‘ IBM OCR project

Workload Optimization on
Hybrid Architectures

IBM T.J. Watson Research Center
May 4, 2011

© 2003 IBM Corporation

IBM Research

Goal

= Parallelism with hundreds and thousands of threads

— Hardware is ready

+ Multi-core processor

- IBM “POWERY7 is designed for multi-socket systems that scale up to 32
sockets, which means that a full 32-socket system of 8-core parts would

support 1024 threads.”

— Software stack that is able to exploit/adapt to the parallelism
provided by the hardware

2 © 2010 IBM Corporation

IBM Research

Our practice

= Our experience: locking/resource sharing has huge performance impact on
hybrid systems/accelerators

— Focus on scalability/performance

= ldentify/configure the shared resources

— Hardware
- Power7: L3 cache shared by sockets
— Software
- DB2 connections, JVM GC and JIT threads, WAS servant regions, thread pools

= ldentify/analyze performance bottleneck

— Tooling

+ Oprofile: profiling the whole system running on Linux
- IBM WAIT Performance Tool: profiling JVM

« JLM (Java Lock Monitor): profiling JVM lock access
« Self developed LWT: profiling JVM JNI

— Apply general practice of locking/data sharing

3 © 2010 IBM Corporation

Study of scalability & lock contention on multicore/SMT sys

System stack

DayJlrader
i Locks on
”: g Applicati * Array lists (jfree chart, ILOG JRules)
Da -gr fj ppiication « Date and calendar entry manipulations
b y? Eér ﬂ%% * System.properties
WebSphere L SR
L Application Locking: no issues yet found
Run [Application pSperver Scalability: many tuning parameters
On Server
_ « Synchronization on primitive data structures (hash
IBM/J9 Java Virtual tables, vector ...)
Machine * Synchronization deep in the JVM subsystems (GC, JIT)
* Lock effect visible when # of threads > 10
Database & . O?t'-- JVM inkterac;[io.n:I jChedd\lJJ\"/rll/? policyé i? Li?uxkf& JVM
L » Linux : setting; e.g. kernel yield an uses 3-tier locking
Operatlng * OS - if not completely core/SMT aware and resulting
System issues in load-balancing
Multi-socket power systems: significant performance impact
8 and 16-core Power7 Hardware «if JVM has threads on more than one socket
& SMT levels (0,2,4) Architecture -If memory is allocated across banks

Experimental platforms Findings

Exemplary class lock contention in JVM

public class ClassLlockd{ public clasz ClassLockd
Frivats static int obji; Priwvate s=tatic int obkja;
pFrivats static int objB; Private static int objBE;

private static class LockA{)

AF class lock of Lockd

Private static LockA lckd = new Lockad);
private static class LockB{}

Ff class lock of LockB

private static LockBE 1lckB = new LockB();

public static synchronized int operated ()4 public static int operatsA(){
synchronized{lckal{
Ffde zomsthing with obhji ffde zomsthing with obji
F
F ¥
public static synchronized int operateB () q public static int operataBi)i{
synchronized({lckB)o{
ffde somsthing with objB Ffde somsthing with obiB
F
F F
1 L
Figure 3. Example class ClassLock with a class lock Figure 4. Splitting locks in ClassLock
w 8 cores, 064 worker threads | Lock Total # Block # | %Block # | %Hold Time
E Betore: SMT ON lock || 29,115,039 | 13,784,946 47 53
E SMT OFF lock || 17,678,152 527,467 3 19
9 After: SMT ON lckA 6,177,240 1,236,425 20 11
L IckB 45,465 626 1 0
Q SMT OFF IckA 3,687,261 66,525 2 6
IckB 40,465 333 1 0

** Improvement to concurrency of middleware will positively benefit most applicatiogs
** Concurrent programming: development & verification tooling is important

L 160

&L

2 140

© 120

& 100

5

3 80

2

S 60

o

< 40
20
0

Exemplary OS and core/SMT interaction
Application: DayTrade/PDF

= ¢ =Orig -- SMT OFF
- A -Orig -- SMT ON B &————®.
—&— LockSplit -- SMT OFF
—®— LockSplit -- SMT ON
. Y A
LockSplit -- SMT ON + Tasks v hS
v “ - "- L R = -
""‘ Rl A-"'-_A
- .‘ ----- ‘
L3
1 2 32 64 128

4Numbe8r of w106rker t

» Low # of worker threads: SMT-off out-performs SMT-on due to unbalance thread assignments
 High # of worker threads: SMT-on out-performs SMT-off, as supposed to
 Taskset binding provides predicatable worker to thread assignment

** core/SMT aware workload management is important & possible 6
** IBM owns hardware architecture and many OS’s for easy cooperation between layers

IBM Research

Goal

= Parallelism with hundreds and thousands of threads

— Hardware is ready

+ Multi-core processor

- IBM “POWERY7 is designed for multi-socket systems that scale up to 32
sockets, which means that a full 32-socket system of 8-core parts would

support 1024 threads.”

— Software that is able to exploit/adapt to the parallelism provided by
the hardware

7 © 2010 IBM Corporation

IBM Research

Challenges of high parallelism

= Complex commercial workload
— Java workload

— Non-intrusive to existing application
+ Nol/little modification of application level code, No need for annotation
— Methodology/tools to identify parallelism of a workload

+ |dentify parallelism bottleneck
- |ldentify peak parallelism
+ |dentify parallelism potential

= Hybrid execution environment

— Loosely-coupled, hybrid execution components (multi-tier)

- Web Server, Application Server, DB server...,
« Each tier can be a hybrid

— Configurable hardware/execution environment
— Methodology/tools to identify parallelism of an environment

= Combination/match of commercial workload and execution
environment

— ldentify which workload is best for which environment
8 © 2010 IBM Corporation

IBM Research

backup

9 © 2010 IBM Corporation

Notes

(Enterprise) Commercial workload
Java workload
Un-intrusive (no modification of application, no specific language)
Heterogeneous environment
|dentify parallelism of a workload
|dentify parallelism of an environment
Match between workload and environment
Possible project
How to avoid the lock delay at first place?

Deterministic lock?

Sequential access to the resource without performance dropping
Maximum of threads # that it will work

Relatively isolate component

IBM Research

= WAIT report before
= WAIT report after

1 © 2010 IBM Corporation

IBM Research
OCR: Chiron

= Scope of the research
(2) Best practice for software development to exploit hybrid systems:

* IBM lead : Grace Liu

« Current experience: locking/data sharing has huge performance impact on hybrid
systems / accelerators

- New deterministic lock paradigm for parallel/threaded programs
— ldentify systematic lock usage in middleware and utility software
— Establish the usage of the deterministic locking mechanisms on hybrid systems

— Perform performance study with new locking mechanism for selected open source
benchmark on hybrid systems

— Study productivity improvement in debugging and test of the new lock mechanisms

- Data-sharing
— Data-sharing in general is protected by locks
— Data-race-free enabled by deterministic locks

MIT related project: Kendo

* Prof. Saman Amarasinghe & student

+ Working framework for deterministic multi-threading on different hardware and
Linux that can be used to identify locking problem

- Strong or weak deterministic interleaving access to shared data
- Data-race-free program executions

12 © 2010 IBM Corporation

IBM Research

General Practice of Lock

= Amdahl’s law

— The speedup of a program using multiple processors in parallel computing is limited by the time
needed for the sequential fraction of the program.

= Sharing nothing
— Identify false sharing

— Duplicate resource
« Large on-chip cache to remove bus contention on SMP

= Differentiate read/write locks

= Partial Sharing
— Db, table, rows locking
— Class lock versus object lock in java

= Minimize synchronized code
= Limit # of threads
— Too many threads create higher contention and eat up cache and memory space

= Mutli-thread programming is difficult and error-prone - we are more concerned of
performance issue

13 © 2010 IBM Corporation

