
1

Software Acceleration in Hybrid Systems

Xiaoqiao (XQ) Meng
IBM T.J. Watson Research Center

May 4, 2011

2

Hybrid Systems
• A distributed system consisting of heterogeneous

computing architectures
• E.g., X86, PowerPC, ARM, GPU, FPGA

• In a broader sense, a hybrid system also includes
heterogeneous storage, I/O and communication devices

• Advantages
– Complementary strengths and weakness
– Cost-effective

• Mixed low-end and high-end computing platforms to be elastic. E.g.,
the TianHe supercomputer uses Intel Xeon + AMD GPU hybrid
system to achieve high floating point performance in economical
manner

• Use cases
– General-purposed computing systems
– Fit-for-purpose appliance

3

Example: Zing platform from aZul
• Zing: Elastic Java runtime platform
• The Zing Java Platform consists of 4 main components: a 100% Java-

compatible JVM which installs and launches like any other commercial
JDK/JVM; a highly optimized runtime platform (i.e. kernel) packaged as an
easy-to-install virtual application;an integrated,application-aware resource
management and process controller and a true, zero-overhead, always-on

production-time diagnostic and tuning tool integrated into the Zing JVM and
appliance

4

Leveraging heterogeneity
• Essence of software design in hybrid systems: it is possible to

leverage the heterogeneity to accelerate software performance
– Scenario 1: migrate computing-intensive work units from CPUs with

expensive MIPS to CPUs with cheap MIPS
– Scenario 2: Place multi-thread work unit on CPUs with good SMT

supports and multi-core

5

Challenges
• How to detect acceleration potential?

• What software technology to realize the
potential?

6
6

Affinity based Workload Distribution

• Goal: In hybrid systems, distribute workload in run-time by leveraging affinity
– Hybrid system: A computing system that combines general and special purpose

machines
– Affinity: A work unit more efficiently processed on one platform than the other
– Analytically determine workload distribution that optimizes performance

• Technical challenges
– Identify appropriate application/system metrics to characterize workload
– Workload characteristics change over time
– Recognize the affinity of workload to platforms during runtime
– Conflict between affinity and load balancing

Z

Work unit 1

Power

Work unit 2

X86

Work unit 3FPGA SAN

Workload Distribution Analyzer

Application and system monitoring

GPU

7

Example from Netezza

8

 Detect re-distributable work unit
– For Java workload, a localizable JNI call is a re-distributable work unit

 Use domain knowledge and machine learning techniques to determine
affinity of work units
– Domain knowledge

• E.g., in general Power has better Decimal Floating-point support than Z. So a Math
module has better affinity on Power than on Z

– Machine learning techniques
• Affinity clustering: work units referencing similar data are clustered together to be

executed on the same hardware
• Supervised learning: by learning from work units affinity to Power, infer whether other

work units have affinity to Power
• Una-May’s ML approach might be a very good fit

 Determine workload re-distributing strategy to optimize performance
– Principle of data locality

• E.g., if a work unit has much input data on Z, it should remain on Z instead of
migrating to Power

– Tradeoff between locality and overall load balancing
• Respect data locality while maintaining load balancing across hybrid systems

Workload Distribution Analyzer

9

99

Existing simple practice for affinity based
workload distribution

• Workloads that benefit from being on z
– Workload that access significant amount of z data

• If they are running on Power or x86, they can be moved to z
• Z data can be provided to apps in a much more efficient manner

– Workloads that require strong single threaded performance (z has the fastest
threads in the industry)

– Workloads that require strong security and unique quality of service
• Workloads that benefit from being on Power7/massive multi-

threaded platforms
– Long running applications with little or minimal data requirements
– Multiple parallel threads that benefit from SMT on Power
– Threads that require significant amount of main memory
– Threads that require memory bandwidth
– Analytics algorithms that are that are computation intensive (e.g., floating point

operations)

10

Building a hybrid system with diversified
benchmarks

• Design and build a hybrid system testbed
– Include major computing architectures

• Extend from computation-intensive, HPC types
of benchmark to a wider range of benchmarks,
including:
– Web server
– Java client/server (various Java middleware)
– Mail server
– Network file systems
– Etc.

• Initially, we may focus on multi-tier benchmark
and study performance acceleration within one-
tier

11

Technical challenges
• Automatically inferring dependency graph

– Derive input/output data flow
– Infer dependency among work units

• Online learning efficiency for an independent
work units
– Quantify affinity/stickness. Consider security as extra

constraints
• Combining dependency graph and efficiency

learning to infer acceleration ratio
• Lightweight, cross-platform measurement tools
• Work with legacy applications without much

code change

12

Websphere WLM

