R = 20 (b)

Fig. 2(b) shows a comparison between the simulation and the analytic result
for several parameter settings. While keeping the size of the simulated area
(L = 2000) constant, the number N of agents and the radio range R are varied.
N varies from 256 (low density) to 8192 (highly crowded area). Each point in
Fig. 2(b) represents the median of 50 simulation runs. For N �= 512 the results
on the horizontal axis have been scaled linearly with respect to ρ so that the
analytical results derived from (4) are the same. The straight line depicts our
analytical result based on the mean-value approach.

For N = 512 and radio ranges R < 9, the analytical model yields almost
perfect results. Simulations confirm the linear growth of the infection ratio K
with radio range R and agents’ density ρ. Around R = 10 (for N = 512), the
value of K ceases to grow linearly with R and we observe the crossover to the
second regime with almost constant K.

The phase transition at c1 (between the first and the second regime) can be
understood by taking a look at the results of two experiments for 512 agents,
with R = 8 and R = 20, respectively. Figure 3 shows the distribution of the
agents at the time when half of the population is infected. This is the moment
which determines the value of K (recall (2)). For R = 8, the infected agents are
scattered across the entire board. For R = 20, they tend to conglomerate. Most
of the infected agents are then surrounded by others which are infected as well,
and thus, the number of agents to be infected in the next time stepts is much
smaller.

3.2 Second Scaling Regime

With increasing radio range of the devices, the infected agents cease to be uni-
formly distributed across the entire board and our analytic description for the
first regime fails. Instead, the agents tend to form a disk-like pattern (see Fig. 3).
This behavior becomes more pronounced for larger values of R, for which the
infected agents form an almost perfect disk growing linearly with time.
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Fig. 4. Second regime: simulation run confirming the analytical model

We denote by a(t) the relative number of the infected devices at iteration
step t. Now, recall from Sec. 2.2 that parameter K is determined by the slope
of a(t) at the point t = t0 such that a(t0) = 0.5. We combine this fact with the
knowledge about the distribution of the infected agents to develop the following
analytical model. Firstly, we assume that at iteration step t0 for which a(t0) = 0.5
the infected agents form a disk D of radius rD. Since all agents are distributed
uniformly across the entire board, the area of D is half of the board’s size, i.e.,

π r2
D = L2/2, (5)

which yields rD ≈ 0.4 L. The second assumption is a crucial one: the radius of
the disk formed by the infected agents at time t for t � t0 is approximately equal
to v · t, i.e., the distance travelled by a single agent in t steps. In particular, this
implies that

rD = t0 v and a(t) = c · t2, for some constant c and t � t0. (6)

Both assumptions we have made are supported by the simulation results and
follow from the special property shared by the radio ranges considered in the
second regime: they are big enough to guarantee the compact, disk-like form
of the infected agents, yet small enough not to cause chain infections and thus
retaining agents’ velocity as the prevailing factor of virus spread.

From (2), (5), (6) and the fact that a(t0) = 0.5 we now get

K = 4 a′(t0) = 4 · 2 c t0 = 8
0.5
t20

t0 =
4
t0

=
4 v

rD
=

4
√

2πv

L
≈ 10v

L
. (7)

The simulation run for L = 2000, N = 8192, R = 10, and v = 1 shown in Fig. 4
confirms this analytical model. Infection ratio grows quadratically with time,
reaches 50% for t0 = 840 and the infected agents form a disk of radius ≈ 800.

The position of the first crossover c1 (see Fig. 2(a)) separating regimes one
and two can be approximated by equating Eqs. (4) and (7). This yields

K =
8vRc1N

πL2
=

4
√

2πv

L
=⇒ Rc1 =

√
π3

2
L

N
≈ 3.937

L

N
. (8)

We see that the position of c1 depends linearly on L/N .
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3.3 Third Scaling Regime

The crossover c2 from the second (nearly constant) regime to the third regime
(see Fig. 2(a)) occurs when the mean distance between the agents becomes com-
parable with R. Then, immediate chain infections can occur, if a third agent
happens to be within the radio range of the second (just infected) agent, even if
it is not sufficiently close to the first (originally infected) agent.

The value of the crossover length Rc2 , i.e., the position of crossover c2, can
be calculated analytically as follows. Firstly, we have to determine the mean
distance between nearest neighbor agents. Placing the agents randomly on the
board can be interpreted as a Poisson process. Recall that a Poisson distribution
is typically used to describe the probability of the occurrence of uncorrelated
events over time, space, or length. Our use of the Poisson distribution is justified
by the fact that the random locations of the agents are independent. The number
n of agents within a given area A is described by the probability function

F (n) =
(ρA)n

n!
e−ρA, for n = 0, 1, . . . .

We fix the position of a single agent p. Since the agents are independent, the
probability that there is no other agent within distance r from p is given by
F (0) = exp[−ρ πr2]. If x is the distance of the nearest agent from p, the probabil-
ity that x � r is equal to P (x � r) = 1−P (x > r) = 1−F (0) = 1−exp[−ρ πr2].
Consequently, the density function of the distance from p to its nearest neighbor
is given by

f(r) =
dP (x � r)

dr
=

d

dr

(
1 − e−ρ πr2

)
= 2π ρ r e−ρ πr2

,

Finally, the mean nearest neighbor distance dp is equal to

dp =
∫ +∞

0

f(r) r dr =
1

2
√

ρ
=

L

2
√

N
= Rc2 , (9)

with L and N denoting system size and the number of agents, respectively.
The characteristic length scale dp determines analytically the crossover c2 from

regime two to regime three, where chain reactions start to occur. It is therefore
denoted by Rc2 in (9). We note that Rc2 scales with L/

√
N , while Rc1 scales with

L/N , see (8). Figure 5 shows the results of our simulations, i.e. the infection ratio
K, versus the scaled radio range R/dp for four numbers N of agents and systems
of length L = 2000. The scaling behavior is clearly confirmed. The curves in the
third regime, i.e., for R/dp > 1, differ just by a constant offset which is due to
different absolute values occurring already in the second regime (for R/dp < 1).

In general, the value of K in the second regime given by (7) for L = 2000
and v = 1 is K = 0.05. Figure 5 shows that this threshold is not fully reached in
our simulations for smaller densities ρ = N/L2. In particular, K does not exceed
0.03 before the onset of the third regime at R = Rc2 if N = 256. The reason is
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Fig. 5. (a) Scaling plot for the infection ratio K in the third regime. The K values for
different N (see legend) and L = 2000 are plotted versus the scaled radio range R/dp

with dp taken from (9). The numerical curves are parallel with a small offest in the
third regime (R/dp > 1). The dashed grey line shows the analytic theory. Two fitting
parameters are needed: a prefactor and an offset; both will be different for N > 256. (b)
Illustration of the geometical constraint determining chain infections for simultaneous
infection of three agents.

the closeness of both crossovers for small ρ (and N). While the second regime is
rather broad for N = 2048, it nearly vanishes for N = 256, where

Rc1

Rc2

=

(√
π3

2
L

N

)
/

(
L

2
√

N

)
=

√
2π3/N ≈ 0.492

compared with Rc1/Rc2 ≈ 0.174 for N = 2048. Therefore, K = 0.05 is not fully
reached for the lower values of N , and the curve in the third regime is conse-
quently shifted downwards by a small amount as seen in Fig. 5. This, however,
does not devaliate our analytical descriptions of both crossovers nor the unified
scaling behavior seen in the third regime.

To derive the form of the scaling curve for R/dp > 1 in Fig. 5, we have to con-
sider the geometric constraints for immediate chain infections. The probability
of a chain infection is not related with the motion of the agents. Therefore, one
need not consider trajectories, and the analysis is mainly geometrical. A newly
infected (second) agent is always located at distance R from the infecting agent,
since it would have been infected earlier otherwise. Its radio range, i.e., the area
in which a third agent could be infected, thus overlaps with the radio range area
A1 of the first agent (where no additional third agent could be infected). This
extended radio range area A2 is thus not a circle. Nevertheless, the correspond-
ing area can be calculated analytically. Figure 5(b) illustrates A1 (white) and A2

(black). Without loss of generality, we assume that A2 is to the right of A1. A2

is a half circle (π/2 R2) plus twice the (nearly triangular) part with height R/2
and length R; its exact area is 2.18918 R2. The additional infection probability
(first order term) is thus F1 = 2.18918 ρ R2.

However, the chain reaction can go on, since there could be a fourth agent in
the radio range of the third agent. Since the third agent can be anywhere in A2
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(black), different areas A3 for the forth agent must be considered depending on
the actual position of the third agent. Figure 5(b) illustrates several possibilities,
for which we have calculated the area analytically (grey). All of these circles have
the center on the edge of the black area. However, positions closer to the center of
the black area are also possible. To take them into account in a reasonable aver-
aging procedure, one must note that the range of possible centers for A3 increases
by r with the distance r from the center of A2. A corresponding well-justified (al-
though not analytically exact) averaging procedure yields 1.34331 R2 for the av-
erage area A3. The probability of the second order spontaneous infection is thus
proportional to the product of first order 2.18918 ρ R2 times 1.34331 ρ R2, yield-
ing F2 = 2.94076 ρ2 R4 for the second term. Extending this rule further, we have
approximated the third term by F3 = 3.63601 ρ3 R6, etc.

The analytical curve included in Fig. 5 is furthermore based on approximations
of the forth and fifth terms F4 and F5, which we also approximated. Clearly, a
fast convergence of this series F = F1 + F2 + F3 + F4 + F5 + . . . requires that
ρR2 	 1. This is violated for large R or ρ of course. The calculation thus becomes
inaccurate for large radio ranges R and large densities ρ = N/L2. In particular,
not taking into account terms for very large order (and stopping with F5) will
lead to K values which are too small for large R.

Figure 5 shows that data from the simulation of N = 256 can be fitted very
well. We have to employ two fit parameters: the constant level in the second
regime and a prefactor relating F to K,

K = offset + prefactorF. (10)

The fit is very good except for very large R as expected. We note that the value
of the offset parameter in (10) is close to the constant K = 0.05 in the second
regime given by the analytic (7). It is somewhat lower for small N due to the
shortness of the second regime as explained above. Therefore, the offset is not a
real fitting parameter. In addition, the prefactor in (10) is related to the ratio
of the mean velocity v ≈ 1.2732 (see calculation for first regime) over the board
length L = 2000, and thus also not a real fitting parameter. Again, the numerical
values obtained for the fit in Fig. 5 deviate due to the specificity of the second
regime. The deviations are less for larger values of N , where the same analytical
theory with two fitting parameters applies although both parameters in (10) are
slightly different.

4 Conclusion

We have shown that depending on the physical interaction range and the average
speed of physical motion there are three distinct regimes for the information dis-
tribution rate. The proposed analytical model comprises both the three regimes
and the two cross-overs between them:

(i) Phase of linear growth (see Sec. 3.1). For small radio ranges R and low
density ρ of agents the infection ratio K is proportional to Rρ. The position
of the first cross-over depends linearly on L/N .
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(ii) Phase of an almost constant value of K, more pronounced for larger densi-
ties (see Sec. 3.2). Radio ranges are big enough to prohibit a homogenous
distribution of infected agents, yet small enough not to cause a chain infec-
tion. In our analytical model, we prove that the value of K indeed does not
depend on R. The second cross-over is determined by the mean distance
between the agents and thus scales with L/

√
N .

(iii) Phase of a very rapid growth of K, when radio ranges are big enough to
trigger chain infections (see Sec. 3.3). The probability of a chain infection
is not related with the motion of the agents and indeed, in the obtained
analytical model the value of K depends only on R and ρ.

Our models have made some simplifying assumptions (e.g., torus topology, ran-
dom motion, and homogeneous distribution) so that applicability to real life
emergency situations needs to be further investigated in more advanced simula-
tions. However, the results are a good indication of the type of behavior that can
be expected to occur. Most of all, the work is an initial example of how analytical
complex systems models can be leveraged to facilitate control and predictability
in large-scale organic systems.
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Abstract. Several techniques aiming to improve power-efficiency (measured as 
EDP) in out-of-order cores trade energy with performance. Prime examples are 
the techniques to resize the instruction queue (IQ). While most of them produce 
good results, they fail to take into account that changing the timing of memory 
accesses can have significant consequences on the memory-level parallelism 
(MLP) of the application and thus incur disproportional performance degrada-
tion. We propose a novel mechanism that deals with this realization by collect-
ing fine-grain information about the maximum IQ resizing that does not affect 
the MLP of the program. This information is used to override the resizing en-
forced by feedback mechanisms when this resizing might reduce MLP. We 
compare our technique to a previously proposed non-MLP-aware management 
technique and our results show a significant increase in EDP savings for most 
benchmarks of the SPEC2000 suite. 

1   Introduction 

Power efficiency in high-performance cores received considerable attention in recent 
years. A significant body of work targets energy reduction in processor structures, 
striving at the same time to preserve the processor’s performance to the extend possi-
ble. In this work, we revisit a class of microarchitectural techniques that resize the 
Instruction Queue (IQ) to reduce its energy consumption. The IQ is one of the most 
energy-hungry structures because of its size, operation (fully-associative matches), 
and access frequency. 

Three proposals by Buyuktosunoglu et al. [1], Folegnani and González [2], and 
Kucuk et al. [3] exemplify this approach: the main idea is to reduce the energy by 
resizing the IQ downwards to adjust to the needs of the program using at the same 
time a feedback loop to limit the damage to performance. The IQ can be physically 
partitioned into segments that can be completely turned off [1][3] or logically  
partitioned [2]. While physical partitioning and segment deactivation can be more 
effective in energy savings, the more sophisticated resizing policy of Folegnani and 
González minimizes performance degradation. We consider the combination of the 
physical partitioning of [1] and [3] and the “ILP-contribution” policy of [2] as the 
basis for our comparisons. 
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Studying these approaches in more detail we discovered that, in some cases, small 
changes in the IQ size bring about significant degradation in performance. New 
found understanding of the relation of the size of the instruction queue to perform-
ance, by the work of Chou et al. [7], Karkhanis and Smith [6], Eyerman and  
Eeckhout [4], Qureshi et al. [8], points to the main culprit for this: Memory-Level 
Parallelism (MLP) [5]. In the presence of misses and MLP the single most important 
factor that affects performance in relation to the IQ size is whether MLP is  
preserved or harmed. 

While this new understanding seems, in retrospect, obvious and easy to integrate in 
previous proposals, in fact it requires a new approach in managing the IQ. Specifi-
cally, while prior feedback-loop proposals based their decisions on a coarse sampling 
period measured in thousands of cycles or instructions, an MLP-aware technique 
requires a much more fine-grain approach where decisions must be taken at instruc-
tion intervals whose size is comparable to the size of the IQ. The reason for this is that 
MLP itself exists if misses appear within the instruction window of the processor and 
must be handled at that resolution. More accurately, MLP exists if the distance be-
tween misses is less than the size of the reorder buffer (ROB) [6]. In our case, we use 
a combined IQ and ROB in the form of a Register Update Unit [9], thus the ROB size 
defaults to the size of the IQ. In the rest of the paper we discuss MLP with respect to 
the size of the IQ. 

Contributions of this paper: 
• We expose MLP (when it exists) as the main factor that affects performance in 

IQ resizing techniques. 
• We propose a methodology to integrate MLP-awareness in IQ resizing tech-

niques by measuring and predicting MLP in fine-grain segments of the dy-
namic instruction stream. 

• We propose an example practical implementation of this approach and show 
that it consistently outperforms in total EDP (for the whole processor) an op-
timized non-MLP-aware technique as well as improving EDP across the board 
compared to base case of an unmanaged IQ. 

Structure of this paper–– Section 2 presents related work, while Section 3 motivates 
the need for IQ resizing using MLP. In Section 4 we present our proposal for MLP-
awareness in the IQ resizing and in Section 5 we delve into some details. Section 6 
offers our evaluation and Section 7 concludes the paper. 

2   Related Work 

IQ Resizing Techniques–– The instruction window (including possibly a separate 
reorder buffer, an instruction queue and the load/store queue) has been prime target 
for energy optimizations. The reason is twofold: first they are greedy consumers of 
the processor power budget; second, typically these structures are sized to support 
peak execution in a wide out-of-order processor. Although there are many proposals 
for IQ resizing, we list here the three main proposals that are relevant to our work. 
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The proposals by Buyuktosunoglu et al [1] and Kucuk et al [3], resize the IQ  
by physically partitioning it in segments and disabling and enabling each segment1  
as needed. Both techniques use a feedback loop to control the size of the IQ. The 
Buyuktosunoglu et al. technique [1] is based on the number of active entries (i.e., 
ready-to-issue entries) per segment to decide whether or not a segment deserves to 
remain active, while Kucuk et al. [3] argue that the occupancy of the IQ (in valid 
instructions) rather than active entries is a better indication of its required size. In both 
techniques the IPC is measured periodically; a sudden drop in IPC signals the need 
for IQ upsizing. However in both approaches there is no other mechanism to revert 
back to the full IQ size. 

The Folegnani and González approach [2] is distinguished by being a logical resiz-
ing of the IQ (limiting the range of the entries that can be allocated) not a physical 
partitioning as the other two. In addition, the feedback mechanism is based on how 
much the youngest instructions in the IQ contribute to the actual ILP. If they do not 
contribute much, this means that the size of the IQ can be reduced further. However, 
there is no way to adapt the IQ to larger sizes except periodically revering back to full 
size. Nevertheless, the Folegnani and González resizing policy is very good at adjust-
ing the IQ size so as to not harm the ILP in the program. 

Modeling of MLP–– Karkhanis and Smith presented a first-order model of a super-
scalar core [6] that deepened our understanding of MLP. This work exposed the im-
portance of MLP in shaping the performance of out-of-order execution. Karkhanis 
and Smith show that in absence of any upsetting events such as branch mispredictions 
and L2 misses the number of instructions that will issue (on average) is a property of 
the program and is expressed by the so-called IW characteristic of the program. 

The presence, however, of upsetting events, such as L2 misses, decreases the IPC 
from the ideal point of the IW characteristic depending on the apparent cost of the L2 
miss. This is because, a L2 miss drains the pipeline, and eventually stalls it when the 
instruction that misses blocks the retirement of other instructions [6]. MLP, in this 
case, spreads the cost of accessing main memory over all the instructions that miss in 
parallel, making their apparent cost appear much less. 

Existing IQ resizing mechanisms focus mainly on the variations of the ILP (effec-
tively moving along the IW characteristic) ignoring what happens during misses. Our 
work, focuses instead on the latter. 

MLP-Aware techniques–– Qureshi et al. exploited MLP to optimize cache replace-
ment [8]. MLP in their case is associated with data (cache lines) and the MLP predic-
tion is done in the cache. Data that do not exhibit MLP are given preference in staying 
in the cache over data that exhibit MLP. Eyerman and Eeckhout exploit MLP to opti-
mize fetch policies for Simultaneous Multi-Threaded (SMT) processors [4]. In their 
case, MLP is associated with instructions that miss in the cache. Our MLP prediction 
mechanism is similar to the one proposed by Eyerman and Eeckhout, but because we 
use it not to regulate the fetch stage, but to manage the entire IQ, we associate MLP 
information to larger segments of code. 

                                                           
1 Sequentially from the end of the IQ in [1] or independently of position in [3].  
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Fig. 1. Comparison of the distribution of distances between parallel L2 misses and performance 
degradation due to IQ resizing for gcc and art 

3   MLP and IQ Resizing 

In this section, we motivate the basic premise of this paper, i.e., that IQ resizing tech-
niques must be aware of the MLP in the program to avoid excessive performance 
degradation. Figure 1 shows the distribution of the distances between parallel misses 
in two SPEC2000 programs: art and gcc. We assume here an IQ of 128 entries. The 
distance is measured in the number of intervening instructions between instructions 
that miss in parallel. Figure 1 also plots for each distance the increase in execution 
time if the IQ size is decreased below that distance. 

Each time we resize the IQ, we eliminate the MLP with distance greater than the 
size of the IQ. In art, MLP is distributed over a range of distances, so its execution 
time is proportionally affected with the decrease of the IQ because we immediately 
eliminate some MLP. The more MLP is eliminated the harder performance is hit. In 
contrast, most MLP in gcc is clustered around distance 32. Below this point, we ex-
perience a dramatic increase in execution time (100%). For the intermediate IQ sizes, 
(between the maximum size and 32), execution time increases slowly due to loss of 
ILP. These examples demonstrate how sensitive performance is with respect to MLP 
and indicate that an efficient IQ management scheme must focus primarily on MLP 
rather than ILP. 

Another important characteristic of MLP that necessitates a fine-grain approach to 
IQ management is that the distance among parallel misses changes very frequently. 
Figure 2 shows a window of 20K instructions from the execution of twolf. At each 
point the maximum observed distance among parallel misses is shown. Ideally, at 
 

0

32

64

96

128

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

D
is

ta
nc

e

Instructions  

Fig. 2. Maximum Distances between parallel misses of twolf 
 



 MLP-Aware Instruction Queue Resizing: The Key to Power-Efficient Performance 117 

 

each point in time, the IQ size should fit all such distances while at the same time be 
as small as possible. A blanket IQ size for the whole window, based on some estima-
tion of the average distance between parallel misses, is simply not good enough since 
it would eliminate all MLP of distance larger than the average. 

4   Managing the IQ with MLP 

Our approach is to quantify MLP opportunities and relate this information back to the 
instruction stream via a prediction structure. Upon seeing the same instructions again, 
MLP information stored in the predictor guides our decisions for IQ resizing. 

4.1   Quantifying MLP: MLP-Distance 

Our first concern is to quantify MLP opportunities in a way that is useful to IQ resiz-
ing. Two memory instructions are able to overlap their L2 misses, if there are no de-
pendencies between them and the number of instructions dispatched between them is 
less than the size of the IQ. This number of instructions, called MLP-distance in [4], 
is also the basic metric for our management scheme. 

A straightforward way to measure the MLP-distance among instructions is to 
check the LSQ every time a miss is serviced and find the youngest instruction which 
is still waiting for its data from the L2. This technique does not “fit” in our case, since 
it can only identify overlapping misses for the current size of the IQ. To overcome 
this problem we need to check for misses that could potentially overlap over a number 
of instructions, as many as the maximum number of instructions that can fit in the 
unmanaged IQ. Always keeping information for as many instructions as the maxi-
mum IQ size, partially defeats the purpose of resizing the IQ. Thus, instead of keeping 
information for each individual instruction, we keep aggregate information for in-
struction segments, groups of sequentially dispatched instructions (which coincide 
with the segments that make up a physically partitioned IQ). 

This MLP information is kept in a small cyclic buffer —which we call MLP dis-
tance buffer or MDB— with as many entries as the maximum number of IQ segments 
(Fig.3). MDB is not affected by IQ resizing. A new entry is allocated for each seg-
ment, but in contrast to the real IQ entries, MDB entries are evicted only when it fills. 
This means that MDB “retires” a segment only when newly dispatched instructions 
are farther away than the size of the non-managed IQ, and thus could not possibly 
execute in parallel with the retiring segment. Our approach to measure MLP distance, 
is similar to [4] but based on segments for increased power efficiency. Each time an 
instruction causes an L2 miss, the corresponding MDB segment is marked as also 
having caused a miss. Upon eviction of an entry, the MDB is searched for the other 
entries which have caused L2 misses. If there are such entries, this means that there 
could be possible MLP among them. We update each entry’s MLP-distance field with 
the distance —measured in segments— from the youngest entry with a miss, if this 
distance is longer than the previously recorded value. MDB is infrequently accessed 
and it is only processed whenever segments which caused L2 misses are retired 

The MLP-distance is not an entirely accurate estimation of actual MLP. To reside at 
the same time in the IQ is not the only requirement for two instructions to overlap their  
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Fig. 3. MLP Distance Buffer (MDB) 

misses i.e. possible dependencies between the instructions may cause their misses to be 
isolated. In any case, the “actual” MLP-distance will be less than or equal to the value 
produced by our approach. This in turn means we might miss some opportunities for 
downward IQ resizing but we will not incur performance degradation due to loss of 
MLP. Our experiments showed that for most benchmarks falsely assuming parallel 
misses causes few overestimations of the MLP-distance. Considering the simplicity of 
our mechanism, these results indicate a satisfactory level of performance. 

Measuring the MLP-distance allows us to control the IQ size for the relevant part 
of the code so as to not hurt MLP. We need, however, to relate this information back 
to the instruction stream so the next time we see the same part of the code we can 
react and correctly set the size of the IQ. 

4.2   Associating MLP-Distance with Code 

For the purpose of managing the IQ in a MLP-aware fashion, we dynamically divide 
program execution into fragments and associate MLP-distance information with these 
fragments. Execution fragments should be comparable in size to the size of the IQ. 
Much shorter fragments would be sub-optimal since the information they carry will 
be used to manage the whole IQ, which contains multiple such fragments. This could 
lead to very frequent and —many times— conflicting resizing decisions. Longer 
fragments, such as program phases, also fail to provide us with the fine-grain informa-
tion we need to quickly react to fast-changing MLP-distances in the instruction 
stream. 

To achieve the desired balance in the size of the fragments we use the notion of su-
perpaths. A superpath is nothing more than an aggregation of sequentially executed 
basic blocks and loosely corresponds to a trace (in a trace cache) [13] or a hotspot 
[12]. The MLP-distance of a superpath is assigned by the MDB: when all of the MDB 
entries belonging to a superpath are “retired,” the longest MLP-distance stored in 
these entries is selected to update the MLP-distance of the superpath. Note that the 
instructions which establish this MLP-distance do not have to belong to the same 
superpath. An MLP-distance that straddles a number of superpaths affects all of them 
(if it is the maximum observed MLP-distance in each of them).  

The next time the same superpath is observed in dispatch, its stored information is 
retrieved to manage the IQ. A more detailed discussion about superpaths and how we 
actually implemented the aforementioned mechanisms can be found in Section 5. 



 MLP-Aware Instruction Queue Resizing: The Key to Power-Efficient Performance 119 

 

4.3   Resizing Policy 

When we start tracking a superpath in dispatch, we check whether we have stored 
information about its behavior, including its MLP-distance information. If there is 
such information then we have an indication about the minimum IQ size which will 
not affect the MLP of this superpath. In many cases, however, there is no MLP-
distance information available or the MLP-distance does not restrict IQ downsizing. 
The question is how much can we downsize the IQ is such cases? As explained in 
Section 3, an efficient IQ resizing scheme has to find the IQ size that minimizes en-
ergy consumption without hurting performance. This means that besides not hurting 
MLP we must also protect ILP. 

This gap can be filled by any of the existing IQ resizing techniques. For example, 
the ILP-feedback approach of [2] can provide a target IQ size that does not hurt ILP 
while the MLP-aware approach judges whether this size hurts MLP and if so it over-
rides the decision. For the rest of this paper the ILP-feedback information will be pro-
vided by the decision making mechanism in Folegnani and González [2]. This mecha-
nism examines the participation of the youngest segment of the IQ to the IPC within a 
specific number of cycles. If the contribution of the youngest part is not important, 
namely the number of instructions that issue from this segment is below a threshold, 
the IQ size is decreased. In our case, we deactivate the youngest segment when it 
empties. 

The main idea in the Folegnani and González work is that if a segment contributes 
very little to ILP, deactivating it would not harm performance. However, this holds 
only for ILP —not for MLP. In other words, even if the contribution of a segment in 
issued instructions is very small, it can still have a significant impact on performance, 
if any of its issued instructions is involved in MLP. It is exactly for such cases where 
MLP-awareness makes all the difference. Further, in the Folegnani and González 
work, once the IQ is downsized, there is no way to detect whether the situation 
changes —all we can see is the contribution to ILP of the active portion of the IQ. 
Thus, periodically, the IQ is brought back to its full size, and the downsizing process 
starts again. In our case, the existence of MLP automatically upsizes the IQ, to a size 
that does not harm MLP. 

5   Practical Implementation 

5.1   IQ Segmentation 

To allow dynamic variation of the IQ size, we divide the IQ in a number of independ-
ent parts referred as segments. For example, we use an 128-entry IQ partitioned into 
eight, sixteen-entry segments. Bitline segmentation is used to implement the resizing 
of the structure [10]. The structure of the IQ follows the one in [2]. The IQ is a circu-
lar FIFO queue, with every new instruction inserted at the tail; retiring instructions are 
removed from the head. The difference in our case, is that individual segments can be 
deactivated. A segment is deactivated if instructions from the youngest segment con-
tribute less than threshold instructions in a quantum of time (1000 cycles) and a seg-
ment is reactivated every 5 quanta. This inevitably leads to constraints that have to be 
met during the resizing process, similarly to those faced by Ponomarev et al. [11]: 
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downsizing of the IQ is only permitted if there are no instructions left to commit in 
the segment being removed and upsizing is constrained to activate segments that 
come after all the instructions currently residing in the IQ. 

5.2   Superpaths 

Our basic IQ management unit, the superpath, is characterized by its size and its first 
instruction. Sequential basic blocks are organized into superpaths at the dispatch stage 
and they contain at least as many instructions as the IQ size. Superpath creation ends 
when we encounter a basic block which is at the head of a previously created super-
path, in order to reduce both the number and the overlap of superpaths. For each 
newly created superpath we allocate an entry in a small hardware cache which keeps 
information about the superpath, as well as information about its MLP-distance. After 
performing an exploration of the design space, we chose a 4-way, 16-set configura-
tion (indexed by the lower-order bits of the start address of the superpath). 

We store 28 bits per superpath entry: 20 bits of the starting address (lowest-order 
bits above the indexing bits), the MLP-distance prediction (4 bits, again quantized in 
multiples of 16) and its confidence counter (3 bits) and a valid bit. For our 4x16 
cache, our storage requirements add up to 1792 bits. According to CACTI [14] this 
structure contributes 9.5 mW to the total power consumption of the processor, which 
is a reasonable power overhead compared to the power consumption of the IQ (8.9W 
for the configuration described in Section 6). 

5.3   MLP-Distance Prediction 

When all instructions of superpath commit, the stored superpath information is up-
dated with the MLP-distance information of this particular execution. Different exe-
cutions of a superpath are generally not identical in terms of MLP, so what we want to 
associate with the superpath is a dominant value for its MLP-distance. To manage 
this, in addition to keeping an MLP-distance prediction for each superpath entry, we 
employ a 3-bit saturating confidence counter which indicates our confidence that the 
stored MLP-distance is also the dominant value. The confidence counter is incre-
mented for each MLP-distance update which agrees with the current prediction and 
decremented for each update which disagrees. When it reaches zero we replace it. 

6   Evaluation 

6.1   Experimental Setup 

For our experiments we use a detailed cycle accurate simulator that supports a dy-
namic superscalar processor model and WATTCH power models [15]. The configura-
tion of the simulated processor is described in Table 1. We use a subset of the 
SPEC2000 benchmarks, containing benchmarks with more than one long-latency load 
per 1K instructions for the smallest cache size we utilize. Benchmarks with even less 
misses present no interest for our work, since without misses our mechanism falls 
back to the baseline ILP-feedback technique. All benchmarks are run with their refer-
ence input. We simulate 300M instructions after skipping 1B instructions for all 
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benchmarks except for vpr, twolf, mcf where we skip 2B instructions and ammp 
where we skip 3B instructions. 

6.2   Results Overview 

The experiments were performed for four different cache sizes. Three metrics are 
used in our evaluation: total processor energy, execution time and the energy × delay 
product. We first present the effects of MLP-awareness on the baseline ILP-oriented 
mechanism and then a direct comparison of the two mechanisms, the ILP-aware and 
the combination of the ILP-feedback and ILP/MLP techniques. All results (except 
otherwise noted) are normalized to the base case of an unmanaged IQ. 

Table 1. Configuration of simulated system 

Parameter Configuration
Fetch/Issue/Commit width 4 instructions per cycle
BTB 1024 entries,4-way set-associative
Branch Predictor Combining, bimodal + 2 Level, 2 cycle penalty
Instruction Queue 
(combined with ROB)

128 entries

Load/Store Queue 64 entries
L1 I-cache 16 KB, 4-way, 64 bytes block size
L1 D-cache 8 KB, 4-way, 32 bytes block size
Unified L2 cache 256 KB/512 KB/1MB/2MB,  8-way, 64 bytes block size
TLB 4096 entry (I), 4096 entry(D)
Memory 8 bytes wide, 120 cycles latency
Functional Units 4 int ALUs, 2 int multipliers, 4 FP ALUs, 2 FP multiplier

 

6.2.1   Effects of MLP-Awareness 
Figure 4 depicts the EDP geometric mean of all benchmarks for two different thresh-
olds: an aggressive threshold of 768 instructions and a conservative threshold of 256 
instructions. Note how difficult it is to improve the geometric mean of the whole-
processor EDP with IQ resizing. This depends a great deal on the portion of the total 
power budget taken up by the IQ. In our case, this is a rather conservative 13.7%, so 
in the ideal case —significant energy savings and no performance degradation— we 
expect to approach this percentage in EDP savings. Indeed, this is what we achieve 
with our proposal. 

As shown in the graph, the ILP-feedback technique works marginally with a con-
servative threshold while its combination with the MLP-aware mechanism improves 
the situation only slightly. However, with much more aggressive resizing, the  
ILP-feedback technique seriously harms performance and despite the larger energy 
savings, yields a worse EDP across all cache configurations. In this case, the incorpo-
ration of the MLP-aware mechanism can readily improve the results and turn loss into 
significant benefit, approaching 10% EDP improvement. 
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As long as the ILP-feedback technique does not hurt the MLP, it yields benefits. 
When that changes, the performance loss is unacceptable. This hazard is avoided 
when the MLP mechanism is used because it works as a safety net. With the help of 
MLP mechanism, resizing can be pushed to the limit. 

6.2.2   Direct Comparison of ILP- and ILP/MLP-Aware Techniques 
In this section, we compare the behavior of the two approaches, each evaluated for a 
configuration which minimizes its average EDP. An additional consideration was to 
find configurations that do not harm EDP over the base case for any benchmark. This, 
however, is not possible for the ILP-feedback technique, lest we are content with mar-
ginal EDP improvements. Thus, for the ILP-feedback we remove this restriction and 
we simply select the threshold that minimizes average EDP, which is 256-
instructions. The ILP-feedback with the MLP mechanism can be pushed much harder 
as it is evident from Fig.4 with the 768-instruction threshold. However, EDP worsens 
over the base case for two programs (applu and art), even though the average EDP is 
minimized. The threshold that gives the second best average EDP —giving up less 
than 2% over the previous best case— for the combined ILP/MLP mechanism is the 
512-instruction threshold which satisfies our requirement for EDP improvement 
across all benchmarks. 

Figures 5, 6, 7 illustrate the normalized EDP, execution time increase and energy 
savings respectively for the “best” thresholds for each mechanism. The end result is 
that the very aggressive resizing of the ILP/MLP technique harms performance com-
parably to the conservative ILP-feedback technique but at the same time manages to  
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Fig. 4. Average (geometric mean) Normalized EDP (left) and Performance Degradation (right) 
for ILP-feedback and ILP-feedback with MLP-awareness 
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Fig. 5. Normalized Energy-Delay Product for ‘best’ configurations: ILPFeedback (256 thresh-
old) and ILP-Feedback with MLP (512 threshold) 
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Fig. 6. Execution Time Increase for ILP-Feedback and ILP-Feedback with MLP (each for its 
best configuration) 
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Fig. 7. Normalized Energy Savings for ILP-Feedback and ILP-Feedback with MLP (each for 
its best configuration) 

 

reduce the IQ size more and produce significantly higher energy savings. This results 
in an EDP for the ILP/MLP technique that is consistently better than the EDP of the 
ILP-feedback technique, almost doubling the benefit on average (6.1-7.2% compared 
to 1.4-3.4% of the ILP-feedback technique). The added benefits of MLP-aware man-
agement diminish slightly with cache size, since with fewer misses we have less op-
portunities for MLP. Finally, note that the performance degradation of the ILP/MLP 
technique is kept at reasonable levels, while even for the conservative ILP-feedback it 
can vary considerably more (e.g., mcf execution time increases 67%-69%). 

7   Conclusions 

In this paper, we revisit techniques for resizing the instruction queue aiming to im-
prove the power-efficiency of high-performance out-of-order cores. Prior approaches 
resized the IQ paying attention primarily to ILP. In many cases this results in consid-
erable loss of performance while the energy gains from the IQ are bounded with re-
spect to the energy of the whole processor. The result is that EDP improves in some 
cases but worsens in others making such techniques inconsistent. 

The culprit for this is MLP —Memory-Level Parallelism. Resizing the IQ can re-
duce the amount of MLP in programs with serious consequences on performance. 
With this realization, we set out to provide a technique that can be applied on top of 
previous IQ resizing techniques. Our technique, detects possible MLP at runtime and 
uses prediction to guide IQ resizing decisions. Because we need to manage the whole 
IQ, our basic unit of management is a sequence of basic blocks, called superpath, 
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comparable in the number of instructions to the maximum IQ size. MLP information 
is associated with superpaths and is used to override resizing decisions that might 
harm the MLP of the superpath. In absence of misses and MLP, resizing of the IQ is 
performed using already existing techniques. 

Our results show that we can manage the IQ, considerably better than in prior ap-
proaches yielding consistently better EDP over the base case. At the same time, we 
can push the resizing of the IQ much more aggressively (to achieve better energy 
savings) knowing that our safety-net mechanism protects the MLP of the program and 
will not inordinately harm performance. 
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Abstract. Register renaming is a widely used technique to remove false data 
dependencies in superscalar datapaths. Rename logic consists of a table that 
holds a physical register mapping for each architectural register and a logic for 
checking intra-group dependencies. This logic checking consists of a number of 
comparators that compares the values of destination and source registers. Previ-
ous research has shown that the full capacity of the dependency checking logic 
is not used at each cycle. In this paper we propose some techniques that make 
use of the unused capacity of the dependency checking logic of the rename 
stage in order to detect soft errors that occur on the register tags while the in-
structions are passing through the frontend of the processor. 

Keywords: Microprocessors, soft errors, register renaming, dependency check-
ing logic. 

1   Introduction 

Soft errors caused by cosmic particles and radiation from packaging are an increas-
ingly important problem in modern superscalar processors. Particle strikes that occur 
both on the memory structures and the computational logic may cause system crashes 
if these errors are not detected [1][12]. Parity bits and ECC are widely used in cache 
memories and some other important parts of the processors [12]. 

Modern microprocessors use aggressive techniques like out-of-order execution and 
dynamic scheduling for boosting performance. In order to feed these aggressive tech-
niques that leverage instruction level parallelism, superscalar datapaths try to fetch 
more than one instruction each cycle. For example Intel’s Pentium 4 processor [6] and 
each processor core in Intel’s Core Duo architecture [5] fetches up to 3 micro-
instructions per cycle from the instruction cache, while the Alpha 21264 fetches 4 
instructions per cycle [8]. In practice, the processor cannot fill the whole fetch width 
due to the speculative nature of branch instructions and the fetch stops after the first 
taken branch which leads to the underuse of processor resources. 
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Almost all contemporary processors use register renaming in order to cope with 
false data dependencies with the exception of Sun’s Ultra Sparc [16]. Use of register 
renaming mandates the use of a mapping table and a renaming logic where a free 
register is assigned to each result-producing instruction and the dependent instructions 
get this information in the same cycle. This logic includes dependency checking logic, 
which contains a number of comparators to compare each and every destination regis-
ter tag with the source register tags of the subsequent instructions that are renamed in 
the same cycle. Because of the fact that the processor pipeline is not filled to its ca-
pacity every cycle, the comparators of the dependency checking logic are not always 
utilized. 

In this paper we propose techniques that leverage the inefficient utilization of the 
comparison logic in the renaming stage of the pipeline to detect transient errors that 
occur in the frontend of the processor. When the full pipeline width is not used it is 
possible to protect the register tags of the instructions by replicating the register tags 
into the unused fields of the subsequent instruction slots. We then use this redundant 
information by employing the already available comparator circuits of the rename 
logic to detect any errors that occur until the instruction reaches the rename stage. In 
order to improve the error coverage we also extend our scheme to replicate the tag 
data to subsequent cycles where rename stage resources are idle. 

2   Register Renaming 

Register renaming is a widely used technique to remove false data dependencies. The 
false data dependencies occur because of the insufficient number of architectural 
registers that the processor offers to the compiler. When the compiler runs out of 
registers, it uses the same architectural register multiple times in short intervals, 
which creates a false write-after-write (WAW) or write-after-read (WAR) dependency 
between the instructions that are in fact not related at all. Modern processors solve 
this problem by employing a large physical register file and mapping the logical regis-
ter identifiers produced by the compiler to these physical registers. Consequently a 
processor that makes use of the register renaming technique needs more physical 
registers than the number of architectural registers to maintain forward progress [16]. 

A mapping table is maintained in order to point out the location of the value that 
belongs to each architectural register. This mapping table is called the “Register alias 
table (RAT)” or in short “rename table” and it contains an entry for each architectural 
register that holds the corresponding physical register that holds the last instance of 
the architectural register [6]. 

Each result-producing instruction that enters the renaming stage of the processor 
checks the availability of a physical register from a list of free registers. If a free reg-
ister is available, the instruction grabs the register and updates the corresponding 
entry in the rename table. In some implementations of the register renaming, the in-
struction has to read and hold the previous mapping of its destination architectural 
register in order to recover from branch mispredictions or free the physical register 
that holds the previous value of the architectural register [6]. Each instruction also has 
to read the physical register identifiers that correspond to the architectural registers 
that it uses as source operands from the rename table. 
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In a superscalar processor, the rename table has multiple ports to allow the renam-
ing of multiple instructions per cycle. Every instruction that is renamed together in the 
same cycle needs to acquire a free register from the free list, update the rename table 
and read the mappings for its source operands concurrently. Since some of the in-
structions that are renamed in the same cycle are dependent on each other with WAR 
or WAW hazards, instructions may try to write to the same entry of the rename table 
in the same cycle or an instruction may need to wait for a previous instruction to up-
date the rename table before it can read the mappings for its source operands. This 
kind of sequential access to the rename table may either increase the cycle time or 
may not be even possible due to some design choices. Therefore register renaming 
stage of the pipeline includes a dependency checking logic to detect intragroup de-
pendencies. 

Fig. 1. Comparison circuitry of the rename logic 

Fig. 1 shows the structure of the dependency checking logic for a machine that re-
names 3 instructions concurrently. There are multiple comparator circuits that com-
pare the destination and source tags of all concurrently renamed instructions. Each 
instruction’s destination architectural register tag is compared to the source operand 
and destination tags of all of the subsequent instructions. In case of a match, the 
physical register mapping corresponding to the source operand of the subsequent 
instruction is obtained from the destination physical register field of the preceding 
instruction rather than being read from the rename table. This way a serial write and 
read operation is avoided. Similarly, in order to avoid updating the same rename table 
entry multiple times in a single cycle, destinations of all of the instructions are com-
pared against each other. If a match is detected, only the youngest instruction is al-
lowed to update the rename table. The match/mismatch signals that are produced by 
the comparators C1…C9 are fed into the priority decoders to control the access of the 
instructions to the mapping table. 
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3   Using Dependency Checking Logic for Soft Error Detection 

Although superscalar processors are designed for high throughput, pipeline width is 
not fully used from time to time. As the pipeline of the processor is not filled with 
instructions to its capacity, the number of simultaneously renamed instructions is 
reduced. This fact was previously observed by Moshovos and was exploited to reduce 
the complexity and the power dissipation of the rename table [9]. 

When the number of concurrently renamed instructions is below the processor re-
name width, dependency checking logic of the rename stage is not employed to its 
capacity. The comparators that are wired to the empty instruction slots during this 
period stay idle and generally are not used for any purpose. Therefore during the 
times when the processor is not using all of its rename slots, these comparators can be 
used to detect soft errors that occur on the register tags of the instructions when they 
are passing through the frontend of the processor. 

Value replication is a long time known and used technique for reliability. Although 
it is possible to detect single bit errors in a value by adding a single parity bit, repli-
cating the value can detect and possibly correct multiple errors if there are enough 
copies of the value. Errors can be detected with one redundant copy of a value and 
can be corrected with two redundant copies through simple voting [2]. More than 
three copies of the same data leads to a stronger protection as there will be more 
chances to recover from an error. 

Instruction replication was proposed and implemented in different ways to cope 
with soft errors in the past. Redundant multithreading was proposed to replicate the 
whole thread running on the processor to detect any soft errors [11][13][19]. While it 
offers a system level protection, replicating each and every instruction in a program 
results in some performance degradation as processor resources are divided into two 
to execute instructions from both the leading and the trailing threads. 

Selectively replicating most vulnerable instructions and processor structures have 
been proposed as a good tradeoff between performance degradation and fault cover-
age. However, most of the previous approaches have concentrated on protecting the 
backend structures of the processor such as the functional units, the issue queue or the 
reorder buffer [2][7][18]. 

In this paper we propose to replicate the register tags of the instructions into the 
register tag fields of the unused instruction slots and use the idle comparators of the 
dependency checking logic to detect and correct soft errors that occur in the frontend 
of the processor. 

3.1   Protecting the Tags of a Single Instruction 

When there is only one instruction flowing through the pipeline, all of the hardware 
resources can be used for this single instruction. It is possible to detect the errors on 
both the source tags and destination register identifier if the pipeline width is at least 
4, without adding any additional comparator circuit. In order to maximize the error 
coverage, the tags of the single running instruction is copied to the empty fields of the 
unused slots as shown in Fig. 2 as early as possible in the pipeline. This copy  
operation is mostly likely to happen when the instruction is decoded. Also the copies 
may be ready right after fetching if a trace cache, where decoded instances of the  
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Fig. 2. Error detection example for single instruction renaming 

instructions are stored [14], is employed. The instruction slots that hold the redundant 
information are marked as “bogus” in order to let the rename logic know that these 
tags do not belong to real instructions. 

After the single instruction’s tags are replicated in the empty slots, outputs of the 
already wired comparators at the rename stage are checked to see if an error occurred 
by the time instruction arrived at the rename stage. As seen in Fig. 2, if the outputs of 
the comparators C2 and C3 mismatch it can only be the result of an error on the desti-
nation register identifier of the instruction. Similarly, the outputs of the comparators 
C8 and C9 are checked in order to detect an error on the first source tag of the instruc-
tion. As for the destination tag, in fact even a mismatch signal in C2 or C3 indicates 
that an error has occurred. Using the output of the both comparators actually gives a 
chance to correct the error if one assumes a single event upset model. 

In order to cover both source tags and the destination tag of the single instruction 
the processor needs to be capable of renaming at least 4 instructions each cycle. Al-
though the Fig. 2 is shown for a 3-wide machine for simplicity, the second source tag 
of the first instruction is copied to the destination field of the third instruction as it 
would be done in a 4-wide machine. 

3.1.1   Single Event Upset Model 
If we assume that the fault-rate is sufficiently low, then we can statistically ignore the 
probability of a multiple-bit flip. This is typically called the Single Event Upset 
model. Under this assumption, the bit flip can not only be detected but corrected as 
well. Consider Fig. 2, and assume that there was a bit flip affecting R1. There are two 
possible cases:  

a) The bit flip could occur in the destination field of instruction 1; then both C2 and 
C3 comparators would signal a mismatch, indicating that there was a strike to the 
destination field of instruction 1. The field is updated by copying the field of ei-
ther S1 or S2 of instruction 2, which hold the copies of R1. 
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b) The bit flip could occur on the copies of R1 held in the S1 or the S2 fields of in-
struction 2. In this case a mismatch in either C2 or C3 would indicate a flip in S1 
or S2 respectively. The error could then be corrected by updating the faulty field 
or would not be corrected at all since the actual tag value is free of errors. 

3.1.2   Multiple Events Upset Model 
If the fault-rate is high, then multiple bit-flips could occur. The fault-recovery for this 
model is slightly more complicated; however even for this case we can detect the 
fault. In this model, it is not for sure that the “correction” will lead to the actual value 
of the tag. For example if C2 indicates a mismatch and or C3 indicates a match it is 
logical to think that an error occurred on the first source field of instruction 2. How-
ever it is also possible that both the real tag and the copy residing in the second source 
field may be erroneous. Assuming that the actual tag is free of errors in this case may 
be wrong although the probability of actual tag being correct is high. Therefore it 
makes sense to flush the pipeline and refetch the instruction if any of the comparators 
give a mismatch signal. 

It is possible to correct errors that occur on the tags of the single instruction. How-
ever this comes at the cost of sacrificing the protection on one of the tags since there 
are not enough comparators to check three tags in a 4-wide machine. In order to cor-
rect an error on R1 for the example shown in Fig. 2, the tag R1 has to be copied to the 
destination field of the instruction 2. This way there will be 3 comparisons for R1 and 
simple voting can be employed. Note that different from regular voting used to cor-
rect or detect errors, more copies of the same value are held here since we can only 
compare a destination tag to a source or destination tag of another instruction but we 
cannot compare two source tags with each other using only the already available 
hardware resources. Although not shown in Fig. 2, source register R3 is also copied to 
the source fields of the instruction slot 4 for protection in a processor with a 4-wide 
rename stage. 

When the destination tag is replicated to all of the fields of the second instruction, 
an error in the actual tag will result in a mismatch signal at C1, C2 and C3 at the same 
time. By copying one of the replicated values back into the actual tag area corrects the 
problem. However if there is even 1 match signal, it probably means that the replicas 
are corrupted since having two errors, one on the actual value and one on a replica, 
that will result to the same faulty value is a low probability. Yet again, it may be a 
good choice to flush the pipeline and refetch the instruction in such a case. 

3.2   Protecting the Tags of Two Instructions Renamed in the Same Cycle 

The processor renames one instruction at a cycle only if there is a problem. This prob-
lem may be a cache miss, a taken branch or a processor resource that causes a bottle-
neck temporarily. When the processor starts to execute the program faster, the number 
of instructions renamed per cycle increases. However as the throughput of the proces-
sor increases, the benefits of our technique decrease as more comparators start to be 
employed for their real purpose.  

For a 4-wide processor, when only two instructions are renamed together, it is pos-
sible to correct an error that occurs on both of the destination tags of the instructions 
but we cannot detect or correct any errors occurring on the source tags at the same 
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time. Alternatively we can copy the destination tag of one of the instructions to the 
source tag fields of instruction 3 and one source tag of the same instruction both to the 
destination tag of the third instruction and the source tags of the fourth instruction 
slot. This way it is possible to protect the destination tag and one of the source tags of 
one of the instructions. 

3.3   Renaming More Than 2 Instructions Simultaneously 

Our proposed technique can also provide partial soft error detection coverage if three 
instructions are renamed simultaneously. In this case only an error on the destination 
tag of one of the instructions can be detected by copying this tag to all of the fields 
(destination + sources) of the fourth instruction slot. In a 4-wide processor, the pro-
posed technique won’t be able to provide any soft error detection coverage since there 
won’t be any empty slots or idle comparators. 

3.4   Using the Bubbles in the Pipeline to Improve Soft Error Coverage 

Our proposed scheme cannot offer any soft error detection coverage if the pipeline is 
fully employed. Also when there are more than one instruction flowing through the 
pipeline there are not enough storage slots to cover all of the source and destination 
tags. However the processor pipeline is occasionally not fully employed which offers 
a whole set of resources to check tags of one instruction. It is possible to copy the tag 
information of an instruction to a following empty stage to achieve error coverage. In 
this case there are different options that a designer may choose:  

1. One of the instructions (the instruction that is the last in program order) falls be-
hind to the previous stage where it can replicate all of its tags into the storage space 
for full soft error coverage. This solution may introduce a delay penalty as the in-
struction that falls back is delayed inside the pipeline, which will delay its entrance 
to the issue queue and may delay its issue to the function units. We evaluated this 
scheme but interestingly the soft error vulnerability increased while the perform-
ance dropped. 

2. Tags of one of the instructions are copied to the next cycle and when these bogus 
tags arrive at the rename stage, they are compared against the original tag by hold-
ing onto this tag in the rename stage. This solution does not result in performance 
degradation but requires some hardware support. In this work we used this scheme. 

3. All of the instructions copy their tags to the empty slot in the previous stage. How-
ever in this case there should be a hardware design that supports the checking of 
tags between stages. This may be accomplished by copying the entire stage and 
checking the outcomes of all comparators by latching the comparison outcomes. 
This mandates the use of a single-bit flip-flop (or a latch) for storing the outcomes 
of all comparators at the rename stage and an extra comparator should be employed 
to compare the contents of the latches with the outcomes of the comparators. In the 
examples depicted in Fig. 1 and Fig. 2 there are 9 comparators which means that 
there will be a 9 bit comparison outcome signature. If this outcome is latched and 
compared against the 9 bit comparator outcome signature of the replicated bogus 
tags in the next cycle any mismatch would mean a soft error. Therefore it is possible 
to protect the entire group of tags by using 9 latches and one 9 bit comparator.  
Note that this scheme shows an error if there is a mismatch in the signatures but a 
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signature match does not necessarily mean that the tags are error free since only the 
single bit outcomes of already existing comparators are compared. The comparators 
could have mismatched in the previous cycle and can mismatch again erroneously. 
Since this scheme does not offer full coverage we did not evaluate it. 

4   Simulation Methodology 

We used the PTLsim simulator that is capable of simulating x86 instruction set in 
order to get the percentage of the instructions whose tags are protected by the pro-
posed technique. PTLsim simulates a Pentium 4-like microarchitecture and accurately 
models pipeline structures such as the issue queue, the reorder buffer, and physical 
register file which are implemented separately inside the simulator. For each bench-
mark, we simulated 1 billion committed instructions. Table 1 shows the simulated 
processor configuration. 

Table 1. Configuration of the Simulated Processor 

Parameter Configuration
Machine width 4-wide fetch, 4-wide issue, 4 wide commit

Window size 32 entry issue queue, 48 entry load/store queue, 64–entry ROB, 128-entry 
Register File

Function Units and 
Latency (total/issue)

Integer ALU (6/1), load/store unit (2/2), integer multiply (2/4), integer 
division (1/32), floating-point addition (2/6), floating-point multiplication 
(2/6), floating-point division (2/6). 6 integer, 2 floating point function units 
in total.

L1 I–cache 16 KB, 4–way set–associative, 64 byte line, 1 cycle hit time
L1 D–cache 32 KB, 4–way set–associative, 64 byte line, 2 cycles hit time
L2 Cache unified 256 KB , 16–way set–associative, 64 byte line, 6 cycles hit time
L3 Cache unified 4 MB, 32–way set– associative, 64 byte line, 14 cycles hit time
BTB 1024 entry, 4–way set–associative
Branch Predictor 64K entry bimodal and two level combined
Memory 140 cycles latency  

5   Results and Discussions 

In order to achieve high soft error detection coverage on the register tags with the 
proposed technique, the number of simultaneously renamed instructions per cycle 
needs to be as small as possible. This observation is against the general rule that the 
faster the processor gets the less empty the pipeline is. However since the invested 
hardware is minimal in our technique, detecting even the small number of errors 
would be beneficial. 

Fig. 3 shows the number of concurrently renamed instructions for spec 2000 
benchmarks. Having no instructions in the rename stage does not have any benefits 
for the initially proposed techniques. In fact the tag fields of the instructions are not 
vulnerable at all when they do not contain any valid information [10]. The figure 
shows that the simulated processor frequently uses the full rename width or the re-
name stage is empty on average. On the average across all spec 2000 benchmarks in 
more than 40% of the utilized cycles the full processor renaming capacity is not used. 
This result is consistent with the findings of Moshovos in [9] although he used a 
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Fig. 3. Number of concurrently renamed instructions 

different instruction set. These results show that the pipeline stages are full most of 
the cycles as opposed to our previous findings obtained by using M-Sim [16] for 
Alpha 21264 instruction set [3]. 

Fig. 4 shows how much the rename stage is employed in two consecutive cycles. 
Each horizontal set of bars represents a different benchmark and for each benchmark 
the statistics show the frequency of consecutive employment situation for the rename 
stage. For example, the value 44 on the x axis shows how frequent 4 instructions are 
renamed for two consecutive cycles. The results show that the processor usually 
switches between empty stage and full stage but does not usually switch from half-full 
to half-full. The frequency of 12 and 23 situations show this behavior. Also as it can 
be seen from the figure, 40, 30, 20 and 10 situations are quite common (more than 
10% on average). Therefore it makes sense to copy a single tag to a following bubble 
slots at a full pipeline stage for soft error detection coverage. 

 

Fig. 4. Frequency of employment at the rename stage for two consecutive cycles 
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Fig. 5.  Reduction of soft error vulnerability in the register tags 

Fig. 5 shows the vulnerability reduction achieved in the register tags of the instruc-
tions by applying the proposed techniques. The bottom part of each bar shows the 
vulnerability reduction achieved by replicating the source and destination tags of 1 
instruction or 2 instructions that are renamed in the same cycle. The middle part of the 
bar shows the vulnerability reduction achieved by employing the empty stages that 
come right after an employed rename stage cycle. In this case one of the tags is copied 
to the slots in the previous stage just after the fetching of the bubble into the pipeline. 
Finally the top part of the chart is the result when a tag is replicated for soft error 
detection to an empty slot that comes two cycles after a full stage. As the results re-
veal there are diminishing returns when we try to exploit farther empty slots while the 
hardware complexity to check for an error is increased. 

6   Conclusion and Future Work 

In superscalar processors multiple instructions are fetched, decoded, renamed and 
dispatched each and every cycle. In order to solve the intra group data dependencies, 
comparator circuits are employed in the rename stage of the pipeline which check if 
the destination of an older instruction is equal to the sources of a younger instruction. 
Frequently, because of control dependencies, full fetch width of the machine is not 
used and the comparators in the rename logic are kept idle until another set of instruc-
tions arrive. In this paper we proposed a scheme to detect and correct soft errors by 
replicating the instruction tags in the frontend of the processor and later checking the 
equality of these replicated tags at the rename stage of the pipeline by employing the 
unused comparator circuits. We also show that frequently no instructions are fetched 
from the memory and the unemployed processor resources during those cycles can be 
used for error detection for the previously fetched instructions. Our results show that, 
on the average across all spec benchmarks, more than 20% of the register tags can be 
protected against any soft errors in the frontend of the processors by employing the 
proposed techniques. 



136 M. Kayaalp et al. 

 

The results of our study shows an upper bound for the benefits that can be achieved 
by using the dependency checking logic of the rename stage since it is assumed that 
each and every instruction uses the destination and source tags. In reality, many in-
structions don’t use some or all of these tag fields and this observation was used for 
different purposes by many researchers [3][15][20]. By using the unused space inside 
the instruction slots, it is possible to use the on-chip comparators for detecting more 
errors on the register tags. The investigation of how to use the unused register tag 
space for soft error detection is left for future work.  
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Abstract. Efficient transaction nesting is one of the ongoing challenges
for hardware transactional memory. To increase efficiency of closed nest-
ing, this paper proposes a conditional partial rollback (CPR) scheme
which supports conditional partial rollback without increasing hardware
complexities significantly. In stead of rolling back to the outermost trans-
action as in commonly-used flattening model, the CPR scheme just rolls
back to the conflicted transaction itself or one of its outer-level trans-
actions if given conditions are satisfied. By recording access status of
each nested transaction, the scheme uses one global data set for all of
the nested transactions rather than independent data set for each nested
transaction. Hardware transactional memory architecture with the sup-
port of CPR scheme is also proposed based on multi-core processor and
current cache coherence mechanism. The system is implemented by sim-
ulation, and evaluated using seven benchmark applications. Evaluation
results show that the CPR scheme achieves better performance and scal-
ability than the flattening model which is commonly-used in hardware
transactional memory.

Keywords: transactional memory, transaction nesting, multi-core pro-
cessor, programming model, programmability.

1 Introduction

With the rapid development of multi-core and many-core processors, multi-
threading must be used in programs more than ever in order to utilize processing
cores efficiently and promote performance of programs. However, in traditional
lock-based programming paradigms, programmer must take many considerations
in synchronizing among threads and processes, and even then, deadlock and poor
performance still happen in case of inappropriate setting of locks.

Among research work to improve programmability of parallel systems,
transactional memory(TM) is an attractive one. Compared to traditional
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programming models, transactional memory can improve the programmability,
avoid deadlock and furthermore, promote performance of concurrent programs.

Transaction nesting is one of the ongoing challenges for hardware transac-
tional memory. To support efficient closed nesting, this paper proposes a con-
ditional partial rollback (CPR) scheme which supports partial rollback condi-
tionally without increasing hardware complexities significantly. Compared to the
flattening model which is commonly-used in hardware transactional memory, the
CPR scheme rolls back to the conflicted transaction itself or one of its outer-level
transactions instead of the outermost if given conditions are satisfied. Transac-
tional memory system architecture with support of the CPR scheme is also
proposed based on multi-core processor and current cache coherent mechanisms.
The system has been implemented by simulation. Its performance is evaluated
by seven benchmark applications. Evaluation results show that the CPR scheme
outperforms flattening model in performance and scalability.

The rest of this paper is organized as follows. Section 2 gives an overview of
transactionalmemory. Section 3 discusses transactionnesting models and presents
the CPR scheme which supports conditional partial rollback. Section 4 introduces
the architecture of our hardware transactional memory. Section 5 evaluates the
system with benchmark applications. And Section 6 concludes the paper.

2 Overview of Transactional Memory and Related Work

The concept of transactional memory is first proposed in [1]. It defines transaction
as a sequence of instructions which is executed atomically, that is, a transactions is
executed either completely (committed) or has no effect (aborted). The atomicity
of a transaction is supported at the architecture level, either in hardware or soft-
ware. During the execution of a transaction, all the modifications to the data are
buffered and invisible to the system, if a conflict between two transactions occurs
due to reading or writing to the same data, one of these transactions aborts its
execution and rolls back. The transaction ends up with commit operation, which
makes all the buffered modifications visible to the system.

Compared to traditional lock-based programming model, transactional mem-
ory has a series of advantages: firstly, programmer only need to partition the
transactions without considering synchronization and mutual exclusion among
threads, so the transactional program is easy to write, and programmability is
improved; secondly, the synchronization among transactions is done by the sys-
tem automatically, and a transaction can be aborted and rolled back at anytime,
so deadlock can be avoided; and thirdly, multiple transactions can be specula-
tive executed concurrently, and rollback only occurs on conflict, as the result,
performance of transaction programs can be improved.

According to the implementation styles, current transactional memory system
falls into two categories: hardware transactional memory (HTM) and software
transactional memory (STM). HTM supports atomicity of transactions by hard-
ware, and achieves high performance at the cost of resource limitations (e.g.
size of a transaction); also the processor architecture must be modified. Typical
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HTMs include TCC [2], UTM [3], LogTM [4], TokenTM [5], etc. Compared to
HTM, STM [6–10] supports atomicity of transactions by software, and achieves
benefits such as flexibility of transactions and various enhanced functions; more-
over, STM can be implemented on current processors without hardware modi-
fications. The disadvantages of STM are also obvious: low performance due to
the cost of maintaining data consistency and transaction management. Beyond
HTM and STM, mixed approaches are also proposed which is called hybrid
TM [11–14].

Transaction nesting is one of the ongoing challenges for hardware transactional
memory [15]. To achieve both performance and programming flexibility, efficient
transaction nesting is needed in HTM. However, most of current HTMs either do
not support transaction nesting or support closed nesting by using the inefficient
flattening model. One work to achieve efficient nesting is the nested LogTM [16],
which supports both open and closed nesting, and for closed nesting, it can rolls
back to the beginning of conflicted transaction instead of the outermost trans-
action. However, this scheme requires that each nesting level maintains indepen-
dent data set, and will increase complexities and costs of hardware significantly.
Compared to nested LogTM, the scheme proposed in this paper just maintains
one data set for all nesting levels; the cost is that partial rollback happens only
in some specified conditions.

3 Efficient Transaction Nesting in HTM

3.1 Open and Closed Nesting

Transaction nesting occurs when a transaction is executed within another trans-
action, and commonly exists in calling a subroutine inside a transaction while
subroutine itself contains one or more other transactions.

There are two types of semantic models for transaction nesting: closed and
open nesting.

(1) Closed nesting
In closed nesting model, a transaction and all of its nested transactions are

regarded as integral and its atomicity is guaranteed, that is, either all the nested
transactions commit together, or abort and roll back as a whole. The common
approach for closed nesting in HTM is the flattening model, in which a trans-
action and its nested transactions are treated as one transaction, and commit
operation is executed at the end of the outermost transaction, on conflict, trans-
action rolls back to the beginning of the outermost transaction. Obviously, this
mechanism is inefficient, especially in deep nesting.

(2) Open nesting
In open nesting model, a transaction and its nested transactions commit in-

dependently, and roll back to the beginning of itself instead of the outermost
transaction on conflict. Compared with closed nesting, open nesting is more effi-
cient, while on the other hand, it increases programmer’s burden. Compensating
actions are needed if an outer-level transaction aborts after its inner transaction
commits successfully, and this involves complex coding.
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3.2 The Scheme of Conditional Partial Rollback

The ideal method to improve performance of closed nesting is: when a transaction
aborts due to a conflict with other transactions, it just rolls back to the beginning
of itself instead of the outermost transaction. However, this requires that each
nested transaction has its own data set, as in the nested LogTM, and will increase
complexities and costs of hardware significantly.

To improve the performance of closed nesting in reasonable hardware cost, we
propose a scheme which supports conditional partial rollback (CPR) of trans-
actions. The idea of the scheme is: instead of maintaining independent data set
for each nesting level, a global data set is used for all of the nested transactions,
while the access status of each nesting level to the data set is recorded. When an
inner level transaction aborts due to a conflict, it rolls back to the beginning of
itself if the data set it accessed has no overlap with other transactions, otherwise
it rolls back to the beginning of the outer-level transaction which accessed same
data with it, in the worst case, it rolls back to the beginning of the outermost
transaction.

In addition, the partial rollback can be further distinguished by read/write
accesses. Only when the conflicted transaction has written to the same data with
other transactions, it rolls back to the beginning of the outer-level transaction.
The reason is that the data updated by the outer-level transactions has been
overwritten by the conflicted transaction in the later, and cannot be restored
to the beginning status of conflicted transaction, in that case, a rollback to the
beginning of the outer-level transaction is needed. In other cases, the conflicted
transaction just rolls back to the beginning of itself despite it has accessed the
same data with other transactions.

The above CPR scheme can be described formally as following: suppose the
number of nesting level is n, the outermost transaction is T0, the innermost trans-
action is Tn−1, and write set of each nested transaction are: D0, D1, . . . , Dn−1.

When transaction Tc aborts due to a conflict, it rolls back to the beginning
of transaction Tm, and:

m = min{∀i∀j[(Dc ∩ Di �= ∅) ∧ (Di ∩ Dj = ∅)]} . (1)
(i = 0, 1, 2, . . . , c; j = 0, 1, 2, . . . , i − 1)

According to the above expression, the transaction Tc will roll back to the trans-
action that is the outermost among the transactions that have overlapped write
set with Tc. If there is no overlapped write set between Tc and others, it will just
roll back to the beginning of itself.

Fig. 1 gives an example of conditional partial rollback. According to the flat-
tening model for closed nesting, an inner transaction Tc rolls back to the outer-
most transaction when conflict occurs, as shown in Fig. 1(a). For CPR scheme,
the transaction rolls back to the beginning of itself if there is no overlap between
its write set and others, as shown in Fig. 1(b); otherwise it rolls back to the outer
transaction which has overlapped write set with Tc , as shown in Fig. 1(c).
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Fig. 1. Example of conditional partial rollback

3.3 Hardware Support

Fig. 2 shows the structure of transactional buffer supporting conditional partial
rollback, which is used to buffer the data accessed by transactions speculatively,
and to store related status for committing or rollback. The structure of transac-
tional buffer is similar to cache and data is also stored by line. The difference is
that transactional buffer holds both old and new version of data for each line,
where the old version is the data that the outermost transaction started with,
and the new version is the current version updated by the transaction specula-
tively. In addition, there are n-bits read and write vector for each line to indicate
whether the line has been read or written speculatively, where n is the maximum
number of nesting levels supported by the scheme, more deeper levels will cause
the scheme falls back to flattening model. Each bit in vector corresponds to one
level of nested transactions.

The transactional buffer is in parallel with L1 data cache. Processor uses
transactional buffer when executing transactions (i.e. in transaction state), while
using L1 data cache when not in transaction state. In transaction state, L1
data cache is substituted by transactional buffer with the same cache coherence
mechanism, while memory writes are limited only in transactional buffer. When
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Fig. 2. Structure of transactional buffer
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a transaction commits, read and write bits of those updated lines are cleared
one by one, which makes the new version of data visible to cache coherence
mechanism. When transaction rolls back, data is written back from “old” to
“new” for those lines updated by the transaction and inner transactions.

The transaction nesting register (TNR) is used to count nesting levels of
transactions. When the processor enters transaction state, which means the out-
ermost transaction is started, the least significant bit of the register is set to
1. The register shifts 1-bit left each time a nested transaction is started, and
shifts 1-bit right each time a nested transaction is ended. If the transaction is
ended with least significant bit set, which means the outermost transaction is
ended, the processor commits the transactional buffer. During the execution of
transactions, the bitmap of TNR is also used to set the write-vector in transac-
tional buffer when the transaction writes to a line. If the nesting level exceeds
the width of TNR in some extreme cases, the system falls back to the original
flattening model for the following inner transactions.

The scheme of conditional partial rollback described in previous section can
be implemented in this architecture easily. The write set of a nested transaction
corresponds to those lines updated by the transaction, and are labeled in the
write-vector of transactional buffer.

4 System Architecture of Transactional Memory

4.1 System Architecture

The transactional memory architecture for the CPR scheme is shown in Fig. 3.
The system is based on the multi-core processor architecture, and support ex-
ecution of transactions by adding some hardware components which is shown
in dashed line boxes. Other parts of the core are the same as conventional
processors.

4.2 Execution of Transactions

(1) Conflict detection and resolving
Transactions belonging to different threads execute concurrently, and conflict
occurs in the following two situations: a thread writes a line which has been
read or written by another thread speculatively; or a thread reads a line which
has been written by another thread speculatively.

Conflict detection is based on current cache coherence mechanism, such as
snoopy or directory-based cache coherence protocol, with which conflicts in above
situations can be detected. So, by tracing if a line has been read or written spec-
ulatively using read / write bits for each line, a conflict can be detected for sure.

Conflict needs to be resolved after it is detected. The rules to resolve a conflict
are: if the conflict occurs between transactional and non-transactional code, the
transaction is aborted; if the conflict occurs between two transactions, the hard-
ware always decides in favor of the transaction currently requesting the data,
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that is, the thread that requesting data currently can continue, while another
transaction aborts.

(2) Abort and rollback
When a transaction aborts, firstly the rollback level is determined according to
the write-vector in transactional buffer, and all the lines that have been updated
speculatively by the rollback level and its inner levels are invalidated, and then
an exception is raised and an exception handler is executed which clears related
status and restart the transaction.

(3) Commit
The commit operation is executed at the end of the outermost transaction, which
makes the buffered contents in transactional buffer valid to the system. To fulfill
this, read / write bits in the transactional buffer are cleared line by line, which
makes data in the buffer visible to the cache coherence mechanism.

4.3 Instruction Set Extension and Programming Interface

As a hardware transactional memory, the execution of transactions is transparent
to programmers, and there is no restriction on programming languages. As shown
in Table 1, only two instructions are extended to the instruction set with their
corresponding programming interfaces respectively. Programmers just need to
partition transactions in their programs, and insert corresponding APIs at the
beginning and the end of each transaction.
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Table 1. ISA Extensions and Programming Interface

Instruction Description Programming interface

XB transaction start BEGIN TRANSACTION()
XC transaction end COMMIT TRANSACTION()

Table 2. Configuration of Target System

Item Configuration

cache size L1: 64KB+64KB L2: 16MB
transactional buffer: 64KB

cache line size 64 bytes
cache coherence protocol MESI CMP filter directory
interconnection network hierachical switch topology

5 Evaluation and Analysis

5.1 Experimental Environment

The CPR scheme and system are evaluated on a simulation platform which is
based on the full-system simulator Virtutech Simics [17] and GEMS [18]. By
execution-driven simulating, the operating system and applications can be run
on the platform.

The transactional memory system proposed in this paper is implemented by
extending the simulator. The target system is based on Sparc processor with the
extensions of hardware components and instruction set for transaction memory.
The number of processor cores varies from 2 to 16. And the operating system is
Solaris. Table 2 shows configurations of the target system.

The target system is evaluated using seven micro-benchmark applications as
listed in Table 3. These applications fall into two categories: share-h, share-m
and share-n have the same number of nesting levels but different densities of data
sharing among nesting levels; nest-1 to nest-4 have different number of nesting
levels but no data sharing among nesting levels.

Each application is executed in transactional memory with the support of
CPR scheme and original flattening model, and performance data is obtained at
the same time.

Table 3. Micro-benchmark Applications

Program name Number of nesting level Data sharing among nesting levels

share-h 4 high
share-m 4 middle
share-n 4 none

nest1-nest4 1, 2, 3, 4 none
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5.2 Results and Analysis

The speedup of CPR scheme over original flattening model is shown in Fig. 4, in
which Fig. 4(a) shows the relationship between speedup and number of nesting
levels, while Fig. 4(b) shows the relationship between speedup and density of
data sharing among nesting levels.

As Fig. 4(a) shows, the speedup is approximate to 1 when nesting levels is 1,
at this time, the CPR scheme equals to the flattening model. The speedup value
increases with the increasing of nesting levels and processors. It reaches 2.8 for
4 nesting levels and 16 processors. The reason is that the more nesting levels
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the transactions have, the bigger the difference is between partial rollback and
rolling back to the outermost transaction, and furthermore, the probability of
conflict increases with the increasing of processors due to more parallel executed
threads.

As Fig. 4(b) shows, the performance of CPR scheme is in inverse ratio to the
density of data sharing among nesting levels. The higher the density is, the fewer
the partial rollback occurs for the CPR scheme, and the speedup over flattening
model is more approximate to 1; in contrast, with the density of data sharing
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decreases, partial rollback occurs more frequently, and leading to the increasing
of speedup.

Fig. 5 shows the ratio of started transactions to committed transactions. A
transaction needs to be restarted when rollback occurs due to a conflict; therefore
this ratio reflects the frequency of rollbacks. The ratio value 1 indicates that there
is no rollback occurs, and a bigger value means more rollbacks.

As Fig. 5(a) shows, the ratio of flattening model increases rapidly with the
increasing of processors, while the ratio of CPR scheme increases slowly, this
is because that the conflict occurs more frequently when the processor num-
ber increases, and compared to rolling back to the outermost transaction, CPR
rolls back partially whenever it is possible, therefore, the number of restarted
transactions for partial rollback is far fewer than rolling back to the outermost
transaction.

Fig. 5(b) gives relationship between the ratio and nesting levels. It shows that
the ratio of flattening model increases rapidly with the increasing of nesting
levels, while the ratio of CPR keeps stable and stays at a low level.

Two conclusions can be drawn from the above experiment results: firstly, CPR
scheme outperforms flattening model in performance and scalability, in other
words, with the increasing of processor number and nesting level, CPR scheme
achieves better performance than flattening model; secondly, the performance of
CPR scheme is correlative with the density of data sharing among nesting levels.

6 Conclusion

Transactional memory can improve programmability of multi-core processors,
avoid deadlock and furthermore, promote performance of concurrent programs.
However, it also faces a series of challenges including transaction nesting.

To support efficient closed nesting in hardware transactional memory, this pa-
per proposes a CPR scheme which support conditional partial rollback on conflict
without increasing hardware complexities significantly. Compared to the flatten-
ing model which is commonly-used in hardware transactional memory, the CPR
scheme rolls back to the conflicted transaction itself or one of its outer-level
transactions instead of the outermost if given conditions are satisfied. Trans-
actional memory system architecture with support of the CPR scheme is also
proposed based on multi-core processor and current cache coherent mechanisms.
The system has been implemented by simulation. Its performance is evaluated
by seven benchmark applications. Evaluation results show that the CPR scheme
outperforms flattening model in performance and scalability.
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Abstract. In this paper, we focus on a real world scenario of managing
electrical demand sets of a smart-home. External signals, reflecting the
low voltage grid’s state, are used to support the challenge of balancing
energy demand and generation. To manage the smart-home’s appliances
and to integrate electric vehicles as energy storages decentralized control
systems are investigated.

1 Introduction

Today, around 80% of the world’s primary energy is produced from fossil fuels;
renewable energy sources add up to around 4.3% [1]. However, the world is
coming to realize, that keeping on burning fossil fuels is not an option in the long
run. This affects not only electrical energy production in power plants but also
the fuel demand of usual combustion engines in vehicles. Integrating renewable
energy sources as well as electric vehicles into today’s energy grid confronts
us with a number of problems, especially concerning the variable and hardly
predictable nature of the most renewable energy sources and the high demand
peaks caused by simultaneous charging of electric vehicles.

In this paper, we introduce self-organizing techniques based on concepts of
organic computing [2], which support the process of balancing energy produc-
tion and its demand. For that purpose, we built a smart-home in laboratory
scale to test the concepts on real hardware. The electrical load profile of several
intelligent home appliances can be observed and controlled to a certain degree
by a centralized management device. Additionally, a major benefit is the reduc-
tion of expensive balancing power [3] by re-scheduling home appliances without
cutting down the user’s freedom which efficiently improves energy consumption
in general.
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Furthermore, we examine the integration of an electric vehicle into the smart-
home. Its energy storage can be used to feed-back electrical energy into the
smart-home during times of high energy demand in the grid and to reduce load
peaks in general.

A selection of prospectively expected issues with the energy grid is pointed out
in Sect. 2. In Sect. 3, we describe our demonstrating environment representing
the smart-home, while in Sect. 4 the generic observer/controller architecture
used in our proposal is introduced. Our solution of managing a smart-home’s
architecture is introduced in Sect. 5 and some major experimental results are
presented in Sect. 6. The paper concludes with a summary and a discussion of
future work in Sect. 7.

2 The Electrical Grid

The average load curve of a typical German residential area grid comprising
about 100 households is depicted in Fig. 1. The simulation scenario, presented
in [4], examines the uncontrolled charging of 20 electric vehicles with a maximum
power of 10 kW additionally to the usual load curve. A very high simultaneity of
charging during the evening is assumed. The load of the electric vehicle occurs
in addition to the high evening peak demand. The load peak is increased by 50%,
the load spreading even by 72%.

Due to uncontrolled interactions between the grid and electric vehicles sev-
eral bottlenecks might occur: An overload of the transformer, an overload of the
power lines, and voltage dips. Depending on the grid topology and the trans-
former, nominal power load limits could be exceeded. Since each low voltage grid
is unique, every one of them has to be checked separately for its capabilities. Re-
inforcement of the grid infrastructure would cause tremendous costs.
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Furthermore, the extent of renewable energy sources, like solar power and wind
turbines, becomes more and more significant. The former centralized power plant
structure will partially be transformed into a distributed generation system. This
development is not fully compatible with the current grid structure.

A typical suburban low voltage grid structure consists of a transformer, sev-
eral loads, and generators. Local demand is partly satisfied by renewable energy
sources. Unfortunately, demand does not comply with the power generation. Re-
newable power is quite often provided in a period of low demand. This results in
increased grid losses, because power has to be transformed to the upper voltage
level.

To avoid the afore mentioned bottlenecks and to efficiently integrate renew-
able energy sources into the grid, an intelligent load management is mandatory.
Furthermore, it is necessary to evolve from a demand depending generation to
a generation depending demand. To reduce the peak demand, shown in Fig. 1,
control of demand and generation is necessary.

In [3], an external management structure of the low voltage grid in a residen-
tial area is addressed, whereas this paper has its focus on managing the in-house
appliances with respect to energy efficiency. Increasing the resident’s comfort
is not the central point of this approach. Therefore, we introduce a hierarchi-
cal structure; alternatively a peer-to-peer approach is presented in [5]. In this
approach, several pools of appliances are formed to balance demand sets and
power generation. Such a pool contains a set of decentralized power suppliers
and consumers. The needed balance can be achieved, if the consumers’ demand
set profiles are adjusted to the power generation in the pool.

3 Demonstrating Environment

To analyse the suggested improvements on real hardware components, a demon-
strating environment has been developed. It represents some significant electrical
components of modern smart-home architectures, as is evident from Fig. 2. The
entire assembly is connected via electric powerline and supports a maximum of
nine electrical consumers, of which six are constructed to behave like intelligent
appliances.

The in-house-installation is controlled by the smart-home management device
(SHMD). The intelligent appliances are connected through six relays so that
each of them can be switched on or off independently. To be called intelligent,
they should be aware of their current situation and reasonably respond to it.
Each intelligent consumer has its own sensory equipment to get electrical data
like voltage, current, and active power.

The intelligent responses of each appliance are realized by an embedded sys-
tem, which periodically polls sensors and provides averages of the measured
values via HTTP-interface in XML format separately for each intelligent appli-
ance. The sum of all consumers’ power consumption in the smart-home can also
be requested at the smart power meter, continuously. Additionally, the local con-
troller unit of each appliance receives control-signals from the SHMD to toggle
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Fig. 2. Demonstrating environment

the on-state of its connected intelligent appliance. In this way, a hierarchically
structured observer/controller architecture, cf. Sect. 4, is used.

In the demonstrating environment, it is assumed that an electric vehicle is
present in the smart-home. For that purpose, a lead-acid storage battery with a
capacity of 4 kWh is connected to the smart-home demonstrator. It represents
the mobile energy storage of the electric vehicle. The charging- and discharg-
ing process is controlled and observed by a special charge controller which is
connected via powerline to the SHMD.

The SHMD is the central device in the scenario presented here. Any rele-
vant data, like current power-requirement of each intelligent appliance, the sys-
tem’s voltage, or the current total power of the smart-home, are collected in its
database.

Based on the content of the database, a user interface is generated by the
SHMD’s web-server to inform the smart-home’s resident about its current con-
dition and optimization potential. It allows displaying and analyzing the power-
data of elapsed time-slots. Furthermore, the web-interface permits the resident to
define the degrees of freedom for each intelligent appliance. This value describes
the potential of controlling the device’s on-state automatically.

The main challenge of future energy management is balancing supply and
demand in energy grids. Therefore, smart algorithms are needed to schedule the
electrical consumers and especially the car’s charging process. A large number
of decentralized batteries permits to feed electrical energy back into the grid.
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An optimizing algorithm is used on the SHMD to calculate the best schedule for
the smart-home’s electrical consumers for the next 24 hours. In the following,
an approach is described to meet this challenge.

4 The Generic Observer/Controller Architecture

The complexity of technical systems is constantly increasing. Breakdowns and
fatal errors occur quite often, respectively. Therefore, the mission of organic
computing is to restrain these challenges in technical systems by providing ap-
propriate degrees of freedom for self-organized behavior. These technical sys-
tems should adapt to changing requirements of their execution environment, in
particular with respect to human needs. According to this vision an organic
computer system should be aware of its own capabilities, the requirements of
the environment, and it should also be equipped with a number of so-called
self-x-properties [2].

Thus, technical systems are equipped with an observation and control layer
called observer/controller architecture, as proposed in [6]. The intention of this
design paradigm is to be able to observe and potentially control the systems
in order to comply with the objectives given by the user or the developer, cf.
Fig. 3(a).

The observer/controller uses a set of sensors and actuators to measure system
variables and to influence the system. Together with the system under obser-
vation and control (SuOC), the observer/controller forms the so-called organic
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system. An observer/controller loop enables adequate reactions to control the
– sometimes completely unexpected – emerging global behavior resulting from
interactions between local agents.

In other words, a closed control loop is defined to keep the properties of the
self-organizing SuOC within preferred boundaries. The observer monitors certain
(raw) attributes of the system and aggregates them to situation parameters,
which concisely characterize the observed situation from a global point of view,
and passes them to the controller. The controller acts according to an evaluation
of the observation (which might include the prediction of future behavior). If
the current situation does not satisfy the requirements, it will take action(s)
to direct the system back into its desired range, will observe the effect of the
intervention(s), and will take further actions, if necessary. Using this control
loop, an organic system will over time adapt to its changing environment. It
is obvious that the controller could benefit from learning capabilities to tackle
these challenges. The observing and controlling process is continuously executed,
and the SuOC is assumed to run autonomously, even if the observer/controller
architecture is not present (which might result in suboptimal behavior).

The centralized generic observer/controller architecture has been extended in
[7]. Here, we specially focus on a hierarchically structured observer/controller
architecture, where an observer/controller is installed on each system element
as well as one for the whole technical system, as depicted in Fig. 3(b).

In particular, e. g., in larger and more complex systems (where the objective
space drastically increases) it will be necessary to build hierarchically structured
organic computing systems instead of trying to manage the whole system with
one centralized observer/controller. In the case of multiple observer/controller
levels, the SuOC at the lowest level will consist of simple elements like single
software or hardware modules.

Because of the capability of the observer/controller architecture to support
the adaptation of a system to changing environmental requirements it has been
chosen as a design pattern that is well-suited to cope with the management
problems of the smart-home scenario addressed in this paper.

5 Observer/Controller Architecture for Smart-Homes

In our approach of controlling a smart-home, we decided to implement a hier-
archically structured observer/controller architecture, as shown in Fig. 4. Each
household appliance is equipped with a local observer/controller unit (o/c unit)
to observe its current state and to interact with the appliance by turning it on or
off. Based on the measured data the local observer generates a specific demand
set1 for each appliance. This data is communicated to the central component,
the SHMD.

The observer of the SHMD collects the demand set data from every appliance
and generates a global demand set prediction for the smart-home. Thereby, the
controller of the SHMD decides to re-schedule the demand sets of each appliance
1 Which characterizes an appliance’s power consumption profile.
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Fig. 4. Overview of the implemented architecture

based on the demand-prediction from the observer and the load-prediction of
the global grid, which is communicated by an external 24h-signal. The external
24h-signal is periodically sent by the grid operator to the SHMD. It contains
a behavior request for the next 24 hours individually for each smart-home and
rates all timeslots during the considered period to request the SHMD to re-
schedule the appliances’ demand sets. A high value of the signal represents a
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high demand in the grid during a specific timeslot. The aim of the SHMD is to
re-schedule demand sets to timeslots rated with the lowest possible signal value.
Thus, the grid’s balancing process of supply and demand is supported.

In addition to the 24h-signal, the SHMD is able to receive a short-term signal
from the grid operator. In this way, the grid operator is able to communicate the
condition of a short-term imbalance in the grid to the SHMD. The smart-home
can react to this signal e. g. by interrupting the charging process of the car in
case of requiring positive balancing power, or by starting the charging process
in case of the demand of negative balancing power. The SHMD calculates a
scheduling of every device to satisfy the given signals on the one hand and to
fit the appliance’s degree of freedom on the other hand. The signals reflect the
predicted load and short-term imbalances in the grid. In this way the SHMD is
able to schedule its appliances related to the grid’s condition.

Thus, the controller unit of the SHMD tries to match the demand set of each
appliance with a certain degree of freedom with the received signals, referred as
matching in Fig. 4. After this a set of rules can be generated and sent to each
appliance. These rules contain instructions for the appliances, in which timeslot
they should start or break its operation. The controller unit of each appliance’s
observer/controller unit contains a simple set of static rules to interact with
the appliance. It allows the local observer/controller unit to adjudicate finally,
combined with the given rule from the SHMD, whether to switch on the appliance
or not. This decision is based on the capability to operate; a washing machine
for example should only operate, if it is filled up with laundry.

In [8], a related approach is introduced. Any smart-home is equipped with
a Bedirectional Energy Management Interface (BEMI), which is able to control
smart appliances and to measure electrical values indicating the grid’s condition
locally. The BEMI is able to optimize the operation of locally connected control-
lable appliances. The BEMI-approach focuses the communication between the
Energy Service Provider and his low voltage grid connection points, while the
present approach concentrates on in-house monitoring and controlling based on
external signals.

5.1 The Local Observer/Controller Unit

Most of the modern household appliances are complex devices. Thus, it is not
possible to interfere directly in the program of the appliance’s native controller.
For this reason, the appliance is monitored by a local observer, as shown in Fig. 4,
and will be managed by its local controller only with the simple command ei-
ther to operate or not. Each intelligent appliance is fitted with a set of sensors
to detect its current state. Depending on the household appliance, different pa-
rameters may be measured, and a parameter common to all parameter sets is
the power supply. Based on the assumption that for every household appliance
there is an approximated typical demand set, we can draw conclusions from the
current state of the appliance. The potential of re-scheduling depends on the
degree of freedom each appliance has. A set of classes regarding the degree of
freedom can be defined. The operation of these appliances with a high degree of
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freedom like washing machines or thermal storages can be re-scheduled several
times in compliance with its local constraints. A stove or a multimedia device,
on the other hand, has an extremely poor degree of freedom, so their demand
profile can be observed, but there is no possibility of re-scheduling the opera-
tion. In our scenario, the degree of freedom is determined by each appliance or
by the smart-home’s resident using the web-interface. Some appliances have to
execute a specific program before they can be switched off. Thus, the specific
profile for these appliances must be respected in the SHMD while generating the
re-scheduling of the appliances. Therefore, the local controller of each appliance
has a set of static rules. The decision to change the operation state depends on
these rules combined with the rule set from the SHMD.

5.2 Central Observer

The smart-home’s observer unit captures power changes for each intelligent ap-
pliance, the charge condition of the electric vehicle’s battery, the devices’ degree
of freedom, and the known device profiles. The latter is received from the intel-
ligent appliance itself or calculated from the past power data. The whole set of
values is stored in the SHMD’s database. Reduced to the essential, the database
contains a list of the attributed set of intelligent appliances and the data history
of the power demand for each of them.

Using a sufficient quantity of history data, it is possible to build a prediction,
described in Fig. 4, for each day of the week. The history items are classified in
data sets by the day of week and a certain timeslot. An appropriate data struc-
ture is a tree containing for each intelligent appliance a node on the first level.
Each of these nodes branches into seven nodes on the second level, representing
the seven days of the week. The weekday node has subnodes for a fixed set of
timeslots (e. g., blocks à 5 minutes) of the day. Finally, every data set from the
intelligent appliances’s history is associated to one of the timeslot nodes.

This part’s challenge is to get timeslots, where an appliance is frequently
switched on. Each timeslot is represented by the corresponding daytime and
weekday. To find these frequent item sets in the tree structure, the timeslot
nodes can be easily scanned for such nodes having more than a certain number of
leaves in the tree. Having found these timeslots, it is obvious that the associated
device will probably be powered up on the same weekday’s timeslot during the
next weeks. To increase the rate of adaption a digressive weighting depending
on the items’ age is used. Furthermore, this knowledge can be transformed into
a power forecast for each intelligent appliance for the next days.

5.3 Central Controller

Reverting to an extensive pool of data collected by the observer of the SHMD,
the main controller’s basic task is to send adequate rule sets to the subordinated
local controllers of the intelligent appliances. The final decision is made by the
intelligent appliance’s controller, but it should be mostly consistent with the rule
sets of the main controller. To simplify our initial approach to the smart-home
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controlling system, we are leaving out the aspect of learning on the controller. In
further work, we will investigate the controller’s aspect of learning, as proposed
in Sect. 3. The observer/controller-architecture is an appropriate framework to
implement learning techniques.

Depending on the appliance’s degree of freedom and the planned schedule,
an optimized schedule can be computed, which is based on the 24h-signal of the
energy supplier. E. g., a dishwasher is often switched on after lunch at 12:10 p. m.
on a certain weekday. It will probably be switched on during the same weekday’s
timeslot in the next week. Since this timeslot is rated with a high demand by
the 24h-signal, it is beneficial to re-schedule the starting time of the dishwasher
to a timeslot, where the demand for energy is as low as possible. The appliance’s
degree of freedom has to be respected. The optimizing process has to determine
the best starting timeslot of each appliance. For that purpose, the function of
the demand-set and the 24h-signal’s rating are considered for each possible start-
ing timeslot. The appliance’s start is scheduled to the timeslot with the lowest
integral value which is consistent with the operating constraints.

5.4 Integration of an Electric Vehicle

Additionally, the mobile storage in the electric vehicle is used to support the
balancing process of demand and generation. Via the battery’s charge controller,
the SHMD is able to manage the charge- and feed-back-process. Some appliances
in the house with a poor degree of freedom cannot be re-scheduled into a period
of low demand. E. g., a stove is often switched on for cooking before lunchtime,
but this is a period with an extremely high demand. In this case, a vehicle’s
battery can be used to feed-back electrical energy into the grid. The SHMD
can send a control signal to the controller of the electrical vehicle to request
the feed-back of a certain amount of electrical power. The start of the charging
process of the car’s battery can also be scheduled by the SHMD. The charging
of a car battery causes a high electrical load. Thus, it is beneficial to re-schedule
the charging process into periods of low demand.

6 Results

In the upper diagram of Fig. 5, the forecast for the next 24 hours based on
the history data’s analysis is visualized. Each of the intelligent appliances is
scheduled in the time slot interval, where it has been typically powered on during
the considered period. The lower diagram represents the optimized schedule by
the SHMD. The gray curve shows the behavior request from the grid operator
(motivated in Sect. 5). It is shown that, e. g., devices like the breadmaker, the
dishwasher, and the stove are located in periods of high demand, hence they
should be re-scheduled.

The breadmaker and the dishwasher have a sufficient degree of freedom. Thus,
they can be re-scheduled to periods of lower demand, as shown in the lower
diagram of Fig. 5. The stove has a poor degree of freedom. Therefore, it cannot
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Fig. 5. Re-scheduling based on the behavior request

be re-scheduled. In this case, the power demand of the stove can partially be
balanced2 by feeding-back from the mobile energy storage. This potential is
highlighted by the shaded area in the lower diagram. The car’s battery has been
discharged during the feed-back process. The charging process is scheduled to
the early morning by the SHMD. This is a period of low demand. Thus, the
demand of the house can, to a certain degree, comply with the given behavior
request, and, accordingly, to the predicted load of the local grid.

7 Conclusion

In this paper, a hierarchically structured observer/controller architecture is ap-
plied to control a smart-home, to increase the energy efficiency, and to avoid
overloads of the low voltage grid. The integration of electric vehicles raises the
potential of re-scheduling the energy demand of a smart-home. This is achieved

2 The power demand of the stove is higher than the max. feed-back power of the car’s
battery.
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by controlling the charging process and feeding-back energy into the grid dur-
ing times of high demand. The experimental results have shown the potential
of automatic scheduling the smart-home’s appliances to comply with the exter-
nal signals given from the grid operator. In this way, the challenge to balance
demand and generation can be tackled by each smart-home.

In future work, the currently applied static rules for determining the demand
of control can be improved by extended learning algorithms to achieve a higher
degree of autonomy and to increase the robustness of the management system.
Consequently, less user interaction would be required, improving the systems’
usability and comfort.

To get the capability of analyzing a more representative user behavior in a
smart-home, it is planned to extend the environment in a long-running exper-
iment in a real house with a significant number of intelligent appliances and
distributed energy generators.
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8. Nestle, D., Ringelstein, J.: Application of bidirectional energy management inter-
faces for distribution grid services. In: 20th Int. Conf. on Electricity Distribution,
CIRED (2009)



EnergySaving Cluster Roll:

Power Saving System for Clusters�

Manuel F. Dolz, Juan C. Fernández, Rafael Mayo,
and Enrique S. Quintana-Ort́ı
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Abstract. With the increasing number of nodes in high performance
clusters as well as the high frequency of the processors in these systems,
energy consumption has become a key factor which limits their large-
scale deployment. In response, this paper presents a software module
that, taking into consideration past and future users’ requests, imple-
ments energy saving policies, powering on and shutting down the system
nodes. This tool employs Roll for clusters with Rocks R© as operating
system and Sun R© Grid Engine as queue system.

Keywords: High performance computing, data centers, green comput-
ing, power consumption, queue system.

1 Introduction

High Performance Computing (HPC) clusters have been widely adopted by com-
panies and research institutions for their data processing centers because of their
parallel performance, high scalability, and low acquisition cost. On the other hand,
further deployment of HPC clusters is limited due to their high maintenance costs
in terms of energy consumption, required both by the system hardware and the
air cooling equipment. In particular, some large-scale data processing centers con-
sume the same energy power as 40,000homes, and studies by the U.S. Environmen-
tal Protection Agency show that, in 2007, the power consumption of data centers
in the United States was around 70 billion KWatt-hour, representing 5,000 million
euros and the emission of 50 million tonnes of CO2 [1].

Since the benefits of HPC clusters are clear, scientists and technicians are cur-
rently showing special interest in all types of solutions and ideas to minimize en-
ergy costs in data processing centers: Energy-awareness has spread among
researchers from organizations like IEEE, which have analyzed HPC clusters, con-
cluding that a significant part of the energy consumed by these systems is due to
the interconnection of its components (switches, network cards, links, etc.); fol-
lowing this result, energy-aware algorithms have been developed which can disable
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idle interconnections in the cluster [2]. Microsoft inspects the problem from a dif-
ferent viewpoint and one solution proposed is to share highly efficient power sup-
plies among several nodes of the system, achieving significant energy savings [3].

In this context a well-known energy management technique is DVFS (Dynamic
Voltage and Frequency Scaling). DVFS entails reducing the system energy con-
sumption by decreasing the CPU supply voltage and the clock frequency (CPU
speed) simultaneously. This technique has a great impact on the development of
work aimed at reducing consumption in this research context [4,5,6]. The authors
in [7] present an energy-aware method in order to partition the workload and re-
duce energy consumption in multiprocessor systems with support for DVS. Freeh
et al. [8] analyze the energy-time tradeoff of awide rangeof applications using high-
performance cluster nodes that have several power-performance states to lowering
energy and power, so that the energy-time tradeoff can be dynamically adjusted.
In [9], the authors use economic criteria and energy to dispatch jobs to a small set
of active servers, while other servers are transitioned to a low energy state.

Alternative strategies to limit power consumption and required cooling of
HPC clusters are based on switching on and shutting down the nodes, according
to the needs of the users’ applications. An algorithm that makes load balanc-
ing and unbalancing decisions by considering both the total load imposed on
the cluster and the power and performance implications of turning nodes off
is described in [10]. Several policies to combine dynamic voltage scaling and
turning on or off nodes to reduce the aggregate power consumption of a server
cluster during periods of reduced workload are presented in [11]. Rock-solid [12]
and PowerSaving [13] are prototype examples of this strategy which provide
little functionality or are still under development. This paper presents a new
application which follows the same strategy, but with a much more complete
functionality. In particular, our tool allows the definition of different conditions
to activate and deactivate and nodes for a full adaption to the requirements of
the system administrator and/or the end user. The tool has been designed and
implemented as a module (Roll) for Rocks R© [14] and employs the Sun R© Grid
Engine (SGE) [15]. A simulation of the module under real conditions shows that
its use combined with a reasonable policy deliver considerable energy savings
compared with a conventional cluster in which all nodes are permanently active.

The article is organized as follows: Section 2 presents the hardware and soft-
ware tools used in the development of the energy saving module, and Section 3
reviews its implementation. Section 4 evaluates the performance of the energy
saving module, in terms of impact on the power consumption and execution time
of the applications. Finally, Section 5 describes some future lines of work and
summarizes the conclusions.

2 Basic Hardware and Software Tools

The target hardware platform used in this work is an HPC cluster that employs
the NPACI Rocks R© Linux distribution as operating system, equipped with a
front-end node that is responsible of the queue system and the new energy saving
module (Roll).
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The module queries the SGE queue system to collect information on the actual
jobs, nodes and queues (qstat, qmod and qhost commands). This is then used
to compel the necessary statistics, and apply the power saving policy defined by
the system administrator. The module also runs several daemons implemented
in Python [16]. These daemons maintain a MySQL database that contains all
the information and statistics; they also query the “cluster” database used by
Rocks R© to extract information about the nodes (e.g., their MAC addresses) to
remotely power them on using WakeOnLAN (WOL) [17].

The nodes of the cluster have their BIOS configured with WOL (WakeUp
events). Systems that support the PCI 2.2 standard in conjunction with a com-
patible PCI network card usually do not require a WOL cable because energy is
provided through the PCI bus.

3 Implementation of the Energy Saving Roll

In this section, we describe the energy saving module in detail; see Figure 1. The
module includes the following major components:

– Three daemons in charge of managing the database, collecting statistics, and
executing the commands that power on and shut down the nodes.

– The database that stores all information necessary to make decisions.
– The website interface to configure and administer users’ groups as well as

set the threshold triggers that define the power saving policy.

We have chosen a modular design, mapping the main functions of the system to
daemons (control of queue system, collect statistics, and apply policies of activa-
tion and deactivation nodes). Moreover, we have decided to employ a database
to ease data mining via SQL. The user interface is web-oriented, seamlessly
integrates with Rocks R©, and facilitates remote access and administration.

3.1 Daemons

Daemon for epilogue requests. A node of the cluster runs a epilogue script
provided by the SGE queue system when a job completes its execution, and
therefore leaves the queue. This script receives parameters from the SGE ex-
ecutor daemon which are essential for monitoring the cluster and, therefore, for
implementing the energy saving policy. As the database is located in the front-
end node, it is necessary to send this set of parameters through the network. For
this purpose, the node that executes the epilogue script opens a connection via
a TCP socket with the epilogue daemon that runs on the front-end node to pass
the necessary information.

The epilogue daemon employs this information to perform a series of updates
in the energy saving module database, extracting data from the accounting file
maintained by the queue system. Updated data comprise the number of jobs
for the user responsible of this job, this user’s average execution time, and the
queue average waiting and execution times.
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Fig. 1. Diagram of the energy saving module

Daemon for the queues, users and nodes. This daemon is responsible for
ensuring that all information on users, nodes and queues that are actually in
operation in the SGE queue system is correctly reflected by the database. To
achieve this, the daemon queries the queue system about queues and nodes (with
the qhost command), and the OS about users (checking the file /etc/passwd).
With these data, it ensures that the database is consistent. The daemon is also
in charge of enabling nodes that were marked as disabled.

Daemon for the activation/deactivation actions and statistics. This
daemon, the most important of the module, activates and deactivates the nodes
according to the needs queue system’s user. The daemon compares the threshold
parameters set by the system administrator and the current values of these
parameters from the database to test if any of the activation or deactivation
conditions is satisfied. If certain nodes have to be shut down, it suspends all
queues to prevent the execution of new jobs, makes the transaction, updates the
database and log file, and finally resumes the queues.

The threshold conditions are not necessarily equal for all users, as the sys-
tem administrator can create multiple user groups with different values for the
threshold parameters. Thus, a priority system can be defined for groups of
users.

The daemon is divided into several functions, and the administrator can spec-
ify the order in which activation and deactivation conditions are checked. It is
therefore very simple to enable or disable one or several of these conditions.
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This daemon also updates the waiting time (both per user and per queue) of
all enqueued jobs and ensures that the current database size does not exceed the
specified maximum size.

3.2 Activation and Deactivation Conditions

Node activation. This operation is performed using the ether-wake command
[18] which sends the magic packet WOL. Nodes can be turned on if any of the
following conditions are met:

– There are not enough appropriate active resources to run a job. That is, as
soon as the system detects that a job does not have enough resources, because
all the nodes that contain the appropriate type of resource are turned off,
nodes are powered on to serve the request.

– The average waiting time of an enqueued job exceeds a given threshold. The
administrator must define a maximum average waiting time in queue for
the jobs of each group. When the average waiting time of an enqueued job
exceeds the maximum value assigned to the corresponding user’s group, the
system will turn on nodes which contain resources of the same type as those
usually requested by the same user.

– The number of enqueued jobs for a user exceeds the maximum value for its
group. In this case, the daemon selects and switches on nodes which feature
the properties required by most of the enqueued jobs.

When the magic packet is sent, the daemon for activation/deactivation actions
starts a timer. If this daemon does not detect that the node is active after the
timer expires, the node is automatically marked as unavailable.

The system administrator can also use the following options to select the
(candidate) nodes that will be activated:

– Ordered: The list of candidate nodes is sorted in alphabetical order using
the name of the node (hostname).

– Randomize: The list of candidate nodes is sorted randomly.
– Balanced: The list of candidate nodes is sorted according to the period that

the nodes were active during the last t hours (with t sets by the administra-
tor). The nodes that are selected to be powered on are among those which
have been inactive a longer period.

– Prioritized: The list of candidate nodes is ordered using a priority assigned
by the system administrator. This priority can be defined, e.g., according to
the location of the node with respect to the flow of cool air [19].

In the context of the SGE queue system, the slots of a queue instance for a given
a node indicate the maximum number of jobs that can be executed concurrently
in that node. When an exclusive execution is required (as, e.g., is usual in HPC
clusters), the number of slots equals the number of processors. The daemon can
also specify a strict threshold to power on nodes to serve job requirements:
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– No strict: The nodes are turned on to serve job requests if there are not
enough free slots on current active nodes. This option yields low queue wait-
ing times but saves little energy.

– Strict: Nodes are only turned on when the current active nodes do not pro-
vide enough slots (free or occupied at the moment) to serve the requirements
of the new job. This option produces longer queue waiting times than the
previous policy but may provide fair energy saving.

– Strict and sequential: Nodes are only turned on to serve the job requests
when all current active nodes have their slots in free state. This option
simulates a sequential execution of currently enqueued jobs, likely delivering
the longest queue waiting times and attaining high energy savings.

Node deactivation. Nodes are shut down using the shutdown command [20].
The following parameters define when a node is turned off:

– The time that a node has been idle. If this time is greater than a threshold
set by the administrator, the node is turned off to save power.

– The average time waiting for users’ jobs is less than a threshold set by the
administrator. The administrator must define a minimum value for the queue
waiting time of the jobs of each group of users. In case the average waiting
time of a user’s job is lower than the threshold assigned to its group, the
daemon turns off a node (among those which exhibit the properties that
were more rarely requested in the near past).

– Current jobs can be served by a smaller number of active nodes. The admin-
istrator can enable this condition to run the enqueued jobs using a smaller
number of nodes than are switched on at a specified moment. In such case,
the system turns off one of the nodes to save energy. Although this condition
can significantly increase the average waiting time of the user’s jobs, it may
also reduce power consumption significantly.

When one of these three conditions is satisfied, the daemon executes the
command “shutdown -h now” in a remote ssh session in the nodes that were
selected to be shut down and suspends all associated queues to prevent the
execution of new jobs on those nodes.

3.3 Database

The database contains the information needed to manage the system, as briefly
described next.

The database stores information about each node of the cluster, like the node
hostname, the time when the last job finishes its execution, the “active” bit (set
if the administrator decides to maintain this node always turned on), the “un-
available” bit (for crashed nodes), the number of jobs executed on the node, and
the assigned priority (only applicable if the selection node mode is “prioritized”).

The database also maintains details of the queues (their name, number of
enqueued jobs, and the average waiting and execution times of jobs that have
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been submitted to each queue) and the users (as, e.g., the name, the user’s group,
the number of jobs submitted to each queue by this user, and the average waiting
and execution times of the jobs which have been submitted by this user).

Finally, the database records a history of the actions in each node (activa-
tions/deactivations), the action timestamp, and the cause (e.g., if the node was
deactivated because a certain condition was satisfied).

3.4 Website Interface

The module has an interface that eases the administration of the energy saving
module. Possible operations using this website include:

– Check and modify configuration parameters of the energy saving system.
– Look up, delete, and modify users’ groups in the system.
– Look up and modify the parameters that define the activation/deactivation

policies of each group of users.
– Read the full database in HTML format, with the possibility to generate

reports (as PDF documents) with the required information.
– Monitor the operation of the cluster through a series of diagrams which illus-

trate the active/inactive node times, the average waiting time and execution
time of jobs, etc.

– Monitor the energy savings in terms of power consumption and economic
cost.

– Set “active” bits for those nodes that the administrator will always keep
running, and declare unavailable nodes when they are crashed or being re-
paired.

– Turn on, reset or shut down the three daemons, and reset counters and timers
of the database.

All changes done on the system configuration parameters are updated both in
the database and the configuration files. Users without administrative privileges
can only view reports, diagrams, and configuration parameters.

4 Experimental Results

To evaluate the benefits of the system we have developed a flexible simulator,
named EnergySaving-SIM, that provides information on the system behavior for
various platform configurations and under realistic workloads. EnergySaving-
SIM applies the desired activation and deactivation policies to a given input
workload and can be easily adapted to reflect different types of platforms. Among
many other statistics, the simulator reports the percentage of the time that each
node in the cluster will be turned on/off and, therefore, offers an estimation of
the energy consumption.
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4.1 Implementation of EnergySaving-SIM

The design of the EnergySaving-SIM consists of the following modules:

– Queuing system: This module simulates a queuing system and submits, exe-
cutes, and terminates jobs in a specified cluster according to the availability
of the nodes (active or inactive) from an input workload. This workload can
be obtained from a parsed log file resulting from a real queuing system that
contains the time that a job was submitted, the execution time and its re-
quirements (such as specific nodes, number of processors, etc.). This module
provides the appropriate interfaces to interact with the energy saving module
and uses a database to store the data of the jobs.

– Energy saving : This module is the same used in the real system, but employs
the interfaces provided by the queuing system module to check and query
the status of jobs and make decisions to activate and deactivate nodes. By
using the same code simulation we can obtain realistic simulations.

– Results, statistics and graphs: When the simulation finishes, all the submit,
start and finish times of jobs and activation/deactivation actions of nodes
with its specific time are stored in the database. This application extracts
various statistics such as total active and inactive time per node, job’s la-
tency, etc. and prepares tables and graphs to evaluate energy consumption.

4.2 Simulation Results

We have configured the simulator to emulate the system of queues of the HPC
computing service at the Universidad Jaime I (UJI). This facility is composed
of the following nodes:

– Front-end: HP Proliant DL360 G5 with 2 dual core Intel Xeon 5160 pro-
cessors, running at 3.00 GHz and with 14 GB of RAM.

– Group 1: 26 nodes, Fujitsu Siemens RX200 with 2 Intel Xeon processors
running at 3.06 GHz and with 4 GB of RAM.

– Group 2: 27 nodes, HP Proliant DL360 G5 with 2 dual core Intel Xeon
5160 processors at 3.00 GHz, with 14 GB of RAM.

– Group 3: 11 nodes, HP Proliant BL460C with 2 Quadcore Intel Xeon E5450
processors at 3.00 GHz, with 32 GB of RAM.

– Altix: An SGI Altix 3700 server with 48 Itanium2 processors at 1.5 GHz,
with 96 GB of RAM.

The job benchmark was obtained from the real queue system logs of the com-
puting facility at UJI. This benchmark features the following properties:

– Composed by 10,415 jobs corresponding to the load submitted to the HPC
computing facilities during three full months of 2009:
99.87% of the jobs required one processor, 0.12% required four processors,
and 0.01% required eight processors.
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On the other hand, 73.3% of the jobs was executed on group 1, 0% requested
group 2, 16.99% requested group 3, and 9.7% requested the Altix server.

– The average execution time of the jobs was 1 day, 2 hours and 53 minutes.

We evaluated the following policies:

– No Policy (NP): This configuration represents a conventional cluster with-
out the energy saving module on which nodes are permanently active.

– Policy 1 (P1):
• Activation/deactivation conditions:

1. Job without resources (Turn on).
2. Idle time of a node (Turn off): Max. idle time: 60 seconds.

• Node selection algorithm: Ordered.
• Strict level: No strict.

– Policy 2 (P2): This is the same configuration as P1, except for the Strict
level which is changed from “No strict” to “Strict” level.

– Policy 3 (P3): This is the same configuration as P1, except for the Strict
level which is changed from “No strict” to “Strict and sequential” level.

Table 1 reports the following results obtained with the simulator:

– Latency: Average time since jobs are submitted till their execution is com-
pleted. This value thus includes the time a job is enqueued as well as its
execution time.

– Power on time (%): Average fraction of the total time that the nodes of
the cluster remain turned on.

– Total time: Elapsed time since the first job is submitted till the last job
completes its execution.

– Total consumption: Total consumption in MWatts-hour (MWh). (We have
considered that a node consumes on average 250 Watts/hour.)

The results in the table show that the NP policy, where all the nodes are powered
on all the time, yields an average response time (latency) per job over 339 h,
and consumes consumes 65.37 MWh to execute the 10,415 jobs. The application
of policy P1 (“No strict” level) roughly increases the job latency to 461 h, but
now the percentage of time that nodes are powered on is only 42.9%, and the
power consumption is reduced to 29.51 MWh.

Table 1. Execution time and energy savings obtained for different policies

Policy Latency Power on Total time Total
time consumption

NP 339 h, 44 m, 18 s 100.0% 4,022 h, 39 m, 50 s 65.37
P1 461 h, 54 m, 0 s 42.9% 4,022 h, 49 m, 15 s 29.51
P2 12,387 h, 56 m, 34 s 5.8% 29,962 h, 2 m, 41 s 46.50
P3 36,556 h, 28 m, 9 s 2.2% 86,712 h, 51 m, 31 s 85.73
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Policy P2 produces worse results than P1. As most of the jobs require a
single processor, with the “Strict” level new nodes are not turned on until a
job requests more processors. Thus, when most jobs require the same number
of nodes, this is basically equivalent to a sequential execution. In particular, the
job latency is increased to more than 12,387 h, the time the nodes are active
is reduced to only 5.8%, and the time to complete the benchmark is now close
to 30,000 h; moreover, the power consumption is increased to 46.50 MWh. In
summary, this policy is not appropriate for this type of jobs, though it can be
potentially interesting in other cases; e.g., when the batch of jobs requests very
different number of processors.

Policy P3 presents a long response time, and although the consumption is
reduced to only 2.2%, the time to complete the benchmark raises to almost
86,713 h. Interestingly, the power consumption of this policy exceeds that of
NP. Policy P3 is more restrictive than P2, because it uses the “Strict and
sequential” level, and therefore, no inactive nodes are powered on until all pro-
cessors in turned on nodes are idle. For this particular benchmark, this policy
is not appropriate. However, as was the case with policy P2, P3 can deliver
better best results in case the jobs request multiple processors. We will only
discuss policy P1 hereafter, as policies P2 and P3 were not competitive for this
workload.

Table 2 reports more detailed results for P1. The first row in the table shows
the number of node shut-downs happened in about 4,000 h: 206 shutdowns for
a 65-node cluster is a reduced number. This means that, in average, a node
was activated and deactivated slightly more than 3 times in 4,000 h. The largest
number of active nodes at any given moment is 37 (out of 65), with the reason for
this being that no job of the workload required nodes of group 2. The following
rows show the active and inactive average time for all nodes in the cluster.
To obtain these metrics, we collected the active and inactive time per node to
calculate the total average. This metric illustrates the time that the nodes are
powered on: basically 1,723 h of a total of 4,000 h, or 42.9% of the time. The last
two rows of results in the table display the total active/inactive average time of
nodes from the local averages of active and inactive intervals per node. Looking

Table 2. Detailed results for policy P1

Measure Total Per node

Number of shutdowns 206 3.17
Maximum active nodes 37 of 65 -
Minimum active nodes 1 of 65 -
Active time 112,056 h, 24 m, 28 s 1,723 h, 56 m, 41 s
Inactive time 149,424 h, 46 m, 47 s 2,298 h, 50 m, 33 s
Active time with average
of active intervals per node 25,462 h, 29 m, 0 s 391 h, 43 m, 49 s
Inactive time with average
of inactive intervals per node 120,678 h, 57 m, 53 s 1,856 h, 35 m, 58 s
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at the inactive time with average of inactive intervals (roughly 1,856 h), we can
conclude that nodes were down a considerable period of time for this particular
workload. This high value indicates that nodes have been deactivated for long
periods of time and, therefore, the decision of keeping them down is feasible. The
result also demonstrates that, for this particular workload, it is more convenient
to turn nodes off than to keep them active using, e.g., DVFS, as the time needed
to reactivate a node is negligible compared with the period of time they remain
inactive.

5 Summary and Conclusions

This paper describes the components of an energy saving module for the Sun R©
Grid Engine queue system and Rocks R© Clusters operating system. By turning
on only those nodes that are actually needed at a given time during the execution
of a batch of jobs, the module may yield substantial energy savings.

The module is highly configurable: Specifically, a node can be turned on if
a lack of resources for a particular job is detected, the average waiting time of
the jobs is greater than a threshold, or the number of enqueued jobs exceeds a
threshold. On the other hand, a node can be turned off if the idle time exceeds
a threshold, the waiting time of enqueued jobs is lower than a threshold, or the
current jobs can be served using a smaller number of nodes. In addition, there
are also options to select candidate nodes to be powered on, and strict levels
which can produce a considerable energy savings.

As expected, choosing the best policy depends on the type of jobs that are
submitted to the system and the configuration of the cluster. Thus, the energy
saving module is just a tool easily configurable but its performance will ulti-
mately depend on the system administrator’s expertise.

As future work we plan to adapt the module to the Portable Batch System
(PBS), developing a Roll for the Rocks R© system, and extend the module to
extract real energy consumption on each node using Watts Up? power meters
[21] attached at the private cluster network.

The energy saving system is currently in operation in the HPC clusters of the
High Performance Computing & Architectures research group of UJI.
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Abstract. Resource management is one of the important issues in the
efficient use of grid computing, in general, and poses specific challenges in
the context of ad hoc grids due to the heterogeneity, dynamism, and in-
termittent participation of participating nodes in the ad hoc grid. In this
paper, we consider three different kinds of organizations in an ad hoc grid
ranging from completely centralized to completely decentralized (P2P).
On the basis of self organization mechanisms, we study the effect of the
neighborhood degree of a node for finding resources on the efficiency
of resource allocation. We investigate the message complexity of each
organization and its corresponding efficiency in terms of task/resource
matching and the response time. We show that the intermediate state
of the ad hoc grid with multiple adaptive matchmakers outperforms
both a completely centralized and a completely decentralized (P2P)
infrastructure.

1 Introduction

Recent advances in personal computer processing power and Internet bandwidth
has enabled achieving tremendous computing power via opportunistic resource
sharing [1,2,3]. Opportunistic resource sharing is done in very dynamic environ-
ments where the addition of new nodes, system/network failures or variation in
resource availability is expected. Therefore, in this context, resource management
becomes one of the most important and complex part of grid middleware.

Resource discovery approaches for grids in general, and especially for ad hoc
grids, can be categorized as completely centralized [1,3,4,5] and completely/ par-
tially decentralized [6,7,8,9,10]. Generally, completely centralized resource dis-
covery systems and peer-to-peer (P2P) systems are often considered to be mutu-
ally exclusive and residing on the two extremes of the infrastructural spectrum.
In the GRAPPA project [11], we consider them to be a part of a continuum and
study the effect of either of the extremes or any intermediate state between the
two extremes using a micro-economic based resource discovery mechanism. This
paper is based on our earlier work [12,13], where we presented the mechanisms
and algorithms that enable the ad hoc grid to self-organize according to the

C. Müller-Schloer, W. Karl, and S. Yehia (Eds.): ARCS 2010, LNCS 5974, pp. 174–186, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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workload of the ad hoc grid. In this paper, we look at the impact of adoption of
a particular infrastructure, taken from the infrastructural continuum.

The contributions of this paper are as follow: First, we define the degree of neigh-
borhood of a node for resource discovery in completely centralized, multiple adap-
tive matchmakers and in completely decentralized (P2P) environment in an ad hoc
grid. Secondly, we analyze the effect of varying the degree of neighborhood in com-
pletely decentralized (P2P) ad hoc grid. Thirdly, we compare the results of varying
the degree of neighborhood in completely decentralized approach with completely
centralized approach andwithmultiple adaptivematchmakers approach.Fourthly,
we perform the message complexity analysis of the above mentioned resource dis-
covery approaches in order to understand the communication cost of a particular
resource discovery approach. Finally, we give recommendations for trade offs in
resource discovery on an infrastructural spectrum ranging from completely cen-
tralized to completely decentralized approaches in the ad hoc grids.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 describes the required background knowledge to un-
derstand the proposed model. Section 4 explains the proposed model. Section 5
provides message complexity analysis. The experimental setup and results dis-
cussion are presented in Section 6, While section 7 concludes the paper and briefs
about the future work.

2 Related Work

Different approaches are used for resource discovery in the ad hoc grids. These
approaches vary from completely centralized to completely decentralized ones.
The completely centralized approaches [1,2,3,5] for the ad hoc grids employ a
client-server architecture. A trusted server distributes the jobs to clients. The
clients request jobs, the centralized server allocates the jobs to the clients, the
clients run the jobs, and the server collects the results. The completely central-
ized approaches provide high throughput. However, robustness and reliability is
maintained by the server. Furthermore, the above mentioned approaches have a
single point of failure and the complete system becomes unavailable in case of
network or server failure.

In completely/semi decentralized approaches, each node or group of nodes ne-
gotiates for its required resources with other nodes. Iamnitchi et al. [8] proposed
a resource discovery approach in completely decentralized grid environments and
evaluated different request forwarding algorithms. Their approach employs time
to live (TTL) for resource discovery. TTL represents the maximum hop count for
forwarding a request to the neighboring nodes. The TTL approach is simple but
may fail to find a resource, even though that resource exists somewhere in the
grid. Attribute encoding [6,7] is used for resource discovery in structured overlay
network. The available resources are mapped to the nodes of a P2P structured
overlay network in the attribute encoding approach. There can be a load im-
balance due to attribute encoding, when the majority of encoded attributes are
mapped to a small set of nodes in the overlay network.
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A zone based hybrid resource/service discovery approach using Zone Routing
Protocol is presented in [9]. This work is closely related to our work. The main
differences from our work are the use of micro-economic approach for resource
discovery and the extension of a structured overlay network [12] for ad hoc
segmentation/desegmentation. The reasons for using a micro-economic approach
for resource discovery in ad hoc grid are described in Section 3.1. Zhou et al. [10]
exploited blocks of idle processing cycles and grouped them into geographic and
night time aware overlay networks. Unfinished tasks are migrated to another
night time zone when the current night time zone ends. The main drawback
of this work is that the host availability model is not based on the resource
requirements of a job.

This paper defines and implements a micro-economic based resource discov-
ery approach with varying the degree of neighborhood of nodes in an ad hoc
grid. Secondly, the paper analyzes the effect of the degree of neighborhood on
resource discovery. Thirdly, the results are compared with the completely central-
ized approach and with multiple adaptive matchmakers approaches for resource
discovery. Finally, the paper provides recommendations to define trade-offs for a
micro-economic based resource discovery mechanism on an infrastructural spec-
trum ranging from the completely centralized to the completely decentralized
environments.

3 Background Knowledge

Before presenting the proposed model, first we explain the necessary concepts
needed to understand the proposed model and the experimental results.

3.1 Micro-economic Based Resource Discovery

An overview of Continuous Double Auction (CDA) based resource discovery
mechanism is provided in this section. CDA is one of the many-to-many auc-
tions in micro-economic theory. CDA supports simultaneous participation of
producer/consumer, observes resource offer/request deadlines and can accom-
modate variations in resource availability.

Our ad hoc grid consists of autonomous nodes. Each node has resource con-
sumer, resource producer and matchmaker agents. A node can be a consumer/
producer of resources (such as CPU, memory, disk space or bandwidth) and/or
a matchmaker at the same time. A producer node offers its available resources
(such as CPU, memory, disk space or bandwidth). A consumer node requests
the desired resources in order to execute its jobs. The node playing the role
of a mediator between the consumer and the producer nodes is named the re-
source allocator or a matchmaker in this work. These three kinds of agents
are also three main participants in CDA based resource discovery mechanism.
The resource provider agent submits resource offer (called ask) and the resource
consumer submits resource request (called bid) to the matchmaker agent. A
resource request (bid) is specified by number of constraints such as requested
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resource quantity, job execution duration, job validity period (denoted by Time
to Live (TTL) and represents the time duration during which a request can be
processed), and bid price. Similarly, a resource offer (ask) is also specified by
a number of parameters such as offered resource quantity, offer validity period
(TTL, represents the time duration during which the offer can be availed), and
ask price.

The matchmaker stores all received bids/asks in its request/offer reposito-
ries. The matchmaker is responsible for finding the matched bid/ask pairs from
received bids and asks of the consumer and producer agents respectively. A
matched bid/ask pair represents a pair where the resource request constraints are
satisfied by the matching resource offer. The matchmaker finds the matches be-
tween the consumers and producers by matching asks (starting with lowest price
and moving up) with bids (starting with highest price and moving down). The
matchmaker searches all available asks (resource offers), for finding a matched
bid/ask pair, on receiving a bid (resource request). A bid/ask is stored in the
matchmaker repository until a match is found or its TTL is expired. The details
of CDA based matchmaking mechanism and ask/bid price calculation formula
can be found in [14].

3.2 Resource Discovery with Multiple Adaptive Matchmakers

In multiple adaptive matchmakers resource discovery approach in an ad hoc
grid, a new matchmaker(s) is introduced or removed according to the workload
of the matchmaker [12]. There can be n nodes in our experiments. There can be
a maximum of m (m < n), out of n nodes, matchmakers in the multiple adaptive
matchmakers approach.

Each joining consumer/producer/matchmaker node is provided a zone num-
ber to which the node belongs. The whole identifier space is divided into zones.
Each zone has a responsible matchmaker. It is ensured that each consumer/ pro-
ducer node is under the responsibility of a matchmaker. When a matchmaker
becomes overloaded then it promotes its predecessor matchmaker node to per-
form matchmaking. The consumer/producer nodes under the responsibility of
an overloaded matchmaker are now under the responsibility of the predecessor
matchmaker. In the case that the predecessor matchmaker is already performing
matchmaking (i.e. active) then the excess workload is forwarded to the successor
matchmaker of the overloaded matchmaker.

Conversely, when a matchmaker is underloaded then it demotes itself and in-
forms its predecessor and successor matchmakers about the change in its match-
making status. The successor matchmaker of the demoted matchmaker becomes
the responsible matchmaker for consumer/producer nodes that were previously
under the responsibility of the demoted matchmaker. After demoting itself, the
demoted matchmaker will forward the request/offer messages to its successor
matchmaker. The demoted matchmaker also informs the consumer/producer
node under its responsibility, about its matchmaking status change and about
the new matchmaker.
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A consumer/producer node finds its responsible matchmaker node with the
provided information after joining the ad hoc grid. In case there is only one
matchmaker in the ad hoc grid then it becomes the responsible matchmaker
for all the consumer/producer nodes. The consumer/producer node can submit
request/offer to the matchmaker node after finding the responsible matchmaker
node. Each matchmaker node maintains matchmaking status information (ac-
tive/inactive) about its predecessor and successor matchmaker nodes, after join-
ing. The matchmaker does so by exchanging matchmaking status information
with its successor and predecessor nodes.

4 The Neighborhood on the Infrastructural Continuum

In this section, we explain the degree of neighborhood of a node on the following
points of an infrastructural spectrum that ranges from completely centralized to
completely decentralized extremes.

In order to explore the difference in resource allocation efficiency between the
completely centralized and the completely decentralized (P2P) approaches, we
introduce the notion of neighborhood. The degree of neighborhood of a node
defines the visibility region of a node by defining the number of nodes accessible
from that node. We explain the degree of neighborhood of node on the following
points on an infrastructural spectrum:

– Completely Centralized Approach
– Multiple Adaptive Matchmakers Approach
– Completely Decentralized (P2P) Approach

In the completely centralized approach, with a single matchmaker, all con-
sumer/producer nodes (see Section-3.1) send their resource requests or resource
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Fig. 1. Neighborhood on the infrastructural spectrum. (a) Completely centralized.
(b) Multiple adaptive matchmakers.
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Fig. 2. Neighborhood on the infrastructural spectrum. (a) Completely decentralized
degree=4. (b) Completely decentralized degree=6.

offers to the matchmaker. The matchmaker finds matches for resource requests
from received resource offers and informs the matched consumer/producer nodes.
As all participating consumer/producer nodes can send their request/offer mes-
sage to the matchmaker only, therefore the neighborhood of a consumer/
producer node is n (n being the total number of the nodes in the ad hoc grid).
This is represented in Figure-1a, where there is only one matchmaker.

In the multiple adaptive matchmakers approach, an intermediate cen-
tralized approach using multiple adaptive matchmakers, each consumer/producer
node is under the responsibility of one matchmaker at any given point in time. The
matchmaker is demoted or promoted according to the workload of the
matchmaker(s) in the ad hoc grid. Then number of matchmaker(s) and the re-
sponsible matchmaker of a consumer/producer node may also change by the pro-
motion/demotion of the matchmaker(s) [12]. As each consumer/producer node is
under the responsibility of only one matchmaker at any given point in time, there-
fore the neighborhood of a consumer/producer nodes is n/m (n being the total num-
ber of the participating nodes and m being the number of matchmakers). This is
represented in Figure 1b, where multiple matchmakers are represented with dif-
ferent colors and the consumer/producer nodes in each zone are represented by
the color of their responsible matchmaker.

In the completely decentralized (P2P) approach, where every node is
its own matchmaker, each node looks for the appropriate resources from all the
nodes in its degree of neighborhood. The ad hoc grid is implemented on top of
Pastry [15], a structured P2P overlay network. The degree of neighborhood of
a node is implemented and varied with the help of Pastry node’s leaf set [15] in
our ad hoc grid, which is explained below.

We consider a Pastry node with nodeID x for explaining the degree of neigh-
borhood in the ad hoc grid. Each node in Pastry is assigned a 128 bits unique
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Fig. 3. (a) Number of messages exchanged when varying the degree of neighborhood
in completely decentralized (P2P) approach. (b) Number of messages exchanged in
centralized and in multiple adaptive matchmakers approach.

node identifier (referred to as nodeID hereafter). A Pastry node’s leaf set contains
L closest nodeIDs to the nodeID x. The leaf set, L, comprises of |L|/2 numerically
closest larger nodeIDs and |L|/2 numerically closest smaller nodeIDs, relative to
any node’s nodeID in a Pastry overlay network. Here |L| represents the cardinal-
ity of the leaf set L. The visibility of a node in the ad hoc grid increases with an
increase in its degree of neighborhood. The neighborhood degree 4 and 6 of dif-
ferent arbitrary nodes (with nodeIDs 0, 16 and 45) in a completely decentralized
ad hoc grid are represented in Figures 2a and in 2b respectively.

Typically, a Pastry node can route a message to another Pastry node in less
than log2b N steps [15]. A Pastry node directly sends a message to its leaf set
members. As the neighborhood is implemented as the leaf set, therefore, all the
message exchange between our ad hoc grid nodes take only one hop instead of
log2b N hops.

5 Message Complexity Analysis for Finding a Match

It is important to understand the cost implications of a particular organiza-
tion of the ad hoc grid. To this purpose, we analyze the number of messages
exchanged for finding a matched pair in the completely centralized, multiple
adaptive matchmakers and in completely decentralized (P2P) resource discov-
ery approaches.

First, we analyze the completely centralized approach. Let n be the total
number of participating nodes. These nodes can play the role of a consumer or
a producer at any given time. There is only one matchmaker in the centralized
resource discovery approach. In the best case, a consumer node sends a request to
the matchmaker and a producer node sends a resource offer to the matchmaker.
The matchmaker finds a match and a reply message is sent to the consumer
and producer nodes. In the worst case, n − 1 nodes will send their offers to



Effect of the Degree of Neighborhood on Resource Discovery 181

Table 1. Messages exchanged to find a match

Best Case Worst Case
Total Centralized (One Matchmaker) 4 n + 2

Multiple Matchmakers 4 m + ni + 1

Varying the degree of Neighborhood d + 1 2d + 1

the matchmaker. Only then the matchmaker can find a suitable offer for the
received request and a matched message is sent to both matching consumer and
producer nodes. Hence, only 4 messages are required in the best case and n + 2
messages are required in the worst case to find a matched request/offer pair in
the centralized resource discovery approach.

In case of the multiple adaptive matchmakers approach, each match-
maker is responsible for certain number of nodes out of all the participating
nodes. An overloaded matchmaker forwards its excess workload to its neigh-
boring matchmaker. The details of matchmaker(s) promotion/demotion and
excess workload forwarding are discussed in [12]. Let n be the total number
of participating nodes, m be the number of matchmakers, where m < n, and
ni be the number of nodes under the responsibility of matchmaker mi, where

i = 1, 2, 3, ..., m, in the ad hoc grid, such that: n =
m∑

i=1

ni.

The best case for a matchmaker in the multiple adaptive matchmaker ap-
proach is the same as that of the centralized approach. However, in the worst
case, a request/offer message may be forwarded to at most m − 1 matchmak-
ers [12]. Therefore, the maximum number of messages to find a match will be
(m − 1) + ni + 2, where ni is the number of nodes under the responsibility
of (m − 1)th matchmaker and 2 represents the matched message sent to both
matched consumer and producer.

For the completely decentralized (P2P) approach with varying the de-
gree of neighborhood, let n be the total number of nodes and d be the degree of
neighborhood, such that d = 2, 4, 6, 8, ..., n in the ad hoc grid. In the best case,
all the neighboring nodes will send offers to the current node, for its resource
request, and one matched message will be sent to the matching producer node.
Hence, the number of messages will be d + 1. The worst case scenario of this
protocol, varying the degree of neighborhood, was explained in the start of this
section. A node will send its resource request/offer to all neighboring nodes, and
all neighboring nodes will send a resource offer/request to the sender node. The
sender node will send a confirmation message to the selected producer/consumer
node. Total number of exchanged messages to find a matched pair will be 2d+1.

It is important to point out that the differentiating point in the analyzed re-
source discovery approaches, is the matchmaker’s ability to search for a required
resource from the nodes under its responsibility or in its degree of neighborhood.
The matchmaker agent can look at the submitted offers of the nodes under its
responsibility in the completely centralized and in multiple adaptive matchmak-
ers approach. The matchmaker agent is limited by the degree of neighborhood
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(except when d = n) and cannot search the resources of all participating nodes.
Figure 3a and 3b compare the number of messages required to find a match in
the varying the degree of neighborhood approach with centralized and multiple
adaptive matchmakers approach, respectively, in the ad hoc grid.

Although the distribution of ad hoc grid nodes among two or more match-
makers vary according to the workload of the matchmakers [12], we assume
ni = n/m for the case of multiple adaptive matchmakers, while comparing the
message complexity for varying the degree of neighborhood in completely decen-
tralized approach with other two approaches in Figure 3a and 3b. 1MM rep-
resents one matchmaker of the centralized approach, whereas 2MM, ..., 5MM
represent two or multiple matchmakers of the multiple adaptive matchmakers
approach in Figure 3b. The number of messages exchanged in different resource
discovery approaches are summarized in Table 1.

6 Experimental Setup and Results

We developed our ad hoc grid experimental platform on top of Pastry [15].
Although we used Pastry, in principle any other structured overlay network can
be used. Pastry is a self-organizing and adaptive overlay network. Pastry is used
for node arrival/departure, node failure handling, and for message routing in
this work. Node join/leave and Pastry message routing is explained in [15].

The experiments are executed on PlanetLab [16]. PlanetLab is a global,
community-based effort and is used mostly for network related experiments. The
PlanetLab nodes are connected through the Internet. Research institutions/ or-
ganizations contribute a minimum of 2 computing machines. The researchers of
the corresponding institute/organization are granted access to a pool of more
than 1000 PlanetLab nodes.

The experiments are executed to answer the questions discussed in Section 1.
The first set of experiments are executed to analyze the effect of varying the de-
gree of neighborhood. In the second set of experiments, the experimental results
with varying the degree of neighborhood are compared with total centralized ap-
proach and with multiple adaptive matchmakers approach for resource discovery
in an ad hoc grid.

The number of participating nodes varies from 15 to 650. The number of
matchmakers varies from 1 to 5 in the experiments with multiple adaptive
matchmakers. TTL of the request/offer messages is set to 10000 milliseconds
in order to cater the delays observed in PlanetLab. In this work, we have only
considered computational power (CPU cycle) as a resource. However, other re-
sources like memory, bandwidth and disk storage can also be incorporated in this
model. The job execution time, job deadline, budget, and request/offer compu-
tational resource amount are randomly generated from a predefined range. The
request/offer resource quantity varies for each request/offer message. Data pre-
sented is obtained after the system reaches a steady state, when 1/4th of the
experiment time is elapsed.
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Matchmaking efficiency, response time and the message complexity are ana-
lyzed in these experiments. Message complexity analysis is explained in Section
5. The matchmaking efficiency in time interval T = [Tstart, Tend] is defined as:

(
Tend∑

Tstart

Matched Message/

Tend∑
Tstart

Total Message)∗100

Where Tstart and Tend represent the start and end time of the time interval
T = [Tstart, Tend]. The response time denotes the time interval, starting from
the time a message is received, and ends at the moment when a match is found for
the received message. The response time is calculated as: RT = Tmatch−Treceive,
where RT represents the response time, Tmatch is the time when the matchmaker
agent found a matching offer/request for the received request/offer message and
Treceive is the receiving time of the received request/offer message.

All the experiments are executed in different network conditions, including
task intensive (tasks >> resources), balanced (tasks ≈ resources) and re-
source intensive (tasks << resources) network conditions. The task intensive
network condition in our experiments is the case when approximately 80% of the
participating nodes act as resource consumers and 20% as resource producers.
The consumer-to-producer ratio is 50%−50% in the balanced network condition
and the consumer-to-producer ratio is 20%− 80% in resource intensive network
condition. The experimental results of balanced network condition are presented
and explained in the next section.

6.1 Experimental Results

First, we look at the matchmaking efficiency in the completely centralized re-
source discovery approach (number of matchmaker as 1 in Figure 4a) and with
multiple adaptive matchmakers resource discovery approach (number of match-
makers > 1 in Figure 4a). The completely centralized approach shows higher
matchmaking efficiency for small workloads. However, one matchmaker cannot
maintain its matchmaking efficiency with the increasing work load. The match-
making efficiency keeps on decreasing with increasing work load of the match-
maker. This phenomenon can be understood with the following explanation.
With the increasing workload, the matchmaker has to process more messages,
so it takes more time to find matched pairs. This results in an increased re-
sponse time of the matchmaker. Since each request/offer message has a validity
period (TTL), therefore the TTL of the request/offer messages start expiring
with increased processing time of the matchmaker and consequently the match-
making efficiency of the matchmaker decreases with increasing workload of the
matchmaker. The work load threshold for one matchmaker system, decreasing
matchmaking efficiency with increasing workload of a matchmaker are explained
in our earlier work [13].

The matchmaking efficiency of multiple adaptive matchmakers approach
is not affected by the increasing workload. The adaptive mechanism introduces
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Fig. 4. (a) Matchmaking efficiency of centralized and multiple adaptive matchmakers
approach. (b) Matchmaking efficiency with varying the degree of neighborhood in
completely decentralized (P2P).

more matchmaker(s) when needed by an overloaded matchmaker(s). Hence, the
matchmaking efficiency remains the same with the increased number of match-
makers. The matchmaking efficiency of completely centralized resource discovery
approach is slightly higher than that of multiple adaptive matchmakers approach
(Figure 4a). The matchmakers in multiple adaptive matchmakers approach com-
municate with other matchmakers in order to promote/demote matchmakers and
for sharing their access workload with the other matchmakers [12]. Some of the
request/offer messages expire during this process. Since, there is no communica-
tion or work load sharing with other matchmakers in the completely centralized
approach, the maximum matchmaking efficiency of the completely centralized sys-
tem is slightly higher than that of the multiple adaptive matchmakers system.
However, the completely centralized approach is not scalable and can have a single
point of failure [12,13].

Figure 4b shows the matchmaking efficiency of the resource discovery ap-
proach with varying the degree of neighborhood in a completely decentral-
ized (P2P) ad hoc grid. The matchmaking efficiency initially increases with
an increased degree of neighborhood. This seems logical as with an increased
degree of neighborhood, the chances for finding a required resource/offer also in-
crease. However, this trend starts decreasing with further increase in the degree
of neighborhood due to the increased number of request/offer messages (refer to
Figure 3a). The matchmaker agent of each node has to process more messages.
The increased processing time results in TTL expiry of request/offer messages
and consequently a drop in the matchmaking efficiency. The experiments were
repeated for n = 100, 250 and d was varied from d = 2, 4, 6, 8, ..., n. The same
matchmaking pattern as in Figure 4b was observed.

An alternative view of the above discussed phenomenon is to consider the
average response time. Figure 5a shows the average response time to find a
match with varying the degree of neighborhood in a completely decentralized
(P2P) ad hoc grid. In our experiments, the response time stays stable up to
50 hops in the P2P case. The response time increases more than proportional
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Fig. 5. (a) Response time with varying the degree of neighborhood in the completely
decentralized (P2P) approach. (b) Response time of centralized and multiple adaptive
matchmakers approach.

once the number of hops goes beyond 60 (Figure 5a). The over proportional
increase in response time is due to the communication overhead incurred with
the increased degree of neighborhood in the completely decentralized (P2P) ad
hoc gird.

We observe an increase in the response time of multiple adaptive match-
makers approach with increased number of matchmakers (Figure 5b). This
increase is due to the segmentation of the ad hoc grid and due to increased com-
munication as explained in Section 5. The experiments were also executed under
resource intensive and task intensive network conditions. We observed the same
trend of the matchmaking efficiency and response time as discussed above.

It can be concluded from the above discussion that neither a completely
centralized nor a completely decentralized (P2P) is generally a suitable infras-
tructures for resource discovery in an ad hoc grid. A completely centralized
infrastructure is not scalable and can have a single point of failure. On the other
hand, a completely decentralized (P2P) infrastructure incurs excessive com-
munication overhead that results in an increased response time and decreased
matchmaking efficiency. An intermediate infrastructure having multiple adap-
tive matchmakers seems most efficient in terms of response time and in finding
matches. The intermediate infrastructure with multiple adaptive matchmakers
should be preferred whenever possible in the ad hoc grid.

7 Conclusions

In this paper, we analyzed the effect of varying the degree of neighborhood
on resource discovery in a local ad hoc grid. For this purpose we defined and
implemented the degree of neighborhood for participating nodes. Results were
obtained for completely centralized, multiple adaptive matchmakers and for com-
pletely decentralized resource discovery approaches in an ad hoc grid. Results
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show that the ad hoc grid becomes less efficient with increased degree of neigh-
borhood in completely decentralized approach, due to the excessive messages
being exchanged. The results also confirmed that an intermediate ad hoc grid
infrastructure with multiple adaptive matchmakers is preferable in a local ad
hoc grid. In future, we will investigate the resource discovery approaches in hy-
brid environments for multiple adaptive matchmakers approach, where both the
centralized matchmaking and P2P matchmaking will occur.
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Abstract. During the last decade, performance prediction for industrial
and scientific workloads on massively parallel high-performance comput-
ing systems has been and still is an active research area. Due to the
complexity of applications, the approach to deriving an analytical perfor-
mance model from current workloads becomes increasingly challenging:
automatically generated models often suffer from inaccurate performance
prediction; manually constructed analytical models show better predic-
tion, but are very labor-intensive. Our approach aims at closing the gap
between compiler-supported automatic model construction and the man-
ual analytical modeling of workloads. Commonly, performance-counter
values are used to validate the model, so that prediction errors can be
determined and quantified. Instead of manually instrumenting the exe-
cutable for accessing performance counters, we modified the GCC com-
piler to insert calls to run-time system functions. Added compiler options
enable the user to control the instrumentation process. Subsequently, the
instrumentation focuses on frequently executed code parts. Similar to es-
tablished frameworks, a run-time system is used to track the application
behavior: traces are generated at run-time, enabling the construction
of architecture independent models (using quadratic programming) and,
thus, the prediction of larger workloads. In this paper, we introduce our
framework and demonstrate its applicability to benchmarks as well as
real world numerical workloads. The experiments reveal an average error
rate of 9% for the prediction of larger workloads.

1 Introduction

For many years, research in computer system architecture has aimed at mod-
eling the performance of computer architectures and workloads. Performance
modeling is widely applicable during a computing life-cycle: design, integration,
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installation, and tuning use results derived from performance models. Although
the models deliver great benefits, the construction of performance models mostly
is a manual and time-consuming task [1,2,3]. Therefore, the semi-automation of
the model construction process for workloads is an alleviation for the modeler
and, hence, a major contribution of this work. This paper presents a model con-
struction process directed by compiler information derived from static analysis of
the source code. The compiler recognizes frequently executed parts of an appli-
cation and instruments these. This helps to focus the modelling process as only
selected parts of the code are instrumented. The instrumented executable calls
a library tracing the application execution and collecting hardware performance
counter statistics. The gathered performance counter data is used for the con-
struction and refinement of the performance model. The validation against this
empirical data is necessary for improving the quality of the predicted parameters
and to allow for incremental refinements to the model.

The paper contributes the first enhancement of an open source compiler with
performance modeling capabilities (GCC-PME), demonstrates the seamless in-
tegration of the GCC-PME into a flexible and extensible set of post-processing
tools, and presents results derived from modeling benchmarks and a numerical
workload in order to demonstrate the applicability of the tool chain.

The presented results can be viewed as a first step towards compiler-based
model construction. Previous approaches rely on hand-instrumentation of appli-
cations to derive and construct workload models such as the modeling assertions
approach [4]. Manually instrumenting the application with calls to a run time
system, requires detailed knowledge of the application. Involving the compiler
to instrument the application has two benefits: first, the user does not need any
application-level knowledge which makes the process amenable for literally ev-
eryone. Second, the compiler instruments the executable on the user’s behalf.
Thus, the user still has control over the instrumentation process and may add
complementary instrumentation if this is desired.

A survey of related work is found in Section 2. Design and implementation
of the proposed approach are presented in Section 3. Starting to describe the
compiler enhancements, this section also contains a description of the runtime
library, an introduction to the applied models, and the post-processing tools.
Section 4 shows models from the NAS benchmarks and real world numerical
workloads. This work concludes in Section 5.

2 Related Work

This section gives an overview of the related work in the area of performance
prediction for parallel applications.

The Modeling Assertions approach (MA) towards model construction was
introduced by Alam and Vetter at the Oak Ridge National Laboratory [4,5].
Their framework consists of parts for construction, validation and refinement of
a performance model based on the application input parameters. The symbolic
representation enables efficient exploration of the application’s parameter space.
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The approach is based on the manual instrumentation of the application with
MA API calls. The models for floating point and load/store operations are cre-
ated at run-time of the application. The used MA library starts and stops the
performance counters (using PAPI), which are used to validate the model. The
MPI communication patterns are profiled. Further, an incremental refinement of
the model is supported through adding more variables to the input parameters.
The MA library functions generate trace files. These traces are used to validate
the model. The CG and SP benchmarks of the NPB-suite were evaluated and
reveal a maximum error rate less than 30% (typical error rate less than 10%) for
floating point operations.

Ipek et. al. propose a neural network based approach towards performance
prediction of parallel applications [6]. Through training neural networks on per-
formance data, this approach benefits from automated model construction, mod-
eling full system complexity without the need to add architectural details to the
model to get precise predictions.

Marin describes an architecture independent model construction process [7].
The object code of an application is analyzed in two ways. First, a static anal-
ysis is performed, identifying the loop nests, instruction mixes in basic blocks
and delivering a control flow graph. Second, the binary is instrumented to mea-
sure the basic block counts, the communication volume and frequency and the
memory utilization at runtime. The post-processing tool set generates an archi-
tecture neutral model, which serves as input for the scheduler and is merged
with an architecture description leading to an overall performance model. The
scheduler maps the specific instructions to generic classes, assuring the archi-
tecture independence. The resulting models are capable of predicting floating
point, load and store operations. This approach is extended for cross-platform
prediction [8]. The effects of restricting the execution time on cross-platform
performance prediction are studied by Yang et. al [9].

The convolution method was developed at the Performance Modeling and
Characterization Lab at the San Diego Supercomputer Center [10]. The per-
formance prediction of a parallel application is obtained from single processor
performance and network utilization.

Lee et al. propose to apply statistical methods to combine single processor
and contention models to predict multiprocessor behavior [11,12].

The Performance Oriented End-to-end Modeling System (POEMS) is an en-
vironment for end-to-end performance modeling of parallel systems [13]. System
components are modeled on different layers of abstraction: applications, runtime,
operating system, and hardware. Different modeling paradigms, such as simula-
tion, analysis, and direct measurement, are employed to model the components.
Sweep3D is used to evaluate and predict parallel architectures.

TAU is a set of tools addressing instrumentation, measurement and analysis
of parallel applications [14]. However, their approach does not involve a compiler
but instead relies on the combination of a preprocessor and binary instrumenta-
tion or dynamic instrumentation to realize an instrumented binary. Binary in-
strumentation has the advantage to work even in the absence of the source code.
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On the other hand application level knowledge that is still available at compile
time (names of loop variables, trip counts, origin of code fragments (source file
and line), etc.) may be lost at binary level or is difficult to reconstruct.

Compared with the surveyed related work based on simulation, statistical
methods or incorporating an array of different models, our approach contributes
compiler-directed models. In contrast to the complex model construction process
favored in the related work, we restrict ourselves to present simplistic models
based on quadratic programming to show the validity of the compiler-based
approach. Our approach is expected to integrate with the modeling assertions
approach and, thus, may greatly simplify the construction of more sophisticated
performance models (e.g. symbolic models) of unknown workloads.

3 Framework

The following section describes the implementation aspects of our work. Figure 1
shows the tool chain and the section is organized top-down. First, a description
of the compiler passes is given. Afterwards, this section describes the imple-
mentation of the MA library sketching the actions taken at run-time. At last,
the post-processing tools are covered, addressing the tool to validate predictions
against information retrieved from performance counters as well as aspects of
the model construction.

3.1 GCC-PME

This section shows the basic design decisions for the implementation of the com-
piler extension. The ”PME” extension to the name GCC underlines the program
modeling enhancements to the tree structure of GCC (version 4.2.0). Since the
user needs some means to influence the modeling process, new compiler options
are introduced. These options influence the instrumentation process so that only
selected parts are instrumented. These parts are determined by an operation
count pass, which visits all basic blocks and gathers information. After process-
ing this information, the user-specified code parts remain and are instrumented
by a separate instrumentation pass.

Compiler Options. This section briefly introduces the additional compiler op-
tions. The optimization switch -O1 enables GCC’s loop analysis and additional
PME passes rely on the results of this analysis. The options ma-float-cov,
ma-int-cov, and ma-ls-cov are used to specify the relative amount of float-
ing point, integer, or load/store operations to be annotated in the executable.
Additionally, the ma-call-cov annotates the function calls with a call to the
MA-library containing the function name. To provide an intuitive interface for
the programmer, command line values are given in per cent of the estimated total
amount of operations. The amount of operations a program performs, depends
on the control flow. Loops, for instance, are prominent programming constructs
introducing control flow and, thus, influencing the amount of operations. De-
pending on the exit condition of a loop, loop bounds may be derived at compile
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Fig. 1. Developed tool chain to create the performance model

time. To benefit from this fact, the results of GCC’s loop analysis are incorpo-
rated in the PME process. This includes the results of scalar evolutions (SCEV)
and induction variables analysis (IV). In case these analysis passes fail to provide
a loop bound, we fall back to a user-specified value: The ma-loop switch defines
the default value that is assumed for loops whose number of iterations was not
derivable from static analysis. In order to avoid over instrumentation, steer the
instrumentation process and, hence, decrease time and space overhead, the user
may set a threshold value (called ma-barrier). The estimated amount of oper-
ations is divided by the total estimated amount of operations and compared to
the threshold value. Every function or basic block must exceed the threshhold to
qualify for annotation. GCC’s infrastructure delivers information from the added
passes to the user. Specific switches trigger the writing of the internal program
representation into a file. These files contain the modifications carried out by the
corresponding passes, enabling the user to examine the results of the instrumen-
tation process. Taking a look at these files, the user will quickly and easily learn
to adjust the additional compiler parameters to gain decent instrumentation.

Loop Annotation. The first PME pass annotates every loop with a call to the MA
library. Herewith the identification of the loop nesting level and the frequently
executed parts of an application at run time is straightforward. The arrangement
of loop components in GCC’s intermediate representation is shown in Figure 2.
The preheader edge leads to the loop header and is mandatory for every loop.
Loops are strongly connected parts of the control flow graph, which have exactly
one entry block (header) [15]. The loop header holds the condition deciding to
enter the loop body. After executing the loop body the latch edge is taken
to the loop header. If the loop has multiple exits, the loop body may be left
through an additional exit edge as well. The annotation of the loop adds the
ma_loop_start call at the preheader edge and the ma_loop_end call to all exit
edges. The start call takes three parameters: an unique identifier, variable name
of the loop bound (if derivable), expected loop count (passing the corresponding
variable). To complement this information the end call takes two arguments:
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the already described identifier and the value of the loop count (if available from
static analysis).

Operation Count Analysis. The ma_insert pass investigates the basic blocks.
Each statement is examined whether it contains: function calls, floating point or
integer operations, or load/store operations. The obtained values are added to
operation count data structures. Additionally variable est_cnt holds the esti-
mated number of times a basic block is executed. The results from the iteration
analysis of the loops (as far as available) are stored into this variable. Nested
loops lead to a multiplication of the trip counts. Loops with indeterminable
number of iterations are assumed to be executed ma_loop times. Hence, the user
setting the ma_loop parameter influences the effect of such loops on the model.
Further, our approach relies on the fact that functions are compiled one at a
time. We take advantage of the fact that functions are compiled first, hence,
the results from the operation count analysis are made available to later passes.
This operation count data gathered by visiting the basic blocks are saved in
a per function statistic. This allows the computation of an overall statistic in-
cluding all compiled functions. The main function is processed last. When the
main function is compiled, the global statistic is complete as far as the data is
available1. The processing of the data evaluates the relative contribution of the
functions to the statistics and inserts them into a sorted array. This array is
pruned until all remaining functions or basic blocks meet the user constraints
passed with the compiler options. The ma_insert pass traverses the array and
annotates the remaining parts.

Naming Scheme. A naming scheme (using unique names) ensures that annotated
call expressions are distinguishable at run time. This naming scheme enables
correlating measured values to certain regions of source code, simplifying the
implementation of the post-processing tools. Besides, the naming scheme enables
an optimized generation of traces, by omitting redundant actions inside the
runtime library.

1 Externally linked libraries and third party object files are not subject to the com-
piler’s operation count analysis.
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3.2 MA Library

At run-time the executable, instrumented by the GCC-PME passes, calls the MA
library (which is similar regarding the API and the use of PAPI performance coun-
ters to the one developed at the Oak Ridge National Laboratory [4]). The library
serves two major purposes. First, event traces for the post-processing tools are gen-
erated. This includes calling the PAPI library, that starts, resets, reads, and stops
hardware event counters. Second, it writes the annotated parts into a file. In order
to enable the user to complement the compiler annotated sourcewithmanual anno-
tations, all basic functions come with wrapper functions. These wrapper functions
are necessary since FORTRAN and C follow different calling conventions.

3.3 Post-processing Tools

The post-processing tools evaluate the data provided by the run time library.
First, trace files generated by the library have to be prepared. Finally, MATLAB
is used to visualize the data and to construct an analytical model.

Validation. The validate tool prepares the data obtained from the MA library.
A trace file, holding the compiler assumed values from the start calls, is merged
with a file containing performance counter values from the end calls. Matching
these pairs of calls is simplified by the naming scheme. The outcome of the
matching and aggregation process, is written to a file and serves as input for the
model construction and visualization using MATLAB.

Model construction. A MATLAB program visualizes the data derived from the
post-processing tool validate and creates an analytical model. The analytical
model enables to predict runs with larger input classes. Floating point, integer
or load/store operations are displayed in terms of predicted and measured values.

This section presents the construction of the performance model using the
method of quadratic programming. The intention is to run a small number of
program instances with different input data sets and measure the desired values.
Afterwards the quadratic programming method is used to incorporate the values
into a model capable of predicting unknown program runs with larger data sets.
Both, model construction as well as the prediction, rely on the knowledge of
the program input parameters. The model bases on the predicted and measured
values for floating point, load/store or integer operations and the input param-
eters of the benchmark. Since the construction does not depend on the type of
information measured, we will refer to the values simply as p for predicted and
m for measured. The index i for pi and mi represents the different input classes.
The separate program phases are analyzed one at a time. This aims at a fine
grained modelling of the phases, correlating the predicted and measured values.
The annotated program parts are evaluated with different parameters. Hence,
the overall prediction is more accurate. The following mathematical equations
outline the problem transformation for one measured program phase. Program
parameters are represented as nj with nj ∈ {1, . . . , m}. r is the number of differ-
ent input parameter sets with m parameters each. Hence, there are r potentially
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different assignments for nj . The primary goal is to transform the optimization
problem in a way that MATLAB’s quadprog-function can solve the problem.
The problem is to find the optimal values for the vector x so that∣∣∣∣∣∣∣
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is minimal. Every solution for x is related to a separate program phase. For
quadprog the term above has to be transformed into

min
x

(
1
2
xT Hx + fT x

)
. (2)

Then, MATLAB can solve the problem using quadratic programming such that
the value for x is minimal. The problem transformation is outlined in the fol-
lowing. First, the left part of the equation is written as a sum:∣∣∣∣∣∣∣
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Second, the quadratic part is calculated and written as a sum:
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This step leads to the structure of H:
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To verify the entries of matrix H, the left hand side of equation 3 must be
considered. Hence, the entries of matrix H are correct, if the following equa-
tion holds: xT Hx =

∑r
j=1

[
(
∑m

i=1 xinij)
2
]
. Some basic mathematical calcu-

lations prove the transformation of H to be correct. Now, the only missing
part of equation 2 is the vector f . f is derived from the right hand side of

equation 3 so that f = −2

⎛
⎜⎝
∑r

j=1 n1j(pj − mj)
...∑r

j=1 nmj(pj − mj)

⎞
⎟⎠. The right hand side of

equation 3 reveals a remaining part: c =
(∑r

j=1(pj − mj)2
)

. The remain-
ing part c does not depend on x, therefore, the optimization process is not
influenced by c. Hence, c can be ignored without altering the results of the
optimization.

4 Results

This section contains the results obtained with the tool chain described in Sec-
tion 3.1. The results are measured on an HP XC6000 cluster of Intel Itanium
II processors operated at the Steinbuch Centre for Computing in Karlsruhe.
The cluster comprises 108 small nodes with 2 processors (1.5 GHz and 16 GB
local memory) and 12 large nodes with 8 processors (1.6 GHz and 64 GB lo-
cal memory). All nodes have local disks and network adapters and are con-
nected via a Quadrics QsNet II interconnect. Large jobs are submitted through
a batch system which was instructed to allocate as many processors as MPI
tasks available. The compiler options introduced in Section 3.1 are set as follows:
ma-float-cov=80, ma-int-cov=0, ma-ls-cov=0, ma-call-cov2=100, ma-loop=100
and ma-barrier3=40. The goal is to omit the infrequently executed parts and
annotate the frequently executed regions computing floating point operations.
The results are derived with the quadratic programming method for the pro-
grams CG and IS of the NAS parallel benchmark suite as well as the numerical
Lattice-Boltzmann implementation (LB). LB is a numerical method for simulat-
ing viscous fluid flow – the MPI-based implementation models a 3-D lid-driven
cavity problem. In order to create an analytical model of these applications, the
method for quadratic programming is employed. Section 3.3 details the transfor-
mation. Then, MATLAB’s quadprog function solves the optimization problem.
This process delivers a vector which is used to weigh the input parameters of
the largest data input set. In Figure 3 the y-axis represents the number of float-
ing point operations and the x-axis the different input classes. NPB’s input
parameter sets are grouped in classes to benchmark computer systems differ-
ing in computational power. In order to comply with the different problem sizes,

2 For Lattice-Boltzmann the switch ma-call-cov is set to 50.
3 For Lattice-Boltzmann the switch ma-barrier is set to 0.
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Table 1. Average relative error predicting input class C for IS, CG, and LB

Number of MPI Tasks
Benchmark 2 8 16 32
IS 0% 0% 0% 0%
CG 19.8% 21.1% 23.3% 29%
LB 0.2% 0% −1.3% −12.1%
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Fig. 3. Quadratic programming model predicting the Lattice Boltzmann numerical
workload executed with eight MPI tasks on two large nodes

the following input parameter classes were defined for LB – each one specifies
the volume of a cube:

S W A B C
volume 64000 216000 512000 1000000 1728000

In Figure 3 problem sizes are increasing along the x-axis. Two adjacent bars in
this figure correspond to the same task. The left bar (in dark blue) represents
the measured amount of floating point operations, whereas the right bar (in
light blue) shows the amount predicted by the model. The difference of these
bars shows the model’s accuracy. Input classes S, W, A, and B were used to
construct the model. Input class C did not contribute to the modeling process.
Thus, the bar with the measured values enables us to specify the quality of the
prediction. All runs for all input parameter sets are performed once, but only the
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obtained values with classes S, W, A, and B are used to construct the model. In
Figure 3 class C is marked with a star to indicate the prediction. The prediction
for program CG, in Table 1, shows that the modeling of class C yields an error
between 19% and 23% with 2 to 16 MPI tasks and increases to 29% measured
with 32 tasks. However, CG offers potential for refined modeling. Due to its
regular structure, the IS program is predicted with an error less than 1% for all
numbers of tasks (see Table 1). Lattice-Boltzmann shows an error of less than
1% for 2 and 8 tasks. Figure 3 depicts the reason for the increasing error rate for
larger task numbers: the unbalance of the last task inhibits the modeling process
and contributes large parts to the error. Anyhow, an average error rate of 12%
for 32 tasks is acceptable.

5 Conclusion

This work presents a compiler-based approach towards the construction of per-
formance models for parallel applications. The GCC-PME adds compiler passes
for gathering operation count data and instrumenting the executable. A library,
called while the program executes, accesses hardware performance counters. In
addition a chain of post-processing tools is designed, to relate the compiler pre-
dicted values to the performance counters. The models are verified using hard-
ware event counts, which enables to quantify the prediction accuracy. Quadratic
programming models are applied for the prediction of large problem sizes. The
achieved precision in predicting the number of floating point operations for big-
ger problem sizes shows that this modeling approach is promising. In particular
the programs LB and IS with emphasis on computational aspects are shown to
be predictable.

Some improvements of the tool chain became obvious. First, the compiler
should support a fine-grained level modeling. The results presented for the CG
benchmark reveal that modeling on a per function level should be replaced by
a more detailed modeling of functions. Collecting operation counts for smaller
code fragments than functions and use those as input for the model construction
is one promising approach. Here, the contradicting requirements of modeling in
greater detail and limiting the overhead caused by instrumentation are challeng-
ing. Second, the fast and straightforwardly constructed quadratic programming
models could be complemented by symbolic models. The tool chain is designed
to also support models relying on information available at compile time. For in-
stance, the propagation of variable names acting as loop bounds is particularly
important in symbolic models. Thus, a combination of PME compiler passes and
symbolic models is promising.
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Abstract. Performance evaluation at system level has become a pre-
requisite in the design process of modern System-on-Chip (SoC) archi-
tectures. This fact resulted in many simulative methods proposed by the
research community. In trace-based simulations, the performance of SoC
architectures is evaluated using abstracted traces. This paper presents an
approach for the generation of the traces at the instruction level from a
target SW code executed on a cycle accurate CPU simulator. We showed
that the use of fine-grained traces provides accuracy above 95% with
an increase of simulation performance by factor of 1.3 to 3.8 compared
to the reference cycle accurate simulator. The resulting traces are used
during high-level explorations in our trace-driven SystemC TLM simula-
tor, in which performance of MPSoC (Multiprocessor SoC) architectures
with a variable number of CPUs, diverse memory hierarchies and on-chip
interconnect can be evaluated.

1 Introduction

Constantly increasing complexity of System-on-Chip (SoC) architectures, stimu-
lated by the rising amount of transistors on a single chip, faces new challenges in
the design of integrated circuits. In order to shorten product development cycles
under high time-to-market pressure, early system-level modeling and simulation
has become a necessary part of the design process. Due to higher complexity
and many low-level details, cycle accurate system-level simulations are not fea-
sible from the perspective of simulation time. At system level, components are
typically modeled at a high level of abstraction allowing faster and more flexible
design space exploration. Therefore, the main challenge is to perform system-
level simulations fast and accurately at the same time.

For the performance evaluation, which is addressed in this paper, trace-based
simulations have been widely used for general purpose computer systems as
well as for systems-on-chip [7,8,10,11,13,15]. The trace-based approach repre-
sents hardware components as black-box modules that either perform internal
processing or make read or write requests on the communication infrastructure.

C. Müller-Schloer, W. Karl, and S. Yehia (Eds.): ARCS 2010, LNCS 5974, pp. 199–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Trace-based simulation

Thus, the workload generated by the component can be captured in the form of
a so called trace (Fig. 1).

A trace is a list of pseudocode constructs or trace primitives. Each primitive
defines an action which the abstracted module should perform. For example,
when executing a delay primitive (denoted as Delay in the figure) the abstracted
model of the CPU waits for a certain amount of time simulating a processing
latency. On execution of read or write primitives (denoted as Write and Read),
the CPU model issues correspondingly a read or write transaction to the memory
on the bus. The overall time required to access the memory module will depend
on the bus arbitration, data transfer latencies on the bus, and read/write latency
of the memory. Thus, the execution of the next delay primitive will be postponed
correspondingly. In [15], the authors demonstrate how trace-based simulations
can be applied for abstract application modeling and performance evaluation of
network processor architectures.

Since the internal functionality of the components is abstracted, performance
of trace simulations can be significantly increased compared to fully functional
and cycle accurate simulations, e.g. performed using an instruction set simulator
(ISS). In case of MPSoC architectures, the performance becomes a vital factor
since simultaneous instantiation of multiple cycle accurate CPU simulators can
significantly decrease the simulation time.

The trace representation allows system designers to describe a workload at
various levels of granularity. In a coarse-grained workload, traces contain ap-
proximated processing latencies of a CPU without a detailed pattern of memory
accesses. This level of granularity may be of a great interest when the target SW
code is not available, but the designer can have an idea how the components
could interact with each other in the desired application [15].

In this paper, we propose to use abstract traces for accurate performance
estimation during high-level design space explorations of MPSoC architectures,
and address the challenge of how to derive accurate fine-grained traces. In our
approach, the traces are defined at the instruction level which allows achieving
exact bus access patterns and precise processing latencies of a CPU. We present
a complete workflow in which traces generated from a cycle accurate CPU sim-
ulator are used for rapid evaluations of MPSoC architectures in our trace-based
SystemC TLM simulator. We demonstrate how the trace-based approach can be
applied during a design space exploration phase, when functional repartitioning



A Method for Accurate High-Level Performance Evaluation 201

between dedicated HW accelerators and CPUs is performed. The paper shows
examples of the performance estimation using traces and discusses origins of the
errors produced by the proposed method.

2 Related Work

Performance evaluation of SoC architectures using high level models has been
addressed in many research works. One of possible solutions for obtaining ac-
curate timing information at system level is the integration of instruction set
simulators into high-level SystemC models. MPARM [2] is a simulation plat-
form for MPSoC architectures, in which a cycle accurate model of an ARM
processor is integrated into SystemC environment. In [4], an ISS is co-simulated
with SystemC using the GDB-kernel. In this method, the high level model re-
ceives timing information via commands sent through the debugging interfaces.
However, the integration of the instruction set simulators significantly decreases
the simulation performance.

Along with HW/SW co-simulation using an ISS, there is another modeling
principle in which precise timing information is back-annotated to abstracted
high-level simulations. This method is widely used in software code instrumen-
tation techniques. In [12], a target C code is used to generate a SystemC code
in which the execution time is partially determined at the compilation time. In
turn, dynamic timing information, e.g. effects of caches and branch predictors, is
obtained at simulation runtime using the models of the architecture components.
In [6], a target code is instrumented with additional functional calls for keep-
ing a count of the executed cycles and for accessing the TLM communication
infrastructure.

In [7], the authors show how traces can be employed for generation of commu-
nication analysis graphs which are later used for evaluation of on-chip commu-
nication architectures. In Sesame [10] and Spade [8] frameworks, traces are used
to represent the workload of multimedia application models constructed using
Kahn Processing Networks (KPN). However, in these approaches the range of
target applications is restricted to those that are adaptable to the KPN model
of computation. Moreover, processing latencies and communication transactions
specified by these traces are very coarse-grained, i.e. delay entries represent large
blocks of computation. At this granularity level, exact memory traffic, which can
significantly influence the application performance, is not addressed. For exam-
ple, during the computation of a KPN process, contention of multiple CPUs
on the shared on-chip interconnect during cache misses cannot be considered at
this abstraction level. In our method, traces specify precise patterns of mem-
ory accesses and processing latencies allowing for more accurate analysis of the
application workload.

S. Mahadevan et al. demonstrated a technique in which traces, obtained from
a cycle accurate CPU simulator, are used to represent the component’s behavior
exactly captured at its bus interface [9]. Contrarily, in our method we define the
traces at the instruction level and explicitly model the cache component which
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can be reconfigured during design space explorations. Consideration of the cache
effects in high-level models is necessary since caching significantly alters the
application performance. In our method, communication latencies are defined
at simulation runtime depending on the miss rate of the cache model as well
as utilization of the shared on-chip communication infrastructure by other CPU
components. Moreover, we focus on the correspondence between the instructions
of particular subroutines and their trace representation. This allows the designer
to profile the traces during high-level design space explorations.

3 System-Level Simulations Using Traces

The workflow for generation of traces and their use in a trace-driven MPSoC
simulator is presented in Fig. 2. In the first step, the object code of a cross-
compiled application is executed on a cycle accurate simulator of the target
CPU. In addition, we deploy an objdump utility to create a symbol table of the
code. Information produced by the simulation as well as the symbol table are
further processed by a trace generator tool which produces a trace file of the
target application.

The resulting trace is used as a part of the workload in our trace-driven mul-
tiprocessor SystemC TLM simulator, in which diverse (MP)SoC architectures
with a varying number of CPUs, different cache models, hierarchical on-chip in-
terconnect can be modeled and analyzed. The simulator is highly configurable
by means of an XML description file in which the parameters of the components
as well as their interconnection can be specified.

In the trace simulator, the resulting traces are executed on the abstract CPU
models in a new multiprocessor environment. Thus, the designer can evaluate

Fig. 2. Workflow for high-level simulations using traces
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the impact of shared resources on performance of the application. In addition,
the simulator can profile the application traces allowing the designer to identify
possible options for HW/SW functional repartitioning. The repartitioning can
be performed by a simple trace modification and analyzed in the simulator in
an iterative manner. The following sections provide further details on each step
of the proposed workflow.

3.1 Generation of Traces

In order to estimate the execution time of the target software, cycle accurate
CPU simulators typically contain models of micro-architectural components,
e.g., branch predictors or instruction pipelines. Using a CPU simulator, the
designer can observe the contents of CPU’s internal registers and memory ad-
dresses in load and store instructions. For the generation of traces, the order of
the instructions as well as their timing information is of the most importance.

In a cycle accurate simulation, the executed instructions can be categorized
into two types:

– Processing instructions not resulting in a request on the bus;
– Communication instructions that perform load and store operations.

Since none of the processing instructions initiates memory accesses, a group
of subsequent processing instructions are translated to a DELAY trace primitive
(Fig. 3). The trace generator calculates the overall execution time of this group
and stores it as a parameter of the primitive. Correspondingly, the communica-
tion instructions are translated to READ and WRITE trace primitives. Information
on the destination target of each transaction and the target memory address is
stored as primitive’s parameters as well.

In order to enable profiling of the application trace, trace primitives are di-
vided into groups. Each group represents an execution of the instructions within
a particular subroutine of the target SW code. For each group, the trace gener-
ator identifies the subroutines’ names using the symbol table of the target code

Fig. 3. Generation of traces using a log file from a CPU cycle accurate simulation
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and program counter values obtained during the cycle accurate simulation. The
start and end positions of the groups are denoted using START F and STOP F
primitives.

In the final step of the trace generation, each primitive type is encoded using
a unique identifier. Afterwards, the primitives are stored in a file in the binary
form, thus, reducing the size of the generated trace.

3.2 Trace Simulator

During the trace simulation which is similar to [15], the black-box CPU models
execute primitives of the trace files. The simulation time is advanced according
to the processing latencies given in the delay primitives. The absolute SystemC
time interval which the CPU model waits is calculated as the annotated number
of cycles multiplied with the value of the clock frequency of that CPU component.

On execution of read or write primitives, the CPU performs a request to the
cache component. Given a memory address tagged to the primitive, the cache
model indicates either a hit or a miss for the current transaction. In case of
a cache miss, the CPU issues a blocking TLM transaction on the shared arbi-
trated bus. The cache model used in the trace simulator is highly configurable.
The user can configure cache associativity as well as various replacement poli-
cies. In contrast to computational latencies that are statically defined by the
delay primitives, communication latencies are obtained dynamically at simula-
tion runtime, depending on how shared resources, e.g. on-chip interconnect, are
utilized by other CPUs. Please note that neither read nor write primitives are
annotated with the data that has to be transferred. Since the functionality of the
memory module is abstracted to access latencies only, the actual data written
or read from the memory is not required.

On execution of START F primitives, the trace simulator starts accumulat-
ing the execution time of the annotated subroutine until a STOP F primitive is
reached. This information is used later for generation of the profiling results. In
addition to the profiling capabilities, the trace simulator is able to measure the
utilization of each SoC component. In order to do so, the simulator accumulates
the busy time of the respective component. At the end of the simulation, the
utilization is calculated as a ratio between the overall busy time and the total
simulated time.

3.3 Trace Modification

Abstracted representation of the target application using traces allows rapid
changes of the workload generated by a CPU. Using a simple text processing tool,
the application trace can be modified in an arbitrary way, thus, enabling faster
design exploration cycles. Particularly, this could be useful when the designer
wants to repartition the functionality between CPUs and HW accelerators and
evaluate the resulting impact on the application performance. Since the trace
simulation does not require transfers of functional data, the user can create an
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Fig. 4. Trace primitives for accessing a hardware accelerator

abstracted model of the desired HW accelerator, which on request will simulate
certain functionality.

Functional repartitioning can be performed by a substitution of certain parts
of the trace by new patterns for accessing the accelerator component. For this
purpose, we have introduced new trace primitives shown in Fig. 4. A WRITE HW
primitive represents a transfer of input data to the accelerator denoted by
dev id. Upon reception of the data, the hardware accelerator simulates inter-
nal processing by waiting for a certain amount of time configured by the user.
On execution of a READ HW primitive, the CPU constantly polls the accelerator
until the processed data becomes available, and continues executing next trace
primitives after the successful read operation. The amount of data that should
be written to or read from the accelerator is specified by n bytes parameter.

Although the functional data is not transferred to the accelerator, the de-
signer can still investigate the impact of associated communication latencies on
the application’s performance. In our framework, the abstracted model of the
accelerator was designed in a way in which the component gets locked for a
certain CPU during data processing. Therefore, in MPSoC architectures other
CPUs will be stalled on a simultaneous access to the component. Please note
that the designer can specify more complex access patterns, depending on the
type of the hardware accelerator.

The processing latency of the HW accelerator can be annotated from the
data specifications if the peripheral’s implementation is already available. As an
alternative, the proposed methodology can be used for setting the requirements
for a not yet existing accelerator. In both cases, the designer is assisted in finding
the optimal trade-off between the accelerated execution of the function and the
additional load on the on-chip communication infrastructure.

4 Experimental Results

In this section, we estimate accuracy of our trace generation method and demon-
strate the proposed workflow for evaluation of alternative MPSoC architectures
using traces.

In the following experiments, cycle accurate simulations were performed in
COMeT tool developed by VaST Systems [14]. The tool provides a library of
cycle-accurate CPU models that are widely used in industry, as well as models
of on-chip buses, memories and other components. Thus, the designer can create
a complete model of a system-on-chip which is capable of executing the target
binary code.
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4.1 Accuracy of Generated Traces

In order to evaluate accuracy of the proposed trace generation method and to
estimate a possible gain in simulation performance compared to the cycle accu-
rate simulator, we took a set of five benchmarks. Each benchmark represented
a particular application domain. In jpeg benchmark, the application performed
encoding of a bitmap image into the JPEG format [3]. Additionally, we selected
bitcount, FFT, stringsearch, and sha benchmarks from MiBench suite [5] that
represent correspondingly Automotive, Telecommunications, Office, and Secu-
rity application categories. The experiments were conducted on a PC with a
2 GHz Intel Core 2 Duo processor and 1 GB of RAM. During the tests we used
the following input data for the applications:

– Jpeg: a test bitmap image of size 104×72 pixels;
– FFT : polynomial function with one random sinusoid and 512 samples;
– Bitcount : 50000 iterations;
– Sha: the small ASCII text file provided with the benchmark;
– Stringsearch: the large string provided with the benchmark.

The cross-compiled C-code of each application was executed on a CoMET virtual
platform. The SoC architecture modeled in the tool consisted of a PowerPC
e200z6 CPU with a 32 kB write-back cache, a generic memory model with an
access latency of 1 cycle, and a generic model of a bus with a request latency
of 1 cycle. The resultant log was further processed by the trace generator which
produced a trace file for each benchmark code.

In the next step, we executed the generated traces in the trace simulator
(TS) containing the same SoC components as in the CoMET virtual platform.
Parameters of the abstracted modules, e.g. the memory and bus latencies as well
as the cache size, were adjusted to the parameters of the CoMET modules. Clock
frequencies of the components both in CoMET and TS were set to 100 MHz.
Results of the estimated execution time for each benchmark are given in Table 1.

Although the trace simulator does not have a notion of instructions, the sim-
ulation performance in MIPS was calculated as the number of instructions of
the corresponding application divided by the time of the trace simulation. We
refer to the simulation time as a real time elapsed from the start to the end of

Table 1. Comparison of VaST CoMET and trace-based simulations

Benchmark Number of
instructions

Estimated cycles
Simulation

performance, MIPS
VaST perf.
with trace
gen., MIPSVaST TS Error,% VaST TS Speedup

stringsearch 1.68M 2.86M 2.93M 2.18 7.01 11.97 1.71 0.94

jpeg 3.01M 5.18M 5.16M -0.37 6.52 25.07 3.84 0.98

sha 10.81M 12.8M 12.45M -2.77 54.60 72.07 1.32 1.18

FFT 21.68M 27.23M 25.96M -4.67 28.64 60.23 2.10 1.00

bitcount 34.18M 43.16M 42.71M -1.04 90.17 126.57 1.40 1.40
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the simulation. This time does not include the initialization phase of the simula-
tion, in which the components’ models are instantiated. The initialization phase
in VaST CoMET was approximately measured to be 5 s. In contrast, due to
the higher abstraction level of the components, the initialization in the trace
simulator took 0.03 s. Small initialization times may be desirable when several
simulations have to be performed iteratively. The performance of VaST simu-
lations given in the table was measured without generation of traces. With the
enabled trace generation, the simulator’s performance was reduced to 0.94–1.4
MIPS due to the overhead associated with creating the trace files.

The errors in the trace-based simulation originate from the simplified memory
access mechanisms. First, during the trace generation the actual timing of the
read/write primitives is considered to be 1 cycle in case of cache hits. In fact, the
execution of the corresponding load/store instructions can take more than one
cycle, e.g., due to possible pipeline stalls. In the trace simulation, these effects
are omitted and, thus, the execution time is underestimated. Second, on cache
misses the CPU model issues blocking transactions to the memory. However, in
reality the CPU would continue executing next instructions until it stalls due to
the data dependencies of the upcoming instruction. Therefore, the executed time
becomes overestimated. The overall error produced by the trace simulation is a
superposition of these two effects. If higher simulation accuracy is required, the
trace generation method has to be correspondingly modified with a consideration
of possible data dependencies inside delay primitives.

4.2 Design Space Exploration

In order to demonstrate the presented workflow during high-level explorations
of MPSoC architectures, we selected the jpeg application as a simplified but
representative example. As one of many possible architectural solutions, the
application can be executed on a symmetric multi-processor platform, in which
each CPU performs processing of a particular fragment of the picture.

On an architecture with multiple CPUs that share common resources, the
execution time of the application will be altered due to additional contention
periods. In order to study this effect in the trace simulator, we modeled a sam-
ple architecture consisting of 4 CPUs, a common arbitrated bus and a shared
memory. Since each CPU should process an individual block of data, we gener-
ated 4 different traces. Each trace represented the processing of an image block
of size 128×128 pixels. The traces were executed in parallel without any data de-
pendencies between them. Table 2 presents results of the application’s profiling
in the trace simulator.

As can be concluded from the experiment, the most performance demanding
subroutine was a calculation of the discrete cosine transform (dct). As a possible
solution during the design space exploration, this function can be offloaded to
a hardware accelerator attached to the peripheral bus (Fig. 5). The discrete
cosine transform is performed on an image block of size 8×8 pixels resulting in
data transfers of 64 bytes to the accelerator. In order to enable the hardware
acceleration, we replaced every part of the traces representing the execution of
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Fig. 5. MPSoC architecture modeled in the trace simulator before and after reparti-
tioning

dct function by WRITE HW and READ HW primitives configured with value 64. On
execution of WRITE HW, the CPU was trying to access the component by polling
its status. If the peripheral was idle, the CPU performed 16 write transactions
on the 32-bit bus. After the processing latency assigned to the accelerator had
expired, the CPU performed 16 read transactions representing the transfer of the
processed data, and the accelerator became available for other CPU components.

In [1], L. V. Agostini et al. demonstrated an FPGA implementation of the
DCT algorithm and obtained the processing time of an 8×8 pixel block (5.6 µs).
We took this value as a reference and annotated the equivalent processing latency
to the abstracted accelerator (560 cycles). The latency parameter is configurable
and can be changed if other HW implementations have to be considered. The
simulation results of the new MPSoC architecture with the DCT accelerator are
given in Table 3.

Table 2. Profiling results of jpeg application on a 4-CPU architecture in the trace
simulator

Subroutine
Executed cycles

Share of total
execution time, %

CPU0 CPU1 CPU2 CPU3 CPU0 CPU1 CPU2 CPU3

dct 2,278,193 2,277,795 2,277,716 2,277,917 28.1 29.4 28.2 28.1

WriteRawBits16 1,339,100 1,326,305 1,333,059 1,345,854 16.5 17.1 16.5 16.6

EncodeDataUnit 842,872 839,441 841,284 845,318 10.4 10.8 10.4 10.4

zzq encode 817,885 819,343 816,977 818,143 10.1 10.6 10.1 10.1

get MB 475,130 475,671 474,828 475,123 5.9 6.1 5.9 5.9

RGB2YCrCb 438,654 438,916 438,539 439,052 5.4 5.7 5.4 5.4

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3. Comparison of execution time of jpeg application on a 4-CPU architecture
with and without the DCT accelerator

CPU instance
Execution time, cycles

dct function (average) jpeg application (total)
w/o DCT-HW with DCT-HW w/o DCT-HW with DCT-HW

CPU0 5,910 668 8,098,417 6,107,352

CPU1 5,909 653 7,752,352 5,755,998

CPU2 5,909 656 8,091,063 6,091,775

CPU3 5,909 657 8,109,849 6,115,119

Due to the additional data transfers to the hardware accelerator and simulta-
neous use of the component by multiple CPUs, dct function took approximately
1.2 times more than the annotated processing time of the accelerator. Never-
theless, the overall application’s performance was increased by a factor of 1.3
compared to the architecture without the DCT accelerator.

5 Conclusions

In this paper, an approach for MPSoC performance estimation was presented
in which two domains of cycle accurate and trace-based simulations are com-
bined. For this purpose, we developed a tool that automatically generates a trace
file from a CPU cycle accurate simulation at the instruction level. We showed
that the trace simulation allows achieving better simulation performance with
a marginal loss of accuracy compared to the reference CPU simulator. We fur-
ther demonstrated how a trace can be applied during high-level design space
explorations, particularly for the analysis of functional repartitioning between
CPUs and HW accelerators in an MPSoC. Our approach can be also applied for
trace generation using RTL processor models. This would allow achieving better
accuracy of the traces and even higher simulation speed up comparing to the
instruction set simulators.

There are some problems that have to be solved in the presented method.
Currently, an instruction cache is not considered during the trace generation. It
is also assumed that there are no data dependencies between the traces running
on a MPSoC architecture. In our future work, in addition to overcoming these
problems we are planning to add inter-trace synchronization to our trace simula-
tor, and extend the framework for modeling complex multi-tasking applications
running under control of a real-time operating system.
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Abstract. Performance comparison among various architectures is generally at-
tained by using standard benchmark tools. This paper presents JetBench, an 
Open Source OpenMP based multicore benchmark application that could be 
used to analyse real time performance of a specific target platform. The applica-
tion is designed to be platform independent by avoiding target specific libraries 
and hardware counters and timers. JetBench uses jet engine parameters and 
thermodynamic equations presented in the NASA’s EngineSim program, and 
emulates a real-time jet engine performance calculator. The user is allowed to 
determine a flight profile with timing constraints, and adjust the number of 
threads. This paper discusses the structure of the application, thread distribution 
and its scalability on a custom symmetric multicore platform based on a cycle 
accurate full system simulator. 

Keywords: Real-time, Multiprocessor, Application Benchmark. 

1   Introduction 

Benchmarks are generally classified into two types,  i.e. 1) synthetic benchmarks and 
2) application benchmarks. Synthetic benchmarks are designed to exploit particular 
property of a processor such as instruction per second (IPS), cache performance, I/O 
bandwidth etc, whereas application benchmarks are centred towards one particular 
application such as automotive, office automation, etc. The concept of using bench-
marks for performance characterization of the system is common practice and some 
processor manufacturers have proposed their own benchmarks [1]. However such 
benchmarks strive to give better performance on a particular platform, third party 
benchmarks are a good way to compare the performance amongst various architec-
tures impartially and transparently. 

The JetBench benchmark presented in this paper is an application benchmark writ-
ten in C, for real-time jet engines thermodynamic calculations. It is a multithreaded 
application for shared memory architectures. The benchmark is based on OpenMP 
[2], and could be seamlessly ported to any platform supporting it. The benchmark 
provides user the flexibility to specify custom workload, that could be a real flight 
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profile with deadlines. The benchmark records the time consumed in calculating indi-
vidual data points, and reports the miss of deadlines. The benchmark is scalable to 
theoretically any number of cores and could be used as a tool to measure an operating 
system’s scheduling characteristics. This paper is divided into five sections. The fol-
lowing section overviews the related work in the area of embedded benchmarking, 
section 3 and 4 detail the proposed benchmark characteristics, and results based on a 
multicore architecture. Finally the last section forms the conclusion. 

2   Related Work    

With the current drive towards multicore platforms, standard APIs like OpenMP, 
POSIX [3] and Message Passing Interface (MPI) [4] have facilitated the development 
of multicore threaded applications. Multicore platforms have been widely applied in 
the real-time systems to achieve higher throughput and lower power consumption. 

The embedded system community has long been using non-embedded benchmarks 
such as SPEC [5], Whetstone [6], Dhrystone [7] and NAS parallel benchmarks [8], to 
evaluate the performance of the target systems. A limited number of benchmarks are 
specifically designed for the embedded system evaluation.  

One of the few embedded system specific benchmark suites is the Embedded Mi-
croprocessor Benchmark Consortium (EEMBC) benchmark tools suite comprising of 
algorithms and applications targeting telecommunication, networking, automotive, 
and industrial products. A recent addition of a so called MultiBench [9] suite has 
realized the performance evaluation of shared memory symmetric multicore proces-
sors. These benchmarks could be targeted to any platform supporting POSIX thread 
library, and are delivered as customizable set of workloads, each comprising of one or 
more work items. Although computationally rich and extensive the benchmarks by no 
means provide real time performance statistics of the system, and for such applica-
tions EEMBC has two applications in a separate single core benchmark suite called 
AutoBench [10]. This benchmark suite comprises of real time applications such as 
‘Angle to Time Conversion’ and ‘Tooth to Spark’ [11]. The Angle to Time Conver-
sion application simulates an embedded automotive application, where the processor 
measures the real-time delay between pulses sensed from the gear on the crankshaft. 
Then it calculates the Top Dead Center (TDC) position on the crankshaft, computes 
the engine speed, and converts the tooth wheel pulses to crankshaft angle position. 
The Tooth-to-Spark application simulates an automotive application that processes 
air/fuel mixture and ignition timing in real-time. Another real-time single core em-
bedded benchmark is PapaBench [12], that is based on a unmanned aerial vehicle 
(UAV) control software for AVR and ARM microcontroller systems. The benchmark 
provides the worst case execution time computation which is useful for systems 
scheduling analysis.  Guthaus et al. [13] presented the MiBench embedded benchmark 
suite.  This benchmark suite is a single core, non real-time implementation of 35 ap-
plications in the areas such as automotive/industrial, consumer, office, network, secu-
rity, and telecommunication. As all of the above mentioned benchmarks either are not 
using threaded implementation or are not real-time applications, a more specific 
benchmark suite addressing the two issues altogether is developed by Express Logic 
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Inc., i.e. the so called ‘Thread-Metric’ benchmark suite [14]. The tool is specifically 
designed to measure a real-time operating system’s (RTOS) capability to handle a 
threaded application. The benchmark is not a multiprocessor implementation as the 
thread model executes in a round-robin fashion and is useful to explore real-time 
context switching and memory management capabilities of an RTOS.  

The related research in the embedded benchmarking area is pointing to the need of 
a more specific multicore real-time benchmark suite, capable to instrument perform-
ance characteristics of shared memory architectures. The following section introduces 
and overviews the JetBench benchmark application, an Open-Source tool for real-
time, multiprocessor embedded architectures. 

3   Benchmark Characteristics 

The JetBench application is composed of thermodynamic calculations based on three 
types of jet engines, i.e. 1) TurboJet, 2) Turbojet with afterburner, and 3) a Turbofan 
engine (See Fig. 1). The application contains parameters specific to the said models as 
described in the NASA’s EngineSim application [15]. The benchmark allows a user 
defined input flight profile to be simulated containing speed, altitude, throttle, and 
deadline time, while in response to that, the processing time for various thermody-
namic calculations is monitored and reported (See Fig. 2).  

 
Fig. 1. Three different Jet Models used in JetBench (Adapted from [15]) 

An overview of the thermodynamic calculations used in the benchmark application 
is given in Appendix.  

 
Fig. 2. JetBench Application I/O Parameters 
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In contrast to a synthetic benchmark, an application benchmark such as JetBench, 
is a realistic representation of the actual workload; however there are some deviations 
one has to apply to allow portability of the application on various platforms, which 
are discussed as follows.  Generally, all real applications require a significant amount 
of I/O operations, which if were implemented in the benchmark would have restricted 
its portability [16]. Therefore the I/O performance of a platform can not be evaluated 
through the proposed benchmark.  Secondly, as the application has to get executed in 
a target time period, excessive computations could have caused the benchmark to 
perform poorly on majority of low end systems. To avoid this problem the JetBench 
application covers a limited number of typical thermodynamic calculations used in jet 
engines. As a consequence of the restricted workload of the computations, it may 
seem small enough to high-end multicore systems that their actual performance may 
not be reported well, as in contrast to a low end multicore platform. A more detailed 
analysis of the benchmark on a number of cores is given in the following section.   

The JetBench application not only provides the user with an overview of the real-
time performance of the system, but could also be used to discover optimum number 
of threads to achieve desired performance. The JetBench benchmark is mainly com-
prised of ALU centric operations such as integer/double multiplication, addition, and 
division for the computation of exponents, square roots, and calculations such as 
value of pi and degree-to-radian conversion. All these operations are based on real 
thermodynamic equations and operations required for a jet engine control unit. The 
benchmark structure is composed of 88.6% of the parallel portion as reported by 
thread analysis tools, and is described in the pseudo code given in Fig. 3 and the 
threading diagram in Fig. 4.  

 

JetBench Pseudo Code 
Inputs: Engine Type 
Data File Defining Speed, Altitude, Throttle, Deadline 
Initialization: 
   Set Default Parameters 
   Select Engine Type 
   Open data file 
Parallel Section: 
   Calculate Pi 
   Read an input data point 
   Calculate: 
        Environment variables 
        Thermodynamic parameters 
        Engine geometry 
        Engine performance 
   Print Results 
   If not EOF goto Parallel Section 
   Print Results 
   End 

Fig. 3. Pseudo code of the application 
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Fig. 4. JetBench Thread Structure 

4   Results 

To analyze the scalability of the benchmark, un-optimized executions of the applica-
tion were carried out on shared memory multicore platform based on sixteen x86 
CPUs running at 20MHz. The platform was simulated on Simics full system simulator 
[17], running Linux kernel 2.6.15 including symmetric multiprocessing support. The 
input dataset comprised of 30 data points and calculation deadlines were uniformly 
set as 9 sec.  As the platform is running at a low clock frequency i.e. 20 MHz,   a 
single thread per core was executed. The benchmark output timing per input data 
point is shown in Fig. 5. The graph shows normalized timing values against the set 
deadline time, i.e. 9 sec in this instance, which enables one to compare execution rate 
instead of execution time. It is worth noting that the execution rate is inconsistent for 
all the cores, also the rate decreases with the increase in number of cores. The reason 
behind is that the application is not prioritized statistically by the user but has been 
prioritized by the kernel itself. Secondly for any application increasing the number of 
threads beyond a certain level actually decreases performance since thread handling 
overhead will surpass the per thread execution time. This phenomenon is more ob-
servable, when running multiple threads per core where context switches depreciate 
the performance after a certain level of parallelism. 

It can be observed from Fig. 6 and 7 that the overall execution time for the applica-
tion is around 230 sec for a 4 core machine; however the 8 core machine offers a 
minimum number of missed deadlines, i.e. 2. This is due to the fact that although for 
8 cores platform, threading overhead is higher than for the four core machine, which 
also effects the computation time per thread. But for 4 cores or less the CPU workload 
has exceeded the available resource and therefore resulted in missing more deadlines 
than the later. The output from the benchmark execution thus allows the user to  
 

 
Fig. 5. Application execution rate for different number of cores 
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Fig. 6. Application execution time                  Fig. 7. Missed Deadlines 

analyze the impact of threading on a particular platform and could be helpful in the 
process to decide optimal number of cores as well as OS scheduling characterization. 

To validate the phenomenon of performance degradation with an increase in num-
ber of threads, a more detailed analysis of the benchmark based on an Intel Dual Core 
machine [18] was carried out (see Fig. 8). The benchmark is executed for up to 8 
threads and processing speedup was calculated using Amdahl’s law [19] and Gun-
ther’s law (or alternatively termed as Universal Scalability Law (USL))[20-22].  

݌ݑ݀݁݁݌ܵ  ൌ 1ሺ1 െ ሻ݌ ൅ ܰ݌ ݌ݑ݀݁݁݌ܵ (1) ,  ൌ ܰ1 ൅ ሺܰݏ െ 1ሻ ൅ ݇ܰሺܰ െ 1ሻ , (2) 

Amdahl’s Law Gunther’s Law 
 

where 
p = Parallel fraction of the program 
s = Serial fraction of the program 
k = Delay associated with concurrency 
N = Number of processors 
 

 

Fig. 8. Comparison of actual speed-up against Amdahl’s law and Gunther’s law 
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Amdahl’s law is useful in the situations to set an upper limit for the performance 
gain with increase of parallelization, this however does not take into account the 
drawbacks of aggressive parallelization such as excessive cache coherency delays, 
instruction execution, and thread scheduling delays etc. On the other hand Gunther’s 
law provides a more realistic picture in such situations. The results shown in Fig.8 
complement the results in Fig. 6, as the throughput tends to decrease with the increase 
of parallelism beyond a certain limit, which however varies from platform to  
platform. 

5   Conclusion 

In this paper, Jetbench an open-source, real-time multicore application benchmark has 
been presented. The application is designed to be platform independent by avoiding 
target specific libraries and hardware counters and timers. The application comprises 
of thermodynamic calculations of a jet engine, and processes user defined input data 
points with custom deadlines. The benchmark application was tested on a 16 core 
platform and has demonstrated its usefulness for deciding optimal number of threads, 
and provided timing information that could be used to deduce an estimate of CPU 
core utilization and the operating system’s real-time behaviour. 

Future work will include the testing of the benchmark on various architectures with 
and without thread prioritization. Also the application’s behaviour on an RTOS based 
platform is to be observed. 

JetBench is available from http://jetbench.sourceforge.net/. 
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Appendix: Thermodynamic Equations 

With reference to the Fig. 1, thermodynamic calculations [15] covered in the bench-
mark are given as follows. 

Notations: 

─ Point 0 is the free stream conditions 

─ Point 1: the inlet entrance 

─ Point 2: compressor entrance 

─ Point 3: compressor exit 

─ Point 4: turbine entrance 

─ Point 5: turbine exit 

─ Point 6: nozzle throat 
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Inlet performance (0->2) ܶ0ݐ2ܶݐ  ൌ  1 Inlet Temperature ratio 

0ݐ݌2ݐ݌   ൌ   ,Inlet Pressure ratio for Mach < 1 ݅ߟ 
where ηi is the inlet efficiency factor 0ݐ݌2ݐ݌ ൌ ሺ1݅ߟ െ 0.075ሾܯ െ 1ሿ1.35ሻ Inlet Pressure for Mach > 1, where ηi  

is the inlet efficiency factor 

݈݈݅݌ݏܦ ൌ ሺܭ ሶ݉ ݅ሾܸ1 െ ܸ0ሿ ൅ 1݌1ሾܣ െ0݌ሿሻ  

Spillage Drag for inlet, where K is  
the lip suction factor, ṁi is the inlet  
mass flow rate, V is the velocity, A is  
the area, and p is denoting the  
pressure. 

Compressor thermodynamics (2->3) 

ൌ ܴܲܥ ଶݐ݌ଷݐ݌  ൒  1.0 Compressor Pressure ratio  

2ݐ3ܶݐܶ ൌ ൬2ݐ݌3ݐ݌൰ሺߛെ1ሻ ⁄ߛ
 

Compressor Temperature ratio,  
where γ is the ratio of specific heats 

ܹܥ ൌ ܿ௣ܶݐଶߟ௖ ሺఊିଵሻ/ఊܴܲܥൣ െ 1൧ compressor work per mass of airflow,  
where ηc is the compressor efficiency  
factor and cp the specific heat 

Burner thermodynamics (3->4) 

ൌ ܴܲܤ ଷݐ݌ସݐ݌  ൌ  1 Burner Pressure Ratio 

3ݐ4ܶݐܶ ൌ 1 ൅ ݂. .ܾߟ .݌ܿܳ 31ݐܶ ൅ ݂  

Burner Temperature Ratio, where , f  
is the fuel to air mass flow ratio, Q is  
the heat release, ηb is the burner  
efficiency factor. 



220 M.Y. Qadri, D. Matichard, and K.D. McDonald Maier 

Turbine thermodynamics (4->5) 

ܴܶܲ ൌ ସݐ݌ହݐ݌ ൌ ସݐହ5ܶݐܶ
ሺఊ ିଵሻ / ఊ

 Turbine Pressure Ratio 

ܹܶ ൌ ସ൫1ݐ௧ܿ௣ܶߟ െ ܴܶܲሺఊିଵሻ/ఊ൯ 
Turbine Work Per Mass Of Airflow, 
where ηt is the turbine efficiency and  
cp is the specific heat. 

Nozzle thermodynamics (5->6) 

ܴܰܲ ൌ ହݐ݌଼ݐ݌ ൌ ൬ܶݐ଼ܶݐହ൰ఊ ሺఊିଵሻ⁄ ൌ 1 
Nozzle Pressure and temperature  
ratios 

ܸ݁ ൌ ܸ8ൌ ට2ܿ݊ߟ8ݐܶ݌ሾ1 െ ሼ1 ܴܰܲ⁄ ሽሺߛെ1ሻ/ߛሿ 
Exit velocity, where ηn is the nozzle 
efficiency 

Output calculations ܯ ൌ ଴ܸܽ଴ ൌ ଴ܸඥܴߛ ଴ܶ 
Mach Number, where V0 is the  
aircraft speed, a0 is the speed of  
sound and R is the gas constant 

଴ݏݐ ൌ 518.6 െ  3.56 ௔௟௧௜௧௨ௗ௘ଵ଴଴଴ ଴ݏ݌ ,  ൌ 2116. ௧௦బହଵ଼.଺ହ.ଶହ଺
 . 

Stratospheric Temperature and  
pressure for altitude < 36152 feet 

଴ݏݐ ൌ ଴ൌݏ݌ ,  389.98 כ473.1376 ݁ሺଷ଺଴଴଴ି௔௟௧௜௧௨ௗ௘ሻ/ଶ଴଼଴ହ.ସଷଷ 

Stratospheric Temperature and  
pressure for 36152< altitude < 82345   
feet 

଴ݏݐ ൌ 391.625 . ௔௟௧௜௧௨ௗ௘ି଼ଶଷସହଵ଴଴଴ 0ݏ݌ ,   ൌ 51.96896 כ  ቀ ௧௦బଷ଼ଽ.ଽ଼ቁିଵଵ.ଷ଼଼
 . 

Stratospheric Temperature and  
pressure for altitude > 82345  
feet 
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݂݉ሶ ൌ ݂ ሶ݉ ܽ where, 

݂ ൌ ቀ೅೟ర೅೟యቁିଵሺఎ್ொ/௖೛்௧యሻିሺ ்௧ర ்௧య⁄ ሻ . 
Fuel mass flow rate, where ṁa is the 
airflow rate, ηb is the burner  
efficiency, f is the fuel to air ratio and  
Q is the fuel heating value. ܴܲܧ ൌ ௣௧ఴ௣௧మ  ൌ  ௣௧య௣௧మ . ௣௧ర௣௧య . ௣௧ఱ௣௧ర . ௣௧ఴ௣௧ఱ ൌ ܴܶܧ ,  ்௧ఴ்௧మ  ൌ  ்௧య்௧మ . ்௧ర்௧య . ்௧ఱ்௧ర . ்௧ఴ்௧ఱ   , ଼ܶݐ ൌ .ଶݐܶ ଼ݐ݌ , ܴܶܧ ൌ .ଶݐ݌ ଴ݐܶ , ܴܲܧ ൌ ଶݐܶ ൌ ଴ܶሺ1 ൅  0.5 ሾߛ െ1ሿ ௏బమ௔బమ ሻ , 

଴ݐ݌ ൌ ଴݌ ்௧బം/ሺംషభሻబ்  . 

Thrust Specific Calculations where, 
EPR is the engine pressure ratio, and 
ETR is the engine temperature ratio. 
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Abstract. Processor speed and available computing power constantly
increases, enabling computation of more and more complex problems
such as numerical simulations of physical processes. In this domain, how-
ever, the problem of accuracy arises due to rounding of intermediate
results. One solution is to avoid intermediate rounding by using exact
arithmetic. The use of FPGAs as application-specific accelerators can
speed up such operations compared to their software implementation.

In this paper, we present a system approach employing state-of-the art
FPGA and interconnection technology for exact arithmetic with double-
precision operands, delivering up to 400M exact MACs/s in total and
providing a speedup of up to 88 times over competing software imple-
mentations in the case of matrix multiplication.

1 Introduction

With the computation of increasingly complex problems, accuracy issues arose
related to rounding effects taking place in current FPU implementations. These
may lead to unsatisfying results and even physical damage, if upfront simula-
tions do not indicate certain problems. This problem is typically addressed by
certain exact arithmetics built into mathematics and simulation packages. Such
arithmetics increase the width of the internal data representation or concate-
nate several floating-point numbers in order to enlarge the “accuracy window”
in which no rounding is necessary. While these software implementations provide
a viable workaround, they are magnitudes slower than native hardware support.
Custom accelerator hardware can speed up such operations using several design
techniques, e.g. pipelined execution and parallelization.

We therefore present an accelerator system for exact arithmetics. Based on a
careful examination of the underlying algorithm for implementing exact arith-
metics, a hardware solution employing pipelining techniques and exploiting par-
allelism is proposed delivering up to 400M exact MAC operations per second.

In the remainder, we first outline related work in Section 2. We then present
our general architecture design in Section 3 before discussing implementation
issues and viable solutions in Section 4. The elaborated design is thoroughly
evaluated in Section 5. We conclude this paper by summing up the results and
presenting our plans for future work in Section 6.
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2 Related Work

Performing floating-point operations in software is quite costly, therefore many
FP accelerators exist. Such accelerators were originally the domain of dedicated
silicon, but with increasing FPGA capabilities, these gained attention as compu-
tation accelerators. In [1], for example, double-precision operations are employed
for accelerating physics simulations. Other work focuses on exploiting FPGAs
for matrix multiplications with double precision [2], or on the conjugate gradient
method [3,4,5].

The problem of exact computation is well-understood, and hence multiple
solutions exist. For certain computations, the effect of errors can be evaluated
upfront, allowing the use of lower-precision computation [6]. For computations
where knowledge of the included error is required, using so-called Staggered In-
terval Arithmetics [7] (SIA) is an option. The precision of floating-point opera-
tions can also be enhanced by increasing mantissa and exponents as e.g. provided
by the GNU MP library.

Our work is motivated by the work of Kulisch et al. [8],[9], who developed a
concept for exact arithmetics support in regular floating-point units and also im-
plemented a PCI-attached coprocessor for exact arithmetics. Following Kulisch’s
work, a straight-forward implementation supporting single-precision operands
demonstrated the general applicability to FPGA technology, but did not yet
offer speedup in comparison to software implementations [10].

In order to further support the use of such accelerators and to ease benchmark-
ing, we developed a runtime system enabling dynamic switching from
conventional to exact arithmetics implemented in software or hardware [11]. Dy-
namically applying exact arithmetics only where required, results in the fastest
total runtime while still guaranteeing numerical robustness and therefore deliv-
ering precise results.

3 Architecture and Design

The need for exact arithmetics in numerical programs arises in most cases for
matrix multiplications. Thus, we give a detailed description of how matrix mul-
tiplication can be split and organized in the optimal way for data transfers and
parallel pipelined processing in this section.

3.1 Exploiting Matrix Multiplication Properties

Matrix multiplications can be regarded as consisting of matrix-vector multipli-
cations that are simply a series of inner vector products:

C = A ·B =

⎛
⎜⎝

a1

...
am

⎞
⎟⎠ · ( b1 · · · bo

)
=
(
A · b1 · · · A · bo

)
=

⎛
⎜⎝

a1 • b1 · · · a1 • bo

...
. . .

...
am • b1 · · · am • bo

⎞
⎟⎠ (1)
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where A is an m × n matrix with rows a1 to am, B is an n × o matrix with
columns b1 to bo, C is an m × o matrix, and • denotes the inner product.

When looking at Equation 1, we easily can see that for data reuse we need to
stream in one of the two matrices, while reading the other from local memory,
because row ai is used for computing the complete row i of C. This allows to
stream the rows of A and read R vectors of the local matrix B concurrently
element by element according to the column of A. Hence, we obtain R elements
of C at once after all the n elements have been accumulated. Note that reading
more than one element of a vector bj is not useful as only one product can be
computed and accumulated per cycle. Thus, individual EAUs have to be used
in parallel in order to gain speedup.

However, not only row ai can be reused, but the same works for the vectors
bj of B as well: having enough bandwidth available or running the different
components at different clock speeds allows to receive more than one value of
ai. This can be exploited to stream in S > 1 rows of A concurrently in favor to
delivering several elements of ai because of the same reason as mentioned above.
As a result, the vectors bj are the same for all multipliers, while each “plane” is
given different rows ai of matrix A.

In the obvious approach, the elements of A and B are being sent one by one or
packed into tuples (ai,k, bj,k). In that case, no additional overhead due to data
organization occurs. When multiplying several vectors at once in the parallelized
approach, we read the kth element of R vectors, i.e. of elements b1,1,. . . , bR,1,
b1,2,. . . , bR,2,. . . , b1,k,. . . , bj,k,. . . , bR,k,. . . , bR,n,. . . , bR+1,1,. . . , bo,n, where the
second index denotes the row of column vector bj. Thus, B should be transferred
into DDR memory in such a way that subsequent memory accesses happen in
exactly this order. In case R = o, nothing special has to be done, otherwise the
matrix has to be reordered. Finally, for the 2-dimensional approach, the elements
of matrix A are accessed rather row by row than column by column. Hence,
transposing A is already helpful, but as in the second case, data has additionally
to be reordered with respect to block size S that denotes the number of “planes”,
i.e. the number of elements that are transferred per cycle and number of rows a
that are processed in parallel.

3.2 FPGA Integration

Following Sect. 3.1, it is advisable to store one of the two matrices to be mul-
tiplied, B, in on-board memory, enabling concurrent computation of different
columns of the result matrix C. This requires transferring matrix B from main
memory to FPGA memory. Additional control logic applies for controlling ini-
tialization and multiplication, resulting in the overall architecture depicted in
Fig. 1 where the user logic is clocked with 130 MHz and DDR memory with
double the frequency, i.e 260 MHz, as required by the DDR controller.

Our hardware environment consists of the UoH HTX Board [12] containing
a Xilinx Virtex-4 FPGA. The board is located in a host PC using the Hyper-
Transport (HT) bus. Resulting from this hardware, DDR memory is clockable
at a maximum of 266 MHz and HT either at 200 MHz or at 400 MHz.
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Fig. 1. Integration of the EAU in the UoH
HTX Board

Fig. 2. Enhanced integration of the EAU
with intermediate buffering

In order to better exploit the HT-provided bus bandwidth, buffer circuitry
can be applied leading to the architecture sketched in Fig. 2, where the buffers
decouple the 200 MHz HT backend from the 100 MHz user logic, which in
return decreases the DDR memory’s frequency to 200 MHz. Such an architecture
is expected to perform better due to operating near full bandwidth usage in
contrast to the former.

4 Implementation

4.1 Multiplier

The architecture is designed in conformance with IEEE-754, which is addressed
as follows: by storing the results of double-precision multiplications in 106-bit
registers, overflows and underflows do not occur. As the input data is sent from
software applications with their own safety checks included, we assume that no
NaN, explicit underflow or infinity is being sent as input data.

When designing and implementing the multiplier, special focus has been put
onto high synthesizable frequency. By splitting the multiplication of the 53 man-
tissa bits into 14 different fully pipelined stages, we achieved a frequency rate of
176 MHz and a low resource foot print when synthesizing. The results for the
employed Xilinx Virtex-4 FX100-11 FF1152 are listed in Table 1.
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Fig. 3. Simplified sketch of a double-precision multiplier implementation

The implementation follows the scheme depicted in Fig. 3: first, the operands
are split into sign, characteristic, and extended 53-bit mantissa in the first gather-
and-split stage where the mantissa is split into k blocks requiring k2 multiplica-
tions. We then execute non-overlapping multiplications in parallel, thus initially
populating the first pipeline register carrying the result. An additional multi-
plication can be executed in parallel, but as it overlaps with the other partial
results, it must be accumulated onto the mantissa pipeline register in the next
stage where the partial product is calculated in parallel. This step repeats for the
remaining partial products, resulting in a total of 6 multiplication stages when
employing hypothetical 19-bit multipliers. In the final step, the last product has
to be accumulated, the sign and new exponent have to be passed.

As the FPGA hardware provides a DSP width of 18 bits with 1 bit used for
the sign, we have to divide the mantissa into four blocks of length 13 and 14 bits,

Table 1. Resource usage of the multiplier after synthesis

Resource Usage Percentage

Slices 1,946 4%
Flip Flops 2,669 3%
4-Input LUTs 2,874 3%
DSP48s 16 10%
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Fig. 4. Simplified sketch of the multiplication
pipeline assuming a DSP width of 19

Fig. 5. Product of two operands
shifted and added to the correct po-
sition of the long accumulator

respectively, resulting in 16 multiplications totally, with the inner steps being
12 multiplication stages, instead of 6 as in the implementation scheme. Note
that the exponent requires one more bit, i.e. 12 bits, now, and the mantissa
requires twice the amount of bits in contrast to the original operand mantissa,
i.e. 2 ∗ 53 bits = 106 bits. In order to report infinity, a minor amount of logic
has been added, which sets all exponent bits to ’1’ to signal infinity. Figure 4
visualizes the pipelining of the multiplication according to Fig. 3 and the former
description.

4.2 Accumulation Unit

The unmodified result of the multiplication, i.e. unshorted and with extended
exponent, is handed to the accumulation unit, which shifts the product, deter-
mines the position where the product is to be added onto the large accumulation
register, and finally adds the shifted product to these positions, as is shown in
Figure 5. This way, no loss of precisions with regard to the input data happens.
The accumulation register is capable of accurately storing the products of both
largest and smallest numbers by value with a total width of 64 ∗ 67 = 4288 bits;
additional space is used to avoid overflows (c.f. [13]).

The accumulation unit was designed as a pipelined unit. Data is accumulated
in several steps and track of the blocks’ values is kept in order to resolve any
occurring carries [13]. The flow of operation within this pipeline involves an
atomic read-modify-write operation. In hardware, this can either be addressed
as one massive pipeline stage limiting the overall pipeline frequency, or a more
fine-grained pipeline where after each add/subtract command an atomic read-
modify-write scheme is executed, stalling the pipeline for the time of execution.
For the sake of reaching a maximum clock rate, we chose the latter approach
leading to a latency of 3 cycles for add/subtract operations.
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Table 2. Resource usage of the ac-
cumulation unit after synthesis

Resource Usage Percentage

Slices 17,094 40%
Flip Flops 5,808 6%
4-Input LUTs 32,481 38%
DSP48s 1 1%

Table 3. Resource usage of multiplication
and accumulation units after synthesis

Resource Usage Percentage

Slices 17,838 42%
Flip Flops 8.449 10%
4-Input LUTs 34,207 40%
DSP48s 16 10%

After accumulation, the pipeline determines the range where valid data is
stored in the accumulator, reads its value and converts it to a double-precision
floating-point value. Due to the two stall cycles, we can read the accumulator
value two cycles after it has been written. The additional approach of assigning
each operation an individual ID allows tracking intermediate results, as will be
explained in more detail in Sect. 4.3. Table 2 shows the resource usage of the
accumulation unit, Table 3 of the combination with a multiplier to one design
without additional control or interface instances.

4.3 Communication Principles and Controller

As already indicated above, the accumulator is not only given mantissa and
exponent, but also an identification number (ID) and the operation itself. The
CLEAR operation resets the internal state and accumulator; the accumulator can
then be used for the next series of exact MAC operations. For each operation, it
is also necessary to indicate whether the command is validin order to separately
control the multipliers and accumulator units.

The second part of the communication occurs from the accumulator to its
data input site, indicating that it is ready for data (rfd). There is a delay of
one cycle between the input of an operation and the rfd=0, which requires to
buffer the subsequent command if indicated as valid operation for automatic
processing after the current operation.

4.4 Data Transfers

To begin with, data of one of the matrices has to be brought onto the HTX
board’s DDR RAM. After successful completion, operation can commence: data
needs to be streamed via DMA from host system memory to the HTX board,
where it is multiplied and accumulated with the data residing in the board-local
memory. Finally, the accumulated result has to be converted to double-precision
floating-point format and brought to the host-system, where it can be processed
further (Figs. 1, 2).

With the proposed design in mind, the central control instance becomes re-
sponsible for controlling DDR RAM operations, especially with regard to initial-
ization and burst transfers, for mode control where mode is one of initialization,
in/out transfer phase, regular operation with read accesses for the operands and
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possibly write accesses for the results, and for future extensions that modify
individual blocks of the accumulation units.

From the client side, it is important that after requesting a medium-grained
operation (inner product, matrix multiplication) the relevant data is sent. This
ideally happens by writing operand data to distinct memory-mapped addresses
of the HTX board while respecting the data order according to Sect. 3.

Recalling the capabilities of the hardware platform and the resulting mode
of operation, reading the accumulated result can be accomplished in one of two
basic ways: explicitly offered read operations in the accumulator that are started
upon read requests on the HyperTransport posted queue, and streamed, uninter-
rupted write-out of the accumulator to main memory. Explicit read operations in
the accumulator pipeline violate the concept of pipelining, making it even more
complicated and potentially decreasing maximum execution speed. The second
approach, i.e. to always compute the accumulator’s value in double-precision
and to uninterruptedly send these values to the system’s main memory, using
the IDs as least-significant parts of the address, looks fine at first sight. While
it does not interfere with the read bandwidth of the EAU on the HTX board, it
however does not allow to send the results of more than 3 EAUs, as each EAU
produces a new result each 3 cycles.

To circumvent the afore-mentioned limitations, we suggest to combine the
two approaches: each EAU converts its accumulation values and returns them
together with the IDs that led to these results. A separate controller cares for
incoming read requests, buffers the read address that contains the accumulation
unit and the ID, and returns the next value of the specified EAU that has the
same ID. This task perfectly fits the controller required for initializing the local
memory. Still, there is the choice between continuing execution while waiting for
the result, or rather stalling the accumulation unit. When choosing the latter,
no problems due to subsequent modifications can occur. While the number of
bits for the ID has already been set to 4 for a sufficient amount of flexibility, the
number of bits for different EAUs could be chosen arbitrarily. According to our
experience with a single-precision implementation [10], we can say that a total of
16 EAUs will be enough, so that 4 bits of the address should suffice for choosing
a specific EAU. This scheme can be enhanced further by having the controller
automatically write back the final results of each completed accumulation.

4.5 Putting It All Together

In Sect. 4.2, we saw that the accumulation unit accepts operands each 3 cy-
cles due to otherwise conflicting accesses. By demultiplexing the products of the
multipliers onto different accumulation units as in Figure 6, we can circumvent
these disadvantages, allowing to compute uninterruptedly. When we even con-
sider that upon each cycle we can obtain a value of the left input matrix A, we
come up with a throughput of 3 exact MAC operations per cycle, which is 300M
exact MAC operations per second (eMACs/sec) when running at a frequency of
100 MHz.
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Table 4. Resource usage of multiplication and accumulation units after mapping pro-
cess. Percentages are given for the Xilinx Virtex-4 FX100.

1 Mult, 1 Accu 2 Mults, 2 Accus
Resource Usage Percentage Usage Percentage

Occupied Slices: 19,973 47% 36,315 86%
Slices containing only related logic: 19,973 100% 36,315 10%
Slices containing unrelated logic: 0 0% 0 0%
Total Number of 4 input LUTs: 34,336 40% 68,892 81%
Number used as logic: 33,701 61,480
Number used as a route-thru: 551 7,248
Number used as Shift registers: 84 184
Number of BUFG/BUFGCTRLs: 1 3% 2 6%
Number used as BUFGs: 1 2
DSP48s: 16 10% 32 20%

Fig. 6. Demultiplexing multiplier output onto accumulation units when multiplying
rows i to i + 2 of matrix A with columns j to j + 2 of Matrix B. The iterator index k
is not shown.

5 Evaluation

5.1 Performance Estimations

We present the final formula for the overall execution time in Table 5. Here,
bw denotes the bandwidth to board memory, f the user frequency. The ex-
ecution time is composed of transfer to memory, streamed computation, and
transfer from memory back to the host system. Note that the transfer to mem-
ory is limited by the HTX bandwidth bwh rather than by the memory
bandwidth bwr.
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Table 5. Overview of the different components involved in maximum bandwidth usage
depending on matrix dimensions n, m, o, throughput tp, and transport bandwidth bw

Transfer to RAM n ∗ o ∗ 8B/bw
Transfer from RAM m ∗ o ∗ 8B/bw
Computation m ∗ n ∗ o/tp

Overall time (m + n) ∗ o ∗ 8B/bw + m ∗ n ∗ o/tp = (2m + m ∗ n + 2n) ∗ o/tp
130 MHz Design (2m + m ∗ n + 2n) ∗ o/260M/s
100 MHz Design (2m + m ∗ n + 2n) ∗ o/400M/s

Table 6. Best-case execution
times of two different architec-
tures for exact arithmetics on
UoH HTX board

Dimensions 130 MHz 100 MHz

1000 3.86 sec 2.51 sec
4000 246 sec 160 sec
8000 3847 sec 2501 sec

Table 7. Comparison between 256-Bits GMP, C-
XSC, and double precision (DP), runtime in clock
ticks

GMP C-XSC DP

Runtime (ticks) 566,480,613 640,445,526 6,403,510
Runtime (µs) 177,089 200,211 2,001
M eMACs/sec 5.921 5.237 523.8101

1 see text.

Table 6 provides numbers for different matrix dimensions m = n = o of
1000, 4000, and 8000, which would result in matrix sizes of 8 MB, 128 MB, and
512 MB, respectively.

Following Tables 5 and 6, we see a preference for the 100 MHz design; in
contrast to the 130 MHz design, however, performance tightly depends on the
streamed data and puts more pressure on the data transport layer of the hard-
ware design.

Due to resource constraints on the chosen FPGA and due to the chose imple-
mentation of the exact accumulation unit, 2 accumulation units and one multi-
plier are the maximum number of resources to deliver maximum throughput of
2 eMACs each 3 cycles, i.e. 88M eMACs/sec for the 130 MHz design (Fig. 1)
and 66M eMACs/sec for the 100 MHz design (Fig. 2), respectively.

5.2 Technology Scaling

As the architecture and current implementation do not look very promising, we
conduct a technology scaling onto the Xilinx Virtex-6 LX240T, which is avail-
able for example on the Xilinx ML605 evaluation board. This FPGA provides
enough space for 6 exact MAC units, so that at least 2 exact MAC operations
can be started per cycle. Furthermore, due to the available increased logic speed,
some pipeline stages of the time-critical read-modify-write scheme may be mer-
gable, resulting in even 3 exact MAC operations, and hence in a maximum
throughput rate of 300M eMACs/sec. Besides, the wider DSP units allow to
reduce the multiplier pipeline length to less than 12 multiplication stages; the
look-up tables with 6 inputs in contrast to 4 inputs might further reduce area
requirements.
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5.3 Comparison

In order to evaluate our architecture, we performed 220 multiply-accumulates
of the value v = 2−20 onto an init value of 220 using our hardware and two
software solutions. For the latter, we employed an implementation based on the
GNU Multiprecision Library (GMP) using a 256 bits wide internal floating-point
representation and one based on C-XSC where a 4288 bits wide fixed-point ac-
cumulator is employed. Individual runtimes were measured on an Intel Pentium
4 3,2 GHz over 128 runs. All programs were compiled with -O2. Subtracting the
initialization value afterwards we obtained the correct result 2−20, which fails
when using regular double-precision floating-point operations.

The measurements can be found in Table 7. We additionally provide the execu-
tion time with regular double-precision, which is about 100 times less compared
to the highly accurate libraries. Our architecture concept is capable of executing
exact multiply-accumulate operations in about the same order of time.

Based on the maximum achievable throughput for HT400, we can derive a
theoretical maximum speedup of 400

5.237 = 76.38 over state-of-the-art software im-
plementations of exact arithmetics. Following Sect. 5.1, limitations of the target
platform still allow a maximum speedup of 88

5.237 = 16.80.

6 Results and Future Work

As of now, our system allows processing two MAC operation each 3 cycles while
running at a frequency of 100 MHz, which leads to a theoretical processing speed
of 66M MAC operations per second. Note that these operations are carried out
in exact arithmetics, avoiding rounding and windowing errors. We showed in
Section 3 how a multitude of accumulation units can help to constantly pro-
cess streamed data and how using the DDR memory can further speed up the
overall performance up to 400 MAC operations per second. A technology scal-
ing showed that this architecture is a viable approach to exploit the available
bandwidth of the HyperTransport bus. For better results, the implementation
of the accumulator unit will be revised, promising a latency of 1 and even less
resource usage.

Our future work consists of integrating the DDR memory and DMA con-
trollers in order to carry out detailed measurements with numerical software
where computation with exact arithmetics enables solving more complex prob-
lems. We also plan to extend our system infrastructure by numerical error
measurements so that functions be directed to their exact arithmetics imple-
mentation automatically, sacrificing speed over robustness and numerical
stability.

Similar to [1], the approach will be extended towards microprogramming ca-
pabilities so that (parts of) algorithms can be completely loaded onto the accel-
erator, thus supporting sparse matrix multiplications. Finally, the architecture is
designed to deliver coarse-grained function acceleration of numerical algorithms
such as the Lanczos algorithm.
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Abstract. With fast development of GPU hardware and software,
using GPUs to accelerate non-graphics CPU applications is becoming
inevitable trend. GPUs are good at performing ALU-intensive computa-
tion and feature high peak performance; however, how to harness GPUs’
powerful computing capacity to accelerate the applications in the field of
scientific computing still remains a big challenge. In this paper, we im-
plement the whole application Mgrid taken from Spec2000 benchmarks
on an AMD GPU and propose several optimization strategies for stencil
computations in the naive GPU code. We first improve thread utiliza-
tion through using vector types and multiple output streams mecha-
nism provided by the Brook+ programming language. By tuning thread
granularity, we try to hit the right balance between locality within each
thread and parallelism among threads. Then, we reorganize the stream
layout by transforming the 3D data stream into the 2D stream in the
block manner. Through stream reorganization, more data locality in the
cache is exploited. Further, we propose branch elimination to convert
control dependence to data dependence, catering to GPUs’ powerful
ALU-intensive processing capability. Finally, we redistribute computa-
tions between CPU and GPU to make more advisable computing re-
sources usage considering different problem sizes. We demonstrate the
effectiveness of our proposed optimization strategies on an AMD Radeon
HD4870 GPU using the Brook+ programming language. Using a double-
precision floating-point implementation, the experimental results show
that the optimized GPU version of Mgrid gains 2.38x speedup compared
to the naive GPU code and obtains as high as 15.06x speedup versus the
CPU implementation run on an Intel Xeon E5405 CPU.

Keywords: Optimization; GPU; Stream; Brook+; Stencil.

1 Introduction

In recent years, GPU has integrated an increasing number of transistors on the
chip, which enables a huge leap in its floating computing capacity. New GPU
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architectures provide easier programmability and increased generality, abstract-
ing away trivial graphics programming details, i.e., Brook+ [1] and CUDA [2].
Therefore, people begin to harness the tremendous processing power of GPUs
for non-graphics applications. Now GPU computation has been widely adopted
in the field of scientific computing, such as biomedicine, computational fluid
dynamics simulation, and molecular dynamics simulation [3].

GPUs were originally developed for graphics processing, i.e., media applica-
tions, which have less data reuse and lay more emphasis on real time. However,
in scientific applications, there can be rich data reuse while the data access pat-
terns may not be as uniform as media applications. There is much space left for
programmers to optimize the GPU codes to exploit more data reuse and hide
long memory access latencies. Therefore, besides choosing a good CPU-to-GPU
application mapping, we should also try to optimize the GPU codes according to
the architecture of the GPU and the mechanisms provided by the programming
language.

In this paper, we have implemented and optimized Mgrid, a multi-grid appli-
cation commonly used to solve partial differential equations (PDEs) taken from
Spec2000, on an AMD GPU platform. At the heart of Mgrid are stencil (nearest-
neighbor) computations in each 27-point 3D cube. Stencil computations feature
abundant parallelism and low computational intensity which offers great oppor-
tunity for optimization in temporal and spatial locality, making them effective
architectural evaluation benchmarks [4]. To optimize the naive GPU code, we
have proposed four optimization strategies:

(a) Improve thread utilization. Using vector types and multiple output streams
provided by the Brook+ programming language, we exploit data reuse within
each thread and parallelism among threads to achieve better thread utilization.

(b) Stream reorganization. We reorganize the 3D data stream into the 2D
stream in the block manner to catch more data locality in the GPU cache. Stencil
computations of Mgrid refer data on three consecutive planes when calculating
a grid point. Through stream reorganization, we exploit the data reuse within
each plane.

(c) Branch elimination. We propose branch elimination to reduce the perfor-
mance loss caused by branch divergences in the Interp kernel. Though changing
the control dependence to data dependence, all of the eight branches in the
kernel are eliminated, thus improving the kernel performance significantly.

(d) CPU-GPU workload distribution. To make full use of the CPU-GPU het-
erogeneous system, we should reasonably distribute the workload between the
two computing resource according to the work nature, problem size and com-
munication overhead.

Note that though our optimizations are developed for Mgrid, they can be ap-
plied to any stencil-like computations, making our optimization approaches gen-
eral for developing GPU applications. In our work, all the experiments are done
under double-precision floating-point implementation. The experimental results
show that the optimized GPU implementation of Mgrid gains 2.38x speedup
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compared to the naive GPU version and obtains as high as 15.06x speedup ver-
sus the CPU implementation run on an Intel Xeon E5405 CPU.

The remainder of this paper is arranged as follows: Section 2 describes the back-
ground information of programming with Brook+ on AMD Radeon HD4870. Sec-
tion 3 illustrates our optimization strategies. Section 4 evaluates the effectiveness
of the strategies. Section 5 discusses related work and the final section states our
conclusions.

2 Background

Using GPUs and general purpose CPUs to construct heterogeneous parallel sys-
tems has attractedmuch interest in the field of highperformance computing (HPC)
[5]. GPUs’ powerful floating-point operation capacity and high performance-per-
watt qualify them as good accelerators to speedup CPU applications for high per-
formance with relatively small system scale and low power consumption. In this
section, we introduce some background information concerning programming on
an AMD GPU platform using Brook+, including the micro architecture of Radeon
HD4870 GPU and the Brook+ stream programming environment.

2.1 Micro Architecture

In this paper, we use an AMD Radeon HD4870 GPU as the accelerator for
the CPU. AMD’s HD4800 series (codename RV770) is the newest GPU in their
stream computing lineup which supports double precision floating point opera-
tions. The RV770 core has 10 SIMD engines, each of which contains 16 thread
processors. Each thread processor consists of five scalar stream cores. So there
are in total 800 cores integrated on a single die. The five cores can execute both
single-precision floating point and integer operations, with one of them being
able to handle transcendental operations, such as sin, cos, and log. Notably, a
thread processor combines four of its stream cores (excluding the transcenden-
tal one) to process double-precision operations. In addition, a branch execution
unit is contained in each thread processor to handle branch executions. Tab. 1
summarizes the HD4870’s specifications.

In the AMD stream computing model, a stream denotes a collection of data
elements of the same type that can be operated on in parallel. A kernel is a
parallel function that operates on each element of an output stream. An in-
stance of kernel execution on a thread processor is called a thread. Threads
are mapped to thread processors for execution and scheduled in wavefronts. A

Table 1. AMD’s HD4870 Specification

Thread Processors 800 Memory Clock Speed 993 MHz
Texture Units 40 Memory Interface 256 bits
Core Clock Speed 750 MHz Memory Bandwidth 115 GB/s
Memory Type GDDR5 Single (Double) Peak 1.2 T (240G) flops
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wavefront is a group of threads executed and scheduled together on a SIMD
engine. The hardware schedules limited resources, such as the number of general
purpose registers (GPRs) used and memory bandwidth, until all threads have
been processed. Multiple threads are interleaved to hide latencies due to memory
accesses and stream core operations. Since SIMD engines run independently of
each other, it is possible for each engine to execute different instructions. More-
over, pipelining is adopted in the GPU hardware to achieve time multiplexing
when performing ALU operations [1].

2.2 Brook+ Stream Programming Environment

AMD has provided a complete software programming stack for programmers
to easily accommodate stream programming. Programmers can write codes at
two levels of abstraction: using Brook+ at a high level and using the compute
abstraction layer (CAL) at a low level. Brook+ is an extension of C that sup-
ports an explicit model of parallelism based on the BrookGPU [6]. It is a high
level programming language that abstracts away architecture details while main-
taining features relevant to modern graphics hardware. CAL is a device driver
library that provides a forward-compatible interface to and directly interacts
with stream processors. Compared with Brook+, CAL reveals a rich opportunity
for optimization given that programmers have the knowledge of the underlying
hardware. However, our implementation is limited to the high level Brook+ pro-
gramming. The Brook+ compiler splits a Brook+ program into CPU code and
GPU code, and compiles the GPU code (kernels) to intermediate language (IL)
code for further GPU-oriented compilation [1].

3 Optimization Strategies

In this section, we describe four optimization strategies and show how they can
be applied to optimize stencil computations in Mgrid. We use the Resid and
Interp kernels to exemplify our methods since among the four main kernels in
Mgrid, Resid consumes 46% of the whole application executing time and Interp
is the only kernel with branches in the naive implementation.

3.1 Improving Thread Utilization

A GPU is more suitable for performing computing-intensive rather than memory-
intensive applications [7]. Since each thread processor can perform parallel op-
erations, there should be enough threads to occupy the parallel stream cores,
thus enabling multiple wavefronts to be formed and scheduled to hide memory
access latencies in the hope of fully exploiting the tremendous computing power
of GPUs.

While thread level parallelism is essential in obtaining high performance,
thread locality, i.e., data reuse that can be exploited within each thread, is
also very important in light of much data reuse in scientific computing. In the
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stencil computations of Mgrid, many intermediate results can be reused. Reusing
these results reduces memory fetches as well as computation. Generally, large
thread granularity can improve data locality and computation intensity, though
entailing the consumption of more GPRs. We will explain the concept of thread
granularity later.

Given limited resources (such as the number of GPRs, memory bandwidth)
and the amount of work (e.g., a specific kernel computation), the number of
threads that can be created is determined by thread granularity. In other words,
the thread granularity is in inverse proportion to the number of threads. This
means tuning thread granularity can balance locality within thread and paral-
lelism among threads [8]. So there should be a balance between thread locality
and thread parallelism through tuning. To achieve the best performance, pro-
grammers should carefully tune the thread granularity to strike the right balance.

In Brook+, the total number of threads is determined by the output stream
size (domain size). Note that the thread granularity here means the number
of grid points a thread calculates. There are two methods to tuning thread
granularity in Brook+:

(a) Using vector types
Brook+ provides built-in short vector types for tuning the code explicitly on

the available short-SIMD machines. Short vectors here are built from the name of
their base type, with the size appended as a suffix, such as float4 and double2.
Using vector types reduces the domain size (the output stream length) by a
factor of the vector size, and consequently increases the thread granularity by
the same factor. Take double2 for example. Using double2 increases the thread
granularity by a factor of two. A thread can now compute two stencil points at a
time, so more data reuse can be exploited through using the intermediate results
within each thread.

Moreover, using vector types can pack up to four scalar fetches into one vector
fetch to form a vector fetch. Vector fetch significantly reduces memory fetches
if a kernel is designed to fetch from consecutive data locations, thus making
more efficient use of the fetch resources. For example, a kernel can issue a float4
fetch in one cycle versus four separate float fetches in four cycles. In the stencil
computations of Resid where locations of the data to be fetched are usually con-
secutive, vector fetches naturally raise arithmetic intensity and improve memory
performance.

(b) Multiple output streams
Brook+ supports up to eight simultaneous output streams per kernel using the

CAL backend [1]. Using multiple output streams, a thread can complete multi-
folds of computations with respect to using a single output stream, which also
increases the thread granularity. For example, using two output streams doubles
the thread granularity. If we combine vector types and multiple output streams
together, even larger thread granularity can be attained. For instance, using
double2 and four output streams together, we increase the thread granularity by
a factor of eight (24=8).
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However, using vector types needs modification of indices in the kernel body,
and adopting multiple output streams requires splitting the input streams. Also,
both methods increase the requirement for GPRs and consequently reduce the
number of active threads that can be created. Whether these kinds of overheads
incurred can be offset by the performance gain of tuning thread granularity is
determined by kernel size and specific kernel characteristics. As for what thread
granularity is best, we should determine this through experiments.

3.2 Stream Reorganization

Although memory access with texture unit (memory) supports 1D, 2D and 3D
addressing modes, the texture cache is optimized for 2D locality. In order to
exploit more data locality in the cache, the threads in the same wavefront should
read texture addresses that are close along two dimensions. This process may
need transformation on data layout or data structure.

Taking the implementation of the Resid kernel on the GPU for example, the
runtime library would automatically linearly expand 3D data streams into 2D
data streams. This transformation may impact the cache performance, because
the computation needs to access adjacent data in three dimensions. To get better
performance, the 3D stream should be transformed into a 2D stream in the block
manner. The process is illustrated in Fig. 1(a). Compared with the layout in the
linearly expanding manner, the data adjacent in the logical space is kept adjacent
in the 2D stream. The Resid kernel refers data on three consecutive planes when
performing stencil computations for a grid point. After stream reorganization,
we exploit the cache data locality within each plane.
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Fig. 1. (a) Transforming the 3D stream into 2D stream in the block manner [9] (b)
V-cycle pattern of Mgrid

3.3 Branch Elimination

GPUs adopt SIMD execution mode, which incurs large flow control overhead.Take
branching for example. AMD GPUs combine all the necessary paths as a wave-
front. However, even if only one thread within a wavefront diverges, the rest of the
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threads in the wavefront have to execute the branch, which means all the paths are
executed serially. This situation degrades the kernel performance greatly. There-
fore branch divergences in kernels should be eliminated as much as possible.

We convert control dependence to data dependence, which caters to GPUs
powerful data processing capability [10]. Our branch elimination is a two-step
strategy: a) Branch fusion. Our branch fusion here is only suitable for the situ-
ation where the left expressions of if and else are the same. If not, there is no
benefit using branch fusion since the expressions in both branches have to be
executed. b) Expression simplification. The second step is used to simplify ex-
pressions gotten from branch fusion in the hope of eliminating all the redundant
computations. With branch elimination, we can eliminate all the eight branches
in the Interp kernel.

3.4 CPU-GPU Task Distribution

GPUs are good at performing ALU-intensive tasks, which qualifies them as good
accelerators for CPUs. The philosophy of using GPUs to accelerate applications
is to manipulate massive threads to exploit parallelism among threads and hide
memory access latencies. So when the problem size is very small, there may be
not enough threads to occupy stream processing cores to fully exploit parallelism.
Take the problem size 163 for example. Assuming that there are enough GPRs,
only 4K threads are needed to process the computation under this problem size,
which is much less than the maximum 10K threads that the RV770 core can
provide, not to mention the smaller problem sizes.

When the speedup obtained by the GPU is less than one, we should consider
turning the task back to run on the CPU. Nevertheless, porting computing tasks
to the CPU entails inevitable overhead such as data communication latency. This
indicates the performance gain from distributing the task among the CPU and
the GPU must counteract this overhead for the purpose of improving the overall
system performance. Distributing tasks between the CPU and the GPU is sure
to outperform the CPU- or GPU-single computing device execution.

4 Experimental Evaluation

To examine the benefits of our optimization strategies, we implemented the
Mgrid application using Brook+ on an AMD Radeon HD4870 GPU. All the
results are compared to the single-thread CPU version, which is measured on an
Intel Xeon E5405 CPU running at 2GHz with 256KB L1 cache and 12MB L2
cache. We used the Intel ifort compiler as the CPU compiler with the optimiza-
tion option -O3.

Mgrid is a 3D multigrid application in the SPECfp/NAS benchmark. Notably,
it is the only application found in both the SPEC and NAS benchmark suites,
and among those few SPEC 2000 applications surviving through SPEC 95 and
SPEC 98. The main process of Mgird is of a V-cycle pattern performed at multi-
level grids in multi-pass (multiple iterations), as illustrated in Fig. 1(b). Mgrid
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spends 85% of its execution time performing stencil computations on 3D arrays,
which go through all of the four primary kernels, including Resid, Psinv, Rprj3,
and Interp. The Resid kernel computes the residual. The Psinv kernel computes
the approximate inverse. The Rprj3 kernel computes the projection from fine
grid to coarse grid. The Interp kernel computes the interpolation from coarse
grid to fine grid.

4.1 Effects of Improving Thread Utilization

Here we examine the effectiveness of improving thread utilization. Applying the
strategies proposed in Subsection 3.1, we used four thread granularities: double,
double2, double2 plus two output streams, and double2 plus four output streams.
If a thread using double can compute N points, then a thread using double2,
double2 plus two output streams and double2 plus four output streams can
compute 2N, 4N, and 8N points, respectively. For conveniences sake, we used N,
2N, 4N and 8N to denote different thread granularities.

Fig. 2(a) shows the speedup of the Resid kernel over the CPU implementation
under different problem sizes using the four thread granularities. Note that since
our optimization strategies target stencil computations in Mgrid, when evaluat-
ing a single kernel, we do not count in the time consumed by loading the kernels
to the GPU and by the periodical communication subroutine Comm3 in each
kernel. Nevertheless, in our overall evaluation for Mgrid, all the time will be
counted.

As shown in Fig. 2(a), the thread granularity 8N demonstrates the best perfor-
mance under problem size 2563 and 1283, while 4N yields the best performance
under the other two problem sizes. Problem sizes smaller than 323 are not shown
in the figure since their speedups are less than one. We can see that under large
problem sizes 2563 and 1283, the speedup for each kernel scales up with the
granularity. This is because under large problem size, large thread granularity
provides more chances to exploit intermediate result reuse within threads, yet
there are enough threads to exploit parallelism among threads. However, under
small problem size, large thread granularity requires more GPRs in each thread,
thus impacting the number of threads and resulting in limited parallelism among
threads. Under problem size 643 and 323, the speedups first scale with the gran-
ularity, reach a maximum in granularity 4N, and then decrease in granularity
8N, see Fig. 2(a). The performance gain through hitting more data reuse within
each thread using large granularity (8N) is offset by the performance loss caused
by lacking enough threads to fully occupy parallel stream computing cores.

Fig. 2(b) shows the speedup of each kernel and the whole application Mgrid
under the largest problem size 2563. We can see that the speedups of the kernel
Resid and Psinv scale up with the thread granularity monotonously. This is
because large thread granularity is favorable for intermediate data reuse within
each thread, while there are abundant threads for thread level parallelism.

Interp computes the coarse grid through accessing the finer grid, so it tends to
be an ALU-intensive kernel. The speedup of the Interp kernel increases rapidly
with the thread granularity and reaches a maximum in thread granularity 4N, see
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Fig. 2. (a) Performance of the kernel Resid under different problem sizes using different
thread granularities (b) Speedup of each kernel and Mgrid under the largest problem
size 2563

Fig. 2(b). However, the speedup descends when the thread granularity reaches
8N. This is mainly due to large thread granularity impacting the number of
threads being created, even though Interp is an ALU-intensive kernel.

Rprj3 computes the finer grid through accessing the coarse grid. There is
little data reuse between two grid points, so it is more like a memory intensive
kernel. For memory intensive kernels, the way to speedup the execution is to
schedule enough threads to hide memory fetch latencies. Therefore, the kernel
performance degrades with increasing thread granularity, even though larger
thread granularity contributes to more data reuse within each thread to some
extend, as we can see the speedup trend of the Rprj3 kernel in Fig. 2(b).

The overall speedup of Mgrid peaks in the thread granularity 4N, as shown
in Fig. 2(b), which means that when using this thread granularity, we strike
the right balance between thread locality and thread parallelism. The largest
speedup attained through tuning the thread granularity was 9.28x under the
largest problem size.

4.2 Effects of Stream Reorganization

Applying the stream reorganization strategy described in Subsection 3.2, we
now examine its effectiveness using the Resid kernel. As shown in Fig. 3(a), the
speedups increase with the thread granularity under all the problem sizes except
the problem size 323. Under all the problem sizes, the speedups in the 2D stream
organization are higher than that in the 3D stream organization. This demon-
strates that the stream reorganization strategy is very effective. Note that in
large thread granularity, the speedups differs sharply between the two data lay-
outs. This is because the 2D version has better cache locality and reduced mem-
ory fetch ratio. Therefore more active threads can be created while maintaining
the performance gain through increasing the thread granularity. Moreover, when
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Fig. 3. (a) Speedup of the Resid kernel in 2D data organization compared to 3D data
organization (b) Overall performance improvement

the problem size becomes larger, the cache pressure also gets larger. Then the
advantage of 2D data layout to 3D data layout will become more evident since
the 2D stream organization enhances cache locality.

4.3 Effects of Branch Elimination

The Interp kernel computes the interpolation from coarse grid to fine grid. Eight
grid points forming a cube in the coarse grid correspond to one grid point in
the fine grid, and every point is calculated according to the parity of its x, y
and z coordinates. So there are eight conditional branches in the kernel. Using
the branch elimination strategy proposed in Subsection 3.3, we eliminate all its
eight branches. Our experiment results show that the improved version obtains
a speedup of 5.95x over the CPU version and approximately 2.0x speedup over
the naive GPU version. This demonstrates that the branch elimination strategy
is very effective.

4.4 Effects of CPU-GPU Work Distribution

When using the work distribution strategy, we should take a holistic view of the
entire system, and reasonably distribute work among the CPU and GPU. In our
experiment, we found that the problem size 323 is the right partition point, and
we assigned the work under the problem size 323 back to the CPU. As illustrated
in Fig. 1(b), the computations of large problem sizes (larger than 323 ) above
the dotted line are assigned to the GPU, while the others of small problem size
below the dotted line are assigned back to the CPU.

Finally, we applied all the four optimization strategies to the naive GPU im-
plementation. As shown in Fig. 3(b), the final implementation gained a speedup
of 15.06x over the CPU version and 2.38x over the naive GPU version.



244 F. Xudong et al.

5 Related Work

With the popular adoption of GPUs in scientific computing, much research has
recently been performed in optimizing GPU applications using general program-
ming languages such as Brook+ and CUDA.

Ryoo et al. proposed optimization principles for efficient mapping of compu-
tation to graphics hardware [11]. Their main concern was using massive multi-
threading to exploit the rich stream core resource and hide memory fetch latency.
Jang et al. presented an optimization methodology that utilizes architectural in-
formation to accelerate programs on AMD GPUs [12]. They exploited optimiza-
tions by defining optimization spaces. Their work demonstrated many AMD
GPU details. Wang et al. presented GPU implementation of Mgrid using CUDA
in the single precision floating point version [13]. They exploited data locality
in 3-level memory hierarchies and tuned thread granularity thus reducing the
pressure on the off-chip memory bandwidth. Due to architecture deviation, their
optimization strategies can not directly applied using Brook+ on AMD GPUs.

In our work, we choose Mgrid since its stencil computations provide rich
opportunity for exploiting on-chip parallelism and hiding memory accessing la-
tencies. Li et al. proposed a compiler framework for automatic tiling of iterative
stencil loops to improve the cache reuse [14]. Krishnamoorthy et al. developed
an approach for automatic parallelization of stencil codes, explicitly addressing
the issue of load-balanced execution of tiles caused by loop skewing in the time
dimension [4]. They focused on improving cache locality of the CPU.

6 Conclusions and Future Work

In this paper, we implemented and optimized a real benchmark application Mgrid
on AMD Radeon HD4870 GPU, and achieved very good experimental results.
Though our implementation and optimizations are based on Mgrid, the optimiza-
tion strategies can be use to improve any stencil computations. In the future, we
would like to determine thread granularity automatically to simplify the appli-
cation optimization on the GPU; and we would also consider exploring the GPU
application performance at the intermediate language (IL) level. To fully ex-
ploit the CPU and GPU heterogeneous platform, we would try to automatically
distribute tasks between the two computing resources.
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