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Context: Barrelfish Multikernel operating system

I Developed at ETHZ and Microsoft Research
I Scalable research OS on heterogeneous multicore hardware

I Operating system principles and structure
I Programming models and language runtime systems

I Other scalable OS approaches are similar
I Tessellation, Corey, ROS, fos, . . .
I Ideas in this talk more widely applicable
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Today’s talk topic

OS Scheduler architecture for today’s
(and tomorrow’s) multicore machines

I General-purpose setting:
I Dynamic workload mix
I Multiple parallel apps
I Interactive parallel apps
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Why this is a problem
A simple example

I Run 2 OpenMP applications concurrently
I On 16-core AMD Shanghai system
I Intel OpenMP library
I Linux OS
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Why this is a problem
Example: 2x OpenMP on 16-core Linux

I One app is CPU-Bound:
#pragma omp parallel
for(;;) iterations[omp_get_thread_num()]++;

I Other is synchronization intensive (eg. BARRIER):
#pragma omp parallel
for(;;) {
#pragma omp barrier
iterations[omp_get_thread_num()]++;

}
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Why this is a problem
Example: 2x OpenMP on 16-core Linux

I Run for x in [2..16]:
I OMP_NUM_THREADS=x ./BARRIER &
I OMP_NUM_THREADS=8 ./cpu_bound &
I sleep 20
I killall BARRIER cpu_bound

I Plot average iterations/thread/s over 20s
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Why this is a problem
Example: 2x OpenMP on 16-core Linux
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Why this is a problem
Example: 2x OpenMP on 16-core Linux
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Why this is a problem
Example: 2x OpenMP on 16-core Linux

I Gang scheduling or smart core allocation would help

I Gang scheduling:
I OS unaware of apps’ requirements
I The run-time system could’ve known

I Eg. via annotations or compiler
I Smart core allocation:

I OS knows general system state
I Run-time system chooses number of threads

I Information and mechanisms in the wrong place
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Why this is a problem
Example: 2x OpenMP on 16-core Linux
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Why this is a problem
16-core AMD Shanghai system
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Why this is a problem
Example: 2x OpenMP on 16-core Linux
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Why this is a problem
System diversity
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Online adaptation

I Online adaptation remains viable
I Easier with contemporary runtime systems

I OpenMP, Grand Central Dispatch, ConcRT, MPI, . . .
I Synchronization patterns are more explicit

I But needs information at right places
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The end-to-end approach

I The system stack:
Component Related work
Hardware Heterogeneous, . . .
OS scheduler CAMP, HASS, . . .
Runtime systems OpenMP, MPI, ConcRT, McRT, . . .
Compilers Auto-parallel., . . .
Programming paradigms MapReduce, ICC, . . .
Applications annotations, . . .

I Involve all components, top to bottom
I Need to cut through classical OS abstractions
I Here we focus on OS / runtime system integration
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Design Principles
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Design principles
1. Time-multiplexing cores is still needed

I Resource abundance 6= scheduler freedom

I Asymmetric multi-core architectures
I Contention for “big” cores

I Provide real-time QoS to interactive apps, not wasting cores
I Avoid power wasted through over-provisioning
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Design principles
2. Schedule at multiple timescales

I Interactive workloads are now parallel
I Requirements might change abruptly
I Eg. parallel web browser

I Much shorter, interactive time scales
I Thus need small overhead when scheduling

I Synchronized scheduling on every time-slice won’t scale

HotPar’10 Systems Group | Department of Computer Science | ETH Zürich 17



Implementation in Barrelfish

I Combination of techniques at different time granularities
I Long-term placement of apps on cores
I Medium-term resource allocation
I Short-term per-core scheduling

I Phase-locked gang scheduling
I Gang scheduling over interactive timescales
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Progress only in
small time
windows

Phase-locked gang scheduling (actual trace):
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

Synchronize core-local clocks
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

Agree on future gang start
time
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

-

...and gang period
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Phase-locked gang scheduling

I Decouple schedule synchronization from dispatch

Best-effort (actual trace):

Phase-locked gang scheduling (actual trace):

-

Resync in future when necessary
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Design principles
3. Reason online about the hardware

I We employ a system knowledge base
I Contains rich representation of the hardware
I Queries in subset of first-order logic
I Logical unification aids dealing with diversity

I Both OS and apps use it
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Design principles
4. Reason online about each application

I OS should exploit knowledge about apps for efficiency
I Eg. gang schedule threads in an OpenMP team
I But no sense in gang scheduling unrelated threads

I A single app might go through different phases
I Optimal allocation of resources changes over time

Implementation:
I Apps submit scheduling manifests to planner

I Contain predicted long-term resource requirements
I Expressed as constrained cost-functions
I May make use of any information in the SKB
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Design principles
5. Applications and OS must communicate

I Implementing the end-to-end principle
I Resource allocation may be renegotiated during runtime

Implementation:
I Hardware threads run user-level dispatchers

I Cf. Psyche, inheritance scheduling
I Related dispatchers are grouped into dispatcher groups

I Derived from RTIDs of McRT
I Used as handles when renegotiating

I Scheduler activations [Anderson 1992] to inform app
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Implementation in the Barrelfish OS

Disp Disp DispDisp
D1

Disp Disp
D2
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Open questions

I What are appropriate mechanisms and timescales for
inter-core phase synchronization?

I How can programmers provide useful concurrency
information to the runtime?

I How efficiently can runtime specify requirements to OS?
I Hidden cost (if any) of decoupling scheduling timescales?
I Tradeoffs between centralized and distributed planners?
I Appropriate level of expressivity for the SKB?
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