
IBM OCR project

© 2003 IBM Corporation

Workload Optimization on
Hybrid Architectures

IBM T.J. Watson Research Center
May 4, 2011

Chiron & Achilles

IBM Research

© 2010 IBM Corporation2

Goal

 Parallelism with hundreds and thousands of threads
– Hardware is ready

• Multi-core processor
• IBM “POWER7 is designed for multi-socket systems that scale up to 32

sockets, which means that a full 32-socket system of 8-core parts would
support 1024 threads.”

– Software stack that is able to exploit/adapt to the parallelism
provided by the hardware

IBM Research

© 2010 IBM Corporation3

Our practice

 Our experience: locking/resource sharing has huge performance impact on
hybrid systems/accelerators
– Focus on scalability/performance

 Identify/configure the shared resources
– Hardware

• Power7: L3 cache shared by sockets
– Software

• DB2 connections, JVM GC and JIT threads, WAS servant regions, thread pools
 Identify/analyze performance bottleneck

– Tooling
• Oprofile: profiling the whole system running on Linux
• IBM WAIT Performance Tool: profiling JVM
• JLM (Java Lock Monitor): profiling JVM lock access
• Self developed LWT: profiling JVM JNI

– Apply general practice of locking/data sharing

4

Application

Application
Server

Java Virtual
Machine

Database &
Operating
System

Hardware
Architecture

DayTrader
SOABench

ILOG JRules
DayTrader/PDF

SPECJBB

IBM/J9

Linux

8 and 16-core Power7
& SMT levels (0,2,4)

WebSphere
Application

Server
Run
On

Locks on
• Array lists (jfree chart, ILOG JRules)
• Date and calendar entry manipulations
• System.properties

• Synchronization on primitive data structures (hash
tables, vector …)

• Synchronization deep in the JVM subsystems (GC, JIT)
• Lock effect visible when # of threads > 10

Study of scalability & lock contention on multicore/SMT sys

• OS -- JVM interaction: scheduling policy in Linux & JVM
setting; e.g. kernel yield and JVM uses 3-tier locking

• OS – if not completely core/SMT aware and resulting
issues in load-balancing

Multi-socket power systems: significant performance impact
•if JVM has threads on more than one socket
•If memory is allocated across banks

Experimental platforms Findings

Locking: no issues yet found
Scalability: many tuning parameters

System stackDayTrader
SOABench

ILOG JRules
DayTrader/PDF

SPECJBB

5

D
ay

Tr
ad

er
/P

D
F

** Improvement to concurrency of middleware will positively benefit most applications
** Concurrent programming: development & verification tooling is important

Exemplary class lock contention in JVM

6

Exemplary OS and core/SMT interaction
Application: DayTrade/PDF

• Low # of worker threads: SMT-off out-performs SMT-on due to unbalance thread assignments
• High # of worker threads: SMT-on out-performs SMT-off, as supposed to
• Taskset binding provides predicatable worker to thread assignment

** core/SMT aware workload management is important & possible
** IBM owns hardware architecture and many OS’s for easy cooperation between layers

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32 64 128
Number of worker threads

T
h
ro

u
h
g
p
u
t

(#

o
f

p
d
fs

/
s
)

Orig -- SMT OFF

Orig -- SMT ON

LockSplit -- SMT OFF

LockSplit -- SMT ON

LockSplit -- SMT ON + Taskset

IBM Research

© 2010 IBM Corporation7

Goal

 Parallelism with hundreds and thousands of threads
– Hardware is ready

• Multi-core processor
• IBM “POWER7 is designed for multi-socket systems that scale up to 32

sockets, which means that a full 32-socket system of 8-core parts would
support 1024 threads.”

– Software that is able to exploit/adapt to the parallelism provided by
the hardware

IBM Research

© 2010 IBM Corporation8

Challenges of high parallelism
 Complex commercial workload

– Java workload
– Non-intrusive to existing application

• No/little modification of application level code, No need for annotation
– Methodology/tools to identify parallelism of a workload

• Identify parallelism bottleneck
• Identify peak parallelism
• Identify parallelism potential

 Hybrid execution environment
– Loosely-coupled, hybrid execution components (multi-tier)

• Web Server, Application Server, DB server…,
• Each tier can be a hybrid

– Configurable hardware/execution environment
– Methodology/tools to identify parallelism of an environment

 Combination/match of commercial workload and execution
environment
– Identify which workload is best for which environment

IBM Research

© 2010 IBM Corporation9

backup

IBM Research

© 2010 IBM Corporation10

Notes
 (Enterprise) Commercial workload

– Java workload
– Un-intrusive (no modification of application, no specific language)

 Heterogeneous environment
– Identify parallelism of a workload
– Identify parallelism of an environment
– Match between workload and environment

 Possible project
 How to avoid the lock delay at first place?

– Deterministic lock?
• Sequential access to the resource without performance dropping
• Maximum of threads # that it will work

 Relatively isolate component

IBM Research

© 2010 IBM Corporation11

 WAIT report before

 WAIT report after

IBM Research

© 2010 IBM Corporation12

OCR: Chiron

 Scope of the research
(2) Best practice for software development to exploit hybrid systems:

• IBM lead : Grace Liu
• Current experience: locking/data sharing has huge performance impact on hybrid

systems / accelerators
• New deterministic lock paradigm for parallel/threaded programs

– Identify systematic lock usage in middleware and utility software
– Establish the usage of the deterministic locking mechanisms on hybrid systems
– Perform performance study with new locking mechanism for selected open source

benchmark on hybrid systems
– Study productivity improvement in debugging and test of the new lock mechanisms

• Data-sharing
– Data-sharing in general is protected by locks
– Data-race-free enabled by deterministic locks

MIT related project: Kendo
• Prof. Saman Amarasinghe & student
• Working framework for deterministic multi-threading on different hardware and

Linux that can be used to identify locking problem
• Strong or weak deterministic interleaving access to shared data
• Data-race-free program executions

IBM Research

© 2010 IBM Corporation13

General Practice of Lock
 Amdahl’s law

– The speedup of a program using multiple processors in parallel computing is limited by the time
needed for the sequential fraction of the program.

 Sharing nothing
– Identify false sharing
– Duplicate resource

• Large on-chip cache to remove bus contention on SMP
 Differentiate read/write locks
 Partial Sharing

– Db, table, rows locking
– Class lock versus object lock in java

 Minimize synchronized code
 Limit # of threads

– Too many threads create higher contention and eat up cache and memory space
 Mutli-thread programming is difficult and error-prone  we are more concerned of

performance issue

