
Adaptive Operator Selection

for Optimization

Ph.D. Thesis

École Doctorale d’Informatique, ED 427

Université Paris-Sud 11

By Álvaro Roberto SILVESTRE FIALHO

Microsoft Research – INRIA Joint Centre

28 rue Jean Rostand 91893 Orsay Cedex, France

Abstract

Evolutionary Algorithms (EAs) are stochastic optimization algorithms which have already
shown their efficiency on many different application domains. This flexibility is achieved
mainly due to the many parameters that can be defined by the user according to the
problem at hand. However, EAs are very sensitive to the definition of these parame-
ters, and there are no general guidelines for an efficient setting; as a consequence, EAs
are rarely used by researchers from other domains. The methods proposed in this the-
sis contribute into alleviating the user from the need of defining two very sensitive and
problem-dependent choices: which variation operators should be used for the generation
of new solutions, and at which rate each operator should be applied. The paradigm, re-
ferred to as Adaptive Operator Selection (AOS), provides the on-line autonomous control
of the operator that should be applied at each instant of the search, i.e., while solving
the problem. In order to do so, one needs to define a Credit Assignment scheme, which
rewards the operators based on the impact of their recent applications on the current
search process, and an Operator Selection mechanism, that decides which should be the
next operator to be applied, based on the empirical quality estimates built by the rewards
received. In this work, the Operator Selection problem has been tackled as yet another
instance of the Exploration versus Exploitation dilemma: the best operator needs to be
exploited as much as possible, while the others should also be minimally explored from
time to time, as one of them might become the best in a further moment of the search;
different Operator Selection techniques based have been proposed to extend the Multi-
Armed Bandit paradigm to the very dynamic context of AOS. On the Credit Assignment
side, rewarding schemes based on extreme values and on ranks have been proposed, in
order to provide more robust operator assessments, while promoting the use of outlier op-
erators. The different AOS methods formed by the combinations of the proposed Operator
Selection and Credit Assignment mechanisms have been validated on a very diverse set of
benchmark problems. Based on empirical evidences gathered from this empirical analysis,
the final recommended method, which uses the Rank-based Multi-Armed Bandit Opera-
tor Selection and the Area-Under-Curve Credit Assignment schemes, has been shown to
achieve state-of-the-art performance while also being very robust with respect to different
problems.

iii

Contents

Part I General Introduction

1 Introduction 3

1.1 Context/Motivation . 3

1.2 Main Contributions . 5

1.2.1 Operator Selection . 5

1.2.2 Credit Assignment . 6

1.2.3 Empirical Validation . 7

1.3 Organization . 7

Part II Background Review

2 Evolutionary Algorithms 11

2.1 Introduction . 12

2.2 Modus Operandi . 13

2.3 Components . 14

2.3.1 Problem-dependent Components . 14

2.3.2 Representation-specific Components 16

2.3.3 General Components . 18

2.4 Popular EA Variants . 21

2.4.1 Evolution Strategies . 21

2.4.2 Evolutionary Programming . 22

2.4.3 Genetic Programming . 22

2.4.4 Genetic Algorithms . 22

2.4.5 Differential Evolution . 23

2.5 Application Areas . 25

2.6 Discussion . 27

v

3 Parameter Setting in EAs 29

3.1 Introduction . 30

3.2 Parameters Influence and Possible Settings 31

3.2.1 Parent and Offspring Population Sizes 32

3.2.2 Selection Procedures . 32

3.2.3 Offspring Production . 33

3.2.4 Stopping Criterion . 34

3.2.5 Representation . 34

3.3 Classification of Parameter Setting Techniques 35

3.3.1 Which parameter is changed? . 35

3.3.2 How the changes are made? . 35

3.3.3 Which evidences guide the changes? 40

3.3.4 Which is the scope of the change? 41

3.4 Discussion . 42

4 Adaptive Operator Selection 45

4.1 Introduction . 46

4.2 Adaptive Operator Selection . 47

4.3 Credit Assignment . 48

4.3.1 How to measure the Impact? . 48

4.3.2 How to assign Credit? . 49

4.3.3 Whom to assign Credit to? . 50

4.3.4 Compass: Aggregating Fitness and Diversity 51

4.4 Operator Selection . 52

4.4.1 Probability Matching . 52

4.4.2 Adaptive Pursuit . 54

4.5 Some Adaptive Operator Selection Combinations 56

4.5.1 Fitness-based Approaches . 56

4.5.2 Diversity-based Approaches . 58

4.5.3 Fuzzy-based Approaches . 60

4.5.4 Other Approaches . 61

4.5.5 AOS within Other Evolutionary Algorithms 61

4.6 Discussion . 62

Part III Contributions

5 Contributions to Adaptive Operator Selection 67

5.1 Introduction . 68

5.2 Contributions to Credit Assignment . 70

5.2.1 Basic Credit Assignment Scheme: Fitness Improvements 70

vi

5.2.2 Extreme Fitness Improvement . 71
5.2.3 Normalized Fitness Improvement . 72
5.2.4 Rank-based Credit Assignment Schemes 73
5.2.5 Comparison-based Credit Assignment Schemes 78

5.3 Contributions to Operator Selection . 79
5.3.1 Basic Operator Selection Scheme: Multi-Armed Bandit 79
5.3.2 Dynamic Multi-Armed Bandit . 82
5.3.3 Sliding Multi-Armed Bandit . 85
5.3.4 Rank-based Multi-Armed Bandit . 87

5.4 Contributions to Empirical Assessment . 90
5.4.1 Base Artificial Scenario: Uniform . 90
5.4.2 Boolean and Outlier Scenarios . 90
5.4.3 Two-Value Scenarios . 91

5.5 Discussion . 93

6 Experimental Results 97
6.1 Introduction . 99
6.2 General Experimental Settings . 100

6.2.1 AOS Combinations and respective Hyper-Parameters 100
6.2.2 Off-line Tuning of Hyper-Parameters 102
6.2.3 Performance Indicators and Results Presentation 104

6.3 On Artificial Scenarios . 105
6.3.1 Experimental Settings . 105
6.3.2 Results on Uniform, Boolean and Outlier Scenarios 106
6.3.3 Results on ART Scenarios . 122
6.3.4 Discussion . 132

6.4 On Boolean Benchmark Problems . 133
6.4.1 Experimental Settings . 133
6.4.2 The OneMax Problem . 134
6.4.3 The Long K-Path Problem . 140
6.4.4 The Royal Road Problem . 145
6.4.5 Discussion . 149

6.5 Collaboration On Satisfiability Problems . 150
6.5.1 Compass + Ex-DMAB = ExCoDyMAB 150
6.5.2 SAT Problems . 151
6.5.3 Experimental Settings . 152
6.5.4 Architecture definition and tuning of hyper-parameters 153
6.5.5 Empirical Results . 154
6.5.6 Discussion . 156

6.6 On Continuous Benchmark Problems . 158
6.6.1 Black-Box Optimization Benchmarking 158
6.6.2 Experimental Settings . 159
6.6.3 The PM-AdapSS-DE Method . 161
6.6.4 Empirical Results . 162

vii

6.6.5 Discussion . 166
6.7 Hyper-Parameters Analysis . 170

6.7.1 On the Sensitivity of the Hyper-Parameters 170
6.7.2 On the Robustness of the Hyper-Parameters 177

6.8 General Discussion . 180

Part IV General Conclusion

7 Final Considerations 185
7.1 Summary of Contributions . 185
7.2 Further Work . 187

Bibliography 189

viii

List of Figures

2.1 General cycle of Evolutionary Algorithms (EAs). 13

3.1 Classification of parameter setting methods 36
3.2 Visual representation of the F-Race performance 37

4.1 The Adaptive Operator Selection general scheme. 47
4.2 Compass credit assignment . 51

5.1 Comparison between different decaying mechanisms 75
5.2 Sample computation of AUC reward . 76
5.3 Two samples drawn from different Two-Values distributions 92

6.1 TCR and p(best) w.r.t. ∆T on Uniform scenario 108
6.2 Behavior of best AOS combinations on the Uniform scenario 111
6.3 TCR and p(best) w.r.t. ∆T on Boolean scenario 113
6.4 Behavior of best AOS combinations on the Boolean scenario 116
6.5 TCR and p(best) w.r.t. ∆T on Outlier scenario 118
6.6 Behavior of best AOS combinations on the Outlier scenario 121
6.7 TCR and p(best) w.r.t. ∆T on ART (0.01, 101, 0.5, 10) scenario 123
6.8 Behavior of AOS combinations on the ART (0.01, 101, 0.5, 10) scenario . . . 126
6.9 TCR and p(best) w.r.t. ∆T on ART (0.1, 39, 0.5, 3) scenario 128
6.10 Behavior of AOS combinations on the ART (0.01, 101, 0.5, 10) scenario . . . 131
6.11 Different views of the Oracle on the OneMax problem 135
6.12 Behavior of AOS combinations on the OneMax problem 139
6.13 Average fitness gain of operators on the Long K-Path problem 142
6.14 Different levels of deceptivity on the Royal Road problem 146
6.15 Best fitness curve for different values of Θ on Compass 155
6.16 ECDF of all rank-based schemes on BBOB with d = 20 164
6.17 ECDF of speed-up ratios FAUC-B versus DE using single strategy 165
6.18 ECDF of speed-up ratios FAUC-B versus other AOS schemes 167
6.19 ECDF of speed-up ratios FAUC-B versus Naive-DE and IPOP-CMA-ES . . 168
6.20 ECDF sensitivity plots for AbsExt-AP . 172
6.21 ECDF sensitivity plots for AbsExt-MAB and AbsExt-SLMAB 174
6.22 ECDF sensitivity plots for AbsExt-DMAB and Decay/AUC-RMAB 176

ix

List of Tables

3.1 Two examples of static set of parameters for GAs 30

6.1 Credit Assignment schemes and hyper-parameters 101
6.2 Operator Selection methods and hyper-parameters 102
6.3 List of Adaptive Operator Selection combinations 102
6.4 Ranges of values tried for the corresponding hyper-parameters 103
6.5 Results on the Uniform scenario for ∆T ∈ {50, 200} 109
6.6 Results on the Uniform scenario for ∆T ∈ {500, 2000} 110
6.7 Results on the Boolean scenario for ∆T ∈ {50, 200} 114
6.8 Results on the Boolean scenario for ∆T ∈ {500, 2000} 115
6.9 Results on the Outlier scenario for ∆T ∈ {50, 200} 119
6.10 Results on the Outlier scenario for ∆T ∈ {500, 2000} 120
6.11 Results on ART (0.01, 101, 0.5, 10), 10 epochs for ∆T ∈ {50, 200} 124
6.12 Results ART (0.01, 101, 0.5, 10), 2 epochs for ∆T ∈ {500, 2000} 125
6.13 Results ART (0.1, 39, 0.5, 3), 10 epochs for ∆T ∈ {50, 200} 129
6.14 Results ART (0.1, 39, 0.5, 3), 2 epochs for ∆T ∈ {500, 2000} 130
6.15 Results on the 10k-bits OneMax problem 138
6.16 Examples of Long 3-Paths of different length. 141
6.17 Results on the Long 3-Path (ℓ = 49) problem 144
6.18 Construction of schemata on the Royal Road problem 145
6.19 Results on the Royal Road (m = 4) problem 148
6.20 SAT instances used in the empirical assessment of ExCoDyMAB 152
6.21 Racing survivors for ExCoDyMAB hyper-parameters tuning 155
6.22 Comparison between configurations on SAT instances 156
6.23 Results on the 22 SAT instances . 157
6.24 Hyper-parameter configurations used on BBOB dimension 20 161
6.25 Robustness analysis on transformations over the OneMax problem 178
6.26 Robustness analysis on the BBOB functions 180

xi

List of Algorithms

2.1 General pseudo-algorithm for a Genetic Algorithm 23
2.2 The Differential Evolution algorithm with DE/rand/1/bin strategy 24
4.1 Credit Assignment : Compass (K,Θ) . 52
4.2 Operator Selection: Probability Matching (K, pmin, α) 54
4.3 Operator Selection: Adaptive Pursuit (K, pmin, α, β) 55
5.1 Credit Assignment Schemes over ∆F (op, type, norm, W, K) 73
5.2 Credit Assignment : Rank-based Area-Under-Curve (W, D, op) 77
5.3 Credit Assignment : Sum-of-Ranks (W, D, op) 78
5.4 Operator Selection: Multi-Armed Bandit (K,C) 81
5.5 Operator Selection: Dynamic MAB (K,C, γ, δ = 0.15) 85
5.6 Operator Selection: Sliding Multi-Armed Bandit (K,C,W) 87
5.7 Operator Selection: Rank-based Multi-Armed Bandit (K,C) 89

xiii

List of Acronyms

AbsIns Absolute Instantaneous

AbsAvg Absolute Average

AbsExt Absolute Extreme

AOS Adaptive Operator Selection

AP Adaptive Pursuit

AUC Area-Under-Curve

BBOB Black-Box Optimization Benchmarking

ExCoDyMAB Extreme Compass - DMAB

DE Differential Evolution

DMAB Dynamic Multi-Armed Bandit

EA Evolutionary Algorithm

EC Evolutionary Computation

ECDF Empirical Cumulative Distribution Function

EP Evolutionary Programming

ERT Expected Running Time

ES Evolution Strategy

Ex-DMAB Ex-DMAB

EvE Exploration versus Exploitation

FAUC Fitness-based Area-Under-Curve

FSR Fitness-based Sum-of-Ranks

GA Genetic Algorithm

xv

LIST OF ALGORITHMS

GP Genetic Programming

MAB Multi-Armed Bandit

NDCG Normalized Discounted Cumulative Gain

NormIns Normalized Instantaneous

NormAvg Normalized Average

NormExt Normalized Extreme

PH Page-Hinkley

PM Probability Matching

RMAB Rank-based Multi-Armed Bandit

ROC Receiver Operating Characteristic

SAT Boolean Satisfiability

SLMAB Sliding Multi-Armed Bandit

SR Sum-of-Ranks

TCR Total Cumulated Reward

TSP Traveling Salesman Problem

T V Two-Values

UCB Upper Confidence Bound

xvi

Part I

General Introduction

Chapter 1

Introduction

1.1 Context/Motivation

EAs are stochastic optimization algorithms remotely inspired by the Darwinian “survival
of the fittest” paradigm. Let the goal be to optimize some objective function, referred to as
fitness function, defined on search space X; elements of X are called individuals, and a set
of individuals is termed a population. EAs evolve a population of individuals by iteratively
(i) selecting some individuals (the parents), favoring those with better fitness; (ii) applying
stochastic perturbations on the parents using some variation operators, thus generating
offspring; (iii) evaluating the offspring (i.e., computing their fitness values); and finally,
(iv) selecting some individuals among the parents and the offspring to become the next
parents, again favoring fitter individuals. This cycle is iterated until a satisfactory solution
is found, or another stopping condition is attained. A more comprehensive description is
presented in Chapter 2.

EAs consistently perform well approximating solutions to many different types of
problems beyond the reach of standard methods (see, e.g., all applications described in
[T. Yu et al., 2008]; a track1 on “Real-World Applications” is also yearly held within one
of the main conferences of the field, the Genetic and Evolutionary Computation Con-
ference), specially because they do not make any strong assumption about the problem
to be solved, being able to handle structured and mixed search spaces, irregular, noisy,
rugged, or highly constrained objective functions, etc. But, although demonstrating to
be an exciting research field with the power to assist scientists, researchers and engineers
in the task of solving hard optimization problems, EAs are rarely used outside the circle
of knowledgeable practitioners; they still miss reaching the status of off-the-shelf tools.
There are several reasons for that, all boiling down to a lack of practical support when
it comes to actually design an EA for a given application. On a conceptual level, de-
spite Michalewicz’ seminal book [Michalewicz, 1996] and the two more recent books by
[Eiben and Smith, 2003] and [DeJong, 2006], the terminology used by authors still re-
flect the evolutionary trend they historically belong to. On a practical level, while some
software packages provide a unifying framework for the various evolutionary approaches

1RWA track on GECCO’10: http://sigevo.org/gecco-2010/organizers-tracks.html#rwa

3

http://sigevo.org/gecco-2010/organizers-tracks.html#rwa

Chapter 1. Introduction

(see, e.g., the EO [Keijzer et al., 2002] and the GUIDE [Collet and Schoenauer, 2003;
Da Costa and Schoenauer, 2009] initiatives), the success of EAs is still very sensitive to
the setting of quite a few parameters, e.g., main and offspring population sizes, types of
variation operators and respective application rates, types of selection mechanisms and
related parameters.

In early days, Evolutionary Computation (EC) actually benefited from those numer-
ous parameters, which ensure their outstanding flexibility, and make them applicable
to the mentioned wide spectrum of applications. The contemporary view of EAs, how-
ever, acknowledges that specific problems require specific setups for satisfactory perfor-
mance [Eiben et al., 2007]: when it comes to solving a given problem, parameter set-
ting is viewed as the Achilles’ heel of EAs, on par with their high computational cost.
From these observations, a current trend in EC is to focus on the definition of more au-
tonomous solving processes, which aim at enabling the basic user to benefit from a more
efficient and easy-to-use algorithmic framework. Parameter setting in EAs appears thus
as a major issue that has deserved much attention during recent years [Eiben et al., 1999;
Eiben et al., 2007], and research is still very active nowadays, as witnessed by a complete
edited book that has been recently published [Lobo et al., 2007], and by the numerous
recent references cited in this document. Interestingly, the search for algorithmic technolo-
gies enabling the (naive) end-user to benefit from good performances through autonomous
parameter setting is also considered as a priority in neighbor fields such as operation re-
search or constraint programming [Hutter et al., 2006; T. Stützle et al., 2009]; in the same
way than in EC, these fields involve sophisticated solver platforms, requiring an extensive
expertise in order to be used to their fullest extent. Chapter 3 presents a summary about
the current state of research in parameter setting of EAs.

Some of the user choices that most affect the performance of EAs concern the varia-
tion operators: which operators should be used for the generation of new solutions, and at
which rate each of the chosen operators should be applied. These choices affect the way
in which the algorithm will explore the search space while also being able to efficiently
exploit the most promising regions, the so-called Exploration versus Exploitation (EvE)
dilemma. Such definition is usually done by following the user’s intuition, or by using an
off-line tuning procedure aimed at identifying the best operator for the problem at hand.
Besides being computationally expensive, off-line tuning however generally delivers sub-
optimal performances. Intuitively, the EA should proceed from a global (early) exploration
of the landscape to a more focused exploitation-like behavior, as already empirically and
theoretically demonstrated (see, e.g., [Eiben et al., 2007] and references therein). Thus,
its parameters values should be varied accordingly, while solving the problem: more ex-
ploratory operators should be preferred in the earlier stages of the search, and more priority
should be given to the fine-tuning/exploitation operators when approaching the optimum.

The on-line parameter setting in EAs is often called as Parameter Control
[Eiben et al., 2007]. This is the context in which the contributions presented in this thesis
are inserted, more specifically on AOS, which can be summarized as follows.

4

1.2 Main Contributions

1.2 Main Contributions

In essence, the goal of AOS is to select on the fly the best operator at each stage of the
search, i.e., the operator that is currently maximizing some measure of quality, usually,
though not exclusively [Maturana and Saubion, 2008a; Maturana et al., 2009a], reflecting
the fitness improvement brought by its application. AOS thus raises two main issues, the
Operator Selection and the Credit Assignment, which will be explained in the following,
together with the contributions we propose in this thesis to address each of them.

1.2.1 Operator Selection

The first issue, the Operator Selection, defines how the next operator to be applied should
be selected, based on its known empirical quality. Indeed, it might be seen as yet another
level of the EvE dilemma. While an operator that has performed well in the recent past
should certainly be used again (exploitation), other operators that did not perform so well
should also be tried (exploration). The rationale for exploration is rooted, firstly, in the
stochastic nature of the evolutionary process (some seemingly poorly performing operators
might just have been unlucky); and secondly, on its dynamics: the quality of an operator
depends on the region of the fitness landscape being explored by the current population,
i.e., good operators might become poor as evolution goes on, and vice-versa.

Notably, the EvE trade-off has been intensively studied in the context of Game The-
ory, in the so-called Multi-Armed Bandit (MAB) framework [Lai and Robbins, 1985]. The
Upper Confidence Bound (UCB) [Auer et al., 2002] is a MAB algorithm that provides
asymptotic optimality guarantees with respect to the total cumulated reward in a station-
ary context. However, as previously mentioned, the AOS context is extremely dynamic.
The main contribution of this thesis, in summary, lies in the proposal and analysis of
schemes to solve the AOS problem based on the UCB algorithm; we have proposed differ-
ent extensions to it, in order to enable it to efficiently cope with the dynamics of evolution
and with the very different characteristics of the problems to be tackled. These extended
MAB schemes are detailed in Chapter 5.

Starting from the original UCB algorithm (referred to as the original or standard MAB
algorithm in the following, for the sake of convenience), presented in Section 5.3.1, our
first proposal to extend it to the dynamic context of AOS was the Dynamic Multi-Armed
Bandit (DMAB) algorithm [Da Costa et al., 2008], which proceeds by coupling the original
MAB technique with a statistical change-point test, the Page-Hinkley test [Hinkley, 1970]:
upon the detection of a change in the operator quality distribution, the MAB process is
restarted from scratch.

Although showing to be very efficient, the DMAB required the tuning of a very
sensitive and problem-dependent hyper-parameter, the threshold value for the change-
detection test. This led to the proposal of a smoother way to account for dynamic envi-
ronments in the MAB framework, referred to as Sliding Multi-Armed Bandit (SLMAB)
[Fialho et al., 2010a], which uses a sliding time window to gracefully update the oper-
ator quality estimates, discarding ancient events while preserving the information from
the recent events. Contrasting with DMAB, the SLMAB does not call upon an external

5

Chapter 1. Introduction

monitoring of the evolution process, involving only 2 hyper-parameters (DMAB has 3).

The latest proposal concerning the Operator Selection part is what we refer to as Rank-
based Multi-Armed Bandit (RMAB), in which the evaluations provided by a rank-based
Credit Assignment scheme (that is part of the contributions mentioned in the following
sub-section) are used directly in the place of the UCB empirical estimation. In this way, as
the rewarding of one operator affects the ranks, and consequently the quality assessments,
of all the other operators, this technique is already dynamic by definition, while being
very robust with respect to its hyper-parameters, as better discussed in the following.

1.2.2 Credit Assignment

All the previously mentioned bandit-based Operator Selection methods (and other existent
approaches for the same purpose) select the operator to be applied next based on some
assessment of their respective qualities. Defining how to estimate their quality based
on the impact brought by their most recent applications is what we refer to as Credit
Assignment, the second issue to constitute an AOS algorithm, which was also object of
analysis and development in this thesis.

The most common way of assigning credits is to account for the fitness improvements
brought by the operators applications. The use of the instantaneous value, i.e., the latest
fitness improvement achieved by the operator, is known to be an unstable measure, due
to the stochastic nature of operators (one operator might have been unlucky on its latest
trial, although being a very good option in the longer term). To alleviate such effect,
the average of the latest rewards is more commonly used; however, by using such kind
of assessment, operators that regularly achieve very small improvements are preferred
instead of the operators that get rare but highly beneficial improvements. Motivated by
other complex systems (e.g., rogue waves, financial market, etc), and also by another
empirical analysis within EAs [Whitacre et al., 2006], in this thesis we support that the
latter operator should be preferred in the place of the former, what can be achieved by
the use of Extreme values, i.e., the maximum reward recently received by the operator.
Better results have been achieved when compared to the usual Instantaneous and Average
schemes.

Nevertheless, with the use of the raw values of the fitness improvements, the AOS
schemes implementing these Credit Assignment mechanisms need to have their behavior,
which is controlled by a couple of hyper-parameters, tuned for each new problem. This
is partially solved with the use of a simple normalization scheme; but even when normal-
ized, the rewards are still based on the fitness values to some extent. In order to have a
controller robust to many different situations, two Credit Assignment schemes based on
ranks were proposed [Fialho et al., 2010c; Fialho et al., 2010b], namely, the Area-Under-
Curve (AUC) and the Sum-of-Ranks (SR). Besides being rank-based, both of them, when
considering the fitness values instead of the fitness improvements for the ranking, are
completely comparison-based, i.e., invariant with respect to monotonous transformations
over the original fitness function, thus maintaining this very important property, which
is already guaranteed by construction in most of the recent EAs (see, e.g., an exten-
sive mathematical analysis of the advantages of comparison-based randomized heuristics

6

1.3 Organization

presented in [Gelly et al., 2007]; and the Covariance Matrix Adaptation - ES (CMA-ES)
[Hansen and Ostermeier, 2001], a comparison-based state-of-the-art adaptive method for
Evolution Strategies (ESs), that is also invariant with respect to rotations of the search
space).

1.2.3 Empirical Validation

The different combinations of these proposals to Operator Selection and Credit Assign-
ment gave origin to novel AOS methods. A last contribution of this thesis concerns their
empirical validation. In order to do so, some artificial scenarios were proposed, which
enable a detailed analysis of the behavior of each AOS method with respect to different
situations.

The proposed AOS combinations have been compared between each other and with
other baseline techniques on many different scenarios, as presented in Chapter 6: on
the proposed artificially generated scenarios (Section 6.3), on some boolean benchmark
problems (Section 6.4), on a comprehensive set of single-objective continuous problems
(Section 6.6), and on a set of Boolean Satisfiability (SAT) instances (Section 6.5). In
the latter case, an aggregation of fitness and diversity, named Compass, was used for as
Credit Assignment [Maturana et al., 2009a; Maturana et al., 2010a], considering the fact
that in multi-modal problems some diversity should always be maintained in order to
avoid premature convergence.

The Rank-based Multi-Armed Bandit techniques have shown to be very efficient, while
being also very robust to the many different situations in which they were assessed. After
all the empirical evidences gathered, they are thus the recommended choices, by the time
of the preparation of this manuscript, if one wants to implement AOS within a given
algorithm/problem.

It is also important to note that the AOS paradigm is not exclusive to the EC frame-
work. Indeed, any stochastic/local search algorithm that has different options for the
exploration of the search space might profit from the proposed methods. Besides, the
same paradigm can be directly used in the hyper-heuristics level, i.e., selecting between
different heuristics, instead of selecting between different variations of a given heuristic.
These and more conclusions and ideas for further work are presented in Chapter 7, which
concludes this manuscript.

1.3 Organization

The remainder of this thesis manuscript is organized as follows. In the first part, a review
of the context of this work will be done, starting with a more comprehensive presentation of
EAs in Chapter 2, with more focus being given to the EA variants used in the experimental
section, namely, Genetic Algorithms and Differential Evolution. Then, a summary of all
the background concerning the research area of parameter setting in EAs and other meta-
heuristics will be presented in Chapter 3. In Chapter 4, a more detailed description
and bibliographic review of the parameter setting sub-problem to which the contributions
presented in this thesis are devoted to, the Adaptive Operator Selection, will be presented.

7

Chapter 1. Introduction

In the second part, the contributions of this thesis work will be presented. Chapter
5 will present and describe in detail the proposed AOS techniques, and Chapter 6 will
describe and analyze the empirical evaluation done on some very diverse scenarios. Finally,
Chapter 7 will conclude this thesis, summarizing the contributions, and pointing out
possible directions for further work.

8

Part II

Background Review

Chapter 2

Evolutionary Algorithms

Contents

2.1 Introduction . 12

2.2 Modus Operandi . 13

2.3 Components . 14

2.3.1 Problem-dependent Components 14

Evaluation/Fitness Function . 15

Representation . 15

2.3.2 Representation-specific Components 16

Initialization . 16

Variation Operators . 17

2.3.3 General Components . 18

Parent and Offspring Population Sizes 19

Parental or Reproduction Selection 19

Survival or Replacement Selection 19

Termination Condition . 20

General Representation of Special Cases 20

2.4 Popular EA Variants . 21

2.4.1 Evolution Strategies . 21

2.4.2 Evolutionary Programming . 22

2.4.3 Genetic Programming . 22

2.4.4 Genetic Algorithms . 22

2.4.5 Differential Evolution . 23

2.5 Application Areas . 25

2.6 Discussion . 27

11

Chapter 2. Evolutionary Algorithms

In this Chapter, we present an overview of EAs, depicting their
general behavior and parameters. Besides, some popular EA vari-
ants are described, and some examples of application domains are
presented.

2.1 Introduction

An important source of inspiration for the development of computational methods to auto-
mate problem solving, nowadays, is the “intelligent” way in which biological processes solve
complex problems found in nature. Some popular examples of these approaches, referred
to as bio-inspired methods, are: Neural Networks [Arbib, 2002], based on the structure
of the biological brain; Fuzzy Logic [Klir and Yuan, 1995], inspired on the human way of
reasoning; Swarm Intelligence algorithms, supported on living examples of collective so-
cial behavior, e.g., the Particle Swarm Optimization (PSO) [Eberhart et al., 2001] and the
Ant Colony Optimization (ACO) [Dorigo et al., 1996] methods; and finally, the Evolution-
ary Algorithms (EAs), which are global optimization methods that mimic the Darwinian
“survival of the fittest” paradigm in order to solve optimization and search problems.

Since the seminal works trying to apply the evolution theory to optimization (we re-
fer the reader to the edited book [Fogel, 1998] for a compilation of them), many variants
of EAs have been independently developed around the world, originally for different do-
mains of application, with the main difference being the representation and the variation
operators used. Historically speaking, the pioneer methods were: Genetic Algorithms
(GAs) [Holland, 1975; Goldberg, 1989], Evolution Strategies (ESs) [Rechenberg, 1972;
Schwefel, 1981], Evolutionary Programming (EP) [Fogel et al., 1966; Fogel, 1995], and
more recently, Genetic Programming (GP) [Koza, 1992; Koza, 1994]. Research has been
very active on GAs, ES and GP, but EP has been gradually disappearing from the lit-
erature, as it can be considered as a special case of ES. Besides, other popular tech-
niques have been more recently created within the EA community, such as the Differen-
tial Evolution (DE) [Storn and Price, 1997; Price et al., 2005], and the already mentioned
PSO [Eberhart et al., 2001] and ACO [Dorigo et al., 1996] methods. Except for the latter
two, which do not exactly follow the evolution paradigm, each of the mentioned techniques
will be separately described in Section 2.4, with a more extensive presentation being done
for the methods used in the experimental section of this manuscript (see Chapter 6),
namely GAs and DE. The contemporary view, however, is that, given the continuous
development and frequent hybridizations between the ideas proposed by each historical
technique, it is becoming more and more difficult to differ between them, what justifies the
recent proposal of a “unified view” for the different EA methods [DeJong, 2006]. Indeed,
they all share the same modus operandi, as described in Section 2.2.

EAs have already demonstrated their efficiency on a very wide range of optimization
problems (more on this in Section 2.5) beyond the reach of standard methods, e.g., in-
volving structured and mixed search spaces, irregular, noisy, rugged or highly constrained
fitness functions, etc. This flexibility is mainly due to the several parameters, described

12

2.2 Modus Operandi

in Section 2.3, that can be tuned by the user according to the problem at hand. How-
ever, these same parameters are also the main responsible for the fact that EAs are rarely
used by scientists from other domains, as there are no standard methods or guidelines for
their setting. This is why research on automatic parameter setting methods is very active
nowadays, as reviewed in Chapter 3. In Chapter 5 of this thesis, we present some contri-
butions to one of the parameter setting sub-problems, referred to as Adaptive Operator
Selection (AOS), surveyed in Chapter 4.

2.2 Modus Operandi

Figure 2.1: General cycle of Evolutionary Algorithms (EAs).

The different variants of EAs follow the same general outlines, depicted in Fig. 2.1,
differing only in a few technical details, as detailed in Section 2.4. Generally speaking,
thus, the modus operandi of the EAs can be described as follows.

1. A set (population) of candidate solutions (individuals) is initialized, usually repre-
senting a random sampling of the search space.

2. Each individual is then evaluated, according to the fitness function, which defines the
problem objective: higher is the degree of achievement of a given candidate solution
with respect to the problem at hand, “fitter” it is.

3. If none of the stopping criteria are satisfied (e.g., optimal solution found, or total
computational budget spent), go on to the next steps.

4. The first Darwinian natural selection-based process takes place. Individuals are
selected as parents to reproduce, usually based on the fitness evaluation, as in nature:
stronger/fitter individuals, i.e., better candidate solutions, have higher chances of
being selected for reproduction.

13

Chapter 2. Evolutionary Algorithms

5. These selected individuals are then subject to blind variations (blind in the sense that
no information about the problem or the consequences of the variation are consid-
ered), by the application of stochastic operators, namely crossover (recombination)
and mutation operators, generating offspring.

6. The newly generated offspring are then evaluated, according to the same fitness
function, which defines the problem.

7. Then comes the second and final Darwinian process, the replacement or survival
selection, that defines which individuals, from both the parental population and the
newly generated offspring population, will survive to the next iteration (generation)
of the algorithm.

8. From this evolved population, a new generation can start, going back to Step 3.

From this general cycle, it can be seen that the evolution itself happens mainly due
to two opposite forces, as follows. On the one hand, there is the application of mutation
and recombination operators, which introduce random variation in the population, con-
sequently performing an exploration of the solutions search space; intuitively, their sole
application would lead to a random search. On the other hand, as in the inspiring theory,
better candidate solutions (i.e., fitter individuals), have higher chances to be used in the
generation of new (hopefully also fitter) solutions, and to survive for the next generations;
these Darwinian procedures are the responsible for giving a direction to the originally
random search, leading it to the most promising regions of the search space. This process
of blind variation + natural selection is then iterated until an optimal solution arises, or
another stopping criterion is attained.

Besides being bio-inspired, EAs are thus stochastic algorithms that work by
following a kind of generate-and-test (also known as trial-and-error) approach
[Eiben and Schoenauer, 2002], as many other meta-heuristics, e.g., Simulated Annealing
[P.J.M. Laarhoven et al., 1987]. While describing the general cycle, several structures and
procedures were mentioned; they are described into more detail in the following.

2.3 Components

EAs have mainly three kinds of components: some are related to the problem to be
solved (Section 2.3.1), others depend on the representation being used (Section 2.3.2),
while others are totally general (Section 2.3.3). Each of these groups will now be briefly
described in turn.

2.3.1 Problem-dependent Components

The components that need to be defined according to the optimization problem can be
described as follows.

14

2.3 Components

Evaluation/Fitness Function

The evaluation or fitness function plays the role of the environment in the Darwinian
natural selection-like procedures, assigning a score to each individual according to its
degree of “achievement” with respect to the optimization problem at hand. The fitness
function is thus the core of the algorithm, which needs to be very carefully designed, as it
is often the only source of information about the problem that is available to the algorithm
[Eiben and Schoenauer, 2002].

Although EAs are said to be robust with respect to very different situations (e.g.,
irregular, noisy, and highly rugged fitness landscapes), a minimal level of continuity and/or
regularity (the search gradient) needs to be provided to guide the search towards the most
promising regions of the search space; otherwise it tends to act as a random search,
with no direction to follow. In some cases, however, the definition of the fitness function
itself is a very complex task; a recent paradigm, referred to as Interactive Evolutionary
Computation (IEC), address this issue by “outsourcing” the fitness evaluation to humans,
as in [Quiroz et al., 2007], for example.

The fitness evaluation of a candidate solution is undoubtedly the most computation-
ally expensive step of the EA cycle, and its computational cost affects other user choices,
mainly the size of the population and the number of offspring created at each genera-
tion, as each offspring requires a fitness evaluation. In case the fitness evaluation cost
becomes prohibitive for evolution to take place (usually many generations, consequently
fitness evaluations, are needed), some approximations between the fitness values found in
the neighborhood of the candidate solution under assessment might also be used, as in
[Martikainen and Ovaska, 2006]. Besides, in some application fields, the evaluation might
also be very noisy, thus requiring the averaging of several independent assessments in order
to have a reliable measure of quality.

In cases where there is more than one objective to be optimized, referred to as multi-
objective in the literature, special fitness assessments need to be used to take into account
all the objectives; the most popular criterium is the Pareto optimality (see, e.g., [Deb, 2001;
Mueller-Gritschneder et al., 2009]).

Representation

From the structural point of view, in order to solve a given problem, the main issue
that needs to be defined is how the candidate solutions are going to be represented.
The solutions themselves, referred to as phenotypes, might be very complex structures;
but their corresponding low-level representation, the genotypes, which are the structures
manipulated by the algorithm, are usually much simpler. As in the inspiring theory,
genotypes are constituted by genes, which store the values of the candidate solution for
each variable of the problem at hand. The most common representation or encoding
schemes can be listed as follows.

� Binary encoding: Vectors of binary values, or bit-strings, are commonly employed to
represent problem solutions that have just two possible values for each variable. For
example, in the combinatorial SAT problem [Cook, 1971], which consists in assigning

15

Chapter 2. Evolutionary Algorithms

values to binary variables in order to satisfy a Boolean formula, each gene represents
the boolean state of each variable of the problem [Lardeux et al., 2006].

� Permutation encoding: Vectors of integers are usually used to ordering problems.
The classical application example is the well-known Traveling Salesman Problem
(TSP) problem, in which there is a set of cities that need to be visited by a sales-
man, the objective being to find the order of cities that minimize the distance to
be travelled. In this case, each city is assigned an integer number, and the or-
der of these numbers defines the order in which the salesman will visit the cities
[Merz and Freisleben, 1997].

� Real-value encoding: For some problems, the direct use of real values is preferred,
as for example, to optimize the weights of a neural network, with each gene of
a candidate solution representing the value of each of the corresponding weights
[Obradovic and Srikumar, 2000].

� Tree encoding: It is used mainly to evolve programs or regular expressions, with
every solution being encoded as a tree of objects such as functions or commands of
a given programming language. For example, given a set of input and output data
samples, it can be used to find a function that maximizes the mapping between them
[Koza et al., 2003].

The permutation and the binary encoding schemes are historically used by GAs to solve
combinatorial problems, as confirmed by the given examples. The real-value encoding is
usually employed by ES and DE on continuous optimization problems; while the tree
representation scheme is often used within GP to automatically generate or optimize
programs. More details about each of these mentioned EAs will be given in Section 2.4.

2.3.2 Representation-specific Components

Some of the components of an EA, namely the initialization procedure and the variation
operators, are representation-dependent, i.e., they need to be defined according to the
chosen representation model. This is in fact one of the reasons why EAs are successfully
applied to so many different domains of application (see Section 2.5 for a few examples):
given an appropriate initialization procedure and variation operators, any kind of search
space can be tackled [Eiben and Schoenauer, 2002]. Such representation-specific compo-
nents will be briefly described in the following.

Initialization

According to the representation being used, the initial population is usually created after
a random sampling of the search space. A uniform sampling is commonly used when
the search space is finite and its bounds are known, e.g., in the binary, permutation and
tree-based representations. For the real-value representation, the uniform sampling can
also be used if the search space bounds are provided; a gaussian distribution being used
for the initialization otherwise.

16

2.3 Components

Furthermore, in case some prior knowledge is available, it might be used in the initial-
ization process, e.g., by directly including a known good solution. But, on the one hand,
such manipulated initialization might result into a wrong bias to the search process, what
is of course much worst than having no bias at all [Eiben and Schoenauer, 2002]; and, on
the other hand, this extra effort is usually not very well paid-off as, when starting from a
random population, the same EA would typically need just very few generations to achieve
the same level of solution quality [Eiben and Smith, 2003].

Variation Operators

Also representation-dependent, there are different kinds of variation operators, as follows.

Mutation operators are the asexual variation operators, i.e., a single parent individual
is considered to generate an offspring. These operators are the responsible for intro-
ducing non-existing (or re-introducing missing) characteristics into the population, thus
augmenting the so-called genetic diversity. A complementary view for their purpose is that
of fine-tuning: individuals might improve their respective qualities after suffering slight
variations (e.g., mutation of a single gene). Traditional mutation operators for each of the
four popular representations mentioned in Section 2.3.1 can be listed as follows.

� For bit-strings, the bit-flip mutation operator flips each bit with probability 1/ℓ by
default (although a different probability can be employed), ℓ being the length of
the bit-string; other popular mutation operator is the x-bit, which flips x randomly
chosen bits each time it is applied.

� For real-valued vectors, the most common mutation operator is the addition of a
random value to each vector component or gene. It is mainly used within ES, with
the random value being extracted from a normal distribution with zero mean and a
pre-defined standard deviation (also referred to as the mutation step-size). In the
case of DE, several mutation strategies exist, using the differences between two or
more vectors (individuals) in different ways for perturbing the vector population.

� For permutation-like and trees, a popular mutation operator is the order changing:
two genes are randomly selected and have their values exchanged. In the case of
trees, not just the values of the chosen nodes, but also both sub-trees (or branches)
attached to them, are usually switched. A simpler alternative is the exchange of the
value found in the chosen gene or node by another value randomly chosen from the
finite search space.

Crossover or recombination operators are the sexual variation operators: parts of the
genetic material of two or more different parent individuals are recombined somehow,
creating one or more new offspring. Its use is justified by the building blocks assumption:
supposedly, the good fitness scores of the parents are related to some portions of their
genetic material; with strictly positive probability, the good portions (building blocks) of
both parents are recombined, consequently creating a fitter individual. Accordingly, the
most common crossover operator for all the representations is the x-point crossover, which

17

Chapter 2. Evolutionary Algorithms

divides each parent individual into x building blocks, forming the offspring by different
recombinations of these portions; a more exploratory variant is the uniform crossover,
which uniformly selects which genes are taken from each parent to constitute the new
offspring. In the same way than for the mutation operators, there are other ways of doing
so as well, according to the representation being used; for example, in the case of real-
valued vectors, arithmetical operations might be done between the genes of both parents;
while in tree-like representations, different branches of the parents trees can be exchanged.
It is important to note that the effect of the crossover operators on the search process is
automatically adapted, by construction, according to how converged the population is:
while there is a good level of diversity, it helps into exploring the search space; the less
diversity there is, the more exploitation-like will be its behavior, up to the total inefficiency
as, differently from the mutation counterparts, it can not introduce any novelty into the
population.

The standard mutation and crossover operators are pure stochastic transformations
that receive as input one or more (parent) individuals, and generate as output one or more
new (offspring) individuals, not using any feedback about the impact of their application
on the search; due to this, their application is usually referred to as a blind variation. Then,
it is usually up to the replacement selection mechanism to accept or not the generated
offspring, and consequently guide the search process. Differently from that, in some well-
known application domains, the available information about the problem might be used
into the design of specialized or “intelligent” operators. For example, the flipping of a
bit might be prevented by the fact that it is known (by simulating the results of its
flipping) to be already set to a good value, as done in the SAT domain (see, e.g., the
GASAT [Lardeux et al., 2006]); or by intelligently choosing which building blocks should
be exchanged, as in most of the specialized crossover operators for the TSP problem (see,
e.g., [Chan et al., 2005]). By using trial-and-error and feedback from the search in order
to decide its move, what is being done by these operators is in fact what is usually referred
to as “local search”. In other cases, some well-performing meta-heuristics are also used
as inspiration for local search variation operators within EAs, as in [Branke et al., 2003],
which proposes the use of crossover operators based on the Ant Colony Optimization
algorithm for the same TSP problem. EAs that employ local search techniques as variation
operators are commonly called as Memetic Algorithms (MA) [Krasnogor, 2002].

2.3.3 General Components

Agreeing with the “unified view” of EAs proposed in [DeJong, 2006], some components
are general, not being affected by the kind of representation used. These components can
be listed as follows.

� the size of the parent population m;

� the size of the offspring population n;

� the procedure for selecting parents pselect;

� the procedure for producing offspring reprod;

18

2.3 Components

� the procedure for selecting survivors sselect;

� the stopping criterion cstop.

Each of these representation-independent components will be briefly described in the
following.

Parent and Offspring Population Sizes

The parent population size m defines the level of parallel search done by the EA, as it
contains the starting points for the new solutions explored in the search space at each
generation [DeJong, 2007], while the offspring population size n determines the number
of trials done by the algorithm at each generation.

Their definition is mainly related to (i) how rugged the fitness landscape is thought to
be, as a bigger population will enable a better parallel exploration of multiple peaks; and
to (ii) the available computational budget, as at each generation it is required to evaluate
the fitness of all newly generated individuals, which is by far the most expensive step of
the evolutionary cycle, as previously discussed.

Parental or Reproduction Selection

One of the Darwinian representation-independent steps that “guide” the evolution engine,
the parental selection pselect, as its name says, is the procedure responsible for selecting
which of the individuals will be chosen for reproduction.

A very simple and popular parental selection method is the proportional one: for each
individual, the probability of being selected is proportional to its fitness score, with a
roulette wheel-like method over these probabilities being used for selection. However,
in some application domains an individual might have a fitness value that is orders of
magnitude higher than the others. By using the proportional method in such a case, this
super-individual will very probably be always selected for reproduction, thus quickly taking
over the entire population, consequently leading to (possibly) premature convergence.

To avoid such kind of problem related to fitness ranges, other methods widely used
nowadays are: (i) the rank-based selection, in which the probability of being selected of
an individual is proportional to its fitness ranking with respect to the other individuals
in the population; (ii) the tournament selection, in which T individuals are uniformly
chosen from the population, and the best between these T individuals is selected, with
T ∈ [2,m], m being the parent population size; and a different variant, the (iii) stochastic
tournament selection, in which 2 individuals are randomly chosen, and the best between
them is selected with probability t ∈ [0.5, 1].

Survival or Replacement Selection

The other representation-independent procedure that enforces the simulation of the Dar-
winian natural selection process is the survival selection, sselect, which defines how the
population of the next generation will be constituted, based on the current parental and

19

Chapter 2. Evolutionary Algorithms

offspring populations, i.e., which individuals of both populations are going to survive for
the next generation.

Broadly speaking, there are two categories of replacement methods: (i) individuals
from both populations are considered, thus disputing between each other for survival, as
the number of available “places” in the next generation is limited (the main population size
m); or (ii) just the offspring population is considered, and the best m out of n individuals
are maintained for the next generation. The former is referred to as the “plus” strategy
in the Evolution Strategies (ESs) context, and is elitist by default, as the best individuals
out of both populations are maintained. The latter is called as the “comma” strategy;
if the risk of possibly losing the best solution found can not be assumed, elitism should
be externally added in this case (remembering that the maintenance of the best in the
population will always create a bias in that direction, what might be good, or not).

In case both parent and offspring populations have the same size (m = n) and a
comma-like survival selection is used, the EA is said to be generational, i.e., the entire
population is replaced after each generation. When m > n and n = 1, with a plus-like
survival selection, the algorithm is referred to as being steady-state, behaving in a much
greedier way.

Termination Condition

The termination condition for EAs is commonly related to the available budget, e.g.,
elapsed time, number of generations or fitness evaluations. However, part of this budget
is usually wasted somehow, as follows. As soon as the population converges, i.e., most
of the individuals are very similar (no much diversity can be found into the population),
the search becomes very inefficient, with the best solution being improved just by a lucky
move (random sampling = Monte Carlo).

A more intelligent stopping criterion relies on the convergence measure: as soon as it
is detected, the search can be stopped, possibly restarting from a new random initial pop-
ulation in order to provide more opportunities for the algorithm to find a better solution
within the same available computational budget. There are several ways to account for
population convergence, the simplest one is the number of generations since the last time
a better solution was found (stagnation). A more complex mechanism that can be found
in the GA literature is the “bit-wise average convergence measure” [Goldberg et al., 1995],
which estimates, for each gene, the percentage of individuals presenting the same value,
with the final measure being the average of the values found on all genes; convergence is
detected when this average exceeds some user-defined threshold.

General Representation of Special Cases

After the definition of these general/representation-independent components, it becomes
possible to easily describe EAs well-known to the community, and also to create new
variations [DeJong, 2007]. Besides facilitating the human comprehension, this general
description is also beneficial in practice, when implemented into existing toolkits, as in
the Evolving Objects (EO) library [Keijzer et al., 2002], or in the more recent GUIDE

20

2.4 Popular EA Variants

[Da Costa and Schoenauer, 2009].
For example, a tentative of canonical GA could be described as follows:

� m = n;

� pselect = probabilistic, fitness-proportional (although tournament is more popular
nowadays);

� reprod = crossover and mutation;

� sselect = deterministic, offspring only (equivalent to the “comma” or “generational”
replacement).

Another well-known EA, the standard (µ+ λ)− ES, corresponds to:

� m = µ;

� n = λ;

� pselect = uniform;

� reprod = mutation;

� sselect = deterministic truncation (“plus” replacement method).

2.4 Popular EA Variants

Several EA variants exist, the most popular ones will be briefly described in the fol-
lowing, namely, Evolution Strategies (ESs), Evolutionary Programming (EP), Genetic
Programming (GP), Genetic Algorithms (GAs) and Differential Evolution (DE). A more
detailed description will be done for the latter two, as they are the EAs used in the exper-
imental section of this manuscript (Chapter 6); although the Adaptive Operator Selection
techniques proposed in this thesis, presented in Chapter 5, could be straightforwardly ex-
tended to any of the other EA methods. For the sake of correctness, the “historical” view
of the techniques will be used in their description; however, as already discussed, given the
frequent hybridizations and exchanges between the areas, nowadays it is becoming more
and more difficult to differ between them, a “unified view” of EAs being recommended
[DeJong, 2006].

2.4.1 Evolution Strategies

Evolution Strategies (ESs) [Rechenberg, 1972; Schwefel, 1981] are very popular EAs; they
are mostly applied to numerical (continuous) optimization problems, thus using real-valued
vectors to represent the solutions.

The common alternatives for the crossover are the exchange or the linear recombina-
tion of components, although historically no crossover is used. Oppositely, the mutation is
always applied, being usually a gaussian noise with zero mean and user-defined standard

21

Chapter 2. Evolutionary Algorithms

deviation (also referred to as mutation step-size). Both comma and plus selection strate-
gies are considered, as well as different sizes for the parental and offspring populations,
according to the characteristics of the problem.

It is worthy noting that the state-of-the-art continuous optimizer to date is the Co-
variance Matrix Adaptation - ES (CMA-ES) [Hansen and Ostermeier, 2001], an ES with
a very efficient dynamic control of the mutation step-size, shape and direction. The CMA
and other schemes for automatically adapting the mutation step-size will be briefly dis-
cussed in Section 3.3.4.

2.4.2 Evolutionary Programming

Evolutionary Programming (EP) was originally applied to the evolution of finite state
automata for machine learning problems [Fogel et al., 1966], with representation and vari-
ation operators being specially designed to this kind of search space. More recently, how-
ever, it was adapted to also tackle numerical optimization problems [Fogel, 1995], with just
few details differing it from the ESs, e.g., stochastic instead of deterministic replacement.
Given the higher popularity of ESs, EP is rarely mentioned in the recent literature; most
authors consider it nowadays as a special case of ES.

2.4.3 Genetic Programming

Genetic Programming (GP) [Koza, 1992; Koza, 1994] is known as the EA variant to be
used when evolving programs and logical expressions, using trees with varying sizes to
represent them. Some Lisp-like languages that naturally embody tree structures are fre-
quently used within GP; although other functional languages can also be adapted somehow
to do so.

The evolution engine is very similar to GAs, which will be presented in Section 2.4.4;
special crossover and mutation operators are employed, in order to be able to cope with the
tree representation. As the individuals do not have a fixed size, a very common problem in
GP is the so called bloat, the uncontrolled growth of an individual, with a comprehensive
body of literature being dedicated to its control (see, e.g., [Luke and Panait, 2006]).

2.4.4 Genetic Algorithms

Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989] are by far the most popular
methods. Traditionally, they are used to address combinatorial problems, using the very
general bit-string representation. Other representations can also be employed to facilitate
the translation from phenotype to genotype, consequently making easier the manipulation
of the candidate solutions. For example, for ordering problems like the Traveling Salesman
Problem (TSP), the permutation-based representation is used, in which each gene i corre-
sponds to the object considered as being in the ith position. A very general representation
of a GA in the form of a pseudo-algorithm is shown in Algorithm 2.1.

Each new offspring is usually generated as follows. Firstly, the parents are selected
according to the parental selection method used, e.g., the tournament selection method.
A crossover operator is then applied with probability pc over the two selected parent

22

2.4 Popular EA Variants

Algorithm 2.1: General pseudo-algorithm for a Genetic Algorithm

1: Generate the initial population
2: Evaluate the fitness of all individuals
3: while the stopping condition is not satisfied do
4: for i = 1 to n do
5: parent1 = ParentalSelection(parentPop)
6: if rndreal[0, 1) < pc then
7: repeat
8: parent2 = ParentalSelection(parentPop)
9: until parent2 != parent1

10: offspringPop[i] = Crossover(parent1, parent2)
11: else
12: offspringPop[i] = Copy(parent1)
13: end if
14: if rndreal[0, 1) < pm then
15: offspringPop[i] = Mutation(offspringPop[i])
16: end if
17: end for
18: Evaluate the fitness of all the generated offspring
19: parentPop = SurvivalSelection(parentPop, offspringPop)
20: end while

individuals; the most common crossover operators in this case are the x-point and the
uniform ones. The resulting offspring (a copy of one of the parents in case crossover is
not applied) is then subject to a mutation operator, e.g., a bit-flip or a x-bit mutation,
with probability pm. Finally, for the survival selection, usually a generational procedure
is used, i.e., the entire parental population is replaced by the newly generated offspring
population; another popular method for survival selection in GAs is the steady-state one:
each time an offspring is generated, it instantaneously replaces one of the individuals of
the parental population according to a given criterium, such as fitness or age.

From this description, it can be seen that GAs are very general methods, with too
many degrees of freedom with respect to their parameter choices. We refer the reader to
[Whitley, 1994; Mitchell, 1998] for a more comprehensive introduction and an extensive
theoretical analysis of GAs as known in the early days.

2.4.5 Differential Evolution

Differential Evolution (DE) [Storn and Price, 1997; Price et al., 2005] is a more recent
method proposed to global numerical optimization. As in ES, the solutions are represented
by vectors of real-values. The pseudo-code of the standard DE algorithm is shown in
Algorithm 2.2, where d is the number of decision variables (also referred to as the dimension
of the problem); NP is the population size; F is the mutation scaling factor; CR is the
crossover rate; xi,j is the j-th variable of the solution xi; and ui is the offspring generated
after xi.

Although achieving very good performance on a wide gamma of problems (see, e.g.,

23

Chapter 2. Evolutionary Algorithms

Algorithm 2.2: The Differential Evolution algorithm with DE/rand/1/bin strategy

1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the stopping condition is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 6= r2 6= r3 6= i
6: jrand = rndint(1, d)
7: for j = 1 to d do
8: if rndrealj [0, 1) < CR or j is equal to jrand then
9: ui,j = xr1,j + F ·

(
xr2,j − xr3,j

)

10: else
11: ui,j = xi,j

12: end if
13: end for
14: end for
15: for i = 1 to NP do
16: Evaluate the offspring ui

17: if f(ui) is better than or equal to f(xi) then
18: Replace xi with ui

19: end if
20: end for
21: end while

all the successful applications listed in [Price et al., 2005]), it is a very simple algorithm
To start with, there is no parental selection: each individual in the population is used to
generate one offspring; and there is only one (deterministic) method for survival selection:
each offspring is compared only with its parent, replacing the parent in case it has a better
fitness, sometimes the age of the parent also being considered as a penalty factor.

The generation of an offspring is done by means of mutation and crossover operators.
But, differently from the historical convention used in EAs, the mutation takes into account
the genetic material of two or more individuals, doing some form of sum of weighted (by
the scaling factor F) differences between their components (genes); while the crossover
considers just the parent and the intermediary solution generated after the application of
the mutation operator, usually referred to as the mutant vector.

Many reproduction schemes have been proposed in the literature, using different mu-
tation and/or crossover operators [Price et al., 2005; Storn and Price, 2008]. In order to
distinguish among these schemes, the notation “DE/a/b/c” is commonly used, where “a”
specifies the base vector to be mutated; “b” is the number of difference vectors used by
the mutation strategy; and “c” denotes the crossover scheme, binomial or exponential.
As an example, in Algorithm 2.2, the reproduction scheme used is the “DE/rand/1/bin”
[Price et al., 2005] (see lines 8-12), i.e., the classical “DE/rand/1” mutation strategy, with
the binomial crossover.

Other well-known mutation strategies can be listed as follows:

1. “DE/best/1”: vi = xbest + F ·
(
xr2 − xr3

)

24

2.5 Application Areas

2. “DE/best/2”: vi = xbest + F ·
(
xr2 − xr3

)
+ F ·

(
xr4 − xr5

)

3. “DE/rand/2”: vi = xr1 + F ·
(
xr2 − xr3

)
+ F ·

(
xr4 − xr5

)

4. “DE/current-to-best/1”1: vi = xi + F ·
(
xbest − xi

)
+ F ·

(
xr2 − xr3

)

where xi is the current individual or parent, xbest represents the best individual in the
current generation, xr1 , . . . ,xr5 are different individuals randomly chosen from the current
population.

Concerning the crossover operators, the binomial crossover is similar to the uniform
crossover used in GAs: for each variable of the problem, the offspring receives the value of
the mutant vector with probability CR, from the parent vector otherwise. The exponential
crossover is similar to some extent to the GA two-point crossover: components from the
parent vector are used up to the first crossover point, randomly selected from {1, . . . , d};
then L consecutive components, counted in a circular manner, are copied from the mutant
vector, L being a user-defined parameter; and the rest is taken again from the parent
vector [Zaharie, 2009]. Although the exponential crossover was used in the seminal DE
publication [Storn and Price, 1995], the binomial crossover is much more frequently used
nowadays, being said to be “never worse than exponential” [Storn and Price, 2008].

From this description, it becomes clear that one of the main advantages provided by
DE is its simplicity when compared to other EAs, as many of its intrinsic procedures are
fixed, leaving just three parameters to the user: the population size NP , the mutation
scaling factor F and the crossover rate CR, besides the definition of which reproduction
scheme to use.

2.5 Application Areas

EAs have been successfully applied to many different application fields, as extensively
presented in a recent book completely dedicated to this topic [T. Yu et al., 2008]. Besides
the different “flavors” of optimization, which are by far their most important areas of
application, EAs have also been used as a “source of creativity” in many other areas.
Some of these very diverse application examples will be briefly described in the following.

Combinatorial problems have attracted the attention of EC researchers since the
early days of the field, as many important real-world problems can be modeled in this way,
what makes it a very profitable area. For example, EAs have been used for diverse schedul-
ing problems, such as crew and train scheduling [Semet and Schoenauer, 2006], task plan-
ning [Bibai et al., 2010], etc. Most of its success, however, comes from its hybridization
with local search and Operational Research (OR) heuristics, as exemplified in the prob-
lems of TSP [Merz and Freisleben, 1997], university time-tabling [Abdullah et al., 2007]

and graph-coloring [Porumbel et al., 2010].

In continuous optimization problems, EAs have also greatly shown their value. Spe-
cially after the advent of the state-of-the-art, almost parameter-less, CMA-ES technique

1“DE/current-to-best” is also referred to as “DE/target-to-best/” or “DE/local-to-
best/” [Price et al., 2005; Das et al., 2009].

25

Chapter 2. Evolutionary Algorithms

[Hansen and Ostermeier, 2001], researchers from different domains have been applying
it on their very own problems. A very comprehensive and up-to-date list of applica-
tions of CMA-ES to continuous optimization problems can be found in [Hansen, 2009b],
incredibly counting up to 120 references as of nowadays: very diverse application
fields have already been tackled, such as the optimization of gas turbine combustors
[Hansen et al., 2009c], or the search for the best craniofacial superimposition for foren-
sic identification [Ibanez et al., 2009]

Another domain of increasing attention, specially since the beginning of this decade, is
that of multi-objective optimization. By the use of special fitness evaluation and selec-
tion methods [Deb, 2001], EAs are known to efficiently find the best set of solutions that
satisfies all the objectives under consideration, the so-called Pareto front. An interesting
application example in this context is that of [Singh, 2006], in which EAs are used to
optimize several criteria for the automatic estimation of seismic velocity, a measure used
for the possible discovery of petrol in the underground.

Needless to say, the abilities of (i) handling mixed search spaces, and (ii) having
solutions with variable-length (specially true for GP), enable the use of EAs on prob-
lems out of reach of standard methods. Besides, as in this way there is no constraint
in terms of representation of the solutions, a much more comprehensive (and unbiased)
exploration of huge search spaces can be done, possibly leading to the discovery of so-
lutions that could never be imagined by biological intelligence. In this context, several
examples of results automatically achieved by EAs that are competitive (and often better)
than human performance are presented (and awarded) every year in the so called Humies
competition [Koza, 2010], sometimes even resulting in patentable products, as presented
in [Koza et al., 2000].

For the same reason, EAs have shown interesting results in terms of creativity in the
art and design domains [P.J. Bentley et al., 2002; J. Romero et al., 2007], with examples
ranging from architecture up to music automatically generated by evolution. In such kind
of applications in which the evaluation of the solutions is “subjective” somehow, a human-
in-the-loop is often used to make the role of the fitness function, the so-called Interactive
Evolutionary Computation (IEC). In [Quiroz et al., 2007], for example, the IEC paradigm
is used for the optimization of user interfaces. One of the main problems of this approach
is that of “fatigue”: differently from computers, humans do get tired; different proposals
have been done in order to reduce such effect, as in [Kamalian et al., 2005].

Lastly, an application domain that is inevitably becoming more and more relevant
nowadays is that of sustainable development, where EAs have also shown both their ex-
ploration and optimization efficiencies. As combinatorial examples, we can mention the
optimization of strategies for pollution prevention [Tan, 2007] and the efficient planning
of solid waste management [Yeomans et al., 2003]. It has also been used in the design
of “green” buildings, optimizing all the multiple objectives in mixed search spaces that
such a project might contain, e.g., the reduction of energy and water consumption, as well
as waste and landfill generation [Pitman and King, 2009]. Another example in the same
context is the optimization of the topology and parameters of the electronic components
that constitute a Heating, Ventilating and Air-Conditioning system in order to achieve
better energy efficiency [Angelov et al., 2003].

26

2.6 Discussion

2.6 Discussion

As reviewed in the previous Section, EAs are very general and robust methods, outper-
forming other approaches and achieving interesting results on very different application
domains. It is always unfair, however, to compare their performance with sophisticated
problem-tailored methods on the problems to which the latter were specified to: the
strength of such special methods is always related to the exploration of problem-specific
knowledge, while EAs are general search methods that treat the problem as a black-box
function, using the fitness function as the sole source of information. Consequently, the
problem-tailored methods, as their name says, perform very well just on their very own
problems, while EAs are able to achieve reasonable performance in a much wider range of
problems, what might be preferred depending on the situation.

Anyway, given the mentioned characteristics of EAs, the general recommendations for
their use can be summarized into the following cases, based in [Eiben, 2002]:

� The search space is very big: in such a case, the brute-force approach becomes
prohibitive, consequently turning a (directed) randomized search into a good alter-
native.

� The search space is mixed, i.e., the variables of the problem have different types
(integer and real for example): as discussed in Section 2.3.2, EAs do not have any
restriction with respect to the representation of the candidate solutions, whenever
corresponding variation operators and initialization procedure are provided.

� The variables of the problem interact with each other in a complex non-linear way,
resulting in an objective function with this same characteristic: it is unusual to have
specific sophisticated methods for such cases, as extracting some knowledge from
the gradient of the search is not a trivial task, while possibly leading to a highly
multi-modal fitness landscape (what links to the following item).

� The search space is multi-modal, i.e., with many local optima: the population-based
approach employed by EAs enable the exploration in parallel of several promising
regions, consequently augmenting the probability of discovering the global optimum;
while standard local search methods would tend to get prematurely trapped into
local optima. However, whenever a higher (possibly local) optimum is found, the
selection pressure will bias the entire population towards it; to avoid this undesired
convergence, the maintenance of some diversity into the population needs to be
enforced somehow (see, e.g., the niching methods [Horn, 1997]).

� The optimization problem is dynamic, changing over time: the evolution process
follows the direction being currently given by the fitness function, no matter if it is
static or dynamic, automatically adapting to eventual changes in a transparent way.

� The evaluations are noisy: the evolution is not guided by the evaluation of a single
point, but rather by the “trend” gathered from the evaluation of the many points
considered in the current population, significantly reducing the noise effect. Besides,

27

Chapter 2. Evolutionary Algorithms

in such cases, several re-evaluations might also be performed until a higher confidence
is achieved – indeed, this is a quite common approach, not exclusive to EAs.

It is worthy noting, however, that the use of EAs and other stochastic meta-heuristics
do not guarantee the finding of the truly optimal solution for the problem at hand (unless
an infinite computational budget is assumed). Accordingly, the fact that more time possi-
bly means the discovery of better solutions explains why one of the main known drawbacks
for the use of EAs is their high computational cost. But, no matter the available budget,
a solution is always available at the end, be it suboptimal or not; such important property
is commonly referred to as anytime behavior [Eiben and Smith, 2003].

Another drawback that prevents their broader use is that of parameter setting: the
performance of an EA is directly related to how efficiently it explores the search space,
while also being able to exploit the most promising regions. The so-called Exploration ver-
sus Exploitation (EvE) balance is controlled by several parameters, that usually need to
be defined by the user according to the problem or class of problems at hand. A more com-
prehensive discussion on parameter setting will be presented in Chapter 3, while Chapter
4 will focus on the parameter setting sub-problem that is addressed by the contributions
proposed in this thesis, the Adaptive Operator Selection.

28

Chapter 3

Parameter Setting in EAs

Contents

3.1 Introduction . 30

3.2 Parameters Influence and Possible Settings 31

3.2.1 Parent and Offspring Population Sizes 32

3.2.2 Selection Procedures . 32

3.2.3 Offspring Production . 33

3.2.4 Stopping Criterion . 34

3.2.5 Representation . 34

3.3 Classification of Parameter Setting Techniques 35

3.3.1 Which parameter is changed? . 35

3.3.2 How the changes are made? . 35

Off-line or External Parameter Tuning 35

On-line or Internal Parameter Control 38

3.3.3 Which evidences guide the changes? 40

3.3.4 Which is the scope of the change? 41

3.4 Discussion . 42

29

Chapter 3. Parameter Setting in EAs

In this Chapter, we present a survey about parameter setting in EAs.
The possible influence of the setting of some parameters in the EA
performance is discussed, together with some propositions for their
automatic setting found in the literature. A well-known classifica-
tion of methods for parameter setting in EAs is also described.

3.1 Introduction

In order to efficiently apply an EA to a given problem, there are several parameters
that need to be defined by the user, as surveyed in Chapter 2. In the early days of
research in the area, such parameters were seen as an advantage for the EAs, enabling
their “personalization” according to the characteristics of the problem at hand.

The optimal values for these parameters were usually defined by intuition, based
on rules-of-thumb well known to the community. At the same time, it was be-
lieved that researchers would be able to find problem-independent (or universal) “win-
ner” settings, i.e., parameters values that would provide efficient performance to the
EAs, independently of the application field. In the context of GAs, two very pop-
ular (although very different) “universal settings”, published in [Grefenstette, 1986;
DeJong and Spears, 1990], are compared in Table 3.1.

[DeJong and Spears, 1990] [Grefenstette, 1986]

Population size 50 30
Number of generations 1000 not specified
Crossover type (typically) 2-point (typically) 2-point
Crossover rate 0.6 0.9
Mutation types bit-flip bit-flip
Mutation rate 0.001 0.01

Table 3.1: Two examples of static set of parameters for GAs

However, many further works were published in the following, presenting very dif-
ferent settings for particular problems, consequently putting into question the sci-
entific relevance of the mentioned works. The No Free Lunch (NFL) theorem
[Wolpert and Macready, 1997] put an end to this quest for an universal setting, by
stating that, roughly, there is no “best algorithm” that solves all problems bet-
ter than any other. This might be seen as the unique very well-accepted contri-
bution brought by the establishment of the NFL theorem; indeed, it is hardly con-
sidered in practice, with several extensions and contradictions having being pub-
lished since then (see, e.g., [Auger and Teytaud, 2010; Christensen and Oppacher, 2001;
Whitley and Watson, 2005]).

Accordingly, the contemporary view of EAs acknowledges that specific (sometimes
classes of) problems require specific setups for satisfactory

30

3.2 Parameters Influence and Possible Settings

performance [Eiben et al., 2007]: when it comes to solving a given problem, parameter
setting is viewed as the Achilles’ heel of EAs, on par with their high computational cost.

This is the main reason to the fact that EAs are very rarely used outside the “evolution-
ary research labs”. Although being tempted by the several empirical demonstrations of the
efficiency of EAs on many difficult problems out of reach of other optimization methods,
scientists from other domains very often fail in getting interesting results, mainly because
of the lack of general methods for tuning at least some of the involved parameters, and
also because they are not, and do not want to become, “Evolutionary Engineers”.

From these observations, parameter setting in EAs appears actually as a major issue
that has deserved much attention during recent years [Eiben et al., 1999], and research
is still very active nowadays, as witnessed by a complete edited book that has been re-
cently published [Lobo et al., 2007], and by the numerous recent references cited in this
document. These contributions, proposed to automate or guide somehow the definition of
the parameters, intend to make the EAs to Cross the Chasm [Moore, 1991], enabling the
whole scientific community to benefit from their use without their main burden, that of
parameter setting.

The following of this Chapter summarizes the research in the field of parameter setting
within EAs. Firstly, an overview of the influence of some of the most important parame-
ters on the performance of the EAs, and some examples of what has already been done to
automate their setting, are presented in Section 3.2. Then, in Section 3.3, a well-accepted
classification of the different ways of doing parameter setting within EAs is described.
The Chapter is concluded in Section 3.4, with some further discussions about the topic of
parameter setting in EAs. All this material helps into contextualizing the main contribu-
tions of this work, the bandit-based methods for Adaptive Operator Selection, described
in the following Chapter.

3.2 Parameters Influence and Possible Settings

The EAs presented in Chapter 2 were conceived for different purposes, providing different
behaviors. The main difference between them lies in the way the solutions are represented,
e.g., standard GAs use binary representation, ESs represent the solutions by vectors of
real values, while GP implements tree-based representations. Nowadays, however, original
ideas were combined, and it is becoming more and more difficult to differ between EAs.
Because of this, [DeJong, 2006] proposes an unified view of such algorithms.

Unified or not, the EAs do have some common structures and parameters, which are
independent from the representation being used, as presented in Section 2.3.3. Since the
parameter setting techniques presented in the following of this document are not meant
to work with just one kind of EA, we briefly discuss here about the influence of these
common representation-independent parameters on the search process.

All these parameters affect somehow the Exploration versus Exploitation (EvE) bal-
ance: intuitively, as discussed throughout the text, the EA should explore the search space
in the early stages of evolution, gradually migrating to a more focused exploitation of the
promising regions. The objective of this Section is not to describe these parameters, as it

31

Chapter 3. Parameter Setting in EAs

was already done in Section 2.3.3, but rather to extend a bit on their influence on the EvE
balance, and consequently on the performance of EAs, based on [DeJong, 2007]. Besides,
some possibilities of parameter setting are also presented, including a brief bibliographic
review for each of them.

3.2.1 Parent and Offspring Population Sizes

A small parent population size m does not enable a good exploration of the (usually very
big) search space, possibly converging prematurely to a local optimum; while a bigger m
provides a higher probability of finding a global optimum, as multiple peaks might be
simultaneously explored. Having a bigger population, however, might slow down the con-
vergence by the fact that more evaluations are needed at each generation. A compromise
between both needs to be found.

Following the EvE balance intuition, ideally, the population should be big in the
beginning, enabling a better exploration of the search space, with its size decreas-
ing (thus focusing on the most promising regions) as the search goes on. How-
ever, according to [DeJong, 2007], the dynamic adaptation of the population size
was found to be a difficult task, due to several interacting factors, e.g., selec-
tion pressure [Eiben et al., 2006], noisy fitness landscapes [Goldberg et al., 1992], the
fact that generations overlap (“plus” replacement) or not (“comma”/generational re-
placement) [Schwefel, 1995], etc [Arabas et al., 1994; Smith, 1993; Eiben et al., 2004;
Bäck et al., 2000].

Still from the EvE balance point-of-view, the parent population represents which re-
gions of the search space are being currently explored, while the ratio between its size
m and the offspring population size n defines the amount of exploration done by it at
each generation. The ideas and methods proposed for the adaptation of the parent pop-
ulation size are also valid for the size of the offspring population; we refer the reader
to [Jansen et al., 2005] for a comprehensive analysis and some specific proposals for the
dynamic adaptation of this parameter.

3.2.2 Selection Procedures

As previously presented in Sections 2.3.3 and 2.3.3, there exist several families of selection
procedures for both, the parent selection pselect and the replacement or survivors selection
sselect (see Section 2.3.3), e.g., fitness-proportional (or roulette-wheel) selection, rank-
based selection, tournament selection. Defining which of them to use within an EA for the
problem at hand is already a complex choice; in addition, there are still the sub-parameters
to be tuned.

As for the other parameters, the migration from exploration to exploitation is related
to the level of selection pressure that is exerted, i.e., less selection, more exploration, and
vice-versa. In the case of the standard tournament selection, for example, as described
in Section 2.3.3, the smaller the tournament size T (i.e., the less individuals are chosen
to participate in the tournament), the more random the selection is; oppositely, higher is
the T , higher is the chance of the better individuals being considered, consequently more

32

3.2 Parameters Influence and Possible Settings

elitist is the selection process. Along the same lines, the probability t of selecting the best
individual between the two chosen individuals in the stochastic tournament selection can
range from a totally random selection (t = 0.5) to a completely elitist strategy (t = 1).

However, the control of such selection pressure is not ruled simply by the setting of
these parameters; indeed, it is defined by the combined effects of both parent and replace-
ment selection procedures, not mentioning other interacting effects, such as the population
size [Eiben et al., 2006]. This complexity might be the reason why so few references can be
found on the dynamic adaptation of the selection pressure. In [Herrera and Lozano, 1998],
a fuzzy model is used to automatically control the tournament size, based on the geno-
typic and phenotypic diversity measures; more recent works propose [Eiben et al., 2006]

and better empirically validate [Vajda et al., 2008] a hybrid self-adaptive tournament size
which achieves much better results than the fuzzy model, being referred to as hybrid by the
fact that the parameter control is done by a combination of self-adaptation and feedback-
based or adaptive control (see Section 3.3.2 for a brief overview of the different ways of
doing parameter control). After the proof-of-principle presented on these latter references,
the use of parameter control for selection methods has shown to be a viable path to be
further explored towards more efficient and easier-to-tune EAs [Vajda et al., 2008].

3.2.3 Offspring Production

The procedure for offspring production, reprod, can be classified as representation-
dependent, as the variation operators need to be defined according to the representation
being used in order to be able to generate feasible solutions. The application of these
operators directly impact the EvE balance, consequently affecting the effects provided
by all the previously mentioned parameters [DeJong, 2007], as follows: while the selec-
tion pressure tends to reduce the population diversity, variation operators are responsible
for counter-balancing this effect by, as their name says, introducing variation into the
population; the quantity of novelty to be possibly introduced, however, depends on the
population size and on the level of diversity in the current population.

Such correlation between the parameters makes it very complex to decide which opera-
tors should be included in the EA algorithmic framework for a given problem, and how to
set their sub-parameters. Adding this possible correlation to the stochastic nature of the
underlying algorithm, it becomes very difficult to know a priori how a given operator (with
a given configuration) will behave during the search process; besides, different operators
(or different configurations of the same operator) might perform differently at different
stages of the search, according to the characteristics of the region of the fitness landscape
currently being explored by the population.

An alternative to take this decision out of the user’s burden is to automatically adapt
the internal parameters of a given operator. In the context of ESs, for example, the
variance of the gaussian mutation operator has been automatically adapted since the early
days, starting with the “1/5th success rule” [Schwefel, 1975], until the advent of the very
popular and current state-of-the-art CMA-ES [Hansen and Ostermeier, 2001]. This latter
is, indeed, the most (and almost unique) successful case of a parameter control technique
within EAs to date, after more than 30 years of research in the area [DeJong, 2007].

33

Chapter 3. Parameter Setting in EAs

Another plausible approach is to maintain a collection of operators, and to dynamically
select the ones that are affecting the search process in a more beneficial way [DeJong, 2007].
The selection of which operator among the several available operators should be used, what
we here refer to as Adaptive Operator Selection (AOS), is representation-independent. Ac-
cordingly, the AOS methods proposed in this thesis can be applied to any of the existent
or newly proposed EAs1 – as a representative set, in Chapter 6 we show their use within
GAs and DE. Following the intuition, ideally, the dynamic selection of operators should
promote the use of the more explorative operators in the beginning, preferring the less per-
turbative ones (exploitation) in the later stages of the search. An extensive bibliographic
review on this, which is the central topic of this thesis, is presented in Chapter 4.

3.2.4 Stopping Criterion

The stopping conditions do not affect the EvE balance; indeed, they define how the com-
putational budget is spent, as discussed earlier in Section 2.3.3.

This is a clear example of a representation-independent component that could be de-
fined in a more autonomous way, although depending on a representation-based criterion,
the population diversity. Anyway, works proposing the dynamic adaptation of this param-
eter were not found in the literature; fixed strategies are commonly used, being defined
after an expensive off-line tuning phase (see Section 3.3.2) or more frequently via intuition
and/or budget constraints.

3.2.5 Representation

One of the main choices is very probably how to represent (and consequently manipulate)
the candidate solutions of a given problem. Although greatly affecting the performance of
EAs, the representation is very often defined a priori, guided by a large body of literature
[DeJong, 2007]. Such definition is often static, with very few works considering its dynamic
adaptation during the search process.

The effects of the adaptation of the representation can be said to be two-fold. On
the one hand, it can be used to improve the effectiveness of operators, by adapting the
representation according to the characteristics of the operator, like in the Messy-GAs
[Goldberg et al., 1991], in which the position of the genes on the chromosome are con-
stantly modified while solving the problem so that the 1-point crossover operator main-
tains its good performance throughout the search process. On the other hand, it can also
be used to bring (or contribute into maintaining) invariance properties to the EAs, as in
the recent Adaptive Encoding method [Hansen, 2008], which provides, to any continuous
search algorithm, invariance with respect to rotation over a given problem function, based
on the CMA-ES.

1Indeed, the proposed AOS techniques can also be extended to other local search heuristics, but this
discussion is out of the scope of the current Section.

34

3.3 Classification of Parameter Setting Techniques

3.3 Classification of Parameter Setting Techniques

Very different parameter setting methods have already shown their usefulness in the lit-
erature by automatically setting representation-independent and also algorithm-specific
parameters of EAs. A classification of these techniques, proposed in [Eiben et al., 1999],
and later revised in [Eiben et al., 2007], is very well-accepted by the community, as ac-
knowledged by the number of citations it received. Since it is used to classify the methods
proposed in this work, it is reminded in the following, for the sake of self-containedness.

It categorizes the parameter setting methods according to four different aspects, listed
as follows: (i) Which parameter is changed? (ii) How the changes are made? And more
precisely for the parameter control techniques: (iii) Which evidences guide the changes?
(iv) And which is the scope of the change? Each of these aspects will be briefly discussed
in the following.

3.3.1 Which parameter is changed?

The first criterion adopted for the classification concerns which component or parameter
of the EA is being changed. Although there is no standard list of components, we consider
here the components described in Section 3.2.

As already mentioned, each of the listed parameters might also have some sub-
parameters, e.g., number of bits to be flipped by the bit-flip mutation operator, tour-
nament size for the tournament selection, etc. However, the objective of this classification
is rather to be able to easily locate, within the standard EA loop, which steps are affected
(hopefully improved) by the proposed changes.

The Adaptive Operator Selection techniques proposed in this work provide to the user
an autonomous control of the use of the available variation operators, which can be seen as
an adaptation of their application rates (despite the fact that the proposed bandit-based
techniques, presented in Chapter 5, do not rely on probabilities for the operator selection).

3.3.2 How the changes are made?

The changes in the parameter values can be made, mainly, in two different ways, as
illustrated in Fig. 3.1: before the main run of the algorithm on the given problem,
referred to as off-line or external parameter tuning; or during the run, while solving the
problem, referred to as on-line or internal parameter control. A brief description about
each of them is presented in the following.

Off-line or External Parameter Tuning

Methods that perform off-line or external tuning determine a priori the appropriate pa-
rameter values, based on the results of several runs of this algorithm. The algorithm to be
tuned is usually considered as a black box, with the tuning method guiding the exploration
of the search space of the parameter values. Off-line tuning methods can be further sub-
divided into two main classes: pure statistical methods, and optimization methods, which

35

Chapter 3. Parameter Setting in EAs

Figure 3.1: Classification of parameter setting methods, from [Eiben et al., 1999].

treat the parameter tuning as an optimization problem itself; some prominent examples
for each of them are briefly described in the following.

Starting with the statistical methods, the most basic (and computationally expensive)
way of doing so lies in the execution of a complete Design of Experiments (DoE) pro-
cess, which can also be referred to as a factorial design, or even a brute-force approach:
the parameter values are discretized into m candidate configurations, each of them is in-
dependently assessed n times, and the best configuration is extracted according to some
ANOVA-like statistical test over this m×n performance data. In practice, it becomes very
computationally expensive to tune even just a few parameters, e.g., by considering just 4
parameters, each parameter with 5 possible values, will already lead to 54 = 625 candidate
configurations to try out (not considering possible cross-influences between parameters).

The Racing techniques [Birattari et al., 2002; Yuan and Gallagher, 2004] do basically
the same, but in a much less time-consuming way, as follows. As in the DoE, the pa-
rameter values are also discretized into m candidate configurations. But, as soon as a
candidate configuration is statistically found to be significantly worst than the current
best configuration (after some runs, depending on the variance of the achieved results),
there is no need to keep further assessing it; this configuration is thus eliminated from
the tuning process. In this way, the computational resources are more efficiently used, fo-
cusing just on the most promising candidate configurations, consequently leading to lower
variance performance estimates for them. The use of this approach results into important
time savings, as illustrated in Fig. 3.2. The x-axis Θ represents the number of remaining
candidate configurations, and the y-axis “i” shows the number of evaluations or “racing
laps” done for each of them; the amount of computation needed for both, the F-Race
[Birattari et al., 2002] and the brute-force approaches, are represented by the areas of
their respective surfaces.

A prominent example of Racing techniques is the F-Race [Birattari et al., 2002], which
uses the “Friedman’s two-way analysis of variance by ranks” as statistical test to eliminate
candidate configurations. This is the method used to tune all the hyper-parameters of the
proposed and baseline AOS techniques for the empirical comparisons presented in Chapter
6, as described in Section 6.2.2.

36

3.3 Classification of Parameter Setting Techniques

Figure 3.2: A visual representation comparing the amount of computation needed by
the brute-force approach (dashed rectangle) and the F-Race method (shadowed area),
reproduced from [Birattari et al., 2002].

But, although saving a significative amount of computational budget, the use of the
F-Race technique can become computationally prohibitive whenever there is a large num-
ber of parameters and a wide range of possible values for each parameter, as some initial
runs need to be done for each candidate configuration before the first elimination round.
A very simple alternative proposed to this problem is the use of a sampling of the whole
set of configurations [Balaprakash et al., 2007]. In case a priori knowledge about the con-
figurations search space is available, it can be used to define the probabilities of sampling
each configuration; however, as this is usually not the case (and remembering that a
priori information might also include a wrong bias in the search, as discussed in Section
2.3.2), the authors propose the use of a completely random sampling of the configurations.
The resulting method is referred to as Random Sampling Design F-Race (RSD/F-Race)
[Balaprakash et al., 2007].

An alternative to the parameter tuning problem, as previously mentioned, is to con-
sider it as an optimization problem on its own, i.e., by varying the parameter val-
ues, the objective is usually to optimize some measure, such as the performance of
the algorithm over a given problem or class of problems, or its robustness with re-
spect to several problems, etc. Based on this, it becomes straightforward to think
about the use of optimization methods for this task, thus at a higher level of ab-
straction, commonly referred to as the “meta” or “hyper” level. EAs themselves
have already been used to do so, defining the so-called Meta-EAs [Clune et al., 2005;
Yuan and Gallagher, 2007]. The problem in this case lies in how to define the parameters
of the EA in the meta-level.

The ParamILS [Hutter et al., 2009] method uses an iterated local search algorithm to
explore the neighborhood of the best parameter values found so far, using some random
perturbations and restarting the search from time to time (according to a user-defined
probability) to enforce a better coverage of the search space. Its very general idea, com-
bined with an adaptive limiting of the time spent for evaluating individual configurations,
enables it to be used on very different situations: indeed, it was already shown to efficiently
tune algorithms with up to 1037 configurations [Hutter et al., 2009].

Along the same lines, another popular optimization method used to off-line tuning,
the Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al., 2005], combines

37

Chapter 3. Parameter Setting in EAs

modern statistical approaches for deterministic algorithms as the Design and Analysis
of Computer Experiments (DACE) with classical regression techniques in order to tune
stochastic algorithms such as EAs. The set of candidate configurations being assessed is
constantly refined during the tuning procedure, what is done by means of Gaussian pro-
cesses, with some configurations being eliminated and new ones being inserted in the pool
according to the current model of the parameter space. At a higher level of abstraction,
rather than simply a tuning method, the SPO can also be seen as a methodology for the
empirical analysis of stochastic optimization algorithms, providing to the experimenter a
very well-defined twelve-step procedure.

Another model-based optimization method applied to parameter tuning is the Iterated
F-Race (I/F-Race) [Balaprakash et al., 2007; Birattari et al., 2009], which is yet another
improved variant of the F-Race, more complex although more efficient than the RSD/F-
Race approach. Starting from the initial set of possible parameter values for each param-
eter (as done in the original F-Race), at each iteration, some efficient configurations are
used to update a probabilistic model about the configurations search space. This model is
then used to generate new candidates, consequently biasing the search towards the most
promising parameter configurations.

A very different approach is proposed by the Relevance Estimation and Value Cal-
ibration (REVAC) method [Nannen and Eiben, 2007]. It uses Shannon and differential
entropy in order to find parameters with higher impact on the performance of the algo-
rithm, while also estimating the utility of their possible values. Thus, besides tuning the
parameters of the algorithm, it provides to the user a high-level information about their
relevance, which can in turn be used in order to better allocate the resources for their
calibration, e.g., by providing more resources for the tuning of the most important or
sensitive parameters.

All these methods have already proved their efficiency and usefulness in different ways
in the literature. An advantage provided by them is that, as they use just generic per-
formance measures, they are not limited to EAs, being possibly applied to many other
stochastic algorithms, while being also very easily combined; in [Smit and Eiben, 2009],
e.g., an extensive empirical comparison is presented between different pure and hybrid off-
line tuning methods, including meta-EAs, REVAC, SPO and Racing. However, given the
stochastic nature of EAs, each performance assessment corresponds in fact to the average
of a few evolutionary runs, what makes the off-line tuning a very expensive procedure.
Furthermore, static settings are usually provided by these methods (the parameter value
is fixed along the run), whereas the optimal setting likely depends on the local landscape
being explored by the population, as previously discussed.

On-line or Internal Parameter Control

Internal parameter control methods work directly on the values of the parameters while
solving the problem, i.e., on-line. Such kind of mechanisms for modifying parameters
during an algorithm execution were invented early in EC history, and most of them are
still being investigated nowadays. Indeed, there is at least two strong arguments to support
the idea of changing the parameters during an EA run:

38

3.3 Classification of Parameter Setting Techniques

� As evolution proceeds, more information about the algorithm behavior within the
current fitness landscape is known, so it should be possible to take advantage of it.
This applies to global (for example, knowing how rugged is the landscape) and to
local properties (for example, knowing whether a solution has been improved lately
or not).

� As the algorithm proceeds from a global (early) exploration of the landscape to a
more focused, exploitation-like behavior, the parameters should be adjusted to take
care of this new reality. This is quite obvious, and it has been empirically and
theoretically demonstrated that different values of parameters might be optimal at
different stages of the search process (see [Eiben et al., 2007] and references therein).

The different approaches that have been proposed to internally adapt the parameters
can be gathered into three categories, depending on the type of information used for the
adjustment of the parameters values, as presented in Fig. 3.1 [Eiben et al., 2007]. Each
category is briefly reminded in the following, including some examples in the context of
variation operators adaptation.

Deterministic parameter control implements a set of deterministic rules without any
feedback from the search. This is, in general, hard to achieve, because of a simple reason:
it relies heavily on knowing beforehand how long the EA will take to achieve a given target
solution with the running algorithm, what can not be easily predicted. But even if it were,
the way to balance exploration and exploitation can hardly be guessed. This situation is
worsened by two facts: first, given the stochastic nature of EAs, there is usually a big
variance between different runs on the very same problem; and second, these methods of-
ten require additional parameters that are used to tune the deterministic parameter itself
(starting with the total number of generations the algorithm will run), and even though
these parameters can be considered second-order, their influence is nevertheless critical.
Given these difficulties, these methods were mainly used in the early days of research in
the area, as in [Hesser and Männer, 1990], in which a theoretically optimal schedule was
proposed to deterministically adapt the mutation application rate, based on the elapsed
number of generations.

Since our knowledge about the way the search should behave is always limited, it is
sometimes possible, and advantageous, to let evolution itself tune some of the parameters:
this kind of parameter control approach, referred to as Self-Adaptive, adjusts parameters
“for free”, i.e., without any direct specification of the user. In other words, individuals
in the population might contain “regulatory genes” that control some of the parameters,
e.g., the mutation and recombination rates; and these regulatory genes would be subject
to the same evolutionary processes as the rest of the genome [DeJong, 2007]. During quite
some time in the 90s, self-adaptation was considered as the royal road to success in Evo-
lutionary Computation. First of all, the idea that the parameters are adapted for free is
very appealing, and the parallel with self-regulated genes is another suggestive argument.
On the practical side, as self-adaptive methods require little knowledge about the prob-
lem and, what is probably more important, about the way the search should proceed, it

39

Chapter 3. Parameter Setting in EAs

sometimes remains the only way to go when nothing is actually known about the prob-
lem at hand. As an early example, in [Bäck, 1992], each individual’s representation was
extended by 20 additional bits, which were used to encode its own self-adapted mutation
rate, a real value between 0 and 0.5. In [Spears, 1995], a single bit was used to represent
which of two crossover operators (uniform or 2-points) should be applied, resulting in a
much better performance than the one achieved by the static use of a single operator. A
very recent and comprehensive review of the current state of research on self-adaptation
methods, with special hints for its use within combinatorial problems, can be found in
[Smith, 2008]. Although having shown to be an efficient approach in many different situ-
ations, the main drawback is that the algorithm needs to explore, in parallel, the search
space of the variables of the problem and also the search space of the parameter values,
what potentially increases the complexity of the search.

Then, it becomes clear that whenever some decisions can be made to help the search
following an efficient path, this should be done. Adaptive or Feedback-based methods
follow this rationale, being the most successful approaches nowadays in on-line parame-
ter tuning. These methods are based on the monitoring of particular properties of the
search/optimization process, and use changes in these properties as an input signal to
change the parameter values. The most prominent example of adaptive methods, and
one of the main very well-established successful stories of automatic parameter control
within EAs, is that of CMA-ES [Hansen and Ostermeier, 2001], in which informations
about the gradient and the trajectory of the search are used to automatically adapt the
step-size and the shape of the ES mutation operator. Lots of achievements have been
being reported also by the Operational Research and Local Search communities, in which
the adaptive methods are referred to as “Reactive Search”; a recent survey on this can be
found in [Battiti et al., 2008]. The main contributions of this work, the Adaptive Opera-
tor Selection (AOS) methods proposed in Chapter 5, are included in this latter category.
Besides, a comprehensive bibliographic review on the topic, with several other examples,
is presented in Chapter 4.

3.3.3 Which evidences guide the changes?

When using adaptive parameter control techniques, the parameter values are adapted
based on the monitoring of some measures of the progress of the search. A further criterion
commonly used to classify these techniques is the kind of evidences which are used to guide
these changes done while solving the problem [Smith, 1998]. Using as example the AOS
techniques proposed in the following of this work, this feedback from the search progress
can be provided in two different ways, as follows.

The most common Credit Assignment scheme for AOS considers the real values of
the fitness improvements achieved by the application of each operator. Starting from the
common Instantaneous and Average values, up to the use of Extreme values supported
by us (see Section 5.2.2), all of them reward the operator (and consequently guide the
changes in the operators preferences) based on raw values, which are absolute evidences.

Differently, the Credit Assignment that use ranks over the raw values of the fitness

40

3.3 Classification of Parameter Setting Techniques

improvements, as presented in Section 5.2.4, control the choice of operators based on
the ranking of the same fitness improvements. Thus, it is not the magnitude of the
improvement brought by the application of the operator that matters, but rather how
good it is with respect to the others, what is referred to as relative evidence.

3.3.4 Which is the scope of the change?

Yet another aspect used to classify parameter control techniques lies in the scope of the
adaptation being done. According to [Angeline, 1995], the adaptation might happen at
the level of the population, the individual, or the component. This factor is not only
related to the parameter control method itself, but also to the parameter that is being
adapted, as acknowledged in [Eiben et al., 2007].

At the population level there are the methods that adapt global parameters, i.e., pa-
rameters affecting the whole population. A very early example of adaptive method at
the population level is the so-called “1/5th success rule” [Schwefel, 1975]: if the applica-
tions of the mutation operator succeed in generating offsprings that are fitter than their
respective parents in more than 1/5 of the trials, the mutation step-size should be in-
creased by an user-defined fixed ratio, decreased otherwise. The recent state-of-the-art
CMA-ES [Hansen and Ostermeier, 2001], which adapts the step-size and the “shape” (de-
fined by a Hessian matrix) of the mutation operator based on the results of its latest
applications is another example of an adaptive method affecting the whole population.
The AOS techniques presented in this thesis also act at the population level, adapting
the operators application rates which are globally used for the generation of every new
candidate solution. Rather than adapting somehow the operators application step, in
[Eiben and van Hemert, 1999] the SAW method is proposed to globally adapt the fitness
function for constraint satisfaction problems, what is done by dynamically changing the
weight of each gene (representing a constraint) on the fitness function, with the harder
constraints affecting more highly the fitness evaluation, consequently resulting in a higher
reward for the creation of individuals that succeed in satisfying them.

The methods at the individual level control parameters that locally affect each individ-
ual. As an example, the self-adaptive methods that encode the (GAs) operators application
rates [Spears, 1995] or the (ESs) mutation step-size [Beyer, 1995], within the genotype of
each individual, affect just the candidate solution to which they are attached to. A recent
example of adaptive method that affects each solution individually is the Multi-Objective
(MO) CMA-ES [Igel et al., 2007]: briefly, the same adaptation implemented by the origi-
nal CMA-ES is used to adapt the mutation operator carried by each individual, whenever
its application is successful, i.e., whenever it succeeds in generating a fitter offspring.

At the lowest level of abstraction considered here, there are also methods that adapt
parameters within an individual, at the so-called component level. Exemplifying, in
[Schwefel, 1995] a self-adaptive ES was proposed, in which each element of the real-valued
vector representation has a variance parameter attached to it; thus, each gene of the
individual is mutated according to its own self-adapted variance parameter.

The hyper level could also be considered here, as recommended in [Maturana, 2009],
aggregating the recent methods that control the usage of several heuristics in different

41

Chapter 3. Parameter Setting in EAs

ways, referred to as hyper-heuristics [Burke et al., 2010].

3.4 Discussion

As discussed throughout this Chapter, the performance of the EAs is directly related to
how the Exploration versus Exploitation (EvE) balance is addressed by the algorithm: if
too much exploration is done, the search will very probably take too long to achieve the
optimum; while if too much exploitation is done, the search is very likely to prematurely
converge to a local optimum. To achieve an acceptable performance, a compromise be-
tween both terms needs to be found, what is controlled by some of the EA parameters, as
described in Section 3.2.

After the No Free Lunch theorem [Wolpert and Macready, 1997], it is acknowledged
that there is no algorithm that performs best over all optimization problems. Considering
two instances of the same EA with different parameter settings as two different algorithms,
it states thus that there is no winner universal parameter setting, i.e., specific problems
require specific parameter settings. These findings lead to a kind of dilemma: in order
to manually setup the parameters of the EA according to the problem at hand, the user
would need to analyze and understand the characteristics of the problem; while one of the
main reasons for the use of EAs and other meta-heuristics is, indeed, the lack of knowledge
about the problem. Avoiding such dilemma, by automating the task of parameter setting,
is thus one of the main motivations for research on this topic.

After the analysis of the influence of the parameters in the performance of EAs, how-
ever, it can be said that almost all of them affect the EvE balance somehow, with one
parameter counter-balancing or intensifying the effects of the other. This interaction makes
more complex the task of automatic parameter setting, being one of the main reasons why
just very few works try to address more than one parameter at the same time.

Parameter setting in EAs can be done mainly in two different ways, as described in
Section 3.3. Off-line parameter tuning methods consider the EA as a black-box, using just
the performance of the algorithm (usually averaged over several runs given its stochastic
nature) in order to choose the best set of parameters, which are usually “statically” used
during the whole search process; while, intuitively, the EvE balance of the algorithm
should be continuously modified while solving the problem, gradually switching between
exploration and exploitation according to the progress of the search. This on-line dynamic
adaptation is what is provided by the so-called parameter control methods, category in
which the contributions proposed in this work are included. From these observations, it
is important to note that, even in the case of static problems, they become dynamic from
the point of view of the parameter setting task, thus being another motivation for the use
of dynamic strategies. Needless to say, an even higher payoff might be achieved in the
cases in which the problem itself is dynamic, with its fitness landscape changing over time
[DeJong, 2007].

The methods proposed for the automatic parameter setting, however, present their
own parameters that also need to be defined by the user, referred to as hyper-parameters
in the following of this text. Although it might seem not so interesting to replace some

42

3.4 Discussion

parameters by others, the hyper-parameters are at a higher level of abstraction, being
thus (ideally) more easily “understood” by the user and less sensitive than the original
EA parameters with respect to their tuning. For example, in the case of the Adaptive
Operator Selection techniques proposed in this work, described in Chapter 5, two or three
hyper-parameters (depending on the method) need to be configured, while in the original
EA framework the user would need to define a very complex and problem-specific scheduler
in order to have the same kind of adaptive behavior. These hyper-parameters can then
be tuned by off-line tuning methods, as done for the experimental comparison presented
in Chapter 6; or extra layers of parameter control could be added, what is always worthy
whenever the assumptions about the easier comprehension and smaller sensitivity of the
higher-level parameters with respect to the lower-level ones are held.

Although not being part of the scope of this thesis, another viable path for the pa-
rameter setting in EAs would be to try to build a knowledge base correlating somehow
the parameters of the problem instances solved (the so-called problem descriptors) with
the respective parameters used by the algorithm to achieve good performance. In this
way, after logging data from a ”sufficient” amount of instances and parameters, when-
ever a new instance that needs to be solved is recognized as part of a certain class of
problems, the parameter values that were already optimized to a previously seen instance
of the same class can be re-used, thus no need of further tuning it. Such kind of ap-
proach has been successfully applied in the domain of SAT heuristics and problems (see,
e.g.,[Hutter and Hamadi, 2005]); however, to the best of our knowledge, there does not
exist yet a well-established set of descriptors for the kind of instances commonly tackled
by EAs, being thus a possible path for further research.

43

Chapter 4

Adaptive Operator Selection

Contents

4.1 Introduction . 46

4.2 Adaptive Operator Selection . 47

4.3 Credit Assignment . 48

4.3.1 How to measure the Impact? . 48

4.3.2 How to assign Credit? . 49

4.3.3 Whom to assign Credit to? . 50

4.3.4 Compass: Aggregating Fitness and Diversity 51

4.4 Operator Selection . 52

4.4.1 Probability Matching . 52

4.4.2 Adaptive Pursuit . 54

4.5 Some Adaptive Operator Selection Combinations 56

4.5.1 Fitness-based Approaches . 56

4.5.2 Diversity-based Approaches . 58

4.5.3 Fuzzy-based Approaches . 60

4.5.4 Other Approaches . 61

4.5.5 AOS within Other Evolutionary Algorithms 61

4.6 Discussion . 62

45

Chapter 4. Adaptive Operator Selection

In this Chapter, we focus on the parameter setting problem addressed
by our contributions, referred to as Adaptive Operator Selection
(AOS). The components needed to do AOS, namely, the Opera-
tor Selection and the Credit Assignment, are described, and some
examples found in the literature are surveyed.

4.1 Introduction

In order to efficiently apply an EA to a given problem, there are commonly two design
choices that need to be done by the user concerning the variation operators: (i) which of
the existent operators should be used by the evolutionary scheme for the generation of
new solutions, and (ii) at which rate each of the chosen operators should be applied. As
discussed in Section 2.3.2, there are different kinds of operators for each representation
scheme, namely mutation and crossover operators (not mentioning the problem-specific
and/or the local search operators). Each one of them has its own characteristics, affecting
the Exploration versus Exploitation (EvE) balance in its own manner, as also briefly
discussed in Section 3.2.3. This scenario makes these operator-related choices very sensitive
and complex, as follows.

First of all, the performance of a given operator usually depends on the characteristics
of the problem being solved. Since it is very difficult to foresee a priori how well a given
operator will perform on the problem at hand, the natural choice in this sense would be
to use an off-line tuning technique, such as the ones surveyed in Section 3.3.2, in order to
find out which operator(s) should be used, and how. Although being very computationally
expensive, these off-line methods usually succeed in providing to the user the best static
strategy, consisting of one or a few operators that are applied at fixed rates during the
whole search process.

However, the performance of the operators in fact does not solely depend on the global
characteristics of the problem, but rather on the local characteristics of the region of
the search space that is being currently explored by the population, which can be more
adapted or not to the characteristics of the operator. Finally, their performance also
depends on the state of the search process, i.e., if it is approaching or not the optimum,
how diverse the population is, etc. For example, following the very basic intuition of the
EvE balance, already discussed in Section 3.2.3, more exploratory operators might achieve
better performance in the early stages of the search, while more exploitation-like/fine-
tuning operators might bring better improvements to the search when it is getting closer
to the optimum. Based on these issues and on the stochastic nature of the underlying
algorithms (one run might be very different from another on the very same problem), the
static strategies provided by the off-line tuning methods tend to perform sub-optimally:
ideally, the choice of the best operator to be applied should be continuously adapted while
solving the problem, i.e., in an on-line fashion.

On-line parameter setting methods are commonly referred to as Parameter Control
[Eiben et al., 2007]; there are different ways of dynamically doing so, namely, in a self-

46

4.2 Adaptive Operator Selection

adaptive or in an adaptive manner, as reviewed in Section 3.3.2. The self-adaptive methods
have the advantage of tuning the parameters “for free”, by the evolution itself, adapting
the best operator according to the region being “locally” explored by each individual
solution; however, besides augmenting the overall complexity of the problem to be solved
by aggregating the solutions search space with the parameters search space, these methods
are intrinsically linked to the EA structure. Oppositely, the adaptive methods might be
more complex to implement, while presenting a few hyper-parameters that also need to
be tuned; but they consider the problem search space as it is; and since the adaptation of
the parameters is usually guided by general assessments of search progress, the adaptive
methods methods can be easily extended to other meta-heuristics and/or stochastic local
search methods.

4.2 Adaptive Operator Selection

Based on all the above arguments, we have decided to tackle the operator selection problem
with adaptive parameter control methods, thus aiming at the on-line selection of the best
operator, i.e., while solving the problem. We refer to such methods as Adaptive Operator
Selection (AOS). Fig. 4.1 depicts a high-level view of how AOS methods can be integrated
within an EA, which can be read in a general way as follows.

Figure 4.1: The Adaptive Operator Selection general scheme.

1. For the generation of each new trial solution (or after n trials or generations), the
EA asks the AOS which of the available operators should be applied.

2. The AOS returns the operator to be used, according to its Operator Selection

mechanism, which selects one operator based on the recent performances of all op-
erators, usually represented by an estimate of their empirical qualities, as discussed
in Section 4.4.

3. The selected operator is applied by the EA, a new solution is generated, consequently
impacting somehow the search, e.g., generating an offspring better than its parent
(fitness improvement), varying the mean diversity of the population, etc, as surveyed
in Section 4.3.

47

Chapter 4. Adaptive Operator Selection

4. This impact assessment is transformed into a credit (also referred to as reward),
according to the implemented Credit Assignment scheme.

5. This credit or reward is then used to update the empirical quality (or performance)
estimates kept for each operator by the Operator Selection scheme, which will be
used the next time it needs to select one of the operators.

6. This loop happens continuously while solving the problem, in a on-the-fly reinforce-
ment learning fashion.

As can be seen from this description, designing an AOS method requires the definition
of two components: (i) the Credit Assignment scheme, that assigns credit to an operator
based on the impact brought by its recent application on the current search/optimization
process; and (ii) the Operator Selection mechanism, which selects the next operator to be
applied, based on the knowledge built by the stream of these empirical assessments. In
the following, these components will be separately discussed, and some existing methods
will be surveyed.

4.3 Credit Assignment

Several Credit Assignment mechanisms have been proposed in the literature, following
Davis’ seminal paper [Davis, 1989], differing mainly on three aspects: (i) how the impact
of the operator application should be measured; (ii) how to assign credit based on these
impact assessments; and (iii) to which operator(s) the credit should be assigned to. Each
one of these aspects will be briefly detailed and exemplified, respectively, in Sections 4.3.1
to 4.3.3.

Finally, although the most common impact measure is the fitness improvement, di-
versity becomes important as well when tackling multi-modal problems. The Compass
[Maturana and Saubion, 2008a], which is a method to aggregate both measures, is used
in our experimental section, within a GA applied to SAT problems (see Section ??). For
the sake of self-containedness, the Compass method will be described in Section 4.3.4.

4.3.1 How to measure the Impact?

In order to measure the impact of the application of an operator on the search pro-
cess, most approaches consider the improvement achieved by the fitness of the gen-
erated offspring with respect to a reference value. This reference might be a lo-
cal value (e.g., the fitness of its parents [Tuson and Ross, 1998; Wong et al., 2003;
Ho et al., 1999]), or a global/population-based value (such as the fitness of the current best
individual [Davis, 1989; Lobo and Goldberg, 1997], or the median or some other quantile
fitness [Julstrom, 1995; Julstrom, 1997]). In [Barbosa and Sá, 2000], an aggregation of
both local fitness improvement and global improvement (with respect to the 90% quantile
of the current fitness distribution) is used to assess the productivity of the operators.

Instead of directly using the raw values of the fitness improvements to assess the
impact, other approaches measure a relative value. For instance, in [Giger et al., 2007],

48

4.3 Credit Assignment

the improvement of the offspring with respect to the parent is divided by the gap be-
tween its fitness and the fitness of the current best operator (in the case of minimiza-
tion; the inverse otherwise). Other authors consider a much simpler version of im-
pact measure: the fact that the operator application was successful or not. A suc-
cessful application means that the generated offspring has a better fitness than its ref-
erence value. In [Niehaus and Banzhaf, 2001], the success over the parents is consid-
ered; while in [Luchian and Gheorghies, 2003], the success over the best, the success over
the parents, plateau walks (same fitness than its parents) and worsenings (fitness lower
than its parents), are all aggregated in order to accurately characterize the impact of
an operator application. Although not being explicitly mentioned, in [Julstrom, 1995;
Julstrom, 1997] only the measure of success is used, resulting in a 1 whenever an im-
proved offspring is generated, 0 otherwise.

Different measures, such as the rank of the offspring within the current population, or
the age of the solution in number of generations (in this case the adaptation happening
only every n generations) can also be found in [Whitacre et al., 2006]. In most approaches,
when there is no improvement, the offspring is simply discarded or, most commonly, the
operator application is evaluated as having a null impact. This latter choice is the one
employed by all AOS techniques developed in this work, unless stated otherwise.

In the case of multi-modal optimization, another relevant impact measure concerns the
population diversity; a minimal level of diversity should be enforced in order to avoid pre-
mature convergence. To measure diversity, the Hamming or the Euclidean distances are
commonly used. In [Giger et al., 2007], the relative fitness improvements and the mean
Euclidean distance are independently used, depending on the needs of the search with re-
spect to exploitation or exploration. Along the same lines, [Maturana and Saubion, 2008a]

proposed an impact measure called Compass, defined as a weighted sum of fitness improve-
ment and mean diversity (Hamming distance) variation (see Section 4.3.4 for more details).
In [Maturana et al., 2010b], two different aggregation methods considering both impact
measures were proposed, based directly on the Pareto Dominance paradigm.

4.3.2 How to assign Credit?

Based on the impact measures received, at some point a credit needs to be assigned to
the operators, in order to update the empirical quality estimates about their performance.
These estimates are then used by the Operator Selection mechanism under employment
(see Sections 4.4 and 5.3 for a few examples), the next time it needs to select one of the
operators to be applied, as discussed in Section 4.2.

This credit assigned to the operator is defined after its impact in the progress of the
search. It can be the instantaneous value, i.e., the impact measure received after its
most recent application; but this tends to be very unstable and noisy, given the stochastic
nature of the underlying algorithm: an operator might just have been unlucky on its
latest trial, and this will erroneously reflect on the update of its application rate. This
is often remedied by an aggregation of credits in the Operator Selection side, as done in
[Lobo and Goldberg, 1997; Barbosa and Sá, 2000].

A more robust, and by far the most common approach is to use as credit the av-

49

Chapter 4. Adaptive Operator Selection

erage of the latest W applications, W being the size of the sliding time window. The
impact measures of the operator are hence aggregated over a given time period, as
done in [Davis, 1989; Julstrom, 1995; Julstrom, 1997; Ho et al., 1999; Wong et al., 2003;
Giger et al., 2007; Maturana and Saubion, 2008a; Maturana et al., 2010b]. In case the im-
pact measure being used is the success, i.e., 0 or 1 depending if it succeeded in generating
a fitter offspring or not, the average is usually used, being simply referred to as the success
rate [Niehaus and Banzhaf, 2001; Luchian and Gheorghies, 2003] of the operator. Though
the instantaneous version can be viewed as an average over a window of size 1, both will be
distinguished in the remainder of this text, termed respectively Instantaneous and Average
Credit Assignment schemes.

A very different approach is the one proposed in [Whitacre et al., 2006], which as-
signs credit to the operators based on their ability to generate outlier solutions, fol-
lowing some statistics over the received impact measures. The underlying idea is
that the generation of rare but highly beneficial improvements matters as much as,
or even more than frequent small improvements. A simpler adaptation of this pro-
posal was introduced into our AOS framework [Da Costa et al., 2008; Fialho et al., 2008;
Fialho et al., 2009b], and will be considered here too: the credit is set to the maximum
fitness improvement over a sliding time-window of size W . This Credit Assignment is
termed Extreme in the following; more on this in Section 5.2.2.

For all these approaches, in case the mentioned statistics are done over the raw values
of the received impact measures, the AOS methods tend to have a problem-dependent
behavior, as different problems have different fitness distributions (what alters the range
of the fitness improvements received), while also presenting different levels of modality
(what also affects the magnitude of the diversity measures). In order to reduce such
effect, a normalization over the raw methods can be used, e.g., the credit received by the
given operator divided by the highest most recent credit received by all operators. Another
yet more robust approach is to discard the raw values, considering their ranks instead.
Both normalization and rank-based approaches, which are part of the contributions to
AOS proposed in this thesis, will be described in detail and analyzed in Chapter 5.

4.3.3 Whom to assign Credit to?

Another independent issue that has been addressed in different ways in the literature is
the choice of the operators that should be credited after the generation of a given offspring.
It is unquestionable that the operator used to generate the offspring should be credited;
but some authors consider that the operators used to generate its ancestors should also
receive a share of its credit, somehow claiming that the generated offspring is as good as it
is not only because of its parents and the current operator, but also because of how good
were its ancestors and the operators used to generate them.

This is usually done following a kind of bucket brigade algorithm, the credit be-
ing assigned with a decay factor for each level of ancestry [Davis, 1989; Julstrom, 1995;
Julstrom, 1997]. No clear indication however about the benefits of this approach can
be found in the literature to the best of our knowledge; in [Barbosa and Sá, 2000], for
example, the use of ancestors (up to 2 levels) was beneficial in some of the continuous

50

4.3 Credit Assignment

benchmark functions considered, while resulting in worse results on other functions.
Hence, the methods developed during this thesis do not consider ancestry for the Credit

Assignment : only the operator that has been applied to generate the given offspring is
rewarded.

4.3.4 Compass: Aggregating Fitness and Diversity

Besides the fitness improvements, the diversity variation can also be considered somehow
for the Credit Assignment, specially when tackling multi-modal problems, in order to
reward a possible tentative of escaping a local optimum. In an empirical analysis of the
AOS schemes within a GA applied to SAT problems (see Section ??), we have explored
Compass [Maturana and Saubion, 2008a], a method that assigns credit to the operators
based on an aggregation of both fitness and diversity measures, which works as follows.

A steady-state scheme is used, i.e., the offspring generated after an operator applica-
tion is instantaneously included into the main population, replacing another individual.
Based on this, every time an operator is applied, three impact measures are gathered: (i)
population mean diversity variation (∆D), calculated by means of Hamming distance, (ii)
mean fitness or quality variation (∆Q), and (iii) execution time T , as shown in Fig. 4.2.a.
The execution time becomes essential when dealing with complex operators, such as the
local search ones used in the Compass original work [Maturana and Saubion, 2008a].

Figure 4.2: Compass credit assignment: Sliding windows of three measures are maintained
(a). Average measures of ∆D and ∆Q are plotted and distance of those points are mea-
sured according to a plane with a slope of Θ (b). Finally, those distances are divided by
the execution time, and the result is the credit assigned to the operator.

Originally, the average of these values over the last τ applications of each operator is
displayed in a “diversity versus fitness” plot (black dots in Fig. 4.2.b, each dot represent-
ing one operator). A user-defined hyper-parameter Θ defines the trade-off between the
exploitation (fitness) and the exploration (diversity) criteria, consequently tuning the Ex-
ploration versus Exploitation (EvE) balance of the operators selection. In practice, such
angle defines the plane according to which perpendicular distances from the dots are mea-
sured. Finally, the credit assigned to an operator is this measured perpendicular distance
(between the dot representing its performance and the plane defined by Θ), divided by the
execution time (Fig. 4.2.c). A complete representation of the Compass Credit Assignment
technique in the form of a pseudo-algorithm is presented in Algorithm 4.1.

In the Compass original paper [Maturana and Saubion, 2008a], it is combined with
the Probability Matching Operator Selection scheme (see Section 4.4.1); the resulting

51

Chapter 4. Adaptive Operator Selection

Algorithm 4.1: Credit Assignment : Compass (K,Θ)

1: Dop ←
(

Average(diversityop)

maxi=1...K |Average(diversityi|)

)

// mean normalized by max

2: Qop ←
(

Average(qualityop)

maxi=1...K |Average(qualityi|)

)

3: Vop ← (Dop, Qop) // vector representing op in the plot

4: αop ←
∣
∣
∣atan

(
Qop

Dop

)

−Θ
∣
∣
∣ // angle between vectorop and plane defined by Θ

5: return
(
|Vop|·cos(αop)−mini=1...K{|Vi|·cos(αi)}

Average(exectimeop)

)

// distance to plane divided by time

AOS combination is applied to SAT problems, selecting between 6 evolutionary and local
search operators. Later on, we established a collaboration with them, in order to combine
their sophisticated Credit Assignment scheme with our state-of-the-art (by that time)
Operator Selection mechanism, the Dynamic Multi-Armed Bandit (DMAB), which will
be described in Section 5.3.2. A summary of the results achieved by this efficient AOS
combination, applied to the same SAT problems, was published in [Maturana et al., 2009a;
Maturana et al., 2010a]. These empirical results are revisited in Chapter 6; other examples
of schemes using the diversity to calculate the credit to be assigned to an operator after
its application are recalled in Section 4.5.2.

4.4 Operator Selection

Based on the credits received from the Credit Assignment mechanism after one or more
operator applications, most Operator Selection schemes maintain an up-to-date empirical
quality estimate for each operator, and use it to update their application rates. These prob-
abilities are then used by the underlying algorithm the next time it needs to generate an off-
spring, and the operator to be applied is selected by a roulette wheel-like process, like in the
Probability Matching (PM) [Goldberg, 1990] and Adaptive Pursuit (AP) [Thierens, 2005;
Thierens, 2007] methods. Both methods will be detailed in this Section.

Another possibility to Operator Selection will be introduced in this work: it is based
on the so-called Multi-Armed Bandit framework [Auer et al., 2002], and uses directly the
empirical quality estimate gathered by each operator together with an explorative term to
deterministically choose amongst the different available operators. This approach is the
basis of all Operator Selection schemes developed during this thesis work, which will be
exhaustively described in Chapter 5.

4.4.1 Probability Matching

Because of its simplicity and reasonable performance, the most widely used to date Op-
erator Selection scheme for AOS is the Probability Matching (PM) [Goldberg, 1990].
Although possibly presenting some very slight variations, and sometimes not be-
ing explicitly mentioned, PM is used in [Davis, 1989; Julstrom, 1995; Julstrom, 1997;

52

4.4 Operator Selection

Lobo and Goldberg, 1997; Barbosa and Sá, 2000; Niehaus and Banzhaf, 2001;
Luchian and Gheorghies, 2003; Wong et al., 2003;
Whitacre et al., 2006; Maturana and Saubion, 2008a], to mention a few. Its basic idea
is that the probability of selecting a given operator is updated proportionally to its known
empirical quality with respect to the others. This can be mathematically formalized as
follows.

Let K denote the number of available variation operators. PM maintains a probability
vector (pi,t)i=1,K and an empirical quality estimate for each operator j noted q̂j,t. At each
time t:

1. The j-th operator is selected with probability pj,t, via a roulette-wheel selection
scheme.

2. The selected operator is applied, and a credit rj,t is computed after the Credit As-
signment method at hand;

3. The empirical quality estimate q̂j,t of the j-th operator is then updated to account
for this credit received, what is done using an additive relaxation mechanism with
adaptation rate α (0 < α ≤ 1, the memory span decreases as α increases):

q̂j,t+1 = (1− α) q̂j,t + α · rj,t (4.1)

4. And finally, the probabilities of application of each operator, (pi,t)i=1,K , are updated
to be proportional to the their respective empirical quality estimates, (q̂i,t)i=1,K :

pi,t =
q̂i,t

∑K
l=1 q̂l,t

(4.2)

By updating the operators probabilities in this way, an operator that performs very
badly during a long period of the search will have its application probability decreased to
a very low value, or even zero. Such a situation should be avoided, as it would prevent
the AOS from using this same operator in case it becomes efficient in a later stage of the
search process. For this reason, a minimal selection probability pmin is usually enforced.
The update rule is then re-defined as follows:

pi,t+1 = pmin + (1−K ∗ pmin)
q̂i,t+1

∑K
l=1 q̂l,t+1

(4.3)

A complete representation of the PM Operator Selection technique in the form of a
pseudo-algorithm is presented in Algorithm 4.2.

Discussion: After Equation 4.3, any ineffective operator (not getting any reward) would
have at least a probability pmin of being selected. The best operator (getting maximal
rewards during some time) would be selected with probability pmax = (1− (K−1)∗pmin).
In practice, however, all mildly relevant operators keep being selected, and this hinders
the performance of PM (all the more so as the number of operators increases), as pointed
out in [Thierens, 2005].

53

Chapter 4. Adaptive Operator Selection

Algorithm 4.2: Operator Selection: Probability Matching (K, pmin, α)

1: for i = 1 to K do
2: pi ← 1.0/K // selection probability
3: q̂i ← 1.0 // empirical quality estimate
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else
9: op← ProportionalSelectOperator(p) // roulette-wheel

10: end if
11: Operator op is applied, impacting the search progress somehow
12: rop ← CreditAssignment.GetReward(op)
13: q̂op ← (1− α) · q̂op + α · rop // relaxation update rule
14: for i = 1 to K do

15: pi ← pmin + (1−K · pmin)
(

q̂i∑K
l=1

q̂l

)

// proportional probability update

16: end for
17: end while

4.4.2 Adaptive Pursuit

Originally proposed for learning automata [Thathachar and Sastry, 1985], the Adaptive
Pursuit (AP) method was ported to the AOS context [Thierens, 2005] in order to address
the above shortcoming of PM. The first three out of the four steps describing PM in
Section 4.4.1 are shared by AP: the operators are selected using a roulette-wheel pro-
cess over their probabilities; after receiving the credit from the operator application, the
same relaxation rule is used to update the empirical quality estimates of the operators,
as defined in Equation 4.1. The difference is that, in AP, instead of updating the prob-
abilities proportionally to these estimates (see Equation 4.3), a winner-takes-all strategy
is employed to push forward very quickly the application probability of the current best
operator, noted i∗t , while consequently decreasing the others, as follows:







i∗t = argmaxi=1...K{ q̂i,t }
pi,t+1 =

{
pi,t + β (pmax − pi,t) if i = i∗t
pi,t + β (pmin − pi,t) otherwise

(4.4)

where β ∈ [0, 1] is the learning rate controlling the greediness of the winner-takes-all
strategy. The two other hyper-parameters of AP are the same than the ones used in
PM: pmin, that enforces a minimal level of operators exploration, and the adaptation
rate α, which controls the memory span of the Operator Selection scheme. A complete
representation of the AP technique in the form of a pseudo-algorithm is presented in
Algorithm 4.3.

To show the gain brought by the winner-takes-all strategy, in [Thierens, 2005], PM and
AP were compared under the light of an artificially generated scenario, choosing between

54

4.4 Operator Selection

Algorithm 4.3: Operator Selection: Adaptive Pursuit (K, pmin, α, β)

1: pmax ← 1− (K − 1) · pmin

2: for i = 1 to K do
3: pi ← 1.0/K // selection probability
4: q̂i ← 1.0 // empirical quality estimate
5: end for
6: while NotTerminated do
7: if one or more operators not applied yet then
8: op← uniformly selected between the operators not applied
9: else

10: op← ProportionalSelectOperator(p) // roulette-wheel
11: end if
12: Operator op is applied, impacting the search progress somehow
13: rop ← CreditAssignment.GetReward(op)
14: q̂op ← (1− α) · q̂op + α · rop // relaxation update rule
15: op∗ ← argmaxl=1...K(q̂l)
16: for i = 1 to K do
17: if i = op∗ then
18: pop∗ ← (1− β) · pop∗ + β · pmax // winner-takes-all probability update
19: else
20: pi ← (1− β) · pi + β · pmin

21: end if
22: end for
23: end while

5 different artificial operators whose reward distributions were modified every ∆T steps.
This artificial scenario, referred to as the Uniform scenario, was also used in our empirical
comparisons, and will be described into more detail in Section 5.4.1.

Discussion:Although AP showed a much superior performance than PM in the mentioned
artificial scenario, both methods still suffer from two main drawbacks. Firstly, pmin defines
a minimal level of exploration that is kept fixed during all the search process. Ideally,
the surer the Operator Selection scheme is about one operator being the best one, the
less exploration should be done by it, up to no exploration at all as far as the operator
found to be the best remains sufficiently good. A second issue refers to another hyper-
parameters, the adaptation rate α: it is also fixed during all the search process, what
means that the received credit always has the same fixed weight in the update of the
empirical quality estimates of the operators. But, in case there is a long time one operator
has not been applied, the assigned credit should have a higher weight, in order to quickly
make its empirical quality estimate as up-to-date as possible; conversely, in the case of
an operator frequently applied, the reward weight should be smaller, in order to not mess
up with its already well-established performance estimate. These issues were part of the
main motivations for the proposal of the Dynamic Multi-Armed Bandit (DMAB) and the

55

Chapter 4. Adaptive Operator Selection

Sliding Multi-Armed Bandit (SLMAB) Operator Selection techniques; they will be further
discussed, respectively, in Sections 5.3.2 and 5.3.3.

4.5 Some Adaptive Operator Selection Combinations

After separately analyzing the AOS components, namely the Credit Assignment and the
Operator Selection schemes, this Section will survey different approaches found in the
literature for the AOS as a whole, although most of the cited works were already partially
described in the two previous Sections.

The methods discussed here are divided into 5 categories: Section 4.5.1 reviews meth-
ods solely based on the fitness value and its derivations; Section 4.5.2 surveys methods
that also consider diversity, on its own, or aggregated with fitness; and, due to the number
of papers found, for the sake of completeness, methods that use Fuzzy Logic for their op-
erator control are overviewed in Section 4.5.3, although this kind of approach will not be
addressed in this thesis. Finally, other approaches that do not match any of the mentioned
categories are surveyed in Section 4.5.4, while Section 4.5.5 gives some examples of the
use of AOS within EAs other than GA.

4.5.1 Fitness-based Approaches

The seminal AOS method, to the best of our knowledge, was proposed in [Davis, 1989].
Davis’ method updates the probability of each operator according to how often its appli-
cation helped improving the best fitness in the population. A complex decay mechanism
is employed to assign credit to the operators that generated the ancestors of the new-
born best individual, up to a pre-defined number of generations. Possibly due to the high
computational complexity for that time, this technique was not assessed on-line, it was
rather used to obtain a non-adaptive time-varying schedule (i.e., a deterministic param-
eter control scheme, as described in Section 3.3.2) for later use [Tuson and Ross, 1998],
which showed to perform better than a GA with fixed operator probabilities.

A similar but much simpler method was proposed in [Julstrom, 1995] and further
assessed in [Julstrom, 1997], referred to as Adaptive Operator Probabilities (ADOPP). The
most significant differences with respect to [Davis, 1989] are: (i) instead of the best fitness,
the median and the 90% quantile of the current fitness distribution are independently tried
as reference values for the measure of the fitness improvement; (ii) the rewarding is not
based on the raw value of the fitness improvement, but rather on the success rate (1 in
case of improvement, 0 otherwise); and (iii) the decay mechanism for the credit assignment
to the ancestors is simply done as (decayancestrylevel × credit). In [Julstrom, 1995], the
ADOPP seems to show good results on a bi-dimensional continuous problem, and on
the Traveling Salesman Problem (TSP) problem, although no comparisons with other
techniques are presented; while in [Julstrom, 1997], ADOPP is compared with a static
strategy (probabilities for each operator fixed at plausible values) on the rectilinear Steiner
problem, not being able to achieve better results than it. Note that in both cases, as well
as in [Davis, 1989], besides the complex bucket brigade-like Credit Assignment scheme,

56

4.5 Some Adaptive Operator Selection Combinations

the Operator Selection mechanism used is somehow similar to the PM method, though it
is not mentioned.

In [Lobo and Goldberg, 1997], the PM method is used again. An operator is cred-
ited whenever improvements over the current best solution are achieved. Better per-
formance is shown with respect to several (static) baseline techniques on the OneMax
problem, although the ancestors are not considered on the rewarding scheme, putting
into question the use of this complex and expensive (in terms of memory) procedure. In
[Barbosa and Sá, 2000], a similar method is tried on the continuous domain: the main
difference lies in the aggregation of two fitness improvements, one with respect to the
parents, and another in relation to the 90% quantile of the fitness values found in the
current population. The use of ancestors up to two levels is tried, credited in the same
way as done in [Julstrom, 1997], but no clear evidences are reported to support its use
when applied on a set of continuous benchmark problems – indeed, it even degrades the
results in some cases.

A very different approach is proposed in [Hatta et al., 1997]: the crossover operator to
be applied is chosen according to the elite degrees of the individuals selected to be parents.
Based on the assumption that an individual which has a large number of recent ancestors
with a high fitness value also tends to have a high fitness value, the elite degree of an
individual is basically the ratio of the sum of all its “elite ancestors” up to a pre-defined
level, divided by the total number of ancestors considered. An individual or ancestor is
considered to be an elite member if its fitness is higher than (µ + α × σ), where µ is the
average fitness of the current population, σ the respective standard deviation, and α a
user-defined hyper-parameter, referred to as the elite decision factor. Based on this engi-
neered Credit Assignment scheme, the Operator Selection is deterministically performed
as follows: in case the sum of the elite degrees of both parents is higher than another
user-defined threshold, a less disruptive operator is applied (the 2-point crossover in this
case) in order to try to maintain some of the good building blocks; a disruptive crossover is
applied otherwise (the uniform crossover). This work is extended in [Hatta et al., 2001], in
which some mutation operators are also considered, and a much more complex scheme is
devised to measure the elite degree as a continuous value, instead of the original discrete
one. In both works, better results are achieved with respect to the GA independently
applying each operator independently, and to the uniform selection between the available
operators. Besides, in [Hatta et al., 2001], the scheme implementing the continuous elite
degree is shown to improve over the original discrete elite degree, assessed on the NK
landscape, the TSP problem, and on a set of continuous benchmark problems.

The Cost Operator Based Rate Adaptation (COBRA) method, devised in
[Tuson and Ross, 1998], uses as Credit Assignment the average fitness improvements
achieved over the parents, divided by the computational cost of evaluating an offspring.
No ancestors are considered. The Operator Selection is simply done as follows: prior to
the experiments, the user defines a set of static probabilities; then, at every adaptation
cycle, these probabilities are deterministically assigned to the operators, according to their
ranking with respect to the perceived performance measures, the top-ranked operators re-
ceiving the highest probabilities. On the Credit Assignment side, it is not clear which is
the influence of the computational cost, as the evaluation of an offspring is supposed to

57

Chapter 4. Adaptive Operator Selection

have a constant cost, no matter the operator used to generate it. Furthermore, on the
Operator Selection side, no guidelines are provided on how to define a priori the static set
of probabilities; evaluated on the OneMax, Royal Road, Long K-Path and on a deceptive
problem, indeed (and not surprisingly), the performance of the COBRA method is found
to be dependent on the quality of this user-defined set of probabilities.

A different method, the Probabilistic Rule-driven Adaptive Model (PRAM), proposed
in [Ho et al., 1999], uses a sequence of leaning/production phases to adapt the operators
rates. During the learning phase, operators are uniformly selected and their performances
are estimated based on the fitness improvement of the offspring with respect to its parent.
On the following production phase, operators are selected by the PM method, according to
the empirical knowledge gathered in the first period. The PRAM method achieves better
results than a fixed strategy and a self-adaptive scheme. In [Wong et al., 2003], the PRAM
method is used in combination with an external mechanism for diversity maintenance,
which gives a higher survival probability to individuals located in a sparsely populated
regions of the search space. The resulting method, referred to as APGAIN, consistently
achieves better solution quality than several other static evolutionary schemes within a
same computational budget, on a set of continuous benchmark problems. However, as
pointed out in [Maturana and Saubion, 2008a], around 25% of the generations are devoted
to the learning phase, in order to try to accurately follow the changes in the operators
performances during the search process, what might severely harm the population and the
progress of the search in case disruptive operators are considered.

The Integrated-Adaptive GA (IAGA) [Luchian and Gheorghies, 2003], as its name
says, integrates several impact measures to adapt the operators application rates: the
frequency of absolute improvements (over the best), simple improvements (over the par-
ents), plateau walks (same fitness than its parents), and worsenings (fitness lower than its
parents) achieved by the applications of each operator within a generation. The operators
are selected via a PM-like scheme based on the ranks of the operators with respect to the
measured frequencies. Besides, the IAGA method also implements an adaptation of some
internal parameters of the operators: their description is out of the scope of this Section,
we refer the reader to [Luchian and Gheorghies, 2003] for more details. The IAGA method
shows to perform much better than the GA using different sets of static probabilities on
different instances of the Royal Road problem.

4.5.2 Diversity-based Approaches

Besides the Compass [Maturana and Saubion, 2008a], described in detail in Section 4.3.4,
other similar approaches have been proposed in the literature, aggregating the fitness and
diversity measures, or using only the diversity as an impact measure after an operator
application. Some examples will be briefly recalled in the following.

The Adaptive GA (AGA) proposed in [Srinivas and Patnaik, 1994] is, to the best of
our knowledge, the first method proposed for the adaptation of the operators application
rates that also take into account the diversity in the decision process, motivated by the
difficulty of solving multimodal problems. Its adaptation method can be briefly described
as follows. The crossover and mutation rates are varied, for each individual, according

58

4.5 Some Adaptive Operator Selection Combinations

to the difference between the fitness of the best and the fitness of the current individual,
divided by the difference between the fitness of the best and the average fitness of the
current population. The numerator measures how close to the best individual is the
current individual; the fitter the individual is, the less it will be disrupted by the operators.
Conversely, the denominator roughly measures the level of convergence of the population;
the more converged it is, higher is the variation that should be introduced, in order to
possibly escape local optima. The balance between both intensification and diversification
(the same as exploitation and exploration, respectively) factors is controlled by a user-
defined hyper-parameter for each operator. AGA is shown to significantly outperform a
standard GA with fixed operator probabilities on a set of continuous benchmark problems;
a much higher gain is achieved in the highly multimodal problems, as expected.

A similar approach, the Diversity-Guided EA (DGEA) [Ursem, 2002], is, as its name
says, completely guided by the level of diversity in the population. The main objective is
again to avoid premature convergence. A special diversity measure is proposed, referred to
as the “distance-to-average-point”, which takes into account the size of the search space,
the size of the population, and the sum of the differences between the genes of each indi-
vidual in order to evaluate how converged the population is. Once every generation, the
algorithm switches between exploration and exploitation behaviors, based on the assessed
diversity level. Intuitively, exploration is performed by the generation of an entire pop-
ulation via the sole use of a mutation operator, while exploitation is done by crossover.
Compared to a set of non-adaptive GA schemes on some continuous benchmark problems,
the DGEA presents better performance, consistently reducing in around 25% the number
of fitness evaluations to attain a given target solution.

The Adaptive Operator Rate Controlled EA (AORCEA) [Giger et al., 2007] is an in-
teresting AOS method, although quite complex. It is very different from the previously
mentioned approaches in what concerns the update of the operators application rates. To
start with, the criterion to evaluate the impact of an operator application depends on the
level of stagnation of the search process, which is calculated based on the frequency dis-
tribution of the fitness values of the current population. In case more diversity is needed,
applications of operators are evaluated based on how different are the offsprings they gen-
erate with respect to their parents (Euclidean distance); the relative fitness improvements
(as briefly reviewed in Section 4.3) are used otherwise. The operators are ranked accord-
ing to how well they perform in average with respect to the chosen criterion during the
given adaptation cycle; their application rates are then linearly updated, by taking into
account these ranks and the ratio between the level of stagnation and a user-defined hyper-
parameter. This hyper-parameter exerts a function analogous to the greediness control β
parameter used by AP (described in Section 4.4.2). The AORCEA presents significantly
better results when compared to a non-adaptive GA on a set of continuous benchmark
functions, and also on a real-world problem, the optimization of the structure of a tubular
steel frame for a motorcycle.

Guided by the same motivations than those of the Compass fitness and diver-
sity aggregation method [Maturana and Saubion, 2008a] (see Section 4.3.4), two other
Credit Assignment mechanisms have been later proposed in [Maturana et al., 2009b;
Maturana et al., 2010b], directly inspired by the concepts of Pareto dominance. Con-

59

Chapter 4. Adaptive Operator Selection

sidering the diversification and the intensification as two criteria to be optimized, the first
scheme, referred to as Pareto Dominance (PD), evaluates the operator according to the
number of other operators it dominates, i.e., operators that performed worst in average
than the operator under assessment on both objectives. Oppositely, the second scheme,
Pareto Rank (PR), accounts for the number of operators that dominate the operator under
assessment. The main difference between both is that the latter encourages only the use
of non-dominated operators, while the former rewards more accurately all the operators
that are performing well on average: the PD scheme is thus the best choice, as empiri-
cally shown in the cited references. Combined with an external scheme that dynamically
changes the set of available operators while solving the problem, the PD Credit Assign-
ment scheme with the PM Operator Selection mechanism achieves better performance
than other adaptive combinations on a set of SAT instances.

4.5.3 Fuzzy-based Approaches

Another kind of approach with several examples found in the literature is the use of Fuzzy
Logic Controllers (FLC) to control the selection of operators. Some of these methods will
be briefly reviewed now.

The seminal paper on this matter, to the best of our knowledge, is the work by
[Lee and Takagi, 1993], in which the operators application rates are deterministically con-
trolled, according to the fuzzy rules, based on population-wise measures: the average,
best, and worst fitness values found in the current population. The FLC itself is off-line
tuned by another GA at the meta level, according to its performance on the control of
the operators of the main GA while solving the well-known set of “5 DeJong functions”.
The resulting tuned algorithm is later applied to the optimization of another FLC solving
the inverted pendulum problem, outperforming a simple static GA in terms of number of
evaluations to achieve a given target solution. Although being out of the scope of this
thesis, it seems worthy to highlight the several levels of efficient hybridizations between
fuzzy and evolutionary techniques that can be found in this work; in summary, a GA is
used to optimize an FLC, that controls the operator rates of another GA, which is used to
optimize another FLC, that is finally applied to a control problem. Besides, an important
motivation for using the kind of human-comprehensive knowledge representation employed
by FLCs is that experts can try to incrementally enhance the controller with their own
understanding about the problem.

Differently, in [Herrera and Lozano, 2001], an FLC optimized by a meta-GA is used to
control the use of 12 different operators by a GA, that is applied to continuous optimization
problems. But here the controller is optimized while solving the problem, by means of a
separate GA that co-evolves with the GA to be controlled. A gain with respect to non-
adaptive schemes is not shown in terms of efficiency, but rather in terms of robustness
when applied to continuous benchmark problems with very different levels of difficulty.

Another work using FLC to control the operators application within a
GA is presented in [Maturana and Saubion, 2007b; Maturana and Saubion, 2007a;
Maturana and Saubion, 2008b]. Similarly to the previously mentioned PRAM method
[Ho et al., 1999], the adaptation method is divided into two periods, a learning phase, dur-

60

4.5 Some Adaptive Operator Selection Combinations

ing which the FLC is improved after the empirical knowledge gathered from several trials
of all the operators; and a production phase, when the learned rules are actually employed
to deterministically select which operator should be applied according to the feedbacks
(diversity and quality variations) received from the search. However, around 55% of the
generations are spent by the learning phase, what greatly deteriorates the performance of
the algorithm, specially if disruptive operators are employed (as also previously discussed
for the PRAM method). The presented results do not compare the developed fuzzy-based
AOS scheme with other methods from the literature, but rather with different variants of
its own, on an instance set of the Quadratic Assignment Problem (QAP).

4.5.4 Other Approaches

Most of the previously cited works use slight variations of the PM method for the adap-
tation of the rates and further Operator Selection, while, as it can be seen, a lot of effort
is invested on the many different alternatives mentioned for the Credit Assignment part.
There is no clear evidence to support the preference for enhancing just one of the modules,
but given the difficulty of the task, it might seem relevant to separately investigate both
issues. A first step along this line is taken by [Thierens, 2005], which proposes a new
mechanism for Operator Selection, the Adaptive Pursuit (AP) (see Section 4.4.2), while
assessing it on an artificial dynamic scenario, assuming the reward associated to each
operator to be known. The reward distributions are modified every ∆T steps, with AP
showing a much superior performance than PM. This artificial scenario will be described
in detail in Section 5.4.1.

In [Whitacre et al., 2006], attention is given to the Credit Assignment scheme again,
while the Operator Selection is the well-known PM, autonomously selecting between 9
operators. A 10th operator is applied according to a deterministic scheduler in order to
enforce some level of diversity. Several alternative impact measures are compared, e.g., the
rank of the generated offspring within the current population, and the age of the generated
solution; for the latter, the adaptation needs to happen once every many generations (20
in this case). From these impact measures, the main novelty proposed in this work is the
use of a Credit Assignment mechanism that rewards the production of outlier solutions,
which are found out based on statistics over the whole set of generated solutions. This
method is shown to be superior than the common Average scheme on a set of continuous
benchmark problems.

4.5.5 AOS within Other Evolutionary Algorithms

All the works reviewed in this Section up to now, as well as most of the literature on AOS,
are proposed in the context of GAs. However, the concept is general enough to be applied
to other EAs (as well as to other meta-heuristics).

For instance, in [Niehaus and Banzhaf, 2001], the PM method is used to select between
special operators in the Genetic Programming (GP) framework, based on the success rate
of each operator, a successful trial being defined as the generation of an offspring fitter
than its parents. The proposed adaptive scheme presents superior performance than the

61

Chapter 4. Adaptive Operator Selection

standard GP using both randomly and empirically defined static application rates, on
different problems of symbolic regression and classification.

Some works in the scope of Differential Evolution (DE), yet another EA, can also be
found in the literature. For instance, although being referred to as Self-Adaptive DE, the
SaDE method [Qin et al., 2009] employs indeed the AOS paradigm, with the PM method
selecting between DE mutation strategies according to the success rate of each operator.
This scheme is combined with another method to dynamically adapt the crossover rate CR
and the mutation scaling factor F. The SaDE method outperforms the DE independently
applying each of the available mutation strategies, and other previously proposed adaptive
and self-adaptive schemes, on a set of continuous benchmark problems.

In a collaboration with the China University of Geosciences [Gong et al., 2010a;
Gong et al., 2010b], we have also used the PM method within DE, but this time using
the average of the relative fitness improvements as Credit Assignment. Along the same
lines, a large part of the empirical results presented in Chapter 6 were achieved apply-
ing our Rank-based Multi-Armed Bandit AOS mechanisms (which will be described in
Chapter 5) to DE on continuous benchmark optimization problems [Fialho and Ros, 2010;
Fialho et al., 2010b]. These works will be detailed, respectively, in Sections ?? and 6.6.

4.6 Discussion

Most of the Adaptive Operator Selection (AOS) methods surveyed in this Chapter are
employed to select between operators within Genetic Algorithms; a few approaches con-
sidering other variants, namely Genetic Programming and Differential Evolution, are also
mentioned. Although all these works are in the scope of Evolutionary Algorithms, the
adaptive paradigm, as reviewed in Section 3.3.2, is indeed very general. In fact, any
stochastic algorithm can benefit from this kind of approaches. At a higher level of ab-
straction, AOS schemes can also be used to select between different algorithms at the hyper
level, what is nowadays commonly referred to as Hyper-Heuristics (we refer to reader to
[Burke et al., 2010] for a recent very comprehensive review on this).

The ideal scenario for the use of the adaptive paradigm can be briefly characterized as
follows:

1. The algorithm has some choice to be made among different options that directly
affect the search process;

2. This choice is supposed to not have only a single best component during the whole
search process; instead, different components perform best during different stages of
the search;

3. It is possible to have an instantaneous feedback from the search process as a result
of the choice.

The first and the third issues are, in fact, requirements to be able to use adaptive
methods in general, that indeed quite always hold in the case of stochastic algorithms.

62

4.6 Discussion

The second issue can be relaxed a bit: even if there is just one unique best option for the
given choice, it is usually unknown to the user, and generally problem-dependent; so, the
use of an adaptive method can be justified anyway, in order to automatically find the best
option. The price to pay in this case is a small loss in terms of performance (the time
taken in order to find the best option), which is compensated by the fact that everything
is done during an optimization run, while several runs would be needed in order to apply
an off-line tuning procedure, as discussed in Section 3.3.2.

In the context of AOS, the input is the feedback received from the search, and the
output is the operator to be applied, as depicted in Fig. 4.1. The generality of the
method, however, depends on how general is the information used to constantly update
it. The methods surveyed in this Chapter use very general information, such as the
fitness and the diversity. In some cases, however, one might want to explore some prior
knowledge about the characteristics of the problem in order to do a more efficient AOS.
A lot of research on this has been done in the very competitive context of SAT problems.
An example of a problem-specific AOS method is the recent NCVW (Non-, Clause, and
Variable Weighting) [Wei et al., 2008], which uses SAT specific features, the variable and
clause weights, in order to choose between three well-known variable selection heuristics.
Although losing generality, exploring prior knowledge about the problem can be very
beneficial for the search process; indeed, if the motivation is to go for state-of-the-art
results, this is very probably the path to be taken in any domain. On the opposite, if
the motivation is to have a general method to adapt the operator selection and achieve
good performance in very different situations and with different algorithms, such kind of
problem-specific knowledge should be avoided.

Finally, as remarked in the bibliographic review of Section 4.5, most of the mentioned
works concentrate a lot of effort on just one component of the AOS, usually using a
quite common choice for the other one, e.g., lots of methods use a very complex Credit
Assignment scheme, while implementing the standard PM for Operator Selection. In
this thesis, we will present different contributions addressing both issues: the bandit-
based approaches on the Operator Selection side; the Extreme fitness improvement and
the Rank-based measures over the fitness for Credit Assignment. Besides, the Compass
[Maturana and Saubion, 2008a] aggregation between fitness and diversity, presented in
Section 4.3.4, is also considered after some work done in collaboration with the authors
[Maturana et al., 2009a]; the other options for Credit Assignment are the common In-
stantaneous and Average fitness improvement over the parents. All the proposed AOS
combinations, presented in Chapter 5, are compared with both PM and AP Operator
Selection methods, combined with the mentioned Credit Assignment schemes.

63

Part III

Contributions

Chapter 5

Contributions to Adaptive
Operator Selection

Contents

5.1 Introduction . 68

5.2 Contributions to Credit Assignment 70

5.2.1 Basic Credit Assignment Scheme: Fitness Improvements 70

5.2.2 Extreme Fitness Improvement 71

5.2.3 Normalized Fitness Improvement 72

5.2.4 Rank-based Credit Assignment Schemes 73

5.2.5 Comparison-based Credit Assignment Schemes 78

5.3 Contributions to Operator Selection 79

5.3.1 Basic Operator Selection Scheme: Multi-Armed Bandit 79

5.3.2 Dynamic Multi-Armed Bandit 82

5.3.3 Sliding Multi-Armed Bandit . 85

5.3.4 Rank-based Multi-Armed Bandit 87

5.4 Contributions to Empirical Assessment 90

5.4.1 Base Artificial Scenario: Uniform 90

5.4.2 Boolean and Outlier Scenarios 90

5.4.3 Two-Value Scenarios . 91

5.5 Discussion . 93

67

Chapter 5. Contributions to Adaptive Operator Selection

In this Chapter, we present our main algorithmic contributions to
the Adaptive Operator Selection problem, namely, the extreme and
the rank-based approaches for Credit Assignment, the bandit-based
techniques for Operator Selection, and the artificial scenarios pro-
posed to their empirical assessment.

5.1 Introduction

As discussed throughout Chapter 4, in essence, the goal of Adaptive Operator Selection
(AOS) is to select on the fly the operator maximizing some measure of quality, usually,
though not exclusively, reflecting the fitness improvement brought by its application (see,
e.g., the Compass method in Section 4.5.2). AOS thus raises two main issues, referred to as
the Operator Selection and the Credit Assignment (Section 4.2). This Chapter describes
the contributions developed during this thesis work for each of these issues, as well as for
their empirical assessment. A brief summary of these contributions, in a chronological
order, is presented as follows.

Starting with the first issue, the Operator Selection might be seen as yet another
instance of the Exploration versus Exploitation (EvE) dilemma: the operator that is
currently known to be the best should be used as much as possible (exploitation), while
the other operators should also be tried from time to time (exploration). The exploration
needs to be done, on the one hand, because some seemingly poorly-performing operators
might just have been unlucky on its recent trials; and on the other hand, due to the
dynamics of the evolutionary process, i.e., one of the other operators might eventually
become the new best operator at a further moment of the search.

The EvE trade-off has been intensively studied in the context of Game Theory,
in the framework of the so-called Multi-Armed Bandit (MAB) [Lai and Robbins, 1985;
Auer et al., 2002]. The use of MAB algorithms to solve the EvE dilemma has been inves-
tigated in the selection between different algorithm portfolios to solve decision problems
[Gagliolo and Schmidhuber, 2008], before being extended to the AOS context in the work
presented here. Our preliminary attempt to do so was by directly using the Upper Con-
fidence Bound (UCB) algorithm [Auer et al., 2002], described in more detail in Section
5.3.1. The UCB is an algorithm proposed for the MAB problem that provides asymptotic
optimality guarantees with respect to the total cumulated reward. However, these guar-
antees hold only in a stationary context; some modifications need to be proposed in order
to efficiently use the UCB algorithm in the dynamic context of AOS – this is where most
of the contributions developed in this thesis are concentrated.

A first proposal, referred to as Dynamic Multi-Armed Bandit (DMAB)
[Da Costa et al., 2008], is presented in Section 5.3.2. The DMAB proceeds by cou-
pling the original UCB technique with the Page-Hinkley statistical change-detection test
[Hinkley, 1970]: upon detecting a change in the operator quality distribution, the MAB
process is restarted from scratch.

68

5.1 Introduction

Concerning the Credit Assignment, most of the AOS combinations found in the lit-
erature use some simple statistics over the fitness improvements. Instead of using the
common Instantaneous and Average Credit Assignment schemes (see Section 5.2.1), we
proposed the use of Extreme fitness improvements [Fialho et al., 2008], based on the as-
sumption that outlier high improvements might be even more important than frequent
but moderate ones (Section 5.2.2).

The combination of Extreme Credit Assignment with DMAB Operator Selection re-
ferred to as the Ex-DMAB AOS technique, showed to be very efficient, outperform-
ing the baseline approaches on different benchmarking scenarios [Fialho et al., 2008;
Fialho et al., 2009a; Maturana et al., 2009a]. However, directly using the raw values of
the fitness improvements (Credit Assignment) to update the preferences (Operator Selec-
tion) of the AOS technique showed not to be a very good approach: as different problems
have different fitness ranges, this AOS scheme need to have its hyper-parameters tuned
for every new problem in order to achieve good performance. For this reason, on the
Credit Assignment side, we proposed the use of a simple normalization of these raw values
[Fialho et al., 2009b] (described in Section 5.2.3).

On the Operator Selection side, even with the normalized rewards, the hyper-parameter
of the DMAB controlling the change-detection test continued to be very problem-
dependent, as the restarting mechanism is directly related to the dynamics of the fitness
landscape. This was the main motivation for the proposal of a smoother way to account
for dynamic environments in the MAB framework, referred to as Sliding Multi-Armed
Bandit (SLMAB) [Fialho et al., 2010a], presented in Section 5.3.3: briefly, it uses a slid-
ing time window to gracefully update the operator quality estimates, discarding ancient
events while preserving the information from the recent operator applications. Contrast-
ing with DMAB, the SLMAB does not call upon an external monitoring of the evolution
process and involves only 1 hyper-parameter, as the original MAB technique, while DMAB
has 2.

The normalized Extreme Credit Assignment, however, is still based on the raw values
to some extent; thus, the effects of problem-dependency are smoothed, but not elimi-
nated. This is what led us to the proposal of the two last Credit Assignment measures,
completely based on ranks, the Area-Under-Curve (AUC) and the Sum-of-Ranks (SR)
[Fialho et al., 2010c] (Section 5.2.4). Besides the gain in robustness achieved by the use of
rank-based measures, using the ranks of the exact fitness values rather than the ranks of
the fitness improvements preserves the important invariance of the method with respect to
monotonous transformations, being in this case totally comparison-based, as presented in
Section 5.2.5. These rank/comparison-based Credit Assignment schemes were combined
with a simplified version of the UCB, to which we refer to as the Rank-based Multi-Armed
Bandit (RMAB) (Section 5.3.4).

By the time this manuscript is being written, the AOS technique constituted
by the RMAB Operator Selection method with the AUC Credit Assignment scheme
is our final and recommended proposal in case one wants to implement the AOS
paradigm: it achieves state-of-the-art performance while being very robust with respect
to their hyper-parameters, as confirmed by the results presented in [Fialho et al., 2010c;
Fialho et al., 2010b], which will be detailed in Chapter 6.

69

Chapter 5. Contributions to Adaptive Operator Selection

Additionally, while developing these AOS combinations, we have also proposed some
new artificial scenarios for their empirical assessment. The Boolean and the Outlier sce-
narios [Da Costa et al., 2008] were introduced to evaluate the AOS schemes in situations
involving five artificial operators with different reward distributions than the previously
existent Uniform scenario [Thierens, 2005]. The latter is described in Section 5.4.1, while
the two newly proposed scenarios are presented in Section 5.4.2. Besides, another family
of artificial scenarios was proposed to simulate different situations with respect to the
mean and variance of rewards given by two artificial operators, referred to as the Two-
Values (T V) benchmarks [Fialho et al., 2010a], presented in Section 5.4.3.

Each of these mentioned contributions is detailed in the following of this Chapter,
divided into three categories. Section 5.2 presents the contributions for Credit Assignment ;
while the new methods for Operator Selection are described in Section 5.3. At the end of
the presentation of each Operator Selection scheme, the corresponding AOS combinations
are reminded. Finally, Section 5.4 details the newly proposed artificial scenarios for the
empirical assessment of the developed AOS combinations. For each Section, the basic or
initial approaches are also reminded before the presentation of the contributions, for the
sake of self-completeness.

The last contribution of the present thesis will then be a principled and systematic
empirical comparison of the proposed AOS methods, compared with one another and with
some baseline approaches. Several experiments were done on some different benchmarking
scenarios. All the results of these experiments will be detailed in Chapter 6.

5.2 Contributions to Credit Assignment

Credit Assignment is the name given to the scheme that assesses the performance of an
operator regarding the progress of the search, which can be measured in different ways, as
reviewed in Section 4.3. Starting from the existing Instantaneous or Average of the fitness
improvements brought by the application of a given operator (Section 5.2.1), we have
proposed the use of Extreme values (Section 5.2.2). In the quest for a higher robustness, a
simple normalization over these raw values was firstly proposed (Section 5.2.3), before the
development of the most recent and very robust rank-based Area-Under-Curve (AUC) and
Sum-of-Ranks (SR) schemes, both described in Section 5.2.4. These latter methods, when
using the fitness values instead of the fitness improvements as raw measures of impact,
become fully Comparison-based, as emphasized in Section 5.2.5.

It is worth remembering that, after discussion in Section 4.3.3, for all the Credit As-
signment schemes considered (the baseline and the schemes proposed by us), no ancestors
are rewarded: the credit is only assigned to the operator that was used to achieve the
given fitness improvement. Besides, by convention, all schemes assign a null credit (=0)
in case the measured credit is negative.

5.2.1 Basic Credit Assignment Scheme: Fitness Improvements

As discussed in Section 4.3, a Credit Assignment scheme is defined by three aspects: (i)
how to measure the impact of an operator application; (ii) how to assign credit to the

70

5.2 Contributions to Credit Assignment

operator based on this measured impact; and (iii) to which operator the credit should be
assigned to.

Concerning the first issue, the Credit Assignment schemes proposed in this thesis use as
a measure of the impact after an operator application, unless stated otherwise, the fitness
improvement brought by the generated offspring over its parent, if a mutation operator
is used, or over the best of its parents in the case of crossover. Formally, let F , o and
x respectively denote the fitness function, a variation operator, and an element of the
current population. The impact of an operator application on the search at time t, i.e.,
the fitness improvement, is measured as δ(t) = (F(o(x)) − F(x)) when the objective is
to be maximized, δ(t) = (F(x) − F(o(x))) otherwise. For the description of the Credit
Assignment schemes throughout this Section, we assume the objective to be maximized; in
the case of minimization, the inversion of the credit calculation can be intuitively guessed.

The most common ways of assigning credit based on the impact are used as baseline
for comparison, namely: (i) the Instantaneous, which credits the operator according to
the fitness improvement received after its most recent application; and (ii) the Average,
which assigns as credit the average of the fitness improvements achieved by its last W
applications, W being a hyper-parameter that needs to be defined by the user. We refer
the reader to Section 4.3.2 for a more extensive discussion including some references for
both approaches.

5.2.2 Extreme Fitness Improvement

Our first proposal for the Credit Assignment problem, referred to as the Extreme value-
based scheme [Fialho et al., 2008], is inspired by the following remark. Let us consider an
operator bringing frequent small improvements, and compare it with an operator bringing
rare large improvements. The latter operator will hardly be considered if the reward
reflects the Average fitness improvement, as the average estimated over a few trials is likely
to be 0 (and this becomes even worst in case the Instantaneous values are considered),
implying that very few further trials of this operator will take place, although it might be
the current best operator.

Hence, as advocated in [Whitacre et al., 2006], attention should be payed to extreme,
rather than average, events. Incidentally, the role of extreme events in design has long
been acknowledged in numerical engineering (e.g., taking into account rogue waves when
dimensioning an oil rig); besides, it receives an ever growing attention in the domain of
complex systems, as extreme events govern diffusion-based processes ranging from epidemy
propagation to financial markets.

The proposed Extreme value-based Credit Assignment mechanism proceeds as follows.
When operator o is selected after the Operator Selection rule under examination (e.g., PM,
AP, or the bandit-based approaches proposed in Section 5.3), o is applied on the current
individual x; the fitness of the generated offspring is computed and the improvement
achieved over its parents is added to the window of operator o with size W , implementing
FIFO order. Finally, the credit to be assigned to the operator is set to the maximum value
of fitness improvements in this sliding time window.

More formally, let t be the current time step, and t1 (respectively ti) denote the time

71

Chapter 5. Contributions to Adaptive Operator Selection

step where operator o was used for the last time (respectively, the last time before ti−1).
If δ(t) denotes the fitness improvement observed at time t, then the credit to be assigned
to operator o is computed as:

rt = max
i=1...W

{δ(ti)} (5.1)

Hence, the Extreme value-based mechanism involves a single hyper-parameter, the
window size W , as does the previously mentioned Average scheme. This hyper-parameter
is meant to reflect the time scale of the process. If too large, the switches between two
different situations with respect to operators qualities might be delayed, i.e., operators
will be applied after their optimal epoch. If W is too small, operators causing large but
infrequent jumps will be ignored, as successful events will probably not be observed at
all, or too rapidly forgotten. The Extreme value-based scheme is simply referred to as
Extreme in the following.

5.2.3 Normalized Fitness Improvement

Although alleviating the user from the need of selecting which operators should be applied
to the problem at hand, and doing so on-line, each of the AOS methods presented in
this thesis involves some hyper-parameters that need to be tuned as well. The three
Credit Assignment schemes previously mentioned, namely, Instantaneous, Average, and
Extreme, reward the operators based on simple statistics over the fitness improvements
achieved by their application. The use of the raw values of the fitness improvements,
however, makes these schemes (and consequently the hyper-parameter tuning of the AOS
techniques implementing them) to be very problem-dependent, as follows.

Firstly, different problems have fitness ranges with different variance and at different
orders of magnitude; hence, a given AOS setting is efficient just when applied to the prob-
lem used during the tuning phase of its hyper-parameters. Additionally, and even more
importantly, the fitness variance, as well as the magnitude of the possible rewards received,
tend to reduce as the search approaches the optimum, while improvements themselves tend
to become more and more scarce; thus, even when the AOS is very carefully tuned for the
problem at hand, its behavior cannot be optimal during all the search process.

A proposal to improve the robustness of the mentioned Credit Assignment schemes over
different problems was to use a simple Normalization [Fialho et al., 2009b]: the credit to be
assigned to the operator is priorly divided by the maximum credit that would be assigned
to any of the operators, according to the Credit Assignment scheme under employment
(e.g., the mentioned Instantaneous, Average and Extreme schemes). In this way, no matter
the moment of the search or the problem that is being tackled, all the rewards are in the
real-value interval between 0 and 1, and the current best operator always receives a reward
of 1.

The utilization of all these basic Credit Assignment schemes described in Sections
5.2.1 to 5.2.3, namely, the absolute or Normalized output of Instantaneous, Average, or
Extreme schemes, calculated over the fitness improvements, is exemplified in the form of a
pseudo-algorithm in Algorithm 5.1, considering a maximization function. It is important
to remember that, for all these “basic” schemes, there is one FIFO window of size W for

72

5.2 Contributions to Credit Assignment

each of the K operators.

Algorithm 5.1: Credit Assignment Schemes over ∆F (op, type, norm, W, K)

1: if type = Instantaneous then
2: reward← last(wRewardsop)
3: else if type = Average then
4: reward← avg(wRewardsop)
5: else if type = Extreme then
6: reward← max(wRewardsop)
7: end if
8: if norm then // normalization
9: normfactor ← maxi=1...K{this.GetReward(i, type, norm=false, W, K)}

10: reward← reward/normfactor
11: end if
12: if reward < 0 then
13: reward← 0 // rewards ≥ 0
14: end if
15: return reward

5.2.4 Rank-based Credit Assignment Schemes

The normalization over the fitness improvement, presented in Section 5.2.3, contribute into
reducing the mentioned effects of problem-dependency, but do not eliminate the problem,
as it is still based to some extent on the raw values of the fitness improvements. For in-
stance, as the normalization factor depends on the region of the landscape that is currently
being explored, the same gain might have different weights in the update of the empirical
estimates throughout the search process, and this is likely to lead to problem-dependent
hyper-parameter configuration for the AOS schemes.

Inspired by the gain in robustness achieved by GAs when employing rank-based
parental selection schemes, e.g., the tournament selection, instead of selection schemes
over the raw fitness values, as the fitness-proportional roulette-wheel method (see Section
2.3.3), it seems clear that the use of ranks instead of raw values for the Credit Assignment
is a way towards robust AOS techniques. Following this path, we have proposed two Credit
Assignment schemes totally based on ranks, namely, the Area-Under-Curve (AUC) and
the Sum-of-Ranks (SR) [Fialho et al., 2010c; Fialho et al., 2010b].

Sliding Window

Besides the fact that ranks are used to assign credit, another major difference is that these
newly proposed schemes maintain the gains achieved by all the operators in a single sliding
window of size W , still being updated in a FIFO way; while in the previously described
Credit Assignment schemes, there is one separate window for each operator. Each slot
in this unique window contains thus the index of the operator that has been applied,

73

Chapter 5. Contributions to Adaptive Operator Selection

the fitness improvement achieved by its application, and the corresponding ranking with
respect to all the other fitness improvements stored in the current window.

The motivation for this is related to the already discussed dynamics of the AOS prob-
lem. By the use of just one FIFO window for all operators, the oldest result stored in the
window is as old as W operator applications; while in the case of multiple windows, the
results of very old applications of a given operator not applied during a long period might
still be used for the estimation of its empirical quality, although not reflecting the reality
anymore. Besides, as the inclusion of a new value of impact assessment in the window
alters the ranking of all the values worse than it (and in case the window contained al-
ready W values before this inclusion, the oldest value is deleted from the window; then the
ranking of all the results worse than the excluded value are also updated), the application
of one operator might also affect the empirical quality estimates of the other operators
(in addition to its own), thus automatically handling, to some extent, the dynamics with
respect to the performance of the operators.

Decaying Mechanisms for Rank-values

Following, and somehow smoothening the intuition of the Extreme Credit Assignment pre-
sented in Section 5.2.2, both rank-based approaches that will be presented in the following
were tried with the same ranking assignment schemes, which will be now described in turn.

Each position in the window is ranked, with the position R initially receiving a rank-
value of (W −R). A decay factor D ∈]0, 1] is then applied over these rank-values, so that
the top-ranked rewards exert a higher influence on the calculation of the credit assigned
to each operator. The final rank value corresponding to each operator application i, which
defines its weight in the AUC and SR Credit Assignment schemes, is then calculated as:

Decay(rank(i)) = DR(i)(W −R(i)) (5.2)

The hyper-parameter D, thus, defines how skewed the ranking distribution is. The smaller
D, the faster the decay (the more Extreme it is); with D = 1 representing the linear decay.
We refer to this simply as the Decay approach.

Another way of providing a decaying mechanism is the Normalized Discounted Cu-
mulative Gain (NDCG), originally proposed in the context of Information Retrieval (IR)
[Järvelin and Kekäläinen, 2000; Burges et al., 2005]. The motivation for using it is very
similar: the discovery of highly relevant documents should receive a higher weight than
the marginally relevant documents in the evaluation of effectiveness of an IR method. For-
mally, the original NDCG method assign, to element i (documents in the original context,
operator applications in ours), the following rank-value:

Original NDCG(rank(i)) =
2R(i) − 1

log(1 + i)
(5.3)

It seemed to be an interesting method for assigning decayed rank-values to the operator
applications, mainly due to the fact that it does the same job, but without needing the
definition of any hyper-parameter. In the original context, however, the NDCG measure

74

5.2 Contributions to Credit Assignment

does not consider only the ranking (with respect to relevance) of the corresponding docu-
ment, but also the order (the i in the denominator of Equation 5.3) in which it appears in
the documents list: it important for the IR methods to bring the most relevant documents
firstly. But in the AOS context, the order in which the top-ranked impact measures are
achieved is not important, what matters is how many top-ranked impact measures are
brought by each operator, in the time scale limited by the sliding window size W . There-
fore, in order to apply the NDCG method in the AOS context, it was re-written as follows:

Adapted NDCG(rank(i)) =
2(W−R(i)) − 1

log(1 +R(i)
(5.4)

In practice, however, the NDCG method is rather equivalent to the Decay scheme
defined in Equation 5.2 when using D = 0.4, as shown in Figure 5.1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

as
si

gn
ed

 r
an

k-
va

lu
es

 w
ith

 d
ec

ay
in

g

original ranks

Decay D=1.0 (Linear)
Decay (D=0.4)

Adapted NDCG

Figure 5.1: Comparison between different decaying mechanisms for W = 50.

Anyway, the NDCG and the Decay approaches, combined with each of the two rank-
based Credit Assignment schemes that will be presented in the following, are independently
considered in the experiments presented in Chapter 6. In this way, it is possible to verify
how much can be gained in terms of performance by trying some different values for D in
the Decay scheme, with respect to the fixed parameter-less NDCG approach.

AUC method: Rank-based Area-Under-Curve

The Area-Under-Curve (AUC) Credit Assignment method, as its name says, borrows ideas
from the Area Under the ROC Curve, a criterion originally used in Signal Processing and
later adopted in Machine Learning to compare binary classifiers, with the property of being
robust with respect to class imbalance [Bradley, 1997]. Originally, the Receiver Operating

75

Chapter 5. Contributions to Adaptive Operator Selection

Characteristic (ROC) curve depicts how the true positive rate varies with the false positive
rate. This indicator is adapted to the rank-based assessment of operators as follows.

Let us consider the list of fitness improvements achieved in a given time window, and
let the list be ranked after the raw values of these fitness improvements. The ROC curve
associated to a given operator o is drawn by scanning this ordered list, starting from the
origin: a vertical segment is drawn when the current offspring has been generated by o,
a horizontal segment is drawn otherwise, and a diagonal segment is drawn in case of ties.
The credit associated to operator o finally is the area under this curve.

A small example of this procedure is illustrated in Figure 5.2. The ROC curve is the
solid line, upper bound of the grey area. The AUC credit is represented by the grey area.
While all rank positions have same weight in the example presented in Figure 5.2a (for the
sake of clarity), i.e., all horizontal and vertical segments have length 1, it makes sense to
give more weight to the top ranked offspring, as previously discussed. A decay factor can
be applied in this case, with each segment of the ROC curve being re-scaled according to
Equation 5.2, the definition of the hyper-parameter D being required in this case. Figure
5.2b presents the AUC for the same set of rewards, but using decay factor D = 0.9.

op
er

at
or

 u
nd

er
 a

ss
es

sm
en

t (
1)

other operators

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

(a) AUC without decay factor

op
er

at
or

 u
nd

er
 a

ss
es

sm
en

t (
1)

other operators

 0

 13.5

24.8

32.7

39.2

41.9

45.1

 0 9.5 14.8 17.4 19.9 22.5 25.3

(b) AUC with decay factor D = 0.9

Figure 5.2: Computing the AUC reward associated to operator 1. Four operators are
considered; the list of the fitness improvements achieved is sorted; replacing each improve-
ment by the index of the generating operator gives (1 1 3 1 1 2 [3 4 1] 1 2 1 4 4), where
[3 4 1] stands for three equal fitness improvement values, resulting in the corresponding
slanted segment. In the left figure, no decay factor is applied, each line segment has size
1; in case of decay, the width of the squares decrease leftward and upward, as illustrated
in the right figure with D = 0.9.

It is important to note that, although using rank-based measures, the range of the
credit values provided by AUC is sensitive to the window size: bigger is the window,

76

5.2 Contributions to Credit Assignment

exponentially higher will be the credit assigned to the best operator. In order to avoid
this situation, we propose again the use of a normalization.

In the preliminary empirical results of the AUC Credit Assignment scheme combined
with the Rank-based Multi-Armed Bandit (RMAB) (which will be presented in Section
5.3.4) Operator Selection mechanism, published in [Fialho et al., 2010c], the normaliza-
tion was done on a per-axis basis, i.e., in the AUC plot (exemplified in Figure 5.2),
the x coordinates (respectively the y ones) are divided by the maximum value to be
plotted in x (respectively y). What happens in this case, however, is that different
operators will have a different number of rewards being assigned to each axis; conse-
quently, they can be normalized by different values. Consequently, good performance is
attained just in situations involving only 2 operators. Later on, in [Fialho et al., 2010b;
Fialho and Ros, 2010], we used a much simpler normalization scheme that eliminates such
effect. Basically, the AUC credit of a given operator is normalized by the sum of the
credits of all operators, so that their sum is equal to 1. This is the current version of the
AUC credit, simply referred to as AUC in the remainder of this text, while the prelimi-
nary version will be called as AUCv1 for the sake of distinction. An empirical comparison
between both versions on the OneMax problem will be presented in Section 6.4.2.

A complete and detailed representation of how to calculate the AUC credit is presented
in the form of a pseudo-algorithm in Algorithm 5.2.

Algorithm 5.2: Credit Assignment : Rank-based Area-Under-Curve (W, D, op)

1: area← x← y ← 0
2: for rank position r ← 1 to W do // loop on window (just one window for all operators)
3: ∆r ← Dr(W − r) // calculate weight of rank position in the area
4: tiesY ← CountT iesTargetOp(r) // # rewards equal to reward ranked r given by op
5: tiesX ← CountT iesOtherOps(r) // # rewards equal to reward ranked r given by others
6: if tiesX + tiesY > 0 then // if ties, proportional diagonal trace
7: for rank position s← (r + 1) to (r + tiesX + tiesY) do

8: ∆r ← ∆r +
(

Ds(W−s)
tiesX+tiesY

)

// sum weights of tied ranks, divided by # ties

9: x← x+ tiesX ·∆r
10: area← area+ y · tiesX ·∆r // area: sum the rectangle below
11: y ← y + tiesY ·∆r
12: area← area+ 0.5 ·∆r2 · tiesX · tiesY // area: sum the triangle below slanted line
13: r ← r + tiesX + tiesY − 1
14: end for
15: else if Opr == op then // if op generated r, vertical segment
16: y ← y +∆r
17: else // if another operator generated r, horizontal segment
18: x← x+∆r
19: area← area+ (y ·∆r)
20: end if
21: end for
22: return area/

(
∑K

i=1 CreditAssignment.GetReward(W, D, i)
)

// credit = normalized area

77

Chapter 5. Contributions to Adaptive Operator Selection

SR method: Sum-of-Ranks

The Sum-of-Ranks (SR) is a much simpler method, that credits the operators with the
sum of the ranks of the rewards given after its applications, subject to the same decaying
mechanism presented in Equation 5.2. This sum is lately normalized by the sum of all the
rank-values, so that the sum of the credits assigned to all operators sum up to 1. Formally,
the operator i is rewarded at time t as follows:

SRi,t =

∑

opr=iD
r(W − r)

∑W
r=1D

r(W − r)
(5.5)

A complete view of the SR Credit Assignment scheme is presented in Algorithm 5.3,
which also includes the handling of ties, not represented in Equation 5.5.

Algorithm 5.3: Credit Assignment : Sum-of-Ranks (W, D, op)

1: sum← 0
2: for rank position r ← 1 to W do // loop on window (just one window for all operators)
3: ∆r ← Dr(W − r) // calculate weight of rank position in the sum
4: tiesY ← CountT iesTargetOp(r) // # rewards equal to reward ranked r given by op
5: tiesX ← CountT iesOtherOps(r) // # rewards equal to reward ranked r given by others.
6: if tiesX + tiesY > 0 then // if ties
7: for rank position s← (r + 1) to (r + tiesX + tiesY) do

8: ∆r ← ∆r +
(

Ds(W−s)
tiesX+tiesY

)

// sum weights of tied ranks, divided by # ties

9: end for
10: sum← sum+ tiesY ·∆r
11: r ← r + tiesX + tiesY − 1
12: else if Opr == op then // if op generated r
13: sum← sum+∆r
14: end if
15: end for
16: return sum/

(
∑K

i=1 CreditAssignment.GetReward(W, D, i)
)

// credit = normalized sum

5.2.5 Comparison-based Credit Assignment Schemes

Coming back to the discussion about the robustness of the Credit Assignment schemes in
Section 5.2.4, by the use of ranks, both AUC and SR methods can be said to be invariant
with respect to linear scaling of the fitness function, i.e., their behavior, when applied
on a given fitness function F , is exactly the same than when applied on all the class of
fitness functions defined by (a · F), with a real value a > 0. Nevertheless, as the raw
rewards that are used here are actual values of fitness improvements, some monotonous
transformations will indeed modify the ranking of such values, and hence the outcome of
the whole algorithm (see some empirical examples on this in Section ??).

The complete invariance with respect to monotonous transformations can be attained
with a very simple modification: the replacement of the fitness improvements by the
fitness values of the newborn offspring as a raw impact measure. By doing this, the AUC

78

5.3 Contributions to Operator Selection

and the SR Credit Assignment schemes become fully comparison-based, as only sorting
some fitness values is required. This means that, in addition to the linear scaling of the
fitness functions, they also become invariant to all the family of fitness functions defined
by monotonous transformations over the original function.

These comparison-based Credit Assignment schemes are referred to as Fitness-based
Area-Under-Curve (FAUC) and Fitness-based Sum-of-Ranks (FSR) in the following. As
in the original schemes, only the fitnesses of the offspring that improved over their parents
are considered, a null reward is assigned otherwise. To date (and to the best of our
knowledge), they are the most robust methods for evaluating the operators performance,
although being a bit less efficient than the simple rank-based schemes in some cases, as
acknowledged in the experimental comparisons presented in Chapter 6.

5.3 Contributions to Operator Selection

Let us turn now to the other component of AOS, the Operator Selection, as the process
used to select the next operator to be applied, based on the credits received from the Credit
Assignment scheme under employment during the current search process, as reviewed in
Section 4.4. In this thesis, we have proposed and extended the use the Multi-Armed
Bandit (MAB) paradigm for Operator Selection. Starting with a slightly modified version
of the Upper Confidence Bound (UCB), an algorithm for MAB problems, reviewed in
Section 5.3.1, we have introduced two different modifications to the UCB, in order to
adapt it to account for the dynamics of the AOS problem, namely, the Dynamic Multi-
Armed Bandit (DMAB) (Section 5.3.2) and the Sliding Multi-Armed Bandit (SLMAB)
(Section 5.3.3). Lately, we have proposed the use of a simplified version of the UCB
algorithm, that directly uses the output of the rank/comparison-based Credit Assignment
schemes, presented in Sections 5.2.4 and 5.2.5, as the empirical quality estimate of each
operator, being referred to as the Rank-based Multi-Armed Bandit (RMAB), presented
in Section 5.3.4. Each of these contributions to Operator Selection will be now described
in turn.

5.3.1 Basic Operator Selection Scheme: Multi-Armed Bandit

A very important concept for efficient problem solving within EAs is that of the Explo-
ration versus Exploitation (EvE) balance: as discussed throughout Chapter 2, the EA
needs to efficiently exploit as much as possible the most promising regions of the search
space, while it also needs to explore the search space as a whole, in order to have higher
chances of finding the true global optimum. In the context of Operator Selection, the
same EvE problem exists, but at a higher level of abstraction (the algorithm level, not the
solution level): the most promising operator needs to be exploited as much as possible,
while the other operators also need to be explored from time to time, as the problem of
operator selection is dynamic and one of them might become efficient at a further stage
of the search. The EvE dilemma has been intensively studied in the context of Game
Theory, in the so-called Multi-Armed Bandit (MAB) framework [Lai and Robbins, 1985;

79

Chapter 5. Contributions to Adaptive Operator Selection

Auer et al., 2002]; based on these works, we have decided to consider the MAB algorithms
as possible solutions for the Operator Selection problem, as presented in the following.

To start with, the general paradigm for solving Multi-Armed Bandit (MAB) problems
can be formalized as follows. A MAB problem involves K arms; the i-th arm is character-
ized by its (fixed, unknown) reward probability pi ∈ [0, 1]. At each time step t, the player
(game strategy) selects an arm j; with probability pj it gets reward rt = 1, otherwise
rt = 0.

At any point T during the game, the performance of the MAB strategy is measured
by its cumulative reward

∑T
t=1 rt. An equivalent criterion, more amenable to theoreti-

cal analysis, is the so-called regret of the strategy, defined as the difference between its
performance and the best possible performance. Clearly, the best possible performance is
achieved by playing at each time step the (unknown) best arm, i.e., the arm with maximal
probability p∗ of getting a reward. Hence, the regret of the strategy after T time steps is:

L(T) = T · p∗ −
T∑

t=1

rt (5.6)

Classically, it is assumed that arms are independent from each other; and that the
rewards associated to each arm are independently and identically distributed (i.i.d.).
Under these assumptions, it can be shown that the optimal regret logarithmically in-
creases with time (L(T) = O(log(T))) [Lai and Robbins, 1985]. One of the solutions
proposed for the MAB problem, the so-called Upper Confidence Bound (UCB) algo-
rithm [Auer et al., 2002], achieves this optimal regret rate through an Exploration versus
Exploitation-based criterion. Formally, the i-th arm is associated to its empirical quality
estimate q̂i (the average of the rewards ri obtained up to the given time instant); and to a
confidence interval, that depends on the number of times ni the i-th arm has been tried.
The UCB algorithm deterministically selects, at each time step, the arm with best upper
bound of the confidence interval presented in Equation 5.7.

Select argmaxi=1...K

(

q̂i,t +
√

2 log
∑

k nk,t

ni,t

)

(5.7)

with ni,t+1 = ni,t + 1 (number of times used) (5.8)

and q̂i,t+1 =

(∑t
j=0

ri,j
ni,t+1

)

(empirical quality estimate) (5.9)

Clearly, the left term in Equation 5.7 favors the arm with best empirical quality (ex-
ploitation), while the right term promotes the trial of the other arms (exploration). The
UCB algorithm thus works by choosing mostly the arm that can possibly give the best re-
ward, while giving a chance from time to time to the infrequently tried arms. Its efficiency
comes from the fact that, although every arm is selected an infinite number of times, the
lapse of time between two selections of an under-optimal arm increases exponentially with
respect to the number of time steps; for this reason, the UCB is frequently phrased as “Be
optimistic in front of the Unknown”.

80

5.3 Contributions to Operator Selection

However, the mentioned optimality of the UCB algorithm with respect to the balance
between the Exploration and Exploitation terms is ensured only in the original MAB
context, in which rewards are boolean. In the AOS context, the rewards are usually
in between some real-value interval, depending on the Credit Assignment scheme being
employed, what “breaks” this balance; in order to correct it, a Scaling factor was intro-
duced by us into the original formula, being represented by the C term in Equation 5.10
[Da Costa et al., 2008]. Besides, in order to avoid storing all rewards received by each
operator up to time t, the averaging procedure of the empirical quality estimate presented
in Equation 5.9 can be re-written as shown in Equation 5.12.

Select argmaxi=1...K

(

q̂i,t +C ·
√

2 log
∑

k nk,t

ni,t

)

(5.10)

with ni,t+1 = ni,t + 1 (number of times used) (5.11)

and q̂i,t+1 =

(
(ni,t−1)·q̂i,t+ri,t

ni,t

)

(empirical quality estimate)(5.12)

A complete representation of this Operator Selection technique is presented in the form
of a pseudo-algorithm in Algorithm 5.4.

Algorithm 5.4: Operator Selection: Multi-Armed Bandit (K,C)

1: for i = 1 to K do
2: ni ← 0 // number of operator trials
3: q̂i ← 1.0 // empirical quality estimate
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else

9: op← argmaxi=1...K

(

q̂i + C.

√

2. log(
∑K

j=1
nj)

ni

)

10: end if
11: Operator op is applied, impacting the search progress somehow
12: rop ← CreditAssignment.GetReward(op)
13: nop ← nop + 1

14: q̂op ←
(

(nop−1)∗q̂op+rop
nop

)

15: end while

It must be noted that the MAB paradigm differs in two aspects from the mainstream
framework concerned with learning optimal strategies, namely Reinforcement Learning
(RL). On the one hand, MAB aims to select the best action, whereas RL is concerned
with finding the best sequence of actions. On the other hand, while RL is concerned with
learning the optimal sequence, it does not pay attention to the rewards it gets during the

81

Chapter 5. Contributions to Adaptive Operator Selection

training phase. Quite the contrary, MAB simultaneously wants to learn the best action,
and to optimize the cumulative reward it gets during learning. Clearly, the latter objective
is the only one relevant in the context of AOS: the goal is to continuously learn which
operator should be applied while maximizing the fitness improvement in the course of
evolution.

Although we acknowledge that MAB is the name given to the problem, for the sake of
convenience, in the remainder of this manuscript we refer to the UCB selection strategy
with scaling factor C (as shown in Equation 5.10) as the MAB technique. As this technique
is the basis of all the Operator Selection methods developed during this thesis (presented
in the following), it is always used as baseline for empirical comparison, being combined
with one of the Credit Assignment schemes that use the raw values of fitness improvements
to measure the impact of operator applications, namely, the absolute and the normalized
versions of the Instantaneous, Average, and Extreme schemes (see Sections 5.2.1 to 5.2.3).

5.3.2 Dynamic Multi-Armed Bandit

As discussed in Section 5.3.1, the MAB algorithm has been designed in order to minimize
the regret, i.e., the loss compared to the cumulative reward obtained by the (unknown)
optimal strategy (always selecting the best arm/operator) [Auer et al., 2002]. This makes
it compulsory to determine the best arm (say with reward r): in case the algorithm settles
on the second best arm (say with reward r′), it incurs some loss r − r′ at each time
step, and its regret increases linearly with the number of time steps. In the meanwhile,
unpromising arms are tried exponentially less and less; since the reward distribution is
assumed to be stationary, the chances of mistaking the best arm for an unpromising one
decreases exponentially with the number of trials. The main rationale behind the MAB
exploration (trying other arms than the one with best empirical q̂) is thus to determine
the best arm among the most promising ones.

AOS faces quite different priorities. The main need for exploration comes from the
dynamics of the environment: one cannot assume the reward distribution to be stationary,
the quality of any operator is bound to vary along evolution. Henceforth, mistaking the
best and second best operator has moderate consequences as the loss is small (provided r
and r′ are sufficiently close) compared to the cost of exploration. The point thus becomes
to identify as fast as possible a sufficiently good operator.

Note that if the reward distribution is not stationary, the MAB regret cannot but
linearly increase with the number of time steps in the worst case. The worst case is when
the reward distribution of the supposedly best arm does not change, whereas a previously
bad arm covertly becomes the best one. The only way to detect such a worst-case change
would be to try all arms sufficiently often, i.e., to define a minimal selection probability,
along the same lines as the Probability Matching (PM) Operator Selection technique,
described in Section 4.4.1. In the evolutionary framework, however, such a worst-case
change scenario is unlikely to occur.

On the one hand, the average reward of every operator tends to decrease as evolution
goes on (diminishing returns): in the One-Max problem, for instance, the best mutation
operator is the 5-bit mutation when the population is far away from the optimum; but the

82

5.3 Contributions to Operator Selection

reward of the 5-bit mutation decreases as the population goes to more fit regions, and at
some point the 3-bit mutation operator catches up (more details on this can be found in
Section 6.4). This suggests that when a good operator has been identified, there is no need
for exploration as long as this operator remains sufficiently good.

On the other hand, even without employing a minimal selection probability, and with
the lapse of time between two exploration trials increasing exponentially as the search
goes on, there is still some exploration being done by the original MAB algorithm – it
should thus be able to handle the AOS dynamic scenarios to some extent, although not
having been devised to do so. The problem, however, lies in the update rule of the MAB
empirical quality estimate q̂; the simple averaging formula presented in Equation 5.12 can
be re-written as:

q̂i,t+1 = q̂i,t +
1

ni,t
· (ri,t − q̂i,t) (5.13)

From Equation 5.13, it becomes clear that the weight of the reward received by operator i
from the Credit Assignment under employment at time t (ri,t) is inversely proportional, in
the update of the operator empirical quality estimate q̂i,t, to the number of times operator
i was applied (ni,t). Therefore, in case the current best operator has been selected ni

times and its reward falls down by δ, it will need roughly ni · δ/ε trials before recovering
an accurate quality estimate of operator i up to precision ε. In other words, the longest
is the steady-state of the quality of the best operator, the longer it will take for the MAB
process to correct its empirical knowledge in case the situation changes; this inertia is
what significantly degrades the performance of the original MAB algorithm on the highly
dynamic AOS context, as assessed in the experimental comparisons presented in Chapter
6.

The above remarks motivated the proposal of the Dynamic Multi-Armed Bandit
(DMAB) approach: the original MAB algorithm is coupled with a statistical test, the
Page-Hinkley (PH) change-point detection test [Page, 1954]. Briefly, upon the detection
of a change in the reward distribution, the MAB process is restarted from scratch. After
describing the PH test, more details about the DMAB are given in the following.

Page-Hinkley Change-Point Detection Test

Given a series of observations (r1, . . . , rℓ), a frequently asked question is whether these
observations can be attributed to a same statistical law (Null hypothesis), or if some change
in the law underlying the observations has occurred at some point (Change hypothesis). A
standard test for the change hypothesis is the Page-Hinkley (PH) statistics [Page, 1954],
which can be formally described as follows.

Let r̄ℓ denote the average of (r1, . . . rℓ) and let eℓ denote the difference (rℓ − r̄ℓ + δ),
where δ is a tolerance parameter [Page, 1954]. The PH test considers the random variable
mt defined as the sum of (e1, . . . , et). The maximum value Mt of the |mt| values for
(ℓ = 1 . . . t) is also computed and the difference between Mt and |mt| is monitored. When
this difference is greater than some user-specified threshold γ, the PH test is triggered,

83

Chapter 5. Contributions to Adaptive Operator Selection

i.e., it is considered that the Change hypothesis holds. This can be formally written as
follows:







r̄ℓ =
1
ℓ

∑ℓ
i=1 ri

mt =
∑t

ℓ=1(rℓ − r̄ℓ + δ)

Mt = argmaxℓ=1...t{|mℓ|}
PHt = Mt − |mt|
Return (PHt > γ)

(5.14)

The PH test involves two hyper-parameters. Parameter γ controls the trade-off be-
tween false alarms and unnoticed changes; and parameter δ enforces the robustness of
the test when dealing with slowly varying environments. Following early experiments
[Da Costa et al., 2008], the latter has been kept fixed to 0.15; while the former is a hyper-
parameter that needs to be defined by the user.

MAB + PH = DMAB

The hybridization of the original MAB algorithm (UCB with Scaling factor, as presented
in Section 5.3.1) with the PH statistical test, the so-called Dynamic Multi-Armed Bandit
(DMAB), thus maintains four indicators for each arm i: from the MAB side, the number
ni,t of times this arm has been tried up to time t, and its current (average) empirical quality
estimate q̂i,t; from the PH test side, there are the average and the maximum deviation
measuresmi andMi. In addition to these indicators, the DMAB also consequently inherits
the hyper-parameters of both components, which need to be tuned beforehand by the user,
namely, the MAB scaling factor C and the PH change-detection threshold γ (the other
PH hyper-parameter, δ, is kept fixed to 0.15, as previously mentioned). A complete and
detailed representation of the DMAB behavior, with its indicators and hyper-parameters,
is presented in Algorithm 5.5.

Note that the DMAB combination was firstly proposed in another dynamic context by
[Hartland et al., 2007], being originally applied in AOS by us in [Da Costa et al., 2008].
In the latter paper, the absolute Instantaneous value of rewards given by some artifi-
cial scenarios (described in Sections 5.4.1 and 5.4.2) was used as the Credit Assign-
ment scheme, in order to study the Operator Selection techniques independently. Be-
ing fed by the Extreme value of fitness improvements (and also by the other Credit
Assignment schemes based on fitness improvements, for the sake of empirical compari-
son), it was later assessed on some EA binary benchmark problems [Fialho et al., 2008;
Fialho et al., 2009a; Fialho et al., 2009b]. It was also evaluated on some SAT instances
[Maturana et al., 2009a], within an aggregation of fitness and diversity, the Compass (de-
scribed in Section 4.3.4), being used as Credit Assignment. All these experiments are
reminded in detail in Chapter 6.

84

5.3 Contributions to Operator Selection

Algorithm 5.5: Operator Selection: Dynamic MAB (K,C, γ, δ = 0.15)

1: for i = 1 to K do
2: ni ← 0 // number of operator trials (MAB)
3: q̂i ← 1.0 // empirical quality estimate (MAB)
4: mi ←Mi ← 0.0 // cumulated and max. cumulated difference (PH)
5: end for
6: while NotTerminated do
7: if one or more operators not applied yet then
8: op← uniformly selected between the operators not applied
9: else

10: op← argmaxi=1...K

(

q̂i + C.

√

2. log(
∑K

j=1
nj)

ni

)

11: end if
12: Operator op is applied, impacting the search progress somehow
13: rop ← CreditAssignment.GetReward(op)
14: nop ← nop + 1

15: q̂op ←
(

(nop−1)∗q̂op+rop
nop

)

// identical to the MAB algorithm up to here

16: mop ← mop + (rop − q̂op + δ) // then the PH change-detection test is performed
17: if |mop| > Mop then
18: Mop ← |mop|
19: else if Mop − |mop| > γ then
20: Restart MAB and PH variables (n, q̂,m,M)
21: end if
22: end while

5.3.3 Sliding Multi-Armed Bandit

Although showing to be very efficient, the DMAB Operator Selection technique presents
two main weaknesses. On the one hand, the change-point detection test is triggered only
in the case of an abrupt change, whereas the reward of an operator usually decreases
gradually: this makes it very difficult to calibrate this test (namely, its change-detection
threshold γ). On the other hand, upon triggering the test, the whole memory of the MAB
process is lost, and the exploration of the operators must start anew.

These remarks motivated the introduction of a new bandit-based Operator Selection
technique, referred to as the Sliding Multi-Armed Bandit (SLMAB) [Fialho et al., 2010a].
The underlying idea of this method is to be able to gracefully follow the dynamics of the
AOS scenario, without needing the very sensitive and somehow controversial (although
efficient when correctly tuned) restart mechanism employed by DMAB.

Several heuristics have been proposed to update statistical estimates in a non-
stationary context. The most natural heuristic is the so-called relaxation update rule,
used by the PM and AP schemes (presented in Sections 4.4.1 and 4.4.2, respectively),
where the weight of the instant reward rt on the update of the empirical quality estimate

85

Chapter 5. Contributions to Adaptive Operator Selection

is defined by some constant learning rate α (0 < α ≤ 1):

q̂i,t+1 = (1− α) · q̂i,t + α · ri,t (5.15)

The difficulties with the above rule are that, besides introducing the extra hyper-
parameter α to be tuned by the user, it defines a constant weight for the instant reward
ri,t, regardless of how frequently the i-th operator has been applied in the last time steps.
In the AOS framework, however, different operators are applied with different frequencies;
if an operator has not been applied for a long time, the weight of the instant reward it
received should be higher, everything else being equal, in order to enable a more rapid
adjustment of its q̂i,t.

The update rule must thus take into account the number of time steps elapsed since
the previous time step ti in which the i-th operator has been applied. Finally, in order to
preserve the MAB trade-off between exploration and exploitation, one must also maintain
the ni,t counters reflecting the frequency of application of operators up to time step t.

Considering a window of size W , the update of the sliding exploitation and exploration
terms (respectively, q̂ and n), which is performed every time operator i is applied, is defined
as:







q̂i,t+1 = q̂i,t · W
W+(t−ti)

+ ri,t · 1
ni,t+1

ni,t+1 = ni,t ·
(

W
W+(t−ti)

+ 1
ni,t+1

) (5.16)

The above update rule is designed in such a way that, if an operator is applied with
frequencyW/nt, then nt is constant. The rationale for this update scheme can be explained
as follows.

If an operator is performing well and is almost always applied, counter ni,t rapidly
increases up to W and sticks to this value, while its empirical quality estimate q̂i,t ac-
curately reflects the reward expectation for the current stage of the search. The main
difference compared to the MAB and DMAB settings is that ni,t is upper bounded by
W . Equivalently, the inertia of the reward estimate is bounded: the weight of the instant
reward cannot be less than 1/W .

Oppositely, if an operator is rarely applied, its q̂i,t can be seen as an outdated, hence
probably optimistic, estimation of the actual reward expectation (assuming that the op-
erator reward decreases on average as evolution goes on). On the other hand, the fact
that the operator is rarely applied means that its empirical quality estimate is lower than
that of the current best operator. With the averaging update rule employed by the orig-
inal MAB scheme, presented in Equation 5.12, it would take a long time to correct the
empirical quality estimate of this operator in case it had become the new best one. With
the sliding update rule, however, this outdated estimation of the operator quality is more
efficiently corrected: if the operator has not been tried in the previous W time steps, ni,t

is low, consequently the weight given to the instant reward is high in the update formula,
thus rapidly shifting the empirical quality estimate towards its actual value.

Besides the scaling factor C, that is needed by all bandit-based Operator Selection
mechanisms, the other hyper-parameter that needs to be defined in SLMAB is the window

86

5.3 Contributions to Operator Selection

size W , used in the proposed window-based relaxation update mechanism. But, as most
Credit Assignment schemes found in the literature, including the schemes proposed in this
thesis, rely on windowing the operator reward distribution, this latter hyper-parameter
can be said to be parametrized “for free” (by using the same window size W employed
by the Credit Assignment scheme being used). A complete presentation of the SLMAB in
the form of a pseudo-algorithm is presented in Algorithm 5.6.

Algorithm 5.6: Operator Selection: Sliding Multi-Armed Bandit (K,C,W)

1: times← 0 // number of total time steps
2: for i = 1 to K do
3: ni ← 0 // number of operator trials
4: q̂i ← 1.0 // empirical quality estimate
5: lasti ← 0 // last time it was applied
6: end for
7: while NotTerminated do
8: if one or more operators not applied yet then
9: op← uniformly selected between the operators not applied

10: else

11: op← argmaxi

(

q̂i + C ·
√

2·log(
∑K

j=1
nj)

ni

)

12: end if
13: Operator op is applied, impacting the search progress somehow
14: rop ← CreditAssignment.GetReward(op)

15: q̂op ← q̂op ·
(

W
W+(times−lastop)

)

+ rop ·
(

1
nop+1

)

16: nop ← nop ·
(

W
W+(times−lastop)

+ 1
nop+1

)

17: lastop ← times
18: times← times+ 1
19: end while

The SLMAB Operator Selection technique, combined with the absolute Instantaneous,
Average and Extreme Credit Assignment schemes, was assessed on some artificial sce-
narios, described in Section 5.4, being also used to select between some mutation and
crossover operators within a real EA applied to the Royal Road benchmark problem
[Fialho et al., 2010a]. All these experiments are detailed in Chapter 6.

5.3.4 Rank-based Multi-Armed Bandit

The main criticism with respect to the bandit-based AOS schemes described up to now
is related to the high sensitivity of their hyper-parameters, what was an important mo-
tivation factor for most of the further developments presented throughout Sections 5.2
and 5.3. From the Operator Selection point-of-view, the SLMAB represented a further
step towards more robust schemes, by eliminating one of the two very sensitive hyper-
parameters present in the DMAB approach (the Page-Hinkley change-detection threshold

87

Chapter 5. Contributions to Adaptive Operator Selection

γ), while still being able to achieve equivalent performance in following the AOS dynamics
on some artificial benchmark functions [Fialho et al., 2010a], as presented in Chapter 6.
But, even for the SLMAB, there is still the need to tune the scaling factor C, which is
indeed a very sensitive hyper-parameter common to all bandit-based Operator Selection
approaches previously presented. The difficulty for tuning this parameter comes in fact
from the Credit Assignment scheme being employed, as follows.

By the time the DMAB and SLMAB techniques were proposed, the Credit Assignment
schemes under consideration were the basic Instantaneous, Average (Section 5.2.1), and
Extreme ones (Section 5.2.2), as well as their Normalized versions (Section 5.2.3). All
these schemes assign credit based directly on some statistics over the raw values of the
fitness improvements. Whenever these raw values are used, the tuning of the AOS hyper-
parameters tends to be highly problem-dependent, as the range of fitness values varies
widely from one problem to another, as well as in the course of an optimization run (we
refer the reader to Section 5.2.4 for a more extensive discussion on this issue). Hence, the
scaling factor C, which has as original role to tune the balance between the exploitation
and exploration terms of the UCB formula (Equation 5.10), also needs to play a radically
different role, that of accounting for the scale of the rewards received. This double role is
the reason why C shows to be such a sensitive hyper-parameter.

These issues motivated the proposal of the rank-based and further comparison-based
Credit Assignment schemes, presented in Sections 5.2.4 and 5.2.5, respectively. How-
ever, the direct combination of these schemes with the previously described bandit-based
Operator Selection techniques showed a rather poor performance after some preliminary
experiments. The reason for this is that the AUC and the SR indicators already provide,
on the Credit Assignment side, an empirical statistics over the last W offspring generated;
while the MAB techniques do another aggregation of rewards in the Operator Selection
side (the q̂ in Equation 5.10) – the two layers of statistics were somehow diluting the
interesting characteristics of the proposed performance measurements. Therefore, as the
outputs of the AUC and SR indicators already reflect accurate and up-to-date perfor-
mance measures of one operator with respect to all the others, they can be used directly
as the exploitation term in the MAB formula, i.e., q̂i,t = AUCi,t or SRi,t, depending on
the scheme being used.

This simple adaptation of the MAB scheme brings another very important benefit for
Operator Selection. As the mentioned rank/comparison-based Credit Assignment schemes
maintain just one sliding window for the rewards received by all operators, the inclusion
of a new reward in the sliding window, achieved by a given operator, affects the quality
estimates of all the other operators. Consequently, the AOS dynamics are already handled
on the Credit Assignment side in a transparent way, without needing an external observer,
as the change-detection test in the DMAB technique, or a relaxation update rule, as the
one employed in the SLMAB scheme.

Finally, in order to ensure a minimal level of exploration, the MAB term n is modified
to reflect the number of times each operator appear in the sliding window. A complete
representation of this simplified version of the MAB algorithm, specially adapted to be
used with the rank/comparison-based Credit Assignment schemes, thus referred to as the
Rank-based Multi-Armed Bandit (RMAB), is presented in the form of a pseudo-algorithm

88

5.3 Contributions to Operator Selection

in Algorithm 5.7.

Algorithm 5.7: Operator Selection: Rank-based Multi-Armed Bandit (K,C)

1: for i = 1 to K do
2: ni ← 0 // number of times operator i appears in the current credit window
3: q̂i ← 1.0 // empirical quality estimate = normalized CreditAssignment output
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else

9: op← argmaxi

(

q̂i + C ·
√

2·log(
∑K

j=1
nj)

ni

)

10: end if
11: Operator op is applied, impacting the search progress somehow
12: for i = 1 to K do // the application of one operator might affect the others
13: q̂i ← CreditAssignment.GetReward(i)
14: ni ← CreditAssignment.GetTimes(creditWindow, i)
15: end for
16: end while

In order to evaluate the efficiency and robustness of the AOS techniques derived from
the combination of the RMAB Operator Selection scheme with the rank/comparison-based
Credit Assignment schemes, they were firstly assessed within a GA applied to the OneMax
problem and to other three fitness functions defined by monotonous transformations over
this problem [Fialho et al., 2010c]. Later on, their performances were also evaluated on a
set of 24 single-objective continuous problems [Fialho et al., 2010b; Fialho and Ros, 2010],
selecting between different mutation strategies within a DE algorithm. As expected, these
combinations showed to be very robust with respect to their hyper-parameters, namely,
the scaling factor C, the decay factor D, and the window size W ; while achieving the
same level of state-of-the-art performance of the previously presented (efficient but very
problem-dependent) approaches. The experimental results on the OneMax and on the
continuous problem will be detailed, respectively, in Sections 6.4 and 6.6.

By the time this manuscript is being written, the use of RMAB as Operator Selection,
with the Area-Under-Curve (AUC) Credit Assignment scheme (see Section 5.2.5), is our
final recommended choice in case one wants to use the AOS paradigm on his own opti-
mization algorithm/problem. The reason for this choice will be extensively discussed and
justified in Section 6.8, based on the evidences brought by the comprehensive empirical
analysis that will be presented in Chapter 6.

89

Chapter 5. Contributions to Adaptive Operator Selection

5.4 Contributions to Empirical Assessment

While developing the AOS schemes presented in this Chapter, some artificial benchmark
problems were proposed to analyze different aspects of their behavior in a controlled
environment. All these artificial scenarios, that will be now described in turn, were used
in part of the empirical analysis of the AOS schemes, which will be presented in Section
6.3.

Based on the Uniform artificial scenario, proposed in [Thierens, 2005] and described
in Section 5.4.1 for the sake of self-containedness, we have introduced two other artificial
scenarios. Referred to as the Boolean and the Outlier scenarios, presented in Section
5.4.2, they involve the same switches between five operators, but with rewards coming
from different distributions and with different probabilities.

More recently, we have extended this set of artificial benchmarks by proposing a new
family of problems, referred to as the Two-Values (T V) benchmarks [Fialho et al., 2010a],
which can be used to simulate different situations with respect to the mean and variance
of rewards given by two artificial operators. The T V benchmarks are described into detail
in Section 5.4.3.

5.4.1 Base Artificial Scenario: Uniform

The Uniform artificial benchmark, proposed in [Thierens, 2005], involves a set of 5 op-
erators, in which the reward distribution associated to each operator is constant during
an epoch (∆T times steps). During every epoch, the operator reward is uniformly drawn
from an interval, as follows: {4, 6} for the current best operator, {3, 5} for the second best,
{2, 4} for the third, {1, 3} for the fourth, and {0, 2} for the worst operator.

The reward distributions associated to all operators are permuted at the end of every
epoch, using pre-defined permutations to decrease the experimental noise, defined in this
work as follows: 41203 7→ 01234 7→ 24301 7→ 12043 7→ 41230 7→ 31420 7→ 04213 7→
23104 7→ 14302 7→ 40213. More precisely, the best operator in the first epoch is the op4,
which becomes the worst one in the second epoch. The best operator in the second epoch
is op0, which was the fourth one in the first epoch.

The AOS ability to match the dynamics of evolution is assessed by varying the length
of the epoch, e.g., set to ∆T = 50 for fast dynamics and ∆T = 200 for slow ones. The
performance associated to an AOS scheme is the cumulative reward obtained during this
sequence of 10 epochs. As the reward expectation of the best operator is 5, the maximal
cumulative reward is 2,500 in the fast case (5 × 10 × 50) and 10,000 in the slower one
(5× 10× 200).

5.4.2 Boolean and Outlier Scenarios

Within the Uniform benchmark, an operator always gets a reward that is positive, while
also being informative, i.e., it indicates (to some extent) which is the best operator, pos-
sibly mistaking just with the second best, as the intervals of their reward distributions
overlap. In a real evolutionary context, however, the AOS task might be much more chal-

90

5.4 Contributions to Empirical Assessment

lenging. For instance, the probability of getting some useful information about the quality
of the operator might be smaller than that, up to the situation in which no information
whatsoever is provided to the AOS (specially true when the search is getting closer to
the optimum); or, even if some rewards are frequently provided, the information gathered
from them might not be so useful in order to efficiently differ between the available opera-
tors. Based on these two difficulties, we proposed [Da Costa et al., 2008] and further used
[Fialho et al., 2010a] two variants of the Uniform benchmark, referred to as the Boolean
and Outlier scenarios.

In the Boolean scenario, the best operator gets a reward of 10 with probability 50%
(and 0 otherwise); the second best gets the same reward of 10 but with probability 40%,
and 0 otherwise, and so forth, until the worst operator, getting a reward of 10 with
probability 10% and 0 otherwise. In this scenario, the difference between the operators is
the probability of getting a non-null reward; the reward takes the same value in all cases.
In particular, the best operator has the same reward expectation than in the Uniform
scenario, though with a much higher variance.

Quite the contrary, in the Outlier scenario all operators get a non-null reward with
the same probability (10%); the difference lies in the reward value, set to 50 for the best
operator, 40 for the second best and so forth, up to 10 to the worst operator. While the
reward expectation is still the same as in the Uniform benchmark, the AOS is provided
with much less information (only 10% of the trials produce some information), and the
reward variance is much higher than in the Boolean scenario.

Summarizing, thus, the probability of getting some information is high (for the best
operator) in the Boolean benchmark, while being low (for all operators) in the Outlier
benchmark. But the Boolean scenario typically does not provide useful information (all
rewards have the same values, only the probabilities differ), while the Outlier scenario in-
volves very informative but rare rewards. Both use the same sequence of switches between
reward distributions after every epoch, and the reward expectation for each operator is
also the same as in the Uniform case.

5.4.3 Two-Value Scenarios

As discussed in the previous Section, any AOS is usually provided with some (more or
less) informative results (the reward amount, everything else being equal); and it is more
or less likely to be provided with any information at all. Typically, the MAB process is
well equipped to deal with Boolean-like settings, where operators (arms) get the same
reward in case of success and only the probability of success differs.

Along these lines, a framework for AOS benchmarks, referred to as Two-Values (T V)
benchmarks, was proposed in [Fialho et al., 2010a], enabling a more precise control of
the two issues previously discussed. Briefly, every operator is assumed to get one out
of two reward values, a small value noted r and a large one noted R. Within these two
parameters, it is possible to control the informativeness of the reward distribution, defined
by the ratio R/r; while the third parameter, p, defines the probability of getting reward
R; and (1− p) is the probability of getting r. Needless to say, the mean and the variance
of the rewards received are also intrinsically managed by these parameters.

91

Chapter 5. Contributions to Adaptive Operator Selection

Formally, the reward distribution specified from the triple (p, r, R) is defined as:

{
T V(p, r, R) = R with probability p

r with probability 1− p

with expectation and variance respectively noted IE(p, r, R) and V (p, r, R):

IE(p, r, R) = p ·R+ (1− p) · r
V (p, r, R) = p · (1− p) · (R− r)2

It is clear that only the ratio R/r impacts the results; thus, in the remainder of this
manuscript, r will be set to 1 and omitted in the notations for the sake of simplicity
– a reward distribution will be noted T V(p,R) instead of T V(p, 1, R). Furthermore, a
scenario involving T V(p1, R1) and T V(p2, R2) will be denoted by ART (p1, R1, p2, R2).
The respective roles of p and R are exemplified in Figure 5.3, displaying two samples of
size 100 of distributions with the same expectation and high versus low variance.

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

E = 1.9 (p=0.1; R=10)

(a) T V(0.1, 10), V (.1, 10) = 7.29

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50 60 70 80 90 100

E = 1.9 (p=0.9; R=2)

(b) T V(0.9, 2), V (.9, 2) = .09

Figure 5.3: Two samples drawn from two T V distributions with same expectation
IE(.1, 10) = IE(.9, .2) = 1.9; the distribution on the left picture presenting a much higher
variance (V (.1, 10) = 7.29) then the one on the right (V (.9, 2) = .09).

Such a general framework will help us into analyzing very different aspects of the
behavior of the AOS schemes proposed. The main question will always be how agile a
given AOS combination is into switching between two different situations, what will be
analyzed under the light of different variants of this scenario in Section 6.4. But other low
level details could also be analyzed, e.g., does the AOS (or the Credit Assignment scheme
it implements) tend to favor operators with a high variance instead of the ones with a low
variance [Fialho et al., 2010a].

In the same way than for the previously presented scenarios, the exchanges between
the reward distributions, done after each epoch of ∆T time steps, obey a fixed sequence
in order to decrease the experimental noise, as follows: 01 7→ 01 7→ 10 7→ 01 7→ 10 7→ 10 7→
10 7→ 01 7→ 01 7→ 10.

92

5.5 Discussion

5.5 Discussion

In order to be well-accepted by the EA community, the main requirement of a good AOS
technique is, of course, to be able to efficiently automate the control of the operators to
be applied, in a dynamic way, during the search process. But it also needs to be (i) easily
implementable and, even more importantly, to be (ii) computationally cheap.

The first issue can be alleviated by making available implementations of the proposed
schemes (e.g., as open source libraries). The algorithms implemented in this work were
coded in ANSI-C++; the Evolving Objects (EO) library1 [Keijzer et al., 2002] was used
to assist the implementation of the underlying EAs, controlled by the proposed AOS
methods. All this experimental framework is freely available under request by email. And
indeed, it was already requested by some researchers, and we acknowledge its recent use
by one of them [Verel et al., 2010] on the proposal of a new method.

A lot of care should be taken, however, with the second issue: the more computationally
expensive the AOS technique, the smaller the margin of possible benefits it can bring to the
underlying algorithm which operators are being controlled by it, the benefits being usually
measured in terms of computational time or effort to achieve a given solution. Indeed, in
some domains, e.g., in numerical engineering, the fitness evaluation is very expensive, what
makes the AOS computational cost negligible. But in combinatorial problems, such as the
Boolean Satisfiability problems (see Section 6.5.2), the cost of evaluating the fitness of a
given solution is almost zero. In this latter case, it might become impracticable to consult
and update the AOS technique every time an operator is applied: a trade-off should thus
be found between the AOS granularity (how frequent it is consulted and updated, e.g.,
once every generation instead of once every application) and the AOS dynamics accuracy
(the more frequent it is updated, the more reliable will be its estimation with respect to
the operators empirical performance).

A third issue worth discussing concerns a very common critic that prevents people from
using AOS schemes on their own algorithms and problems: although being proposed to
automate some user choices, these schemes have their own (hyper-)parameters that need
to be tuned in order to achieve acceptable performance, e.g., the scaling factor C and the
window size W , respectively, common to the all Operator Selection schemes and Credit
Assignment mechanisms we have proposed. What should be argued in this case is that the
AOS schemes automatically take care of many shallow parameters (i.e., which operators
should be applied, and at which rate, besides the main fact that they control the rates
in a dynamic way, during the search process), while involving only a few general hyper-
parameters (2 or 3, depending on the AOS combination being implemented). Moreover,
these hyper-parameters usually have a much clearer meaning than the original ones, and
are thus more easily understood by humans, while hopefully being less sensitive to different
settings.

A very common approach to solve this hyper-parameter setting issue is to use off-line
parameter tuning methods to automatically set them. Indeed, this has been done for all
the experiments that will be presented in Chapter 6, in order to promote a fair empirical

1EO: C++ library for coding EAs, freely available at http://eodev.sourceforge.net/ as of today.

93

Chapter 5. Contributions to Adaptive Operator Selection

comparison between the proposed and the baseline techniques. But off-line tuning is an
expensive procedure, as discussed earlier in Section 3.3.2; so, ideally, a good AOS technique
should also be robust with respect to its hyper-parameters, i.e., whenever a new problem
needs to be solved, the tuning of the AOS hyper-parameters should be required as rarely
as possible.

Although a good level of efficiency with respect to the AOS dynamics was attained very
early in this thesis work, with the proposal of the Ex-DMAB technique (combining the Ex-
treme Credit Assignment, presented in Section 5.2.2, with the DMAB Operator Selection,
described in Section 5.3.2), the hyper-parameters of such AOS combination showed to be
very sensitive, a good performance being shown just in case the hyper-parameters were
tuned for every new problem. All the further developments proposed in this thesis, for
both Credit Assignment and Operator Selection issues, aimed at smoothening this effect
by creating more robust (i.e., less problem-dependent) techniques, while maintaining the
same level of performance.

A big progress was achieved on this direction by the recent proposal of the RMAB
for Operator Selection (Section 5.3.4), combined with any of the rank-based Credit As-
signment schemes described in Sections 5.2.4 and 5.2.5. The simple fact that rewards are
assigned based on ranks instead of raw values of fitness improvements already provides
a much higher robustness to the AOS technique implementing it, guaranteeing invari-
ance with respect to any linear scaling of the original fitness function. Furthermore,
the use of ranks over the fitness values of the generated offspring, instead of ranks over
the fitness improvements, provides to the AOS technique the characteristic of being fully
comparison-based, i.e., invariant with respect to all monotonous transformations over the
same original fitness function. This robustness gain was confirmed by performing indepen-
dent off-line tuning procedures over the AOS combination constituted by the Fitness-based
Area-Under-Curve (FAUC) as Credit Assignment with the RMAB as Operator Selection
over very different problems – the same or very similar hyper-parameter settings were found
to be the best, while state-of-the-art (or very close to that) performance was achieved, as
reviewed in the empirical comparisons presented in Chapter 6.

The proposed rank-based AOS techniques are efficient and robust, but it is impor-
tant to note that their current implementations can not achieve good performance in
problems with high multi-modality (i.e., several local optima), because the only action
being rewarded is the progress with respect to the fitness. As exemplified in Section
4.5.2, in order to efficiently tackle multi-modal problems, the maintenance of some diver-
sity in the population should also be rewarded somehow. Further developments should
be done in this direction in the near future by, e.g., trying to provide the same level
of robustness and invariance properties to the Credit Assignment schemes proposed in
[Maturana et al., 2010b], which aggregate both fitness and diversity measures to evaluate
the operator performance. A different alternative, in the case of multi-modal problems,
would be to let the proposed AOS techniques as they are, i.e., rewarding just exploitation
(fitness), but implementing efficient convergence detection mechanisms in the underlying
EAs, in order to restart the search process in case it gets trapped in a local optimum, con-
sequently giving more opportunities to the algorithm to possibly achieve better solutions
within the same computational budget; such kind of approach, briefly discussed in Section

94

5.5 Discussion

2.3.3, is very common in Evolution Strategies [Auger and Hansen, 2005].
Finally, concerning the artificial scenarios proposed for the empirical assessment of

the AOS techniques, it is true that many different and more general settings could have
been proposed, such as considering more than two T V operators, or more complex reward
distributions (e.g., taking uniformly drawn values in two intervals centered in the r and R
values, or smoother transitions between epochs). But the preliminary motivation was the
analysis of the effect of both, the reward level of informativeness R/r and the probability p
of receiving a positive reward, on the AOS performance, as will be shown in the empirical
comparisons presented in Section 6.3. More complex and realistic reward landscapes shall
be considered in further studies, according to the needs of the empirical analysis.

95

Chapter 6

Experimental Results

Contents

6.1 Introduction . 99

6.2 General Experimental Settings 100

6.2.1 AOS Combinations and respective Hyper-Parameters 100

6.2.2 Off-line Tuning of Hyper-Parameters 102

6.2.3 Performance Indicators and Results Presentation 104

6.3 On Artificial Scenarios . 105

6.3.1 Experimental Settings . 105

6.3.2 Results on Uniform, Boolean and Outlier Scenarios 106

6.3.3 Results on ART Scenarios . 122

6.3.4 Discussion . 132

6.4 On Boolean Benchmark Problems 133

6.4.1 Experimental Settings . 133

6.4.2 The OneMax Problem . 134

6.4.3 The Long K-Path Problem . 140

6.4.4 The Royal Road Problem . 145

6.4.5 Discussion . 149

6.5 Collaboration On Satisfiability Problems 150

6.5.1 Compass + Ex-DMAB = ExCoDyMAB 150

6.5.2 SAT Problems . 151

6.5.3 Experimental Settings . 152

6.5.4 Architecture definition and tuning of hyper-parameters 153

6.5.5 Empirical Results . 154

6.5.6 Discussion . 156

6.6 On Continuous Benchmark Problems 158

6.6.1 Black-Box Optimization Benchmarking 158

6.6.2 Experimental Settings . 159

97

Chapter 6. Experimental Results

6.6.3 The PM-AdapSS-DE Method . 161

6.6.4 Empirical Results . 162

6.6.5 Discussion . 166

6.7 Hyper-Parameters Analysis . 170

6.7.1 On the Sensitivity of the Hyper-Parameters 170

6.7.2 On the Robustness of the Hyper-Parameters 177

6.8 General Discussion . 180

98

6.1 Introduction

In this Chapter, we present some empirical evaluations of the pro-
posed AOS contributions. The methods are compared between each
other, and with other baseline approaches, on diverse benchmark
scenarios. Besides the performance evaluation, their sensitivity and
robustness in relation to their hyper-parameters is also analyzed.

6.1 Introduction

From the standard MAB Operator Selection technique with a Credit Assignment based
on fitness improvements, up to the latest RMAB that is rewarded based on ranks, several
contributions for Adaptive Operator Selection (AOS) have been proposed in Chapter 5.
In this Chapter, a comprehensive empirical analysis for each of the AOS methods, re-
sulting from the combination of the proposed Operator Selection mechanisms and Credit
Assignment schemes, will be presented.

Their performances will be assessed and compared in diverse benchmark scenarios,
with different characteristics and levels of complexity. Firstly (Section 6.3), the empiri-
cal analysis on the artificial scenarios will consider the selection between operators whose
rewards come from different pre-defined artificial distributions that are deterministically
changed after every ∆T iterations. Then (Section 6.4), experiments on some boolean EA
benchmark problems (OneMax, Long K-Path and Royal Road) will be analyzed: in these
cases, the AOS schemes are applied to a Genetic Algorithm, automatically selecting be-
tween actual mutation and crossover operators, with the rewards coming from the progress
attained by the search process in the considered fitness landscapes. Additionally (Section
6.5), the results obtained in the scope of a collaboration with Université d’Angers will
be reminded: in this scenario, only the Dynamic Multi-Armed Bandit (DMAB) Opera-
tor Selection technique (Section 5.3.2) is evaluated, combined with the Compass Credit
Assignment method (Section 4.3.4). The resulting AOS combination is used by a GA to
autonomously select between some crossover, mutation and local search operators, in the
context of Boolean Satisfiability (SAT) problems. In the last set of complete empirical
comparison,(Section 6.6), the AOS schemes are used within a Differential Evolution algo-
rithm in order to control which of the available mutation strategies should be applied; the
results will be assessed in a big set of single-objective continuous benchmark functions.

Prior to all these experiments, a preliminary off-line tuning of the hyper-parameters
was done for each AOS technique, in order to promote a fair empirical comparison. The
list of hyper-parameters, the range of values tried for each of them, as well as the off-line
tuning procedure, will be presented in Section 6.2, together with some general experimental
settings. Besides, the specific experimental settings for each scenario will also be detailed
in the respective Sections, before the presentation of the results.

In addition to the performance, the sensitivity of each hyper-parameter and the robust-
ness of the AOS techniques with respect to their hyper-parameters will also be analyzed
in Section 6.7. Finally, the conclusions and findings gathered from all these empirical data
will be discussed in Section 6.8.

99

Chapter 6. Experimental Results

6.2 General Experimental Settings

The different AOS combinations proposed have some hyper-parameters that need to be
set, as discussed throughout Chapter 5. On each benchmark scenario described in the fol-
lowing, an off-line tuning procedure was preliminarily performed for the hyper-parameters
of each technique, for the sake of a fair empirical comparison. A summary of the AOS
combinations and their respective hyper-parameters is presented in Section 6.2.1, while
Section 6.2.2 describes the values explored for each hyper-parameter, and the off-line tun-
ing procedure used. Finally, Section 6.2.3 overviews the different performance measures
and displays that have been used in the diverse empirical comparisons that will be pre-
sented in the following.

6.2.1 AOS Combinations and respective Hyper-Parameters

In this Chapter, all the AOS combinations proposed in Chapter 5, namely, the bandit-
based MAB, DMAB and SLMAB Operator Selection mechanisms, combined with Absolute
and Normalized versions of the Instantaneous, Average, and Extreme Credit Assignment
schemes, as well as the RMAB Operator Selection with the rank/comparison-based Credit
Assignment schemes, are compared with one another on different benchmark scenarios.

Regarding the Credit Assignment schemes (Section 5.2), all the schemes except for
the Instantaneous one have a common hyper-parameter, the size of the sliding window W ,
which defines how many operator applications are taken into account to calculate the credit
to be assigned to a given operator after its most recent application. It is important to
remember that the rank/comparison-based schemes have only one window for all operators,
while the other schemes use one window per operator. For the schemes based on the raw
values of the fitness improvements, although the fact of normalizing the output or not could
be considered as another (boolean) hyper-parameter, schemes employing the Absolute or
the Normalized values are separately considered. The rank/comparison-based schemes
have an additional parameter, the exponential decay factor of the ranking distribution,
referred to as D. Here, again, the choice of use of the fitnesses or the fitness improvements
as impact measures for the ranking could be seen as a hyper-parameter, but the schemes
implementing each of them are independently analyzed and compared between each other.

On the Operator Selection side, the bandit-based schemes, presented in Section 5.3, all
have a common hyper-parameter, the scaling factor C. This hyper-parameter defines the
balance between the UCB exploration and exploitation terms; in case one of the Credit
Assignment schemes based on the raw values of fitness improvements is used, C also
accounts for the scale of the received rewards, as discussed in Section 5.3.4. Additionally,
the DMAB also needs the setting of the threshold γ for the Page-Hinkley change-detection
statistical test, used by its restarting mechanism; while the SLMAB requires the definition
of its own sliding window size w, used by its update mechanism – however, after some
preliminary experiments, this hyper-parameter will be tuned “for free” here, by using the
same value than that of the Credit Assignment W .

As baseline AOS method for comparison, we consider the probability-based Adaptive
Pursuit (AP) Operator Selection scheme [Thierens, 2005] (Section 4.4.2), combined with

100

6.2 General Experimental Settings

the same Credit Assignment schemes based on the raw values of fitness improvements. AP
needs the setting of: the adaptation rate α to control the update of the empirical quality
estimates of each operator; the learning rate β, which defines the level of greediness of the
winner-take-all strategy for the update of the application rates of each operator; and the
minimal application probability of each operator, referred to as pmin, in order to avoid
inefficient operators to get lost by the process (i.e., have zero probability of being applied),
as they might become useful in a further stage of the search. Experiments were also done
considering the PM method (Section 4.4.1), but its results will not be neglected here, due
to the fact that it was always outperformed (most of the times significantly) by AP.

The other methods used for comparison are: the “Naive” uniform strategy, i.e., the
operator to be applied is randomly selected using a uniform distribution, which represents
what would be a common choice for a naive user; and the “Oracle” strategy, available
only to some of the benchmark problems considered, that represents what would be the
optimal behavior with respect to operator selection on the problem at hand. Needless to
say, these two latter methods do not have any hyper-parameter to be tuned. Additionally,
for the experiments on the boolean benchmark problems, the probabilities of applying
each operator were off-line tuned and will be used as a further baseline method, referred
to as “Static”; more details will be given within the specific experimental settings for these
scenarios (Section 6.4.1).

The lists of the considered Credit Assignment and Operator Selection schemes, with
their corresponding hyper-parameters, are presented in Tables 6.1 and 6.2, respectively;
while Table 6.3 summarizes the AOS combinations considered.

Baseline Credit Assignment Schemes Hyper-Parameters

Absolute Instantaneous (AbsIns)
—

Normalized Instantaneous (NormIns)

Absolute Average (AbsAvg)
W Sliding window size

Normalized Average (NormAvg)

Proposed Credit Assignment Schemes Hyper-Parameters

Absolute Extreme (AbsExt)
W Sliding window size

Normalized Extreme (NormExt)

Decay/Area-Under-Curve (Decay/AUC)
W Sliding window size

Decay/Fitness-based Area-Under-Curve (Decay/FAUC)
Decay/Sum-of-Ranks (Decay/SR)

D Decay factor
Decay/Fitness-based Sum-of-Ranks (Decay/FSR)

NDCG/Area-Under-Curve (NDCG/AUC)

W Sliding window size
NDCG/Fitness-based Area-Under-Curve (NDCG/FAUC)
NDCG/Sum-of-Ranks (NDCG/SR)
NDCG/Fitness-based Sum-of-Ranks (NDCG/FSR)

Table 6.1: Baseline and proposed Credit Assignment methods, and their hyper-parameters

101

Chapter 6. Experimental Results

Baseline Operator Selection Methods Hyper-Parameters

Naive
—

Oracle (when available)

Adaptive Pursuit (AP)
pmin Minimal operator probability
α Adaptation rate
β Learning or “greediness” rate

Proposed Operator Selection Methods Hyper-Parameters

Multi-Armed Bandit (MAB) C Scaling factor

Dynamic Multi-Armed Bandit (DMAB)
C Scaling factor
γ Threshold for Page-Hinkley test

Sliding Multi-Armed Bandit (SLMAB)
C Scaling factor
w Window size (no tune, w ←W)

Rank-based Multi-Armed Bandit (RMAB) C Scaling factor

Table 6.2: Baseline and proposed Operator Selection methods, and their hyper-parameters

Credit Assign. + Op. Selection Credit Assign. + Op. Selection

×
Ins.

×
AP

×
AUC

× RMAB
Abs.

Avg.
MAB Decay FAUC

Norm.
Ext.

DMAB NDCG SR
SLMAB FSR

24 fitness-based combinations 8 rank-based combinations

Table 6.3: List of 32 AOS combinations considered in most experiments

6.2.2 Off-line Tuning of Hyper-Parameters

To promote a fair empirical comparison, it is generally desirable to evaluate the AOS
schemes at their best. Accordingly, an off-line tuning was performed preliminarily to every
experiment in order to determine, for each AOS combination, the best hyper-parameter
configuration. Table 6.4 presents the ranges of values tried for each hyper-parameter,
unless stated otherwise.

Briefly, the Credit Assignment settings involve 4 configurations for the schemes based
on the raw values of fitness improvements and for the rank-based schemes using the NDCG
decaying mechanism, while 20 configurations are explored for the other rank-based schemes
(using Decay). The Operator Selection settings include: 64 possible configurations for AP,
7 for MAB and RMAB, and 49 for DMAB. For the SLMAB, there are 7 possible config-
urations, except for its combination with the Instantaneous, when the Credit Assignment
window size is set to 1 but all the 4 values are also tried for the sliding window used by its
update rule, thus summing up to 28 configurations. The final number of possible configu-
rations for each AOS combination is attained by multiplying the number of configurations
for its respective Credit Assignment and Operator Selection components.

In order to find the optimal values of all hyper-parameters for each AOS combination
on each of the analyzed scenarios, rather than a complete factorial Design of Experiments,

102

6.2 General Experimental Settings

Param. Used by |values| Range of Values

pmin AP 4 {0, .05, .1, .2}
α AP 4 {.1, .3, .6, .9}
β AP 4 {.1, .3, .6, .9}
C all MABs 7 {0.01, 0.1, 0.5, 1, 5, 10, 100}
γ DMAB 7

{
10−3, ..., 103

}

W all Credit Assignment 4 {10, 50, 100, 500}
D Decay/rank-based Cr. Assign. 5 {0.25, 0.5, 0.75, 0.9, 1.0}

Table 6.4: Ranges of values tried for the corresponding hyper-parameters

we used the F-Race off-line parameter tuning method [Birattari et al., 2002]. As discussed
in Section 3.3.2, the general idea of Racing techniques is to start with all configurations,
discarding some of them as soon as there is enough statistical evidence showing that
they will not likely be the best one. More specifically, the F-Race applies the Racing
paradigm using the Friedman two-way analysis of variance by ranks [Conover, 1999] as
statistical test to eliminate candidate configurations. In order to enable a fair comparison,
as recommended in [Birattari, 2004b], all the experiments in this work use, for each epoch,
the same initial population (the “blocking design” concept). Starting from a minimal
number of 11 runs, after each run for all configurations, the elimination of inefficient
configurations is performed with the statistical test being applied at a confidence level of
95%. Although 11 runs might be excessive (e.g., [Birattari, 2004a] recommends one run
over each instance), we prefer to be conservative here, in order to be sure that the methods
are really compared at their best, specially because there is a considerable variance in the
results of some of the benchmark problems. The procedure is stopped when a single
configuration remains, or when all “survivors” have been run on the maximal number
of runs, set to 50 in these experiments. In the latter case, the retained configuration
is the one with the best mean amongst the survivors, as done in [Birattari et al., 2002]

(although different alternatives could be used, e.g., in a critical situation the configuration
with best worst case could be considered). In all cases, 50 runs are launched for the
retained configuration and the results presented in this paper are based on statistics over
these runs, unless stated otherwise.

It is worth noting that other off-line tuning methods than the F-Race could have been
tried, notably the methods that iteratively refine the set of candidate configurations, such
as the Iterated F-Race [Balaprakash et al., 2007], the Sequential Parameter Optimization
[Bartz-Beielstein et al., 2005], and others, surveyed in Section 3.3.2. However, the objec-
tive here was rather to simply do some tuning of the hyper-parameters while being more
computationally efficient. Although we acknowledge that the use of different off-line tun-
ing techniques, or different sets of candidate configurations tuned by the same F-Race,
could eventually lead to different winners on some benchmark scenarios, we believe that
this issue does not affect the global conclusions gathered from the diverse benchmark
situations that will be considered in the following.

103

Chapter 6. Experimental Results

6.2.3 Performance Indicators and Results Presentation

Several complementary views and indicators for analyzing the AOS performance will be
used on each benchmark scenario. The main ones will be summarized now, distinguishing
between off-line and on-line performance presentations.

Off-line Performance

The diverse benchmark scenarios considered in the following use different indicators to
evaluate the performance of the AOS schemes. These indicators will be described in the
corresponding Sections presenting the specific Experimental Settings for each scenario.
The off-line performance measures are compared in a Table, for each analyzed scenario,
in which each cell corresponds to a Credit Assignment and an Operator Selection, and
indicates:

� the average and standard deviation of the performance measure at hand (according
to the type of scenario); and

� the values of the best hyper-parameter configuration determined after the F-Race
procedure, as described in Section 6.2.2.

Besides the numerical results, two different kinds of statistical comparison are shown
in the same Table (see Table 6.5 for instance). The first comparison is the global one:
the best performance achieved between all the considered AOS techniques is presented in
bold-face with grey background, like this ; the results which are statistically equivalent,
according to at least one of both unsigned Wilcoxon rank sum and Kolmogorov-Smirnov
non-parametric tests applied at confidence level 90%, are displayed with a grey back-
ground. Small result variations among the different AOS schemes thus translate like
many grey cells. The second comparison takes place in the scope of each Operator Se-
lection technique: the best performance achieved by it using one of the available Credit
Assignment schemes is marked with a ⋆ symbol; accordingly, all the schemes within the
same Operator Selection technique that obtained equivalent performance, according to the
same statistical tests, are marked with a N symbol. Finally, the caption of the table finally
indicates the performances of the Naive uniform strategy, and of the Oracle and Static
strategies (whenever available).

In some scenarios, however, given the high dispersion of the results, it is not meaning-
ful to present only the averages and standard deviations, i.e., no significant difference can
be found, in terms of performance, between most of the AOS schemes. Because of this, in
order to be able to figure out the difference of performance between the techniques, the
empirical distribution of the results over 50 runs is presented, depicted using Empirical
Cumulative Distribution Functions (ECDFs): for each level of performance (on x-axis)
the percentage of runs reaching this score is indicated (on y-axis); see, e.g., Fig. 6.15b.
The x-axis is limited by the average performance of the Naive uniform approach: thus,
the y value attained by the corresponding ECDF curve at the right border of the plot
represents the percentage of runs of the method under assessment that performed bet-
ter than the Naive uniform baseline. ECDFs are preferred in lieu of standard box-plot

104

6.3 On Artificial Scenarios

diagrams, mainly because they display of the full distribution, consequently enabling a
fine-grained comparison of the different schemes, accounting for the fact that one scheme
might outperform another scheme with regard to some quantile performance, although
being outperformed with respect to the average or median value.

ECDFs are also used to assess the sensitivity of the schemes with respect to their hyper-
parameters. More precisely, ECDFs aggregating series of runs corresponding to several
hyper-parameter configurations will be presented for each AOS. These plots graphically
show how fast the performance degrades when departing from the optimal parameter
configuration.

On-line Performance

The off-line performance, however, does not tell whether an AOS fails to detect the best
operator due to an excess of exploration, or exploitation. In the former case, the AOS fails
to stick to the best operator after the change; in the latter case, it fails to swiftly adapt
whenever a change occurs.

For this reason, the on-line performance of the AOS schemes with respect to operator
selection is also presented for some benchmark scenarios. The on-line performance plots
(or behavior plots, e.g., Fig. 6.2) depict, for each operator, its instant selection rate along
time. For the sake of a smoother presentation, given the high variation of behavior between
the many runs, the selection rates plotted represent the average of every 50 time steps for
each run, further averaged over 50 runs. Additionally, on all such plots for DMAB, the
small peaks below the x-axis indicate the frequency of restarts after the triggering of the
PH change-detection statistical test (also averaged every 50 steps, over 50 runs).

6.3 On Artificial Scenarios

In order to assess the proposed and the baseline AOS combinations in controlled envi-
ronments, i.e., in benchmark problems in which the expected behavior is exactly known,
experiments were done on the artificial scenarios described in Section 5.4. The specific
experimental settings for these experiments, in complement to the general settings pre-
sented in Section 6.2, will be described in Section 6.3.1. The empirical comparison of the
AOS schemes on the Uniform, Boolean and Outlier scenarios will be surveyed in Section
6.3.2, while Section 6.3.3 will present the results involving two different ART instances.
Finally, Section 6.3.4 will present a discussion about the highlights of these experiments.
The results that will be analyzed here were partially published in [Da Costa et al., 2008;
Fialho et al., 2010a; Fialho et al., 2010c].

6.3.1 Experimental Settings

On these artificial scenarios, the most natural performance indicator is the total gain
brought by an AOS scheme, referred to as the Total Cumulated Reward (TCR), computed
as the sum of the rewards gathered by the algorithm over the complete run.

105

Chapter 6. Experimental Results

Besides the average and standard deviation of the TCR, a related but not equivalent
indicator, the percentage of times the best operator is selected, is also presented for an
illustrative purpose in the comparison tables (see, e.g., Table 6.7); it will be referred to as
p(best) in the remainder of this text. It is important to note that two techniques might
present similar p(best), although presenting very different TCR performance, due to the
difference between the sub-optimal choices done by each of them, the so-called error costs,
which are not taken into account by this measure.

In all cases, the reward distributions are modified every ∆T time steps. The epoch
lengths considered are ∆T ∈ {50, 200, 500, 2000}, i.e., ranging from very fast to very slow
dynamics. Ten epochs are considered, unless stated otherwise. Although being already
defined in the corresponding Sections 5.4.2 and 5.4.3, the sequences used for the exchanges
of reward distributions are reminded here: for the Uniform, Boolean and Outlier scenarios,
the sequence is 41203 7→ 01234 7→ 24301 7→ 12043 7→ 41230 7→ 31420 7→ 04213 7→ 23104 7→
14302 7→ 40213; and for the ART scenarios, 01 7→ 01 7→ 10 7→ 01 7→ 10 7→ 10 7→ 10 7→
01 7→ 01 7→ 10.

An alternative view of off-line performance is also shown for each artificial scenario:
how the performance (in terms of TCR and p(best)) of each Operator Selection technique,
with its best Credit Assignment scheme found by the off-line tuning, scales with respect
to the different epoch lengths considered (see, for instance, Figure 6.1). The motivation is
not to compare the results on the different scenarios, but rather to compare the “trend”
of the scaling of the performance of the AOS combinations on the different epoch lengths.

6.3.2 Results on Uniform, Boolean and Outlier Scenarios

The Uniform, Boolean and Outlier scenarios involve 5 operators, with rewards coming
from different distributions, as described in Sections 5.4.1 and 5.4.2. Empirical results on
each of these scenarios will be separately analyzed in the following.

Uniform scenario

On the Uniform scenario, results are very clear and almost in total accordance with respect
to all the four different epoch lengths considered. Tables 6.5 and 6.6 present, respectively,
the results obtained on ∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

Given the high informativeness of the rewards received with respect to the quality of
the operators, and their steady-stateness during each epoch, it becomes reasonably easy
to detect which is the current best operator on this scenario. In the worst case, as the
reward distributions of subsequent operators partially overlap between each other, the
second best operator might occasionally be considered to be the best one; but the error
cost is always very small for the same reason, therefore it does not greatly affect the Total
Cumulated Reward (TCR). The difference in performance thus lies mainly in how fast
the AOS techniques are able to adapt to new situations, whenever a change occurs.

Accordingly, using Average or Extreme Credit Assignment schemes will always delay,
in W operator applications at most, the perception that the situation has changed; this
is a tentative explanation for the fact that both Absolute and Normalized versions of the

106

6.3 On Artificial Scenarios

Instantaneous Credit Assignment scheme are clearly the best options for all the Operator
Selection methods tried with them. This interpretation is supported by the output of
the Racing process for each of the AOS combinations using the Average and the Extreme
schemes: the best configuration retained for all of them has the same sliding window size
W = 10, i.e., the lowest value in the range tried for this hyper-parameter (Table 6.4).

Between the rank-based Credit Assignment schemes, the AUC is the best option. The
fact that a linear decay (i.e., D = 1) is retained as best configuration might also be related
to the subtle overlap between the rewards received by the different operators: in such a
case, there is no need of a strong decaying factor to differ between them.

On the Operator Selection side, the clear winner is DMAB, which, combined with the
Absolute Instantaneous (AbsIns) Credit Assignment scheme, significantly outperforms all
the other AOS combinations on all epochs, except for the same DMAB with Normalized
Instantaneous (NormIns) Credit Assignment in three out of four cases. Indeed, for the
longest epoch (∆T = 2000), the AbsIns-DMAB AOS technique obtains a TCR equivalent
to 99.7% of the Oracle TCR, selecting the best operator in around 99.5% of the appli-
cations. This outstanding performance is explained by the well-calibrated PH test (as
shown in Figures 6.2a and 6.2b); although using a very sensitive hyper-parameter (see
sensitivity analysis in Section 6.7), the restarting mechanism is very efficient on this kind
of situation in which the qualities of the operators change abruptly. For faster dynamics
(smaller ∆T), the performance is gracefully degraded: shorter the steady-state epoch, less
negligible becomes the price to be paid by the extra exploration needed after each restart.
But, still, DMAB remains the clear winner with respect to TCR and p(best) for all epoch
lengths, as shown in Figure 6.1.

The standard MAB is the second best Operator Selection technique on this scenario,
achieving a performance slightly (but significantly, given the small standard deviations)
inferior than that of DMAB, for all epoch lengths. Its combination with either AbsIns
or NormIns Credit Assignment schemes, although being the simplest bandit-based AOS
combination considered, is able to achieve up to 97% of the Oracle TCR for ∆T = 2000,
selecting the best operator in around 92% of the times (Figure 6.2c); its well-tuned EvE
balance enables the discovery of the new situation by paying the minimal price with respect
to exploration. The SLMAB is also able to swiftly follow the dynamics of the scenario,
employing the same level of exploration; but it achieves similar performance than that of
MAB only because of the low error cost, as it is not able to differ well between the best and
the second best operators in some of the epochs (Figure 6.2d); this explains why its p(best)
is much lower than that of MAB, although obtaining a similar TCR. The AUC-RMAB
combination with linear decay achieves very similar performance (Figure 6.2e) than that
of MAB; given the very low value retained for its scaling factor C, it becomes clear that
all the adaptation is in fact done on the Credit Assignment side: an impact measure
brought by the application of one operator might affect the whole ranking distribution,
consequently affecting the quality estimate of all operators, as discussed in Section 5.2.4.

Conversely, the baseline probability-based Adaptive Pursuit (AP) method does not
follow the same trend, being significantly outperformed by all bandit-based schemes on the
two longer epochs (see Figure 6.1). This limitation is blamed on an excess of exploration
(lower bounded by the pmin=0.05 parameter), as shown in Figure 6.2f. It is worth noticing

107

Chapter 6. Experimental Results

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(a) % max TCR w.r.t. epoch length

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(b) p(best) w.r.t. epoch length

Figure 6.1: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Uniform scenario.

that pmin=0 was also tried in the parameter tuning process (Table 6.4), but achieved lower
performance than that of pmin=0.05; the value used in fact translates into up to 25% of
exploration trials in this case, as pmin refers to the minimal level of exploration for each
operator. Finally, all AOS combinations succeed in performing significantly better than
the Naive uniform baseline method.

108

6.3 On Artificial Scenarios

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
2077 ± 55 ⋆ 2171 ± 36 2120 ± 23 2103 ± 35 ⋆

C10W50 C1G1W1 C5W1 P.05A.9B.9W1
Pb: 65.6 ± 4.9 Pb: 66.9 ± 4.8 Pb: 63.5 ± 1.7 Pb: 58.9 ± 5.6

NormIns
1957 ± 109 2294 ± 30 ⋆ 2142 ± 61 ⋆ 2077 ± 43
C1W10 C.01G.1W1 C.5W1 P.05A.9B.9W1

Pb: 44.8 ± 11.6 Pb: 75.6 ± 5.3 Pb: 55.8 ± 8.6 Pb: 56.6 ± 5.5

AbsAvg
1926 ± 103 2084 ± 49 1915 ± 40 2030 ± 70
C5W10 C.5G1W10 C1W10 P0A.9B.9W10

Pb: 45.2 ± 10.7 Pb: 48.9 ± 6.0 Pb: 41.7 ± 4.6 Pb: 39.8 ± 6.4

NormAvg
1896 ± 102 1907 ± 52 1907 ± 52 1906 ± 100
C1W10 C.5G10W10 C.5W10 P0A.1B.9W10

Pb: 41.6 ± 11.3 Pb: 34.1 ± 5.3 Pb: 34.1 ± 5.3 Pb: 33.3 ± 8.0

AbsExt
1879 ± 97 2120 ± 33 1884 ± 46 1892 ± 43
C10W100 C.5G1W10 C1W10 P.05A.9B.9W10

Pb: 38.8 ± 6.6 Pb: 70.0 ± 3.4 Pb: 40.8 ± 5.8 Pb: 46.7 ± 6.3

NormExt
1800 ± 105 1990 ± 54 1949 ± 39 1868 ± 41
C1W10 C.01G.1W10 C.5W10 P.05A.9B.9W10

Pb: 38.4 ± 9.3 Pb: 50.0 ± 7.2 Pb: 51.4 ± 3.3 Pb: 43.2 ± 5.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
1952 ± 19 ⋆ 1947 ± 18 N 1927 ± 16 1937 ± 17
C.5D1W10 C.5D.75W10 C.5W10 C.5W10

Pb: 55.8 ± 1.3 Pb: 56.4 ± 1.5 Pb: 55.0 ± 1.8 Pb: 55.7 ± 1.6

(a) Results on the Uniform scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8530 ± 329 N 9773 ± 117 ⋆ 9145 ± 37 N 8826 ± 73 ⋆

C5W10 C.1G10W1 C5W1 P.05A.6B.9W1
Pb: 56.7 ± 11.8 Pb: 95.1 ± 1.5 Pb: 78.6 ± 0.7 Pb: 73.0 ± 2.5

NormIns
8610 ± 106 ⋆ 9699 ± 136 N 9156 ± 154 ⋆ 8806 ± 68 N

C5W500 C.01G.001W1 C.5W1 P.05A.9B.9W1
Pb: 71.3 ± 1.9 Pb: 89.7 ± 6.8 Pb: 70.4 ± 6.3 Pb: 72.6 ± 2.2

AbsAvg
8355 ± 346 9066 ± 108 8769 ± 64 8561 ± 300
C5W10 C1G1W10 C5W10 P0A.9B.9W10

Pb: 54.3 ± 12.2 Pb: 67.6 ± 5.1 Pb: 71.2 ± 1.7 Pb: 43.9 ± 9.3

NormAvg
7909 ± 427 8643 ± 138 8643 ± 138 8228 ± 121
C1W10 C.5G10W10 C.5W10 P.05A.9B.9W10

Pb: 36.6 ± 11.0 Pb: 49.5 ± 4.7 Pb: 49.5 ± 4.7 Pb: 50.7 ± 4.5

AbsExt
8128 ± 323 9526 ± 39 8867 ± 43 8626 ± 85
C5W10 C.5G10W10 C5W10 P.05A.9B.9W10

Pb: 43.2 ± 10.6 Pb: 90.2 ± 0.8 Pb: 74.6 ± 0.8 Pb: 70.7 ± 2.7

NormExt
7668 ± 393 9236 ± 159 8908 ± 142 8593 ± 94
C1W10 C.1G.001W10 C.5W10 P.05A.9B.9W10

Pb: 34.3 ± 11.2 Pb: 77.8 ± 6.4 Pb: 69.8 ± 5.6 Pb: 69.6 ± 3.0

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
8755 ± 87 ⋆ 8469 ± 92 8469 ± 92 8469 ± 92
C.1D1W50 C.1D.5W50 C.1W50 C.1W50

Pb: 74.6 ± 2.5 Pb: 68.9 ± 3.7 Pb: 68.9 ± 3.7 Pb: 68.9 ± 3.7

(b) Results on the Uniform scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.5: Results on the Uniform scenario for ∆T ∈ {50, 200}
109

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
22948 ± 678 ⋆ 24785 ± 41 ⋆ 23572 ± 66 ⋆ 22270 ± 91 ⋆

C5W10 C.1G10W1 C5W1 P.05A.6B.9W1
Pb: 73.2 ± 11.8 Pb: 98.1 ± 0.2 Pb: 85.5 ± 0.5 Pb: 76.3 ± 1.2

NormIns
21041 ± 637 24448 ± 400 23294 ± 377 22212 ± 97 N

C5W500 C.01G.001W1 C.5W1 P.05A.9B.9W1
Pb: 63.6 ± 6.6 Pb: 90.9 ± 8.0 Pb: 73.3 ± 7.1 Pb: 75.4 ± 1.1

AbsAvg
22659 ± 631 23494 ± 222 23199 ± 114 21778 ± 119

C5W10 C1G1W10 C5W10 P.05A.9B.9W10
Pb: 69.8 ± 11.0 Pb: 78.5 ± 4.0 Pb: 82.8 ± 1.0 Pb: 68.2 ± 1.9

NormAvg
20712 ± 1057 22777 ± 253 22502 ± 221 21671 ± 133

C1W10 C.5G.01W10 C1W10 P.05A.9B.9W10
Pb: 42.6 ± 12.8 Pb: 71.4 ± 3.9 Pb: 68.2 ± 3.4 Pb: 67.2 ± 2.0

AbsExt
21578 ± 776 24509 ± 48 23275 ± 69 22085 ± 105

C5W10 C.5G10W10 C5W10 P.05A.9B.9W10
Pb: 50.5 ± 14.1 Pb: 95.9 ± 0.4 Pb: 83.7 ± 0.5 Pb: 75.7 ± 1.3

NormExt
20471 ± 1526 23882 ± 355 23109 ± 366 22063 ± 114

C1W10 C.1G.001W10 C.5W10 P.05A.9B.9W10
Pb: 43.0 ± 14.4 Pb: 84.4 ± 6.1 Pb: 75.7 ± 5.7 Pb: 75.5 ± 1.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
23251 ± 117 ⋆ 22804 ± 134 22804 ± 134 22804 ± 134
C.1D1W50 C.1D.5W50 C.1W50 C.1W50

Pb: 86.0 ± 1.2 Pb: 81.8 ± 2.6 Pb: 81.8 ± 2.6 Pb: 81.8 ± 2.6

(a) Results on the Uniform scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
95872 ± 2745 ⋆ 99781 ± 72 ⋆ 96954 ± 128 ⋆ 89617 ± 156 ⋆

C5W10 C.1G10W1 C5W1 P.05A.3B.9W1
Pb: 83.3 ± 13.1 Pb: 99.5 ± 0.0 Pb: 92.2 ± 0.3 Pb: 78.5 ± 0.5

NormIns
83221 ± 6417 98731 ± 1583 N 95329 ± 916 89534 ± 159 N

C1W10 C.01G.001W1 C1W1 P.05A.3B.9W1
Pb: 45.3 ± 17.2 Pb: 94.2 ± 7.9 Pb: 84.5 ± 3.3 Pb: 78.3 ± 0.5

AbsAvg
95135 ± 663 97625 ± 1105 96332 ± 330 89242 ± 174
C10W10 C1G10W10 C5W10 P.05A.9B.9W10

Pb: 86.2 ± 2.4 Pb: 89.8 ± 5.4 Pb: 91.1 ± 0.7 Pb: 76.9 ± 0.6

NormAvg
87364 ± 4064 95958 ± 718 93741 ± 912 89137 ± 192

C1W10 C.5G.001W10 C1W10 P.05A.9B.9W10
Pb: 51.0 ± 13.1 Pb: 84.5 ± 3.5 Pb: 77.4 ± 3.7 Pb: 76.7 ± 0.7

AbsExt
94716 ± 613 99492 ± 79 96658 ± 99 89560 ± 154 N

C10W10 C.5G10W10 C5W10 P.05A.9B.9W10
Pb: 85.6 ± 1.9 Pb: 98.9 ± 0.1 Pb: 91.7 ± 0.2 Pb: 78.9 ± 0.4

NormExt
85092 ± 6055 97103 ± 1444 95044 ± 656 89540 ± 161 N

C1W10 C.1G.001W10 C1W10 P.05A.9B.9W10
Pb: 48.8 ± 15.1 Pb: 87.2 ± 7.3 Pb: 85.5 ± 2.1 Pb: 78.8 ± 0.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
96449 ± 231 ⋆ 95501 ± 234 95501 ± 234 95501 ± 234
C.1D1W100 C.1D.5W100 C.1W100 C.1W100

Pb: 92.9 ± 0.6 Pb: 90.9 ± 1.1 Pb: 90.9 ± 1.1 Pb: 90.9 ± 1.1

(b) Results on the Uniform scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.6: Results on the Uniform scenario for ∆T ∈ {500, 2000}
110

6.3 On Artificial Scenarios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(a) AbsIns-DMAB (C.1 γ10 W1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(b) AbsExt-DMAB (C.5 γ10 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(c) AbsIns-MAB (C5 W1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(d) AbsIns-SLMAB (C5 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(e) Decay/AUC-RMAB (C.1 D1 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(f) AbsIns-AP (P.05 A.3 B.9 W1)

Figure 6.2: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their best
Credit Assignment schemes, on the Uniform scenario with ∆T = 2000. The outstanding
performance of DMAB, using either AbsInst or AbsExt Credit Assignment schemes, is
achieved by the fact that restarts are perfectly triggered by the PH test in the transitions,
as indicated by the small peaks below the x-axis of the corresponding plots.

111

Chapter 6. Experimental Results

Boolean scenario

Differently from the Uniform scenario, in the Boolean scenario it is not the values of the
rewards that inform which is the best operator, but rather the frequency with which each
operator is rewarded: this makes this scenario a very difficult one for AOS, as discussed
in Section 5.4.2. Tables 6.7 and 6.8 present, respectively, the results obtained on ∆T ∈
{50, 200} and ∆T ∈ {500, 2000}, confirming this assumption.

For instance, with ∆T = 50, only 47% of good choices are made by SLMAB, the best
method in this case, and less than 40% by all others. When ∆T increases, the overall
performance of all Operator Selection techniques (with their corresponding best Credit
Assignment scheme) in relation to both TCR and p(best) measures, gradually increases
accordingly, as shown in Figure 6.3. Anyway, the maximum p(best) attained in the longest
epoch is 80%, while in the Uniform scenario rates up to 99.5% were found.

Concerning the Operator Selection techniques, for the shortest epoch, SLMAB achieves
the best TCR, but its performance is statistically equivalent to all the others. Starting
from ∆T = 200, the DMAB takes the lead, with the gap between its performance and
those of the others increasing, up to the longest epoch, in which the winner configuration
for DMAB is significantly better than all the other techniques. It is important to note
that, as the values of the rewards received are always the same (= 10), very few restarts are
done by DMAB (see, e.g., Figures 6.4a and 6.4b); hence, the performance of the standard
MAB is very similar to the DMAB performance, being significantly different only for the
longest epoch. The other three Operator Selection techniques, namely, SLMAB, RMAB
and the baseline AP, present equivalent but inferior performance for all epoch lengths,
except for the longest one, in which SLMAB is significantly better than AP, but still
equivalent to RMAB.

By analyzing these behavior plots for ∆T = 2000 in Figure 6.4, it can be seen that,
except for the overall winner NormIns-DMAB (Figure 6.4a) and the second best NormIns-
MAB (Figure 6.4c), the performance of the other bandit-based AOS combinations is hin-
dered by a lack of further exploitation of the best operator: in around 20% of the trials, a
sub-optimal operator is applied (see Figures 6.4d and 6.4e, respectively, for the behavior
of SLMAB and RMAB). For AP, although the pmin value is set to 0 in this case, its
low performance is explained by a failure in identifying the best ’operator’ in all cases
where the best operator becomes the second best (Figure 6.4f), possibly due to the high
inertia of the two-tiered update of empirical quality estimates employed by this method,
as discussed in Section 4.4.2.

For the Credit Assignment, as for the Uniform scenario, the best scheme is the Instan-
taneous one, both Absolute and Normalized alternatives performing equivalently in almost
all cases. The Average-based schemes performs almost as good; while the Extreme-based
ones are outperformed by far: as the only values that are taken here are 0 or 10, it be-
comes difficult for the Extreme reward to distinguish among operators. Along the same
lines, a tentative of interpretation for the inefficiency of the rank-based Credit Assignment
schemes (no matter the decaying factor used), is that the only two possible values for
the rewards do not enable enough granularity in the ranking distribution, consequently
resulting in similar qualities to the operators.

112

6.3 On Artificial Scenarios

 70

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(a) % max TCR w.r.t. epoch length

 30

 40

 50

 60

 70

 80

 90

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(b) p(best) w.r.t. epoch length

Figure 6.3: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Boolean scenario.

113

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1922 ± 162 ⋆ 1893 ± 136 ⋆ 1893 ± 136 ⋆ 1798 ± 148 N

C10W50 C5G1000W1 C5W1 P0A.3B.9W1
Pb:47.3 ± 10.0 Pb: 38.7 ± 7.7 Pb: 38.7 ± 7.7 Pb: 29.8 ± 9.2

NormIns
1922 ± 162 N 1890 ± 151 N 1890 ± 151 N 1852 ± 144 ⋆

C1W50 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 47.3 ± 10.0 Pb: 38.9 ± 7.2 Pb: 38.9 ± 7.2 Pb: 36.3 ± 9.2

AbsAvg
1855 ± 182 N 1793 ± 132 1735 ± 132 1727 ± 116

C5W10 C.5G1W10 C5W10 P.05A.6B.9W10
Pb: 37.4 ± 9.7 Pb: 31.3 ± 7.0 Pb: 29.6 ± 7.3 Pb: 28.5 ± 6.7

NormAvg
1743 ± 169 1775 ± 153 1764 ± 127 1723 ± 130
C1W10 C.01G.1W10 C1W10 P.05A.9B.9W10

Pb: 31.4 ± 11.8 Pb: 27.7 ± 9.3 Pb: 29.1 ± 6.5 Pb: 27.4 ± 8.2

AbsExt
1639 ± 168 1679 ± 162 1674 ± 173 1656 ± 158
C10W10 C5G100W10 C5W10 P0A.6B.6W10

Pb: 23.6 ± 10.9 Pb: 25.6 ± 6.2 Pb: 25.4 ± 5.9 Pb: 22.0 ± 7.1

NormExt
1639 ± 168 1670 ± 173 1670 ± 173 1693 ± 128
C1W10 C.5G100W10 C.5W10 P0A.3B.9W10

Pb: 23.6 ± 10.9 Pb: 25.6 ± 5.9 Pb: 25.6 ± 5.9 Pb: 23.4 ± 8.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
1798 ± 135 ⋆ 1716 ± 119 1775 ± 127 N 1724 ± 116 N

C.5D1W50 C1D.5W50 C1W500 C1W50
Pb: 35.9 ± 6.6 Pb: 30.8 ± 4.6 Pb: 33.7 ± 4.7 Pb: 31.2 ± 4.4

(a) Results on the Boolean scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8058 ± 427 ⋆ 8154 ± 348 N 8154 ± 348 ⋆ 7966 ± 249
C10W100 C5G1000W1 C5W1 P.05A.1B.6W1

Pb: 55.7 ± 10.6 Pb: 50.8 ± 8.6 Pb: 50.8 ± 8.6 Pb: 47.5 ± 6.1

NormIns
8058 ± 427 N 8162 ± 356 ⋆ 8152 ± 364 N 8160 ± 393 ⋆

C1W100 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 55.7 ± 10.6 Pb: 52.1 ± 8.9 Pb: 51.5 ± 8.9 Pb: 45.0 ± 10.4

AbsAvg
7979 ± 380 N 8063 ± 360 N 7921 ± 313 7871 ± 271

C5W10 C1G10W10 C5W10 P.05A.9B.6W10
Pb: 46.5 ± 9.6 Pb: 45.2 ± 8.6 Pb: 45.7 ± 6.2 Pb: 45.0 ± 5.0

NormAvg
7536 ± 494 8033 ± 416 N 7769 ± 376 7817 ± 249
C1W10 C.01G.001W10 C1W10 P.05A.9B.9W10

Pb: 32.5 ± 11.0 Pb: 43.3 ± 11.0 Pb: 39.2 ± 8.9 Pb: 44.4 ± 5.8

AbsExt
7414 ± 420 7475 ± 520 7402 ± 429 7477 ± 526
C10W10 C1G10W10 C5W10 P0A.9B.9W10

Pb: 30.5 ± 9.4 Pb: 33.0 ± 10.7 Pb: 31.3 ± 5.5 Pb: 31.4 ± 9.7

NormExt
7414 ± 420 7526 ± 480 7409 ± 437 7611 ± 358
C1W10 C.01G1W10 C.5W10 P0A.1B.9W10

Pb: 30.5 ± 9.4 Pb: 31.7 ± 11.4 Pb: 31.6 ± 5.7 Pb: 31.3 ± 8.6

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
7841 ± 289 ⋆ 7476 ± 361 7580 ± 246 7466 ± 267
C.5D1W100 C.5D.75W50 C.5W100 C1W100

Pb: 47.4 ± 7.8 Pb: 36.1 ± 8.9 Pb: 40.6 ± 3.2 Pb: 42.1 ± 5.0

(b) Results on the Boolean scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.7: Results on the Boolean scenario for ∆T ∈ {50, 200}
114

6.3 On Artificial Scenarios

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
21234 ± 751 N 21888 ± 611 ⋆ 21532 ± 834 N 20783 ± 1098 N

C5W10 C5G100W1 C5W1 P0A.3B.9W1
Pb: 56.5 ± 9.5 Pb: 66.2 ± 5.4 Pb: 63.3 ± 6.4 Pb: 46.5 ± 10.9

NormIns
21234 ± 751 N 21740 ± 658 N 21578 ± 817 ⋆ 21245 ± 983 ⋆

C.5W10 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 56.5 ± 9.5 Pb: 63.6 ± 6.5 Pb: 63.1 ± 7.1 Pb: 49.3 ± 12.6

AbsAvg
21412 ± 531 ⋆ 21588 ± 604 N 21106 ± 579 20406 ± 519

C5W10 C5G100W10 C10W10 P.05A.1B.9W10
Pb: 59.3 ± 6.7 Pb: 62.5 ± 5.8 Pb: 61.2 ± 4.6 Pb: 51.3 ± 5.6

NormAvg
19883 ± 1003 21495 ± 591 N 20711 ± 752 20263 ± 445

C1W10 C.01G.1W10 C1W10 P.05A.1B.9W10
Pb: 36.7 ± 11.6 Pb: 54.6 ± 8.7 Pb: 48.4 ± 7.9 Pb: 50.2 ± 4.7

AbsExt
19852 ± 926 20515 ± 854 19649 ± 751 19728 ± 1144
C10W10 C.1G10W10 C5W10 P0A.9B.6W10

Pb: 38.2 ± 10.8 Pb: 41.4 ± 9.5 Pb: 36.5 ± 6.5 Pb: 35.6 ± 12.9

NormExt
19852 ± 926 20492 ± 850 19692 ± 730 20074 ± 1188

C1W10 C.01G1W10 C.5W10 P0A.1B.9W10
Pb: 38.2 ± 10.8 Pb: 40.5 ± 9.6 Pb: 36.1 ± 5.7 Pb: 38.7 ± 12.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
20942 ± 628 ⋆ 20234 ± 615 19917 ± 515 20199 ± 657
C.1D.9W50 C.5D.25W50 C1W500 C.5W50

Pb: 53.7 ± 6.5 Pb: 47.4 ± 9.0 Pb: 48.3 ± 3.4 Pb: 47.0 ± 9.1

(a) Results on the Boolean scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
90844 ± 2083 N 92361 ± 818 91954 ± 1044 N 85949 ± 4444

C5W10 C5G100W1 C10W1 P0A.3B.6W1
Pb: 69.6 ± 8.2 Pb: 78.0 ± 1.6 Pb: 79.0 ± 2.3 Pb: 48.5 ± 16.1

NormIns
90844 ± 2083 N 93735 ± 1291⋆ 91986 ± 1040 ⋆ 88921 ± 3679 ⋆

C.5W10 C.5G10W1 C1W1 P0A.1B.9W1
Pb: 69.6 ± 8.2 Pb: 80.4 ± 4.0 Pb: 79.0 ± 2.9 Pb: 57.5 ± 12.6

AbsAvg
91285 ± 2300 ⋆ 92650 ± 858 91479 ± 1037 N 85488 ± 812

C5W10 C5G100W10 C10W10 P.05A.9B.6W50
Pb: 70.6 ± 8.2 Pb: 78.8 ± 2.2 Pb: 78.4 ± 2.4 Pb: 62.6 ± 3.1

NormAvg
85793 ± 3017 91755 ± 2273 87394 ± 2652 85803 ± 4244

C1W10 C.01G1W10 C1W50 P0A.3B.9W10
Pb: 50.6 ± 11.6 Pb: 69.4 ± 8.9 Pb: 54.3 ± 7.8 Pb: 48.4 ± 13.6

AbsExt
85480 ± 3093 90258 ± 2535 83560 ± 3862 84695 ± 3298

C10W10 C.01G10W10 C5W10 P0A.9B.9W10
Pb: 48.8 ± 12.7 Pb: 64.1 ± 9.8 Pb: 44.5 ± 7.3 Pb: 45.4 ± 10.5

NormExt
85468 ± 3070 90708 ± 2028 83620 ± 3806 85357 ± 4002

C1W10 C.01G1W10 C.5W10 P0A.3B.9W10
Pb: 48.9 ± 12.8 Pb: 65.6 ± 7.5 Pb: 44.6 ± 7.8 Pb: 48.0 ± 13.8

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
90530 ± 1293 ⋆ 87203 ± 1784 82875 ± 1501 87108 ± 1576

C.1D1W50 C.5D.75W50 C.1W100 C.5W50
Pb: 72.2 ± 4.8 Pb: 66.0 ± 7.8 Pb: 53.1 ± 4.1 Pb: 65.7 ± 6.4

(b) Results on the Boolean scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.8: Results on the Boolean scenario for ∆T ∈ {500, 2000}
115

Chapter 6. Experimental Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(a) NormIns-DMAB (C.5 γ10 W1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(b) AbsExt-DMAB (C.01 γ10 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(c) NormIns-MAB (C1 W1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(d) AbsAvg-SLMAB (C5 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(e) Decay/AUC-RMAB (C.1 D1 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(f) NormIns-AP (P0 A.1 B.9 W1)

Figure 6.4: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their
best Credit Assignment schemes, on the Boolean scenario with ∆T = 2000. DMAB is
the overall winner again, combined with the NormIns Credit Assignment scheme: very
few restarts are correctly triggered. Conversely, when combined with the AbsExt Credit
Assignment, it triggers several misplaced restarts, while failing to correctly follow the
changes (as does NormIns-AP).

116

6.3 On Artificial Scenarios

Outlier scenario

The Outlier scenario is by far the most difficult between the three scenarios involving 5
artificial operators. As discussed in Section 5.4.2, although providing very informative
rewards about the quality of each operator (such as in the Uniform case, but without any
overlapping), the non-zero rewards are very rare (only 10% of the cases), resulting in a
huge variance (V = 225 for the best operator, while V = 25 for the same best in the
Boolean scenario, both with IE = 5) that greatly complicates the job of the AOS schemes.
As for the other two scenarios, empirical results on this scenario are presented in Tables
6.9 and 6.10, respectively, for ∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

Accordingly, all techniques perform very poorly for small values of ∆T . This is not a
surprise, due to the small chance of seeing some outlier reward within 50 or even 200 time
steps. For instance, the best TCR obtained over all techniques is 1722 for ∆T = 50 (with
a p(best) of only 28%), while the naive approach would do 1500; and 7560 for ∆T = 200,
versus 6000 for the naive strategy. However, the situation changes for some techniques
when the steady-state period between each change in the rewards distribution is longer
(i.e., bigger ∆T , hence more chances of receiving informative rewards), as shown by the
scaling of their performances with respect to ∆T in Figure 6.5.

For ∆T = 2000 (Table 6.10b), MAB and RMAB attain, respectively, 92% and 89%
of the maximum TCR, with a significant advantage to MAB with respect to RMAB
and to all the other techniques: the standard MAB is able of efficiently recognizing and
exploiting the best operator (Figure 6.6c). For ∆T = 500, however, RMAB and AP are
statistically equivalent to MAB, again winner. Concerning DMAB, differently from the
former two artificial scenarios, in this case its restarting mechanism is not able to provide
good performance: given the high variance of the rewards received, it is very difficult to
find a good value for the Page-Hinkley change-detection threshold γ, and this results in the
triggering of several misplaced rewards, as shown in Figures 6.6a and 6.6b. The DMAB
is only able to outperform SLMAB, in terms of both TCR and p(best) measures, for the
two longest epochs, and AP (only with respect to TCR) for the longest epoch. While AP
has its performance hindered again by pmin=0.05 (Figure 6.6f), SLMAB fails to efficiently
recognize the best operator in the first epoch, takes a long time to adapt to new situations
and, finally, it is not able to exploit the best operator more than 80% of the times even at
the end of a steady-state epoch as long as 2000 time steps (Figure 6.6d).

Regarding the Credit Assignment schemes, here, the Absolute Extreme is clearly the
best, as could be expected: when an outlier value is triggered, this scheme will main-
tain this operator in some top position longer than any other scheme. Interestingly, the
Instantaneous reward is a complete disaster for AP, while maintaining a fair level of per-
formance (at least similar to that of the Average reward) for the bandit-based techniques:
some average actually takes place in the computation of q̂ on the bandit-based approaches
(see Equation 5.10), hence keeping some memory of the outlier value; while the benefit
of such value vanishes more rapidly within the two-tiered mechanism of AP. It is also
clear that Normalization does not work at all here, as it impacts on very few time steps
(most rewards are 0), while hiding the outlier effect by bringing the extreme value of the
reward back to 1. On the other hand, the rank-based Credit Assignment schemes show

117

Chapter 6. Experimental Results

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(a) % max TCR w.r.t. epoch length

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(b) p(best) w.r.t. epoch length

Figure 6.5: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Outlier scenario.

their value in this scenario: all the four different variants are statistically equivalent, and
also equivalent with respect to the global best method in most epoch lengths; the only
exception is the longest epoch, in which the different combinations with RMAB (Figure
6.6e) are still ranked second, but with a significant difference in relation to the best (the
AbsExt-MAB). Indeed, as discussed in Section 5.2.4, the use of the rank-based schemes
with decay factor tries to mimic, in a smoother way, the intuition of the Extreme Credit
Assignment ; this explains their good performance on this scenario.

118

6.3 On Artificial Scenarios

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1633 ± 284 N 1673 ± 244 N 1649 ± 283 N 1601 ± 249 N

C5W10 C10G100W1 C10W1 P.05A.1B.9W1
Pb: 25.5 ± 8.0 Pb: 25.1 ± 5.9 Pb: 26.1 ± 5.8 Pb: 21.4 ± 5.7

NormIns
1541 ± 254 1541 ± 254 N 1541 ± 254 N 1545 ± 255 N

C1W100 C.1G10W1 C.1W1 P0A.3B.9W1
Pb: 20.5 ± 3.6 Pb: 20.1 ± 5.6 Pb: 20.1 ± 5.6 Pb: 21.1 ± 8.4

AbsAvg
1677 ± 264 N 1650 ± 286 N 1647 ± 264 N 1607 ± 223 N

C10W10 C5G10W10 C10W10 P.1A.6B.3W10
Pb: 26.8 ± 7.3 Pb: 23.7 ± 5.0 Pb: 24.7 ± 7.0 Pb: 22.8 ± 5.2

NormAvg
1586 ± 217 N 1591 ± 205 N 1561 ± 284 N 1603 ± 278 N

C5W10 C1G1W10 C1W500 P.05A.9B.9W500
Pb: 22.0 ± 3.4 Pb: 23.4 ± 4.6 Pb: 21.8 ± 5.3 Pb: 21.7 ± 4.4

AbsExt
1722 ± 236 ⋆ 1697 ± 255 ⋆ 1697 ± 255 ⋆ 1617 ± 232 ⋆

C100W10 C100G1000W10 C100W10 P.1A.6B.3W10
Pb: 28.3 ± 5.9 Pb: 28.3 ± 6.2 Pb: 28.3 ± 6.2 Pb: 23.9 ± 5.1

NormExt
1575 ± 269 N 1568 ± 336 N 1550 ± 236 N 1616 ± 244 N

C5W10 C.01G1W10 C5W10 P.1A.9B.3W10
Pb: 22.1 ± 4.2 Pb: 21.8 ± 7.0 Pb: 22.1 ± 2.1 Pb: 23.6 ± 5.2

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
1634 ± 273 N 1640 ± 244 ⋆ 1599 ± 255 N 1619 ± 229 N

C1D.75W50 C5D.25W500 C1W50 C1W50
Pb: 26.6 ± 6.5 Pb: 29.0 ± 4.0 Pb: 24.7 ± 6.4 Pb: 25.6 ± 5.8

(a) Results on the Outlier scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
7210 ± 650 N 7085 ± 643 N 7085 ± 643 N 6758 ± 599

C10W50 C10G1000W1 C10W1 P.05A.1B.6W1
Pb: 33.8 ± 9.5 Pb: 29.7 ± 7.2 Pb: 29.7 ± 7.2 Pb: 26.0 ± 6.3

NormIns
6150 ± 685 6090 ± 1003 6082 ± 1031 6203 ± 667
C.1W10 C.01G1W1 C.01W1 P.05A.1B.1W1

Pb: 20.8 ± 5.5 Pb: 19.4 ± 6.1 Pb: 19.4 ± 6.4 Pb: 21.8 ± 5.2

AbsAvg
7270 ± 707 N 7231 ± 606 ⋆ 7231 ± 606 N 6896 ± 730

C10W50 C10G1000W10 C10W10 P.05A.9B.9W50
Pb: 38.3 ± 10.0 Pb: 32.3 ± 6.5 Pb: 32.3 ± 6.5 Pb: 29.1 ± 8.3

NormAvg
6419 ± 673 6710 ± 659 6656 ± 803 6881 ± 604
C5W500 C1G1W50 C1W100 P.05A.6B.9W50

Pb: 24.3 ± 6.9 Pb: 24.7 ± 6.4 Pb: 24.9 ± 8.0 Pb: 28.1 ± 8.3

AbsExt
7288 ± 662 ⋆ 7170 ± 527 N 7329 ± 466 ⋆ 7449 ± 641 ⋆

C100W50 C100G1000W10 C100W50 P.05A.9B.6W50
Pb: 41.3 ± 8.1 Pb: 33.5 ± 5.5 Pb: 42.8 ± 4.0 Pb: 40.6 ± 7.5

NormExt
6801 ± 779 N 7086 ± 955 N 7086 ± 955 N 7429 ± 608 N

C1W50 C1G100W50 C1W50 P.05A.9B.9W50
Pb: 27.7 ± 11.8 Pb: 30.3 ± 8.5 Pb: 30.3 ± 8.5 Pb: 39.5 ± 7.1

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
7481 ± 633 ⋆ 7223 ± 625 N 7190 ± 521 N 7275 ± 586 N

C1D.75W100 C1D.5W100 C1W100 C1W100
Pb: 42.0 ± 7.0 Pb: 37.5 ± 7.3 Pb: 37.2 ± 6.1 Pb: 38.3 ± 6.6

(b) Results on the Outlier scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.9: Results on the Outlier scenario for ∆T ∈ {50, 200}
119

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
19379 ± 1274 ⋆ 18896 ± 1270 N 18920 ± 1279 17391 ± 1145

C10W100 C10G1000W1 C10W1 P.05A.1B.1W1
Pb: 42.4 ± 9.8 Pb: 37.3 ± 7.5 Pb: 37.5 ± 7.7 Pb: 29.1 ± 4.6

NormIns
15418 ± 1705 15289 ± 1892 15135 ± 1851 15445 ± 829
C.1W500 C.1G1W1 C.1W1 P.1A.1B.1W1

Pb: 21.6 ± 9.1 Pb: 21.0 ± 5.8 Pb: 20.4 ± 5.6 Pb: 21.5 ± 2.1

AbsAvg
19156 ± 1227 N 19227 ± 1192 N 19222 ± 1194 18451 ± 1199

C5W50 C10G1000W10 C10W10 P.05A.9B.6W50
Pb: 37.3 ± 10.7 Pb: 40.4 ± 8.3 Pb: 40.5 ± 8.4 Pb: 34.4 ± 6.6

NormAvg
17077 ± 1909 17950 ± 1327 17665 ± 1607 18500 ± 996

C1W50 C1G1W50 C1W100 P.05A.9B.1W50
Pb: 26.7 ± 10.4 Pb: 31.7 ± 6.5 Pb: 28.3 ± 7.7 Pb: 35.0 ± 6.3

AbsExt
19191 ± 1164 N 19461 ± 1042 N 20734 ± 1052⋆ 20491 ± 1128 ⋆

C100W50 C100G1000W50 C100W50 P.05A.9B.9W50
Pb: 45.0 ± 6.5 Pb: 49.4 ± 3.3 Pb: 61.2 ± 4.6 Pb: 57.1 ± 5.4

NormExt
18130 ± 1990 19500 ± 1227 ⋆ 19038 ± 1747 20362 ± 1151 N

C1W50 C1G.1W50 C1W50 P.05A.9B.9W50
Pb: 29.1 ± 11.7 Pb: 45.5 ± 7.7 Pb: 36.1 ± 11.3 Pb: 55.6 ± 5.6

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
19897 ± 982 N 20010 ± 993 N 20053 ± 981 ⋆ 20012 ± 1095 N

C1D.25W100 C1D.5W100 C1W100 C1W100
Pb: 53.0 ± 5.9 Pb: 53.4 ± 5.6 Pb: 54.4 ± 6.4 Pb: 53.4 ± 4.9

(a) Results on the Outlier scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
79428 ± 3113 82658 ± 2319 81842 ± 2705 69735 ± 2054

C5W50 C10G1000W1 C10W1 P.05A.1B.6W1
Pb: 44.6 ± 7.2 Pb: 51.4 ± 7.5 Pb: 50.4 ± 7.8 Pb: 29.5 ± 2.5

NormIns
62286 ± 6064 60675 ± 6308 60298 ± 6874 61442 ± 2398
C.5W500 C.1G1W1 C.1W1 P.05A.1B.1W1

Pb: 21.0 ± 9.1 Pb: 20.3 ± 6.7 Pb: 19.8 ± 6.8 Pb: 20.9 ± 2.1

AbsAvg
80723 ± 3381 83515 ± 2814 81949 ± 2759 79059 ± 2394

C5W50 C5G100W100 C10W10 P.05A.6B.1W100
Pb: 41.7 ± 10.6 Pb: 53.9 ± 7.4 Pb: 51.3 ± 7.7 Pb: 44.5 ± 5.7

NormAvg
72584 ± 3463 80043 ± 3641 78659 ± 2492 79026 ± 2363

C5W500 C1G1W100 C5W100 P.05A.6B.1W100
Pb: 37.9 ± 7.6 Pb: 44.0 ± 8.0 Pb: 44.5 ± 5.3 Pb: 44.1 ± 5.8

AbsExt
86372 ± 2602 ⋆ 87699 ± 2108 N 92119 ± 1982⋆ 86595 ± 2035 ⋆

C100W50 C100G1000W50 C100W50 P.05A.9B.1W50
Pb: 60.8 ± 9.1 Pb: 68.4 ± 2.6 Pb: 81.2 ± 2.4 Pb: 70.6 ± 3.1

NormExt
75437 ± 1787 87978 ± 3308 ⋆ 85638 ± 5590 86474 ± 2039 N

C5W50 C1G.1W50 C1W100 P.05A.9B.1W50
Pb: 37.9 ± 1.7 Pb: 64.2 ± 6.8 Pb: 53.9 ± 12.3 Pb: 70.1 ± 3.0

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
89348 ± 2506 ⋆ 88547 ± 2801 N 89137 ± 3095 N 88785 ± 3214 N

C.5D.75W100 C.5D.5W100 C.5W100 C.5W100
Pb: 72.8 ± 4.4 Pb: 70.2 ± 6.9 Pb: 71.8 ± 6.8 Pb: 70.8 ± 7.5

(b) Results on the Outlier scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.10: Results on the Outlier scenario for ∆T ∈ {500, 2000}
120

6.3 On Artificial Scenarios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(a) NormExt-DMAB (C1 γ.1 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

Restarts

(b) AbsExt-DMAB (C100 γ1000 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(c) AbsExt-MAB (C100 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(d) AbsExt-SLMAB (C100 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(e) Decay/AUC-RMAB (C.5 D.75 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k 6k 8k 10k 12k 14k 16k 18k 20k

 0

 1

Op. 0
Op. 1
Op. 2
Op. 3
Op. 4

(f) AbsExt-AP (P.05 A.9 B.1 W50)

Figure 6.6: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their best
Credit Assignment schemes, on the Outlier scenario with ∆T = 2000. Here, given the high
variance of the rewards, the restarts are not helpful: the overall winner is AbsExt-MAB,
followed by the robust Decay/AUC-RMAB.

121

Chapter 6. Experimental Results

6.3.3 Results on ART Scenarios

As described in Section 5.4.3, ART scenarios take into account 2 operators with rewards
coming from 2 different T V distributions. It is important to remember that each distribu-
tion is defined by two parameters: the reward R, and the probability p of getting reward
R (reward r = 1 otherwise); the resulting instance is referred to as ART (p1, R1, p2, R2).

While many ART scenarios with different levels of difficulty were investigated, only
the two most representative ones will be considered in the following. It is important to
highlight that, for both instances, the two longest epochs (∆T ∈ {500, 2000}) are used
to check how fast each AOS scheme can adapt to a new situation after a long period of
stability; hence, only one permutation of rewards is done (01 7→ 10) in these cases, i.e.,
only two epochs of length ∆T are considered.

Low Average/High Variance vs. High Average/Low Variance scenario

The ART (0.01, 101, 0.5, 10) problem involves a low average/high variance distribution
(IE1 = 2, V1 = 99) and a high average/low variance distribution (IE2 = 6, V2 = 20.25)
operators. Detailed results are presented in Tables 6.11 and 6.12, respectively, for ∆T ∈
{50, 200}, and for ∆T ∈ {500, 2000}.

Indeed, the fact that the high-variance operator is also the one with lower reward
expectation should make this operator to be easily discarded. Given this clearness in the
reward distribution, the Absolute version of all the three kinds of Credit Assignment based
on the raw values of fitness improvements are able to achieve good performance for all
epoch lengths, with higher TCR values being attained by Operator Selection techniques
employing the Absolute Extreme (AbsExt) Credit Assignment. Accordingly, the rank-
based AUC Credit Assignment schemes also perform well, significantly better than the
SR-based variants, with a small (although significant in most cases) difference between its
linear (Decay with D = 1) and NDCG (equivalent to Decay with D = 0.4) variants. This
confirms again the fact that, when there are only few possible reward values, the decay
factor does not matter much in the differing between the qualities of the operators.

Figure 6.7 shows how the performance of each Operator Selection technique, with its
corresponding best Credit Assignment scheme, scales with respect to the epoch length ∆T .
As can be seen, the performance ranking of the Operator Selection techniques is very clear,
in terms of both TCR and p(best) measures. The overall winner is again DMAB, com-
bined with the AbsExt Credit Assignment, which precisely performs restarts every time a
change occurs (Figures 6.8a and 6.8b), supported by its well-tuned PH change-detection
test. Although having one hyper-parameter less, the SLMAB performs equivalently to
the winner DMAB in all cases, with its sliding update rule quickly adapting to the new
situation (Figures 6.8c and 6.8d). RMAB comes in third place, combined with AUC with
linear decay in all cases, one more time confirming that the adaptation being done on the
Credit Assignment side is rather efficient (Figures 6.8e and 6.8f). It significantly outper-
forms the MAB and the AP methods for all epoch lengths, except for the longest epoch,
in which the best configuration for AP becomes statistically equivalent to all techniques
due to the very high standard deviation on its TCR performance (though with a lower

122

6.3 On Artificial Scenarios

mean). The standard MAB and the baseline AP Operator Selection techniques succeed
in following the dynamics of the scenario, but their performances are greatly affected by
the facts that their adaptation is slower than those of the others, and they are not able
to exploit the best operator up to the maximal rate. By analyzing the behavior plots,
it is also interesting to see the gain, in terms of speed of adaptation and exploitation
efficiency, provided by the different bandit-based extensions with respect to the original
MAB technique (Figures 6.8g and 6.8h).

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(a) % max TCR w.r.t. epoch length

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(b) p(best) w.r.t. epoch length

Figure 6.7: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the ART (0.01, 101, 0.5, 10) scenario.

123

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
2559 ± 137 ⋆ 2461 ± 140 N 2423 ± 142 ⋆ 2341 ± 164 ⋆

C5W10 C5G10W1 C10W1 P.1A.9B.9W1
Pb: 12.9 ± 3.8 Pb: 18.8 ± 2.3 Pb: 20.4 ± 4.6 Pb: 23.0 ± 5.3

NormIns
2148 ± 145 2401 ± 162 2401 ± 162 N 2246 ± 194 N

C5W100 C1G10W1 C1W1 P.1A.9B.9W1
Pb: 36.2 ± 2.6 Pb: 22.0 ± 3.0 Pb: 22.0 ± 3.0 Pb: 27.8 ± 6.2

AbsAvg
2513 ± 131 N 2447 ± 192 N 2304 ± 133 2277 ± 156 N

C5W10 C1G10W10 C10W10 P.1A.9B.9W10
Pb: 15.4 ± 4.5 Pb: 19.2 ± 7.0 Pb: 27.0 ± 4.9 Pb: 26.2 ± 5.3

NormAvg
2139 ± 251 2348 ± 156 2348 ± 156 N 2186 ± 168
C1W50 C1G10W10 C1W10 P.1A.9B.9W10

Pb: 36.0 ± 10.0 Pb: 25.1 ± 3.5 Pb: 25.1 ± 3.5 Pb: 31.1 ± 6.2

AbsExt
2465 ± 114 N 2538 ± 148 ⋆ 2234 ± 205 2276 ± 149 N

C10W10 C1G1W10 C10W10 P.1A.6B.9W10
Pb: 18.0 ± 5.8 Pb: 14.0 ± 6.5 Pb: 30.1 ± 12.7 Pb: 26.3 ± 4.5

NormExt
2141 ± 192 2335 ± 149 2332 ± 149 N 2207 ± 166
C5W10 C1G10W10 C1W10 P.1A.6B.9W10

Pb: 35.1 ± 4.7 Pb: 25.4 ± 4.8 Pb: 25.4 ± 4.8 Pb: 29.9 ± 5.8

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
2508 ± 136 ⋆ 2371 ± 153 2499 ± 129 N 2365 ± 131
C.01D1W10 C1D.9W10 C.01W10 C1W10

Pb: 15.1 ± 1.6 Pb: 23.3 ± 1.3 Pb: 15.3 ± 1.9 Pb: 22.7 ± 1.5

(a) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 50 (Naive TCR: 2000, Optimal TCR: 3000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
10656 ± 226 N 10348 ± 243 10182 ± 243 ⋆ 10204 ± 297 ⋆

C5W10 C5G100W1 C10W1 P.05A.6B.9W1
Pb: 5.1 ± 1.4 Pb: 10.1 ± 2.7 Pb: 11.6 ± 1.9 Pb: 11.8 ± 2.8

NormIns
8635 ± 278 10012 ± 273 10012 ± 273 9921 ± 296
C10W500 C1G100W1 C1W1 P.1A.6B.9W1

Pb: 33.4 ± 0.8 Pb: 14.1 ± 1.8 Pb: 14.1 ± 1.8 Pb: 15.7 ± 2.9

AbsAvg
10637 ± 229 N 10483 ± 262 10063 ± 260 N 10159 ± 303 N

C5W10 C1G10W10 C10W10 P.05A.9B.9W10
Pb: 5.2 ± 1.4 Pb: 7.5 ± 2.7 Pb: 13.5 ± 2.3 Pb: 12.3 ± 3.3

NormAvg
8777 ± 260 9899 ± 442 9899 ± 442 9875 ± 258
C5W50 C1G100W10 C1W10 P.1A.9B.9W10

Pb: 32.3 ± 2.4 Pb: 15.7 ± 4.8 Pb: 15.7 ± 4.8 Pb: 16.4 ± 2.4

AbsExt
10680 ± 216 ⋆ 10719 ± 221 ⋆ 9322 ± 1010 10149 ± 300 N

C10W10 C5G10W10 C10W10 P.05A.9B.9W10
Pb: 4.6 ± 1.7 Pb: 3.9 ± 0.4 Pb: 23.9 ± 15.5 Pb: 12.4 ± 3.3

NormExt
8503 ± 278 9778 ± 399 9778 ± 399 9893 ± 270
C5W50 C1G100W10 C1W10 P.1A.6B.9W10

Pb: 35.5 ± 3.6 Pb: 17.5 ± 5.1 Pb: 17.5 ± 5.1 Pb: 16.3 ± 2.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
10419 ± 262 ⋆ 10052 ± 280 10160 ± 250 9977 ± 259
C.5D1W100 C.5D.9W10 C.01W10 C.5W10
Pb: 8.3 ± 1.5 Pb: 12.8 ± 1.4 Pb: 11.6 ± 0.6 Pb: 13.9 ± 2.1

(b) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 200 (Naive TCR: 8000, Optimal TCR: 12000)

Table 6.11: Results on ART (0.01, 101, 0.5, 10), 10 epochs for ∆T ∈ {50, 200}
124

6.3 On Artificial Scenarios

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
5400 ± 127 N 5291 ± 173 5190 ± 169 N 5246 ± 416 ⋆

C1W10 C5G100W1 C5W1 P0A.9B.1W1
Pb: 2.8 ± 1.6 Pb: 6.8 ± 4.1 Pb: 9.4 ± 5.0 Pb: 7.1 ± 12.7

NormIns
5217 ± 157 4923 ± 273 4923 ± 273 5085 ± 267
C5W500 C.5G10W1 C.5W1 P.05A.9B.9W1

Pb: 8.2 ± 0.5 Pb: 16.4 ± 6.8 Pb: 16.4 ± 6.8 Pb: 12.0 ± 6.1

AbsAvg
5377 ± 124 N 5334 ± 211 N 5120 ± 159 N 5209 ± 403 N

C1W10 C1G10W10 C10W10 P0A.9B.1W10
Pb: 3.5 ± 1.7 Pb: 5.1 ± 4.0 Pb: 10.9 ± 3.6 Pb: 8.0 ± 12.4

NormAvg
4978 ± 705 5206 ± 168 5206 ± 169 ⋆ 5068 ± 257
C.5W100 C1G10W10 C1W10 P.05A.9B.9W10

Pb: 14.8 ± 20.5 Pb: 8.8 ± 3.2 Pb: 8.8 ± 3.2 Pb: 12.2 ± 6.1

AbsExt
5430 ± 132 ⋆ 5459 ± 142 ⋆ 4828 ± 614 N 5206 ± 402 N

C5W10 C1G1W10 C10W10 P0A.9B.1W10
Pb: 2.0 ± 1.1 Pb: 1.4 ± 0.4 Pb: 19.6 ± 19.5 Pb: 8.2 ± 12.4

NormExt
4604 ± 189 5023 ± 338 5013 ± 334 N 5070 ± 256
C10W10 C1G1W10 C1W10 P.05A.6B.9W10

Pb: 26.1 ± 2.4 Pb: 13.8 ± 8.3 Pb: 14.2 ± 8.6 Pb: 12.1 ± 6.1

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
5336 ± 158 ⋆ 5115 ± 156 5237 ± 157 N 5069 ± 149
C.1D1W50 C1D.75W50 C.01W50 C1W50

Pb: 4.8 ± 1.4 Pb: 11.0 ± 1.3 Pb: 7.8 ± 4.4 Pb: 12.3 ± 2.6

(a) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 500 (Naive TCR: 4000, Optimal TCR: 6000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
21926 ± 320 N 21683 ± 650 N 21417 ± 373 ⋆ 21354 ± 1871 ⋆

C1W10 C1G100W1 C10W1 P0A.9B.1W1
Pb: 0.7 ± 0.4 Pb: 2.4 ± 3.6 Pb: 4.6 ± 2.0 Pb: 4.8 ± 13.4

NormIns
18714 ± 2678 19971 ± 449 19971 ± 449 21022 ± 353
C.5W500 C1G100W1 C1W1 P.05A.3B.1W1

Pb: 23.3 ± 19.0 Pb: 14.7 ± 1.2 Pb: 14.7 ± 1.2 Pb: 7.3 ± 1.1

AbsAvg
21904 ± 321 N 21705 ± 346 21344 ± 366 N 21322 ± 1861 N

C1W10 C1G10W50 C10W10 P0A.9B.1W10
Pb: 0.9 ± 0.5 Pb: 2.3 ± 1.0 Pb: 4.7 ± 1.6 Pb: 5.0 ± 13.4

NormAvg
20221 ± 3445 21057 ± 830 20994 ± 849 N 21010 ± 326
C.5W500 C1G.1W10 C1W10 P.05A.9B.9W10

Pb: 12.8 ± 24.4 Pb: 6.8 ± 5.3 Pb: 7.2 ± 4.7 Pb: 7.3 ± 1.5

AbsExt
21947 ± 326 ⋆ 21958 ± 360 ⋆ 19974 ± 2399 N 21317 ± 1860 N

C5W10 C1G10W10 C10W10 P0A.9B.1W10
Pb: 0.5 ± 0.4 Pb: 0.5 ± 0.6 Pb: 14.9 ± 18.7 Pb: 5.1 ± 13.4

NormExt
18490 ± 391 20806 ± 658 20480 ± 1173 21008 ± 326

C5W50 C1G.01W10 C1W10 P.05A.6B.9W10
Pb: 24.8 ± 3.5 Pb: 8.6 ± 3.9 Pb: 11.0 ± 8.3 Pb: 7.3 ± 1.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
21722 ± 371 ⋆ 21204 ± 388 21415 ± 310 21078 ± 509
C.5D1W500 C.5D.75W50 C.1W50 C.01W50
Pb: 2.1 ± 1.0 Pb: 5.7 ± 0.9 Pb: 4.3 ± 1.3 Pb: 6.5 ± 3.6

(b) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 2000 (Naive TCR: 16000, Optimal TCR: 24000)

Table 6.12: Results ART (0.01, 101, 0.5, 10), 2 epochs for ∆T ∈ {500, 2000}
125

Chapter 6. Experimental Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

Restarts

(a) AbsExt-DMAB (C5 γ10 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

Restarts

(b) AbsExt-DMAB (C1 γ10 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(c) AbsExt-SLMAB (C10 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(d) AbsExt-SLMAB (C5 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(e) Decay/AUC-RMAB (C.5 D1 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(f) Decay/AUC-RMAB (C.5 D1 W500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(g) AbsIns-MAB (C10 W1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(h) AbsIns-MAB (C10 W1)

Figure 6.8: Behavior of DMAB, SLMAB, RMAB and MAB, combined with their best
Credit Assignment schemes, on the ART (0.01, 101, 0.5, 10) scenario, for ∆T = 200 on the
left column, and ∆T = 2000 on the right column.

126

6.3 On Artificial Scenarios

High Average/High Variance vs. Low Average/Low Variance scenario

Oppositely to the previous ART scenario, the ART (0.1, 39, 0.5, 3) problem has a high
average/high variance (IE1 = 4.8, V1 = 130) and a low average/low variance (IE2 = 2 and
V2 = 1) operators. Detailed results are depicted in Tables 6.13 and 6.14, respectively, for
∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

This scenario is much more complex than the previous one, as the regularity of the
second operator might lead the AOS schemes to believe it is the best operator, while in fact
the best is the first one. This kind of situation was the main motivation for the proposal of
the Extreme-based Credit Assignment, as discussed in Section 5.2.2, which indeed performs
significantly better than all the other schemes for the three longest epoch lengths, while
also being the winner but statistically equivalent to several others for ∆T = 50. As
expected, the Instantaneous schemes achieve a much lower performance: as they assign
credit based on a single operator application, they need to be very lucky in order to catch
the outlier reward that is received only in 10% of the cases for the first operator. This
situation is alleviated by the Average Credit Assignment, but not enough to provide good
performance. As in the Outlier scenario, the Normalized variants of these schemes do not
work at all: the very different reward values of 3 and 39 given by each of the operators
result in the same credit value of 1 in different moments of the search, as discussed in
Section 5.2.4.

Surprisingly, the different AOS combinations involving the rank-based Credit Assign-
ment schemes with the RMAB Operator Selection technique do not work well at all in this
case, even when employing a strong decaying factor (what intuitively approaches it to the
behavior of the Extreme Credit Assignment scheme, as discussed in Section 5.2.4). A ten-
tative interpretation, based on the high variation of the instant selection rates depicted in
Figures 6.10e and 6.10f, is developed as follows. In the Extreme Credit Assignment, when
the outlier operator receives the high reward (R = 39 in this case), a equivalent credit of 39
is assigned to this operator at least W times, no matter how many bad rewards it receives
during this period, and no matter how many times the other (regular) operator is applied,
as there is a separate window for the rewards received by each operator. In the rank-based
schemes, as there is only one sliding window for all operators, this dominance is greatly
reduced by two factors: the applications of the other operator, which, besides pushing
the outlier reward out of the window, will always reduce the overall quality estimate of
the outlier operator; besides, the receiving of bad rewards by the outlier operator (what
happens in 90% of the times in this case), will also affect its quality estimate, consequently
promoting the exploration of the other operator. And then, given the regularity of the
other operator, one trial might be enough to start a long period of dominance.

Anyway, as for the other scenarios, the longer the steady-state epoch, the better the
performance for all the techniques (even for the rank-based ones) with respect to the
Naive approach, as summarized in Figure 6.9. Notably, both DMAB and SLMAB reach
a quasi-perfect score when ∆T = 2000. The DMAB is once more the overall winner
for all epoch lengths, but statistically equivalent to the second and third best techniques,
namely, the SLMAB and the standard MAB, all of them combined with the AbsExt Credit
Assignment scheme. The baseline AP is also once more (significantly) beaten by all the

127

Chapter 6. Experimental Results

bandit-based approaches, with the exception of the RMAB, which performs equally bad,
for the reasons previously discussed. The behavior plots of all the winner configurations
for the bandit-based approaches are presented in Figure 6.10.

 70

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(a) % max TCR w.r.t. epoch length

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 50 200 500 2000

epoch length

MAB
DMAB

SLMAB
RMAB

AP

(b) p(best) w.r.t. epoch length

Figure 6.9: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the ART (0.1, 39, 0.5, 3) scenario.

128

6.3 On Artificial Scenarios

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1843 ± 272 N 1864 ± 256 1862 ± 255 N 1737 ± 246 N

C10W10 C10G100W1 C10W1 P.1A.1B.3W1
Pb: 60.1 ± 7.1 Pb: 60.4 ± 7.3 Pb: 58.8 ± 7.8 Pb: 50.0 ± 9.1

NormIns
1720 ± 180 1714 ± 177 1687 ± 157 1718 ± 160 N

C100W10 C10G.01W1 C100W1 P0A.9B.1W1
Pb: 49.7 ± 1.8 Pb: 49.7 ± 0.6 Pb: 49.8 ± 0.2 Pb: 51.1 ± 3.4

AbsAvg
1927 ± 269 N 1946 ± 247 N 1894 ± 228 N 1761 ± 229 N

C10W10 C10G100W10 C10W10 P.1A.6B.6W50
Pb: 65.2 ± 7.1 Pb: 63.3 ± 6.2 Pb: 61.8 ± 6.5 Pb: 53.0 ± 8.0

NormAvg
1782 ± 202 1757 ± 194 1757 ± 194 1768 ± 213 N

C5W50 C10G100W10 C10W10 P.1A.9B.6W50
Pb: 54.4 ± 3.3 Pb: 51.8 ± 1.6 Pb: 51.8 ± 1.6 Pb: 53.0 ± 8.1

AbsExt
2012 ± 301 ⋆ 2040 ± 238 ⋆ 2036 ± 239 ⋆ 1793 ± 252 ⋆

C100W10 C100G1000W10 C100W10 P.1A.1B.6W10
Pb: 71.1 ± 5.9 Pb: 69.4 ± 4.5 Pb: 69.5 ± 4.5 Pb: 54.2 ± 9.1

NormExt
1772 ± 196 1758 ± 218 1758 ± 218 1743 ± 240 N

C5W50 C5G100W10 C5W10 P.05A.1B.1W10
Pb: 55.1 ± 5.2 Pb: 51.0 ± 3.5 Pb: 51.0 ± 3.5 Pb: 50.2 ± 9.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
1934 ± 245 ⋆ 1860 ± 199 N 1844 ± 241 N 1869 ± 227 N

C5D.9W100 C10D.5W100 C5W100 C5W100
Pb: 65.7 ± 6.8 Pb: 59.6 ± 3.0 Pb: 60.3 ± 6.8 Pb: 61.1 ± 8.3

(a) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 50 (Naive TCR: 1700, Optimal TCR: 2400)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8337 ± 537 8232 ± 475 7996 ± 572 7277 ± 639
C10W50 C10G100W1 C10W1 P.2A.1B.1W1

Pb: 77.5 ± 3.8 Pb: 74.2 ± 3.0 Pb: 70.1 ± 7.2 Pb: 59.1 ± 5.0

NormIns
6961 ± 628 6830 ± 361 6792 ± 340 6820 ± 379
C1W50 C.1G.01W1 C.01W1 P0A.9B.6W1

Pb: 51.7 ± 8.8 Pb: 50.4 ± 1.7 Pb: 50.1 ± 0.1 Pb: 50.0 ± 0.1

AbsAvg
8522 ± 497 N 8344 ± 538 8160 ± 466 7795 ± 741 N

C10W50 C10G100W10 C10W10 P.1A.6B.3W50
Pb: 79.4 ± 3.3 Pb: 76.1 ± 3.7 Pb: 73.0 ± 4.3 Pb: 67.9 ± 7.4

NormAvg
7700 ± 450 8110 ± 581 7871 ± 790 7780 ± 526 N

C5W100 C1G.1W50 C1W50 P.2A.9B.6W50
Pb: 65.6 ± 2.6 Pb: 72.6 ± 6.0 Pb: 68.1 ± 9.9 Pb: 67.7 ± 3.9

AbsExt
8746 ± 511 ⋆ 8830 ± 478 ⋆ 8555 ± 530 ⋆ 7931 ± 606 ⋆

C100W50 C10G1W50 C100W10 P.1A.3B.6W50
Pb: 84.3 ± 2.9 Pb: 85.8 ± 1.6 Pb: 80.5 ± 3.3 Pb: 70.6 ± 5.3

NormExt
7944 ± 376 8046 ± 634 8046 ± 634 7830 ± 486 N

C5W50 C1G100W50 C1W50 P.2A.9B.6W50
Pb: 71.1 ± 2.1 Pb: 71.5 ± 8.9 Pb: 71.5 ± 8.9 Pb: 68.5 ± 2.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
8006 ± 667 ⋆ 7887 ± 433 N 7848 ± 701 N 7819 ± 428 N

C1D.9W100 C5D.25W100 C1W50 C5W100
Pb: 71.3 ± 8.3 Pb: 67.7 ± 1.4 Pb: 67.8 ± 7.6 Pb: 66.4 ± 1.7

(b) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 200 (Naive TCR: 6800, Optimal TCR: 9600)

Table 6.13: Results ART (0.1, 39, 0.5, 3), 10 epochs for ∆T ∈ {50, 200}
129

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
4167 ± 342 4242 ± 421 4202 ± 431 3737 ± 402
C5W50 C5G100W1 C10W1 P.2A.1B.1W1

Pb: 77.0 ± 6.2 Pb: 79.2 ± 8.3 Pb: 77.2 ± 8.6 Pb: 61.6 ± 5.6

NormIns
3661 ± 650 3425 ± 291 3411 ± 240 3451 ± 239
C1W100 C.1G.1W1 C.01W1 P0A.3B.1W1

Pb: 58.3 ± 22.1 Pb: 51.1 ± 6.1 Pb: 50.1 ± 0.3 Pb: 50.8 ± 1.8

AbsAvg
4309 ± 371 N 4377 ± 366 N 4175 ± 400 4116 ± 481 N

C5W50 C5G100W10 C10W10 P.05A.6B.1W100
Pb: 80.7 ± 6.4 Pb: 83.6 ± 7.3 Pb: 76.5 ± 8.1 Pb: 74.7 ± 11.4

NormAvg
3775 ± 280 4241 ± 457 4215 ± 483 N 4122 ± 355 N

C5W100 C1G.01W100 C1W100 P.1A.9B.1W100
Pb: 63.9 ± 2.1 Pb: 79.4 ± 11.1 Pb: 78.8 ± 11.5 Pb: 75.4 ± 6.6

AbsExt
4500 ± 324 ⋆ 4595 ± 339 ⋆ 4421 ± 297 ⋆ 4148 ± 397 ⋆

C100W50 C10G1W50 C100W50 P.1A.1B.3W50
Pb: 88.2 ± 2.1 Pb: 92.2 ± 3.6 Pb: 85.8 ± 3.5 Pb: 76.1 ± 7.8

NormExt
3972 ± 281 4281 ± 444 4203 ± 519 N 4146 ± 422 N

C5W100 C1G.01W50 C1W50 P.1A.3B.3W50
Pb: 70.2 ± 1.9 Pb: 80.9 ± 12.1 Pb: 78.3 ± 13.2 Pb: 75.9 ± 8.3

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
4078 ± 437 N 4254 ± 298 ⋆ 4039 ± 478 N 4214 ± 293 N

C1D.25W50 C5D.25W500 C1W50 C5W500
Pb: 74.0 ± 11.3 Pb: 79.9 ± 3.2 Pb: 72.2 ± 12.7 Pb: 79.5 ± 3.4

(a) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 500 (Naive TCR: 3400, Optimal TCR: 4800)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
17725 ± 835 18006 ± 842 17994 ± 848 15021 ± 860

C5W50 C10G1000W1 C10W1 P.2A.1B.1W1
Pb: 86.6 ± 3.6 Pb: 89.0 ± 4.0 Pb: 89.0 ± 4.1 Pb: 62.5 ± 3.4

NormIns
14622 ± 1443 13650 ± 489 13550 ± 477 13735 ± 504

C5W10 C100G.01W1 C.01W1 P0A.3B.1W1
Pb: 60.0 ± 11.6 Pb: 49.9 ± 0.2 Pb: 50.0 ± 0.1 Pb: 50.2 ± 0.4

AbsAvg
18169 ± 755 18299 ± 883 17962 ± 837 17873 ± 1272 N

C5W50 C5G100W100 C10W10 P.05A.9B.1W100
Pb: 90.4 ± 2.5 Pb: 91.9 ± 3.9 Pb: 88.7 ± 3.9 Pb: 87.7 ± 7.1

NormAvg
16185 ± 857 18172 ± 1121 18172 ± 1124 N 17932 ± 1264 N

C5W500 C1G1W100 C1W100 P.05A.9B.1W100
Pb: 73.0 ± 4.2 Pb: 90.6 ± 6.9 Pb: 90.8 ± 5.8 Pb: 88.1 ± 7.5

AbsExt
18838 ± 726 ⋆ 18960 ± 750 ⋆ 18606 ± 743 ⋆ 17976 ± 1053 N

C100W50 C10G1W50 C100W50 P.05A.1B.1W50
Pb: 96.4 ± 0.8 Pb: 97.6 ± 1.1 Pb: 94.4 ± 1.9 Pb: 88.7 ± 5.4

NormExt
17009 ± 598 17969 ± 665 17841 ± 712 17996 ± 967 ⋆

C5W100 C5G.01W100 C5W100 P.05A.9B.1W100
Pb: 80.7 ± 0.7 Pb: 88.2 ± 0.7 Pb: 87.6 ± 0.7 Pb: 88.7 ± 4.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
17921 ± 822 ⋆ 17866 ± 800 N 17911 ± 841 N 17795 ± 881 N

C1D.5W100 C1D.25W100 C1W100 C1W100
Pb: 88.2 ± 4.1 Pb: 87.7 ± 4.0 Pb: 88.1 ± 4.1 Pb: 86.8 ± 5.0

(b) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 2000 (Naive TCR: 13600, Optimal TCR: 19200)

Table 6.14: Results ART (0.1, 39, 0.5, 3), 2 epochs for ∆T ∈ {500, 2000}
130

6.3 On Artificial Scenarios

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

Restarts

(a) AbsExt-DMAB (C10 γ1 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

Restarts

(b) AbsExt-DMAB (C10 γ1 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(c) AbsExt-SLMAB (C100 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(d) AbsExt-SLMAB (C100 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(e) Decay/AUC-RMAB (C1 D.9 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(f) Decay/AUC-RMAB (C1 D.5 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1k 1.2k 1.4k 1.6k 1.8k 2k

 0

 1

Op. 0
Op. 1

(g) AbsExt-MAB (C100 W10)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2k 4k

 0

 1

Op. 0
Op. 1

(h) AbsExt-MAB (C100 W50)

Figure 6.10: Behavior of DMAB, SLMAB, RMAB and MAB, combined with their best
Credit Assignment schemes, on the ART (0.1, 39, 0.5, 3) scenario, for ∆T = 200 on the left
column, and ∆T = 2000 on the right column.

131

Chapter 6. Experimental Results

6.3.4 Discussion

The problems used in this Section provided conditions that are very artificial, with abrupt
changes happening every ∆T time steps. In real optimization problems, these abrupt
changes in the rewards distribution might also occur (e.g., when escaping from a local
optima and reaching a new region of the search space); but globally, the dynamics of
the operator qualities tends to be much more complex and usually unpredictable (except
for the simple benchmark problems, such as the OneMax; see Section 6.4.2). However,
the initial motivation for using these artificial scenarios is confirmed by the experimental
findings: they enable the detailed analysis of the behavior of the AOS methods, and the
verification of their characteristics in practice. The results presented in this Section can
be summarized as follows.

The baseline probability-based AP method, although systematically (and significantly)
outperforming the original Probability Matching (PM) method (results for PM are not
shown here; see Sections 4.4.1 and 4.4.2 for their description), still provides a slow adap-
tation when compared to all proposed bandit-based approaches. The main reason for this,
in most cases, is the limitation provided by the enforced minimal level of exploration pmin.
But, even when pmin is set to zero, its two-tiered update mechanism needs some time in
order to start to efficiently exploit the new best operator.

As for the bandit-based approaches, the standard MAB Operator Selection technique
is able to follow the dynamics in an efficient way when the changes happen smoothly, i.e.,
when the magnitude of the adaptation to be done is small (e.g., in the Uniform scenario,
when the second best operator becomes the best, or vice-versa). Whenever faster dynamics
are considered, the DMAB succeeds in adapting very quickly to new situations, supported
by its change-detection mechanism. Moreover, as originally expected, the SLMAB is able
to perform as efficiently as the DMAB in most cases, due to its parameterless window-
based relaxation mechanism.

The RMAB, using any of the proposed rank-based Credit Assignment schemes, out-
performs the baseline AP and performs equivalently to the standard MAB. But the main
benefit brought by these rank-based schemes (as well as by the Normalized versions of
the Instantaneous, Average and Extreme schemes) is a higher robustness with respect to:
(i) different values of rewards gathered in different stages of the search; and (ii) different
(unknown) fitness ranges provided by different problems. Both issues were not assessed
in this experimental set. Conversely, for each scenario, the same range of reward values
was considered during all the optimization process; besides, each scenario/epoch length
was independently tackled after a preliminary off-line tuning phase, what explains why
the very sensitive and problem-dependent (assumed after discussion in Sections 5.2.3 and
5.3.3, and confirmed by the sensitivity analysis that will be presented in Section 6.7)
AbsExt-DMAB combination was found to be the winner in almost all the cases.

Indeed, the gain in robustness provided by RMAB results in a gain in performance,
in relation to the other AOS methods, when several problems are tackled using the same
hyper-parameter setting. This situation will be further stressed in the experiments that
will be analyzed in the following, specially in the hyper-parameter sensitivity analysis
considering different optimization benchmark problems (Section 6.7.1).

132

6.4 On Boolean Benchmark Problems

6.4 On Boolean Benchmark Problems

Some EA boolean benchmark problems were also used to empirically compare the AOS
schemes, in situ, i.e., combined with an EA and selecting between actual evolutionary
operators on some (still artificial) fitness landscapes with different complexities and levels
of difficulty with respect to AOS. Needless to say, in these cases, the dynamics of the
performance of the operators are not deterministically switched after every epoch, but
rather depending on the evolution trajectory and the fitness landscape.

Three different problems were considered, namely: the eternal OneMax problem,
and two harder problems, the Long K-Path and the Royal Road. The experimen-
tal settings, in complement to the general settings presented in Section 6.2, will be
described in Section 6.4.1. The problems will be presented, and the empirical re-
sults will be analyzed, in Sections 6.4.2, 6.4.3 and 6.4.4, respectively, for the One-
Max, Long K-Path, and Royal Road. Finally, Section 6.4.5 will conclude this analy-
sis with a discussion about the highlights of these experiments. The results that will
be analyzed here were partially published in [Fialho et al., 2008; Fialho et al., 2009a;
Fialho et al., 2010c].

6.4.1 Experimental Settings

The performance of the AOS schemes embedded within real EAs is assessed by the number
of generations needed to achieve the optimal solution, the lower the better. The resulting
total number of fitness evaluations can be roughly measured as the number of generations
times the size of the offspring population. Besides the presentation of the detailed Tables
with the average and standard deviation of the performance achieved by each of the
considered AOS methods (e.g., Table 6.15a), the ECDFs are also used to compare the
complete performance distribution for each of the winner techniques (e.g., Figure 6.15b).

The stopping criteria are: optimal solution found or maximum number of generations
attained. For this latter, a value of 15,000 is used for the OneMax and Long K-Path
problems, while 25,000 is used for the Royal Road problem. For the first two problems,
the unique solution maintained in the population is initialized to (0, . . . , 0), while for the
Royal Road, the population is uniformly initialized.

In addition to the AP Operator Selection technique, combined with all the Credit
Assignment schemes based on raw values of fitness improvements, the optimal Oracle and
the Naive uniform operator selection strategies are used as baseline for both, OneMax
and Long K-Path problems. For the Royal Road problem, all of them are used as well,
except for the Oracle strategy: as the fitness landscape of this problem includes many
paths toward the optimal solution, the Oracle can not be easily accessed. Lastly, the
probability of applying each operator was off-line tuned for each problem, by means of the
same F-Race procedure (as described in Section 6.2.2). All the possible combinations of
probabilities summing up to 1, considering the values ranging in {0, 0.2, 0.4, 0.6, 0.8, 1.0},
were tried in the off-line tuning phase. The winner configuration of static probabilities is
also used as baseline for comparison, being referred to as “Static”.

More specific experimental settings, such as the definition of the EA used, as well as

133

Chapter 6. Experimental Results

the set of operators automatically controlled by the AOS schemes, will be described in the
following, together with the presentation of each problem.

6.4.2 The OneMax Problem

The OneMax problem involves an unimodal fitness function that simply counts the number
of “1”s in the binary bit-string that represents the individual solution. The only difficulty
comes from the size of the problem; in the presented experiments, the size ℓ of the bitstring
is 10,000. Given its simplicity, it is often used to preliminary evaluate new empirical or
theoretical methods, being for this reason considered as the “Drosophila of EC”.

In order to be assessed on this problem, the AOS schemes are combined with a stan-
dard (1 + λ)-EA (λ offspring are created from the current parent; next parent is the
best among the current offspring and parent). Different values for λ were analyzed in
[Fialho et al., 2008], achieving similar conclusions; λ = 50 is used here. The objective is
to automatically select between some mutation operators, namely, the standard bit-flip
operator (every bit is flipped with probability 1/ℓ), and a set of b-bit mutations (flipping
exactly b randomly chosen bits) with b ∈ {1, 3, 5}.

In many respects, the considered setting is still far from being realistic evolutionarily
speaking: applying a (1+λ)-EA, with λ > 1 and b-bit mutation operators, is meaningless
on the OneMax problem (though it might make more sense on multi-core architectures).
It nevertheless confronts the proposed and baseline approaches with the actual difficulties
of taming a dynamic system, where the decisions made at a given moment govern the
expected benefits of further decisions (the selected operators determine the position of the
population and hence the improvement expectation of the operators at further stages of
the search), as opposed to the artificial scenarios tackled in Section 6.3.

One main advantage of this kind of “sterile EC-like” environment is to enable the
assessment of the AOS approaches by comparison with the performance of the known
optimal operator selection. The optimal baseline is provided by the optimal behavior
of all operators (computed by means of Monte-Carlo simulations). Figure 6.11a depicts
the operator landscape from the perspective of a (1 + 50)-EA; for each fitness value of
the unique parental individual, we report the fitness gain for the best out of 50 offsprings
generated by each of the considered mutation operators, averaged over 100 runs. As can be
seen, the trajectory of evolution involves distinct phases with respect to operator dynamics.
In stable phases, the optimal operator remains the same (though its performance might
decrease). For instance, the 5-bit mutation dominates all other operators until around
F(x) = 6579, although its performance starts to gradually decrease after F(x) = 5300. In
transition phases, the established best operator becomes dominated by another one; the 3-
bit mutation outperforms the 5-bit after F(x) = 6579, and the 1-bit mutation outperforms
the 3-bit after F(x) = 8601. The last phase is a desert, where hardly any operator brings
any improvement; by being less disruptive, the 1-bit has higher chances of fine-tuning the
solution towards the optimum, being thus the preferred operator at this phase.

A clearer view with respect to Operator Selection is presented in Figure 6.11b: at
each stage of the search, according to the current fitness value of the parent, one of the
operators is the optimal operator, and should thus be applied at a rate of 100% (until the

134

6.4 On Boolean Benchmark Problems

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−4

−3

−2

−1

0

1

2

3

4

5

Fitness of the chromosome

M
ea

n
of

 m
ax

im
um

 im
pr

ov
em

en
t o

ve
r

10
0

tr
ia

ls

1−bit,

3−bit,

5−bit,

1/l−bitflip,

(a) Average fitness gain of operators w.r.t. the fitness of the parent, within a (1+50)-EA
applied to the 10,000 bits OneMax problem, averaged over 100 trials.

Generations
0 1000 2000 3000 4000 5000

0

1

0.5

Fitness
1-Bit
3-Bit
5-Bit
1/l BitFlip
Changes

Optimal Operator Selection (Oracle)

(b) Optimal operator selection on the OneMax problem within a (1 + 50)-EA

Figure 6.11: Different views of the Oracle on the OneMax problem

situation changes). This illustration indeed represents the behavior of the Oracle strategy
that was used to achieve the empirical results for the optimal baseline.

Although being a rather simplistic scenario, this operator landscape provided by the
OneMax problem enables one to assess the basic skills of an AOS mechanism: the abilities
(i) to pick up the best operator and stick to it in stability phases; (ii) to swiftly switch to
the next best operator in transition phases; and (iii) to remain efficient during the desert
phases. An empirical analyses on this scenario will now be presented.

Empirical Results

The detailed results for the OneMax problem, with the average number of generations
(plus the standard deviation) to achieve the optimum and the winner hyper-parameter
configuration for each AOS combination, are presented in Table 6.15a. Complementarily,

135

Chapter 6. Experimental Results

Table 6.15b depicts the complete distribution of results for each Operator Selection tech-
nique, with its best Credit Assignment scheme and hyper-parameter configuration, in the
form of Empirical Cumulative Distribution Functions (ECDFs).

The complete Naive strategy, that uniformly selects between the four available mu-
tation operators, is able to find the optimum in 7955 generations in average. Another
common approach is to tune off-line the application rates of each operator: the best Static
strategy applies the 5-bit mutation operator at a rate of 20%, and the 1-bit at a rate of
80%, achieving the optimum in roughly 6206 generations. The Oracle strategy (depicted
in Figure 6.11b), which represents the complete knowledge about the operator landscape,
finds the optimum in 5136 generations in average.

The ECDF plot (Table 6.15b) is bounded on the right by the average performance
of the Naive uniform approach. As can be seen in this Figure, 100% of the runs of all
the winner AOS combinations achieve the optimum many generations before the Uniform
does, all being significantly better than it in average. Besides, with a few exceptions
(the combinations involving MAB and SLMAB), all the winner configurations for each
Operator Selection technique are also able to significantly outperform the baseline method
that employs off-line tuned Static probabilities.

Interestingly, several AOS methods are able to achieve a performance statistically
equivalent to the Oracle strategy, namely: AP with both Normalized and Absolute ver-
sions of the Extreme Credit Assignment ; and RMAB with any of the rank-based Credit
Assignment methods based on ranks over the fitness improvements (∆F), except for the
one with NDCG/AUC, which also performs very well but significantly worse, due to the
tight standard deviations. In fact, as can be seen in the operator quality landscape depicted
in Figure 6.11a, the 5-bit, 3-bit and 1/ℓ bit-flip mutation operators are rather equivalent,
starting from fitness 7000 up to around 9000: hence, these AOS methods are able to achieve
optimal performance by controlling the operator applications in very different ways for the
fitness values within the mentioned interval. The Normalized Extreme (NormExt)-AP se-
lects different operators in three very well-defined phases (Figure 6.12a), instead of four
in the case of the Oracle, efficiently exploiting the 5-bit, then the 3-bit, and finally the
1-bit. The Decay/AUC-RMAB (Figure 6.12e) achieves basically the same performance by
exploiting only the 5-bit mutation operator up to 100% at the initial stages of the search,
and the 1-bit at the final stages, while for the mentioned fitness interval all the operators
are equally explored to some extent. The best configuration for DMAB, implementing the
AbsExt Credit Assignment, also achieves good performance, although significantly worse
than the overall winner. As shown in Figure 6.12b, it also exploits the 5-bit in the initial
stages, and explores the 5-bit, 3-bit and bit-flip operators in the middle stages, by means
of restarts; however, its performance is degraded by the fact that it is not able to maintain
an optimal level of exploitation for the 1-bit operator during the final stages of the search.
The MAB with NormExt is also able to efficiently follow the changes; but, in the same way
as the DMAB, it gets lost during the final desert phase. A big deception in this scenario
is the performance of all the AOS combinations considering the SLMAB Operator Selec-
tion technique, which shows rather poor performance: a tentative explanation is that it is
designed to react very quickly to abrupt changes with respect to the operator qualities (as
empirically verified in Section 6.3), while in the OneMax problem the operator qualities

136

6.4 On Boolean Benchmark Problems

tend to gradually decrease as the search goes on (Figure 6.11a).

It is also worth noticing that the best results are attained by AOS combinations using
rather the NormExt or one of the rank-based Credit Assignment schemes. This empirical
finding clearly confirms that, even in such a simplistic scenario as the OneMax problem,
a robust Credit Assignment is important in order to achieve good performance: as dis-
cussed in Section 5.2.3, it prevents the AOS mechanism from the need of tackling an
extra problem, the gradual reduction of the magnitude of the credits, that might greatly
affect the performance of the AOS schemes (not to mention its robustness with respect
to its hyper-parameters, that will be separately analyzed in Section 6.7.1). However, the
comparison-based Credit Assignment schemes, i.e., the rank-based methods that assign
ranks over the fitness values (F) instead of fitness improvements (Section 5.2.5), which
are expected to be the most robust schemes over all, achieve a rather regular performance
in this experimental scenario, although still significantly outperforming both Naive and
Static baseline approaches. Figure 6.12f depicts the behavior of RMAB with the FAUC
scheme. As can be seen, surprisingly, there are big variations (in both senses) in the oper-
ator selection rates; a tentative interpretation for this very noisy behavior goes as follows.
Firstly, the fact that a (1 + 50)-EA setting is being used implies that even an improve-
ment of 1 bit will generate a fitness value higher than all the values attained during the
previous generation: if this happens in the beginning of the generation, such fitness value
will be top-ranked in the Credit Assignment sliding window (what does not happen when
considering fitness improvements), consequently leading to further trials for the operator
used to generate it, being it really the best operator or not. Given the dynamics of the
underlying algorithm, this situation, i.e., the exploration of a sub-optimal operator in the
first trials of a new generation, could be considered to be rare. The problem in this case
lies in the fact that the RMAB, in the way it is conceived (Section 5.3.4), enforces at least
one application of each operator every W trials1. Hence, all k operators are explored in
the initial k steps and once every W steps: as W = 100 and the offspring population size
λ = 50, the initial k steps of every 2 generations will always be (coincidentally) exploration
trials in this case, consequently leading to the noisy variations presented in the behavior
plot roughly every 100 steps.

Finally, this experimental setting was also used to empirically compare the current
version of the AUC method with the preliminary one (referred to as AUCv1). As discussed
in Section 5.2.4, AUCv1 has normalization issues when considering several operators, and
this results in a degraded performance, as presented in the last line of Table 6.15a; while
the current version achieves optimal performance, as previously discussed. The behavior
plots of RMAB with AUCv1 and FAUCv1 are presented, respectively, in Figures 6.12g
and 6.12h: the former erroneously exploits the 1/ℓ bit-flip during its desert phase, while
the latter is totally lost with respect to the Operator Selection task.

1RMAB does not consider n in the MAB formula (Equation 5.11) as the total number of times each
operator was applied since the beginning of the search, but rather as the number of times each operator
appears in the current sliding window of the Credit Assignment scheme. Hence, by using this n, the explo-
ration term of the MAB formula (Equation 5.11) will always ensure that there is at least one application
of each operator every W trials.

137

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
6576 ± 705 N 5480 ± 276 N 8369 ± 891 5718 ± 239
C.01W500 C.5G.1W1 C100W1 P.05A.6B.1W1

NormIns
6662 ± 961 5444 ± 252 N 8013 ± 671 5728 ± 204
C.01W500 C.1G.001W1 C100W1 P.05A.9B.1W1

AbsAvg
8347 ± 596 7494 ± 611 8198 ± 683 5750 ± 251
C.1W500 C.5G.001W10 C100W50 P.05A.3B.3W10

NormAvg
8463 ± 818 7193 ± 1614 7903 ± 638 5790 ± 226
C1W100 C.1G.1W10 C100W10 P.05A.1B.1W10

AbsExt
6059 ± 667 ⋆ 5376 ± 285 ⋆ 9044 ± 840 5123 ± 218 N

C.5W500 C1G100W50 C100W50 P0A.9B.1W500

NormExt
6427 ± 597 N 5508 ± 823 N 5997 ± 593 ⋆ 5097 ± 230 ⋆

C.1W500 C.01G1000W50 C1W500 P0A.9B.6W100

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
5103 ± 427 ⋆ 5215 ± 374 N 5366 ± 478 5231 ± 503 N

C.01D.9W500 C1D.5W500 C.01W500 C.1W100

RMAB (F)
5726 ± 399 5652 ± 644 5796 ± 420 5667 ± 729

C.01D.75W100 C.01D.5W500 C.1W100 C.01W500

OpSel/Credit AUCv1 (Decay) AUCv1 (NDCG) FAUCv1(Decay) FAUCv1(NDCG)

RMAB (v1)
6664 ± 631 6741 ± 587 6811 ± 742 6907 ± 708
C.1D.9W500 C.01W500 C.01D.25W500 C.1W500

(a) Average and standard deviation of the number of generations to achieve the optimum

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

Decay/AUC RMAB: 5103 427
AbsExt SlMAB: 6059 667
AbsExt DMAB: 5376 285
NormExt MAB: 5997 593

NormExt AP: 5097 230
Naive: 7955 634

Best Static: 6206 326
Oracle: 5134 291

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.15: Results on the 10k-bits OneMax problem: objective is to minimize number of
generations to achieve the optimum, selecting between 1-bit, 3-bit, 5-bit and 1/ℓ bit-flip
mutation operators within a (1+50)-EA. Baseline performances: Optimal (5134 ± 291),
Best Static (1-bit 80% + 5-bit 20% : 6206 ± 326), Naive (7955 ± 634). For the sake of
comparison, the performance of the preliminary version of AUC (AUCv1) is also presented.138

6.4 On Boolean Benchmark Problems

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(a) NormExt-AP (P0 A.9 B.6 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM
Restarts

(b) AbsExt-DMAB (C1 γ100 W50)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(c) NormExt-MAB (C1 W500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(d) AbsExt-SLMAB (C.5 W500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(e) Decay/AUC-RMAB (C.01 D.9 W500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(f) Decay/FAUC-RMAB (C.01 D.75 W100)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(g) Decay/AUCv1-RMAB (C.1 D.9 W500)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

Fitness
Op. 1-BitM
Op. 3-BitM
Op. 5-BitM

Op. 1/n-BitFlipM

(h) Decay/FAUCv1-RMAB (C.01 D.25 W500)

Figure 6.12: Behavior of AP, DMAB, SLMAB, MAB and RMAB, combined with their
best Credit Assignment schemes, on the 10k-bits OneMax problem. For the sake of com-
parison, the behavior of the preliminary version of AUC (AUCv1) is also plotted.

139

Chapter 6. Experimental Results

6.4.3 The Long K-Path Problem

Proposed by [Horn et al., 1994], Long Paths are unimodal problems designed to challenge
local search algorithms. The optimum can be found by following a path in the fitness land-
scape, the length of which increases exponentially with respect to the bit-string length ℓ.
Accordingly, solving the Long Path using the 1-bit mutation thus requires a computational
time that increases exponentially with ℓ; efficient optimization relies on taking shortcuts
on this path.

A generalization of Long Path problems was proposed by [Rudolph, 1997], referred to
as Long K-Path, where k is the minimal number of bits to be simultaneously flipped in
order to take a shortcut on the path. Formally, the Long K-Path can be described as
follows [Garnier and Kallel, 2000]:

� The path starts at point 0, . . . , 0, with fitness ℓ; the fitness of any point not on the
path is the number of its 0 bits;

� Any point on the path has exactly 2 neighbors with Hamming distance 1 on the
path; consequently, two consecutive points on the path have a fitness difference of 1;

� Mutating i < k bits of a point on the path leads to a point which is either off the
path (hence with a very low fitness), or on the path but only i positions away from
the parent point;

� A shortcut is found by mutating the correct k bits (or more), thus with probability
at most pk(1− p)ℓ−k.

� The length of the path is calculated as (k + 1)2(ℓ−1)/k − k + 1;

Long K-Path problems are defined by recurrence on ℓ. Starting from the problem
P (k, ℓ), the path associated to problem P (k, ℓ + k) is built as the sequence of (xi, 0k),
where xi belongs to P (k, ℓ) and 0k is the k-length vector made of 0s; this initial sequence
is then linked by a “bridge” to the sequence (xL−i, 1k), where xL−i ranges in inverse order
in P (k, ℓ) and 1k is the k-length vector made of 1s. The bridge is the sequence of (xL, yz)
where xL is the last point of path P (k, ℓ) and yz is the k-length vector made of z 0s fol-
lowed by k − z 1s. To exemplify, the construction of the path P (3, 10) is done as follows.
Starting from P (3, 1) = {0, 1}, the sequence P (3, 4) is created:

00001; 00012
︸ ︷︷ ︸

S0

; 00113; 01114
︸ ︷︷ ︸

Bridge

; 11115; 11106
︸ ︷︷ ︸

S1

from which the path P (3, 7) is constructed (Table 6.16a); and finally we arrive to P (3, 10)
(Table 6.16b). Going on three more steps with these recursive construction, we arrive to
P (3, 19), represented in Figure 6.16c as the number of ones (unitation) versus fitness (red
part of the path represents S0, blue is the Bridge, and green is the final sequence S1).

It turns out that the path length decreases as k increases (the original Long Path
corresponds to k = 2). Nevertheless, the probability of finding a shortcut decreases ex-
ponentially with k, and the fastest strategy for k >

√
ℓ is to simply follow the path.

140

6.4 On Boolean Benchmark Problems

00000001 00111107 11111109
00000012 01111108 111111110
00000113 111011111
00001114 111001112
00011115 111000113
00011106 111000014

S0 Bridge S1

(a) Path P (3, 7)

00000000001 001111000015 111111000017
00000000012 011111000016 111111000118
00000000113 111111001119
00000001114 111111011120
00000011115 111111111121
00000011106 111111111022
00000111107 111011111023
00001111108 111001111024
00011111109 111000111025
000111111110 111000111126
000111011111 111000011127
000111001112 111000001128
000111000113 111000000129
000111000014 111000000030

S0 Bridge S1

(b) Path P (3, 10)
Unitation

F
it

ne
ss

0 10 205 15
0

100

200

Long 3-Path, L=19

(c) Path P (3, 19)

Table 6.16: Examples of Long 3-Paths of different length.

Otherwise (k ≤
√
l), optimization should provably strive to find the shortcuts; in such

cases, exceptional properties of operators are more relevant to EAs behavior than their
average properties [Garnier and Kallel, 2000].

Along the same lines than the ART instances analyzed in Section 6.3.3, thus, Long
K-Path problems can be seen as yet another case in which one operator constantly gives
a small reward (when the parent individual belongs to the path, the 1-bit mutation im-
proves the fitness by 1 with probability 1/ℓ), while all other mutation operators will fail to
improve the fitness in most cases, but possibly achieving very high outlier fitness improve-
ments (shortcuts in the path) with a very small probability. This possibility of having
outlier fitness improvements was the main motivation for the use of such a scenario in
the assessment of AOS schemes by the time we proposed the Extreme Credit Assignment
[Fialho et al., 2009a; Fialho et al., 2009b] (see Section 5.2.2), which indeed showed to per-
form better than the Average one for most of the Operator Selection techniques considered;
these results will be presented in the following, together with the most recently proposed
AOS schemes.

The reported experiments consider k = 3 with ℓ = 49. Other problem sizes were also
tried, with ℓ ∈ {19, 31, 43, 55, 61}; they are omitted here, mainly because the conclusions

141

Chapter 6. Experimental Results

attained on all of them were roughly the same (except for ℓ = 61, in which none of the
methods was found to be effective, due to the very low probability of finding shortcuts).
A (1+50)-EA is used here again, with the AOS schemes selecting between some mutation
operators. The same operator set used in the OneMax problem (1-bit, 3-bit, 5-bit and
1/ℓ bit-flip) is considered here, with one additional mutation operator, the k/ℓ bit-flip
(flipping each bit with probability k/ℓ = 3/49 in this case), which is the best operator in
this scenario according to theoretical studies [Garnier and Kallel, 2000].

In the same way as for the OneMax problem, the benefit of using this benchmark
setting is that it enables the identification of the optimal operator at each point of the
path, by means of intensive Monte-Carlo simulations, in order to further compare the AOS
approaches with the resulting optimal Oracle strategy. Figure 6.13 shows the average
fitness improvement achieved by each of the considered operators, starting from each
fitness point on the P (3, 49) path, calculated as for the OneMax problem (best gain out
of 50 trials for each operator, averaged over 100 runs).

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 50000 100000 150000 200000 250000

3-Bit
3/l BitFlip
1/l BitFlip

5-Bit
1-Bit

Figure 6.13: Average fitness gain of mutation operators with respect to the fitness of the
parent, within a (1 + 50)-EA applied to the Long 3-Path problem with ℓ = 49, averaged
over 100 trials. The optimum fitness value in this case is F = 262142.

From this Figure, it can be seen that the 3-bit (or k-bit) operator is the one that
receives the highest gains during almost all the path, as it deterministically flips k bits
every time it is applied, thus having higher chances of taking a shortcut. For the same
reason, the k/n bit-flip comes next, flipping k bits in average. The k-bit operator, however,
is able to achieve the optimum just in case it succeeds in taking a shortcut, while the k/n
bit-flip can manage to succeed in either cases: this empirically confirms the theoretical
findings presented in [Garnier and Kallel, 2000]. It is also important to note that there
are two factors controlling the variance of the gains brought by taking shortcuts: the
distance to the optimum, and the distance to some transition points found in the path.

142

6.4 On Boolean Benchmark Problems

The Oracle Operator Selection strategy was implemented following the results presented
in this Figure: the 3-bit is mostly applied, the 1-bit is used in a few short transition phases
and in fine-tuning final phase, while the other operators are also very occasionally applied.

Empirical Results

By construction, some runs on the Long K-Path problem can be “lucky” and discover
shortcuts in the path, thus yielding large standard deviations in the performance, as shown
in the detailed results presented in Table 6.17a. This is true even for the Oracle strategy,
which achieves the optimum in 2821 generations in average, but with a standard deviation
of 2496. In this case, the ECDFs, shown in Table 6.17b, are much more informative for the
analysis of the empirical comparison. As can be seen, for all the considered techniques,
there are runs reaching the optimum in the very early steps (close to 0), while many
others are not able to achieve the optimum before the average performance of the Naive
uniform strategy, which bounds the plot at 5815 generations. With such a big variance, the
behavior plots become meaningless: the instant selection rates are averaged over 50 runs,
but the good runs attain the optimum very early by taking shortcuts; thus, a behavior
plot would be averaging only the longer (hence bad) runs, what does not correspond to
the mean behavior of the method.

Interestingly, the off-line tuned approach using Static probabilities, which applies the
1-bit at 20% of the trials and the 3-bit at a rate of 80%, is able to outperform the Oracle
strategy. The Oracle explores mostly the same operators, but in a fixed manner: the 3-bit
is used for some fitness ranges due to its high probability of finding a shortcut, while the
1-bit is used only in transition phases where no shortcut is possible. In practice, however,
it seems that using the 1-bit at a fixed small rate is more beneficial: although providing
very small improvements (1 by 1 in fact), its probability to improve the fitness is high
(1/ℓ) when compared to the probability of taking outlier shortcuts in the path.

The winner AOS combination in this case is the MAB, which, in the ECDF plot
(Table 6.17b) is the only method able to follow the performance of both Oracle and
Static baseline methods. As previously discussed, the MAB (as well as the other bandit-
based approaches) does some averaging on the update of the empirical quality estimates
(Equation 5.12) for each operator. Thus, even when using the AbsIns Credit Assignment, it
takes into account some history of the operator performance, consequently not forgetting
it very quickly in such a noisy environment. Additionally, it is known that MAB is
the slowest Operator Selection technique with respect to adaptation between the bandit-
based methods considered here (as verified in Section 6.3); this seems to be a beneficial
characteristic in this case: the 3-bit should continue to be exploited as much as possible
even if some other operator appears to be very good from time to time, because it has
a much higher probability of taking shortcuts in a Long Path with k = 3, as previously
pointed out. The RMAB with FAUC (fitness values, comparison-based) follows the same
trend in around 40% of the runs, but its global picture is rather similar to both AbsExt-
DMAB and AbsIns-SLMAB. Lastly, the AP is not able to cope well with Long K-Paths:
its best results are obtained with pmin = 0.2, what is equivalent to the Naive uniform
selection of operators in this case, as 5 operators are considered.

143

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
4742 ± 3304 ⋆ 4680 ± 3714 N 3046 ± 2043 ⋆ 6133 ± 4035 N

C.5W500 C100G100W1 C100W1 P.2A.1B.1W1

NormIns
5601 ± 3161 N 5355 ± 3880 N 5429 ± 3912 N 6133 ± 4035 N

C100W500 C100G.001W1 C100W1 P.2A.1B.1W1

AbsAvg
4985 ± 2942 N 5509 ± 3180 N 4564 ± 3004 N 8303 ± 5242 N

C1W10 C1G.1W10 C10W10 P.1A.1B.1W50

NormAvg
5337 ± 3120 N 4829 ± 3218 N 4851 ± 3219 N 7430 ± 5152 N

C5W500 C.01G1W10 C.01W10 P.1A.1B.1W50

AbsExt
4828 ± 3520 N 4429 ± 2788 ⋆ 4596 ± 3034 N 6133 ± 4035 ⋆

C100W500 C100G100W100 C100W10 P.2A.1B.1W100

NormExt
5442 ± 3662 N 4505 ± 3349 N 5529 ± 3273 6133 ± 4035 N

C100W500 C10G.1W50 C100W10 P.2A.1B.1W100

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
5005 ± 3723 N 4931 ± 3307 N 5018 ± 3413 N 5032 ± 3751 N

C5D.75W100 C10D.5W500 C100W50 C100W500

RMAB (F)
4138 ± 3328 ⋆ 4139 ± 3328 N 4723 ± 3820 N 5071 ± 4152 N

C10D.9W50 C100D.75W50 C100W50 C100W50

(a) Average and standard deviation of the number of generations to achieve the optimum

 0

 25

 50

 75

 100

 0 1000 2000 3000 4000 5000

Decay/FAUC RMAB: 4138 3328
AbsIns SlMAB: 4742 3304
AbsExt DMAB: 4429 2788

AbsIns MAB: 3046 2043
AbsExt AP: 6133 4035

Naive: 5815 3884
Best Static: 2354 1400

Oracle: 2821 2496

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.17: Results on the Long 3-Path (ℓ = 49) problem: objective is to minimize number
of generations to achieve the optimum, selecting between 1-bit, 3-bit, 5-bit, 1/ℓ bit-flip
and 3/ℓ bit-flip mutation operators within a (1+50)-EA. Baseline performances: Oracle
(2821 ± 2496), Naive (5815 ± 3884), Best Static (1-bit 20% + 3-bit 80% : 2354 ± 1400)

144

6.4 On Boolean Benchmark Problems

6.4.4 The Royal Road Problem

The Royal Road (RR) is an optimization problem that was intentionally created to be
easy for GAs [Mitchell et al., 1992] (with the crossover operators exploring the “building
blocks” of the function), while being difficult for hill-climbing algorithms. Due to un-
expected difficulties (the so-called hitch-hiking phenomenon), a revised version was later
proposed in [Holland, 1993] and analyzed in [Jones, 1994]. The revised version is the one
considered in this work.

The solutions are represented as bit-strings. Each bit-string is composed of 2k regions,
referred to as lower-level (or level 0) schemata. Higher level schemata are formed by
combining pairs of lower-level ones, as shown in Table ??.

Level 0: {B0}, {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, . . . , {B12}, {B13}, {B14}, {B15}
Level 1: {B0, B1}, {B2, B3}, {B4, B5}, . . . , {B10, B11}, {B12, B13}, {B14, B15}
Level 2: {B0, B1, B2, B3}, {B4, B5, B6, B7}, . . . , {B12, B13, B14, B15}
Level 3: {B0, B1, . . . , B7}, {B8, B9, . . . , B15}
Level 4: {B0, B1, . . . , B15}

Table 6.18: Example of constructions of higher order schemata from lower order ones on
the Royal Road problem

Formally, a higher level L has 2k−L schemata composed by 2L first-level ones (the
building-blocks, supposedly defining a crossover-friendly landscape). Each first-level
schema is further divided into a block and a gap string, of respective lengths b and g.
A bit-string is thus represented by 2k × (b+ g) bits.

For the calculation of the fitness of a candidate solution (bit-string), each first-level
schema is independently evaluated, with the fitness resulting in the sum of the evaluations
of all the schemata. Only the block region of each low level schema is considered, the gap
region is completely ignored. The fitness is measured by the PART function or by the
BONUS function, as follows. The PART function computes the number z of correct bits
in the b-length block, resulting in a function value of (z×v) if (z < m) and ((b−z)×v) for
(m < z < b), where m is a threshold that tunes the level of local deception in the function
(see Figure 6.14). The completed blocks in the bit-string, i.e., the ones that have z = b,
are evaluated by the BONUS function instead, which accounts a score of u∗ for the first
block to be completed, and u for the additional ones.

The Royal Road was found to be another interesting scenario to empirically an-
alyze the AOS combinations within a real evolutionary algorithm as, by considering
common crossover operators, the following can be stated (intuitively, and confirmed in
[Quick et al., 1996]): the uniform crossover is the best operator during the initial evolu-
tion stages (exploration), 1-point crossover is the best in the final stages (exploitation),
while the 4-point crossover is the best in-between. This operator set was used for the
experiments that will be presented in the following, with the addition of two other oper-
ators, the 2-point crossover, and a disruptive bit-flip mutation operator that flips 8 bits
on average (and hence possibly one block); after every crossover application, a mutation
operator was also systematically applied, flipping each bit with a probability of 1%. These

145

Chapter 6. Experimental Results

operators were applied within a (100,100)-GA with weak elitism, i.e., at every generation,
the entire population of 100 individuals is completely replaced by the newly generated
100 offspring, with the possible exception of the best parent, which is maintained (and
the worst offspring is removed) if better than the best offspring. The parental selection
mechanism used was the tournament (Section 2.3.3), with size 2.

The problem function was defined using the default parameter values proposed by
Holland [Holland, 1993]: k = 4, b = 8, g = 7, m = 4, v = 0.02, u∗ = 1.0 and u = 0.3. The
parameter m = 4 defines a medium level of deception; the fully deceptive case (m = 1)
and the not deceptive one (m = 7) were also investigated, but the former was found too
difficult to be solved within the given budget of 25,000 generations, while the latter was
too easy, thus not enabling any distinction to be made between the AOS schemes. Figure
6.14 illustrates a comparison of these 3 different levels of deceptivity for the first 30 bits
of this problem setting, on a unitation (number of 1s) versus fitness plot. With 2k regions
involving (b+ g) bits, the total dimension of the considered search space accounts to 240
bits.

Unitation

F
it

ne
ss

0 10 20 30

0

1

2

m=1
m=4
m=7

Royal Road

Figure 6.14: Different levels of deceptivity on the Royal Road problem, varying m and
using the default values for the other parameters.

Empirical Results

The behavior of each operator is very difficult to guess on the Royal Road problem. Despite
the 1/30 mutation operator, the other 4 crossover operators (specially the x-points ones)
tend to present a similar behavior, all exploring the building blocks of the intentionally
designed search space. Besides, there is no “fine-tuning operator” between them: even
the 1-point crossover substantially modifies the solution to which it is applied to, making
it easier to miss the target, thus explaining the high variance of the detailed performance

146

6.4 On Boolean Benchmark Problems

results shown in Table 6.19a. As can be seen, almost all AOS combinations are statistically
equivalent to the best. For this reason, as for the Long K-Path problem, ECDFs (Table
6.19b) are used in order to have a more complete view of the performance distribution for
each Operator Selection technique with its better Credit Assignment scheme.

Despite the big variance, all methods achieve the optimum faster than the average
performance of the Naive uniform selection strategy in at least 80% of the cases. Notably,
the best Static strategy found for this problem is the use of a single operator at a rate of
100%, the 4-point crossover, which achieves the optimum in 6244 generations in average.
Several other configurations using different combinations of the 1-point, 2-point and 4-
point operators are also able to achieve equivalent performance; for instance, 1-point at
20%, 2-point at 20% and 4-point at 60% achieves the optimum in 6679 ± 4278 generations.
Hence, in order to achieve reasonable performance on this experimental setting, an AOS
method should “simply” be capable of discarding the 1/30 mutation and the uniform
crossover operators; the way the other three operators are used does not matter much. To
confirm this assumption, additional experiments were done for the Naive uniform strategy
considering only these 3 operators: the optimum is found in 7066 ± 4215 generations, a
performance better than (although still equivalent to) those obtained by most of the AOS
methods.

The only AOS combination able to follow closely the performance of the Static base-
line up to 100% of the trials is the DMAB with, surprisingly, the Normalized Average
(NormAvg) Credit Assignment. It is worth noticing that here, again, the Normalized out-
perform the Absolute for the different kinds of Credit Assignment in most cases, with the
rank-based schemes also presenting reasonable performance. This is also the first case in
which the RMAB with the rank-based SR outperforms (but not significantly) its combina-
tion with the AUC Credit Assignment, with both versions based on fitness improvements
and on fitness values (FSR) achieving almost the same performance.

Concerning specifically the Operator Selection techniques, the DMAB and RMAB,
with their corresponding best Credit Assignment schemes, greatly outperform in terms
of average performance (but not significantly due to the mentioned high variance) all the
combinations involving MAB, SLMAB and AP. It is important to note that for most
of the winner configurations of the bandit-based approaches, a very small value is used
for the scaling factor C; accordingly, very small values are used for the adaptation and
learning rates of AP. This indicates that these techniques are rarely adapting to exploit
other operators, mostly exploiting the first operator that they found to be the best. As
previously discussed, if this operator is one of the x-point crossover operators, this choice
will not greatly affect their performances.

147

Chapter 6. Experimental Results

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
10385 ± 4989 N 8762 ± 5750 N 11211 ± 8198 N 10681 ± 7048 N

C5W500 C.01G.01W1 C.01W1 P.05A.9B.1W1

NormIns
9021 ± 6783 ⋆ 8538 ± 5388 N 9548 ± 6485 N 10492 ± 6327 N

C.01W50 C.1G1W1 C.1W1 P0A.3B.3W1

AbsAvg
10612 ± 5266 N 12220 ± 7113 11511 ± 8233 N 8886 ± 5361 ⋆

C1W10 C.5G1000W10 C.01W10 P0A.1B.1W10

NormAvg
11241 ± 7182 N 6201 ± 3094 ⋆ 9062 ± 6708 ⋆ 9117 ± 5490 N

C.01W10 C.01G.001W10 C.01W10 P.05A.1B.9W10

AbsExt
9790 ± 6019 N 10120 ± 6781 N 10219 ± 7866 N 10860 ± 6428 N

C.01W50 C.01G.01W50 C.1W50 P.05A.1B.9W50

NormExt
9780 ± 6359 N 8699 ± 5260 N 9830 ± 5557 N 9709 ± 7079 N

C.1W50 C10G1000W10 C1W100 P0A.1B.9W50

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F)
8749 ± 4640 N 7506 ± 4179 ⋆ 9568 ± 5367 N 10346 ± 6200 N

C.01D1W100 C1D1W500 C.1W100 C.1W50

RMAB (F)
8206 ± 4057 N 7564 ± 4282 N 8129 ± 4453 N 8508 ± 5595 N

C.01D.5W100 C1D1W500 C.1W100 C.5W500

(a) Average and standard deviation of the number of generations to achieve the optimum

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

Decay/SR RMAB: 7506 4179
NormIns SlMAB: 9021 6783
NormAvg DMAB: 6201 3094

NormAvg MAB: 9062 6708
AbsAvg AP: 8886 5361

Naive: 15940 6928
Best Static: 6244 3037

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.19: Results on the Royal Road (m = 4) problem: objective is to minimize number
of generations to achieve the optimum, selecting between 1-point, 2-point, 4-point and
uniform crossover operators, and 1/30 bit-flip mutation operator, within a (100,100)-EA
with weak elitism. Baseline performances: Oracle not available, Naive (15940 ± 6928),
Best Static (4-point 100% : 6244 ± 3037).

148

6.4 On Boolean Benchmark Problems

6.4.5 Discussion

The benchmark optimization problems considered in this Section enabled a preliminary
analysis of the AOS methods in practice, selecting between real evolutionary operators,
based on the feedback given by real (although still artificially created) fitness landscapes
and by the trajectory taken by the EA in the search space. The OneMax is a very simple
problem, but its use in these experimental setting was of great value, as it provided a very
detailed and complete behavioral analysis of each AOS method. The empirical analyses on
the Long K-Path and Royal Road problems did not provide the same level of information,
but they challenged the AOS methods in different situations that might happen in real
cases. In the Long K-Path case, only one operator should be mostly exploited at any time,
in order to possibly take very rewarding shortcuts in the path; while in the Royal Road
two out of five operators should be discarded, the other three being equally beneficial.

For each of these problems, the AOS methods were compared to three non-adaptive
baseline approaches, namely, the Naive, the Oracle, and the Static strategies, defining three
different levels of available knowledge. The Naive strategy, as its name says, represents the
situation in which nothing is known about the performance of the operators on the problem
at hand; the Oracle represents the complete detailed information about their performances
with respect to each fitness value. While the former strategy is a rather straightforward
choice when there is no time for a deeper analysis, the latter strategy can be precisely
assessed only in simple problems such as the OneMax one; hence, it is not a valid choice in
the real world. In the middle of these two approaches, there is the Static strategy, which
is the approach most commonly used since the very early days of applied research in the
area; it requires a reasonable level of knowledge that can be gathered whenever a few runs
are affordable, in order to find the best off-line tuned static approach.

Although requiring a preliminary off-line tuning of their hyper-parameters, compared
to these baseline approaches, the best AOS methods were able to achieve equivalent per-
formance to the Oracle behavior on both OneMax and Long K-Path problems. They also
showed to be able to significantly outperform the Naive approach on all the problems,
although the high variance of the results found for the Long K-Path and the Royal Road
problems. And concerning the Static strategy, it was also significantly outperformed on
the OneMax scenario; but in the Long K-Path, it surprisingly outperformed the Oracle
strategy, significantly outperforming all the AOS methods by using only two out of the
four available operators; while for the Royal Road, the best Static strategy found uses
only one out of five operators, with some AOS methods showing equivalent performance.

In what concerns the Operator Selection techniques, the DMAB and RMAB showed to
efficiently and consistently improve over the standard MAB approach, except for the outlier
Long K-Path scenario, in which the standard MAB is surprisingly the winner: its slower
adaptation seems to be beneficial in such a noisy scenario. The SLMAB, however, was not
able to outperform the standard MAB in any of the cases, while in the ART scenarios
it was always between the overall winners; a tentative of explanation for this deception
is that its update mechanism is designed to adapt quickly to very abrupt changes in the
operator qualities, what is not the case in this experimental setting. The last Operator
Selection technique, the baseline AP, is top-ranked only on the OneMax scenario; on the

149

Chapter 6. Experimental Results

Long K-Path its best performance is equivalent to the Naive approach, and on the Royal
Road it is also outperformed by all bandit-based approaches.

Finally, in these problems, differently from the ART scenarios, the benefits brought
by the use of more robust Credit Assignment schemes could be highlighted to some ex-
tent. In the OneMax and Royal Road problems, the Normalized versions of the Credit
Assignment schemes based on the raw values of fitness improvements outperformed the
Absolute versions in most cases; in the Long K-Path, the situation is the opposite, as in
this scenario the magnitude of the outlier improvements achieved are very important. In
either cases, most of the several available options for the rank-based Credit Assignment
schemes were top-ranked, performing statistically equivalent to the winner configurations.
Still, as for the ART problems, such analysis compared the performance of each AOS
combination with its best hyper-parameter setting found by a preliminary off-line tuning
procedure for each problem. Thus, this gain in performance provided by the rank-based
and normalized schemes were attained only by the minimization of one of the issues that
motivated their proposal, that of providing rewards at the same value range during all
the search process, as discussed in Section 5.2.3. The second and consequent benefit, that
of providing a robust behavior with respect to the hyper-parameters of the AOS method,
will be separately analyzed in Section 6.7.

6.5 Collaboration On Satisfiability Problems

The preliminary complete AOS combination proposed in our work involves the Abso-
lute Extreme (AbsExt) Credit Assignment scheme (Section 5.2.2) with the Dynamic
Multi-Armed Bandit (DMAB) Operator Selection technique (Section 5.3.2), which will
be simply referred to as Ex-DMAB in this Section, for the sake of brevity. While
working on its further assessment on different benchmark scenarios, we established a
collaboration with Université d’Angers, France, published in [Maturana et al., 2009a;
Maturana et al., 2010a], whose results will be surveyed in this Section.

The combination of Ex-DMAB with the Compass Credit Assignment (Section 4.3.4)
will be described in Section 6.5.1. This AOS combination was assessed in the light of
Boolean Satisfiability (SAT) problems, which will be presented in Section 6.5.2. Sections
6.5.3 and 6.5.4 will describe, respectively, the specific experimental settings and the off-
line tuning procedure used in this work. Finally, the empirical results will be presented in
Section 6.5.5, with a concluding discussion in Section 6.5.6.

6.5.1 Compass + Ex-DMAB = ExCoDyMAB

The Compass-based AOS technique, proposed in [Maturana and Saubion, 2008a], is in fact
the combination of an engineered Credit Assignment mechanism referred to as Compass,
which measures the effect of operators application taking into account fitness, diversity
and CPU time (as described in Section 4.3.4), with a rather simple Operator Selection
mechanism, the Probability Matching (PM), presented in Section 4.4.1. At the same time,
the Ex-DMAB AOS technique is the combination of a simple Credit Assignment scheme,
the Extreme value out of the recent fitness improvements achieved by the operator (see

150

6.5 Collaboration On Satisfiability Problems

Section 5.2.2), with an efficient Operator Selection mechanism, the DMAB, presented in
Section 5.3.2.

From this brief review, it becomes clear that both AOS approaches have complemen-
tary strengths and weaknesses: Compass might enable DMAB to be efficiently applied to
multi-modal problems, while Ex-DMAB might provide to Compass a more efficient Op-
erator Selection mechanism, while also improving it by the use of the Extreme paradigm.
However, even though merging both modules can be done in straightforward manner, some
important issues need to be further explored:

� Compass uses sliding windows in the “impact evaluation” stage (see Figure 4.1),
outputting a unique value; while Ex-DMAB keeps a sliding window in the Credit
Assignment stage, from which it extracts the maximum or Extreme values. Should
we keep both windows, or would it degrade or disappear with the interesting char-
acteristics provided by Compass? And if only one of these windows is kept, which
one should it be? From here on, these two windows will be respectively referred to
as W1 and W2.

� Another issue concerning the sliding windows is that of what should be their output.
Originally, the output of Compass W1 is the Average over the impacts measured af-
ter the most recent applications [Maturana and Saubion, 2008a]; a simpler approach
would be the Instantaneous value, i.e., no window at all. Ex-DMAB uses the Ex-
treme Credit Assignment, which was successfully validated in the scope of different
artificial (Section 6.3) and unimodal (Section 6.4) benchmark problems. But would
these results also hold in such a completely different setting?

� The last issue concerns the other hyper-parameters. Besides the size and type of
W1 and W2, we need to tune the values of the angle Θ in Compass, and the scaling
factor C and change detection threshold γ in DMAB. Since the idea is not to replace
some parameters (the operator application probabilities) by other ones, even at a
higher level of abstraction, we need to better understand their effects. One way to
do so is to experimentally study their influence on the performance of the AOS in
situation, and to propose some robust default values.

The resulting combination of Ex-DMAB and Compass is referred to as Extreme Com-
pass - DMAB (ExCoDyMAB). An empirical analysis of the discussed issues will be pre-
sented in the following.

6.5.2 SAT Problems

The ExCoDyMAB AOS method has been assessed within an EA applied to the well-
known combinatorial Boolean Satisfiability (SAT) problem [Cook, 1971], which consists
in assigning values to binary variables in order to satisfy a Boolean formula.

Formally, an instance of the SAT problem is defined by a set of Boolean variables
X = {x1, . . . , xn} and a Boolean formula F : {0, 1}n → {0, 1}. The formula is said to
be satisfiable if there exists an assignment v : X → {0, 1}n satisfying F , unsatisfiable
otherwise. Instances are classically formulated in conjunctive normal form (conjunctions

151

Chapter 6. Experimental Results

of clauses) and one thus has to satisfy all these clauses. Given that SAT was the first
problem to be proved NP-complete, and also due to its very general boolean (bit-string)
representation, many different problems from both real world and theoretical background
have been expressed as SAT instances. So, by tackling such problem, we can deal with a
very diverse set of fitness landscapes with different characteristics.

Table 6.20 shows the instances used here, extracted from the SATLIB
[Hoos and Stützle, 2000] and from the SAT-Race 2006 [Sinz et al., 2006], pointing out
whether they are satisfiable or not, their family, and the number of variables and clauses
they involve.

Problem Sat? # Vars. # Clauses Family

S
A
T
L
IB

4blocks Yes 758 47820 Blocks World Problem
aim Yes 200 320 Random-3-SAT
f1000 Yes 1000 4250 Random-3-SAT
CBS Yes 100 449 Controlled Backbone
flat200 Yes 600 2237 Flat Graph Coloring
logistics Yes 828 6718 Logistics Planning
medium Yes 116 953 Randomly Generated
par16 Yes 1015 3310 Parity Learning Problem
sw100-p0 Yes 500 3100 Morphed Graph Coloring
sw100-p1 Yes 500 3100 Morphed Graph Coloring
uf250 Yes 250 1065 Phase Transition Region
uuf250 No 250 1065 Phase Transition Region

S
A
T
-R

ac
e’
06

Color* No 1444 119491 Chessboard Coloring
G125* Yes 2125 66272 Graph Coloring
Goldb-heqc* No 5980 35229 Randomly Generated
Grieu-vmpc Yes 729 96849 Randomly Generated
Hoons-vbmc* No 8503 25116 Randomly Generated
Schup No 14809 48483 Randomly Generated
Simon* No 2424 14812 Randomly Generated
Manol-pipe Yes 14052 41596 Pipelined Machine Verification
Velev-eng* No 6944 66654 Pipelined Machine Verification
Velev-sss* No 1453 12531 Pipelined Machine Verification

Table 6.20: SAT instances used in the empirical assessment of ExCoDyMAB

6.5.3 Experimental Settings

The ExCoDyMAB is applied to an EA, that uses a standard binary representation (one bit
per boolean variable) to represent each solution. As in [Maturana and Saubion, 2008a],
the purpose here is not to use state-of-the-art SAT operators, but rather to manage a set
of completely unknown operators, as a naive user would do when facing a new problem;
desirably, the AOS mechanism should then be able to autonomously discriminate good

152

6.5 Collaboration On Satisfiability Problems

from bad operators at any given time of the search, further exploiting the best operator.
The very heterogeneous operator set is constituted by the following operators:

� 1-point Crossover randomly chooses two individuals and a random position, and
exchanges their first and second parts.

� Contagion randomly chooses two individuals and sets the variables in all false clauses
of the worst individual to the values they have in the best one.

� Hill Climbing checks all neighbors at Hamming distance 1 and moves to the best
one, repeating the process as long as it improves the fitness. It is important to note
that this is a local search operator, which has been included here for the sake of
diversity of variation operators.

� Tunneling swaps variables without decreasing the number of true clauses, according
to a tabu list of length equal to 1

4 of the number of variables (it can be seen, again,
as a local search operator).

� Bad Swap swaps all variables that appear in false clauses, whatever their values are.

� Wave swaps the values of the variable that appears in the highest number of false
clauses and in the minimum number of clauses only supported by it; the process is
repeated at most 1

2 times the number of variables, while improvements can be found.

The parental selection mechanism is the steady-state, defined in Section 2.3.3: after
the generation of each offspring, the worst individual in the population is immediately
replaced (except when the 1-point Crossover operator is applied, in which case the best
offspring replaces the worst parent). The population size (3) and maximum number of
generations (5000 – the only stopping criterion) were arbitrarily fixed.

6.5.4 Architecture definition and tuning of hyper-parameters

In order to efficiently integrate Compass and Ex-DMAB, some open issues were discussed
in Section 6.5.1. The definition of these components, as well as the off-line tuning of the
other hyper-parameters, will be now analyzed in turn.

The first decision concerns whether to include or not the sliding windows W1 and/or
W2, and which should be their outputs. The following possible output policies were tried
for each window (note that the Normalized versions were not considered in this work):

� Instantaneous (I) value, i.e., no sliding window.

� Average (A) value from stored measures;

� Extreme (E) value (maximum) from stored values (except for the execution time,
kept in W1, as the extreme of this measure would not make sense);

Besides, the following hyper-parameters also need to be analyzed and tuned:

153

Chapter 6. Experimental Results

� The size of Compass window of impact measures W1, and the size of the sliding
window of the outputs of the Credit Assignment scheme W2.

� The Compass angle Θ, that defines the tradeoff between the EA exploration and
exploitation.

� The DMAB scaling C parameter, that defines the tradeoff between exploration and
exploitation at the operator-selection level.

� The DMAB γ parameter, the threshold of the change detection test that triggers
the restarts.

The range of values tried for the different hyper-parameters are defined as fol-
lows: C ∈ {5, 7, 10}; γ ∈ {1, 3, 5}; and the windows type(size) combinations ∈
{A(10), A(50), E(10), E(50), I(1)} for both W1 and W2. Thus, the initial number of
possible configurations is 225.

The angle Θ for Compass was set to π/4, as preliminary experiments have shown that a
different value causes a positive-feedback phenomenon2, that moves the EA to an extreme
behavior. For instance, Figure 6.15 shows the curve of the best fitness found, with respect
to the number of time steps elapsed, when using different values of Θ for the original
Compass AOS combination applied to the par16-1 instance, averaged over 50 runs. Note
that all values below 0.25π tend to produce a similar erratic behavior, while values above
0.25 have a poor improvement rate.

The same F-Race off-line tuning procedure, described in Section 6.2.2, was used for
the tuning of these hyper-parameters. The stopping criteria for the Racing was set to
80 runs over all the instances, with eliminations taking place after each run, starting
from the 11th. All 22 SAT instances listed in Table 6.20 have been considered for the
final empirical comparison, but only 7 of them were taken into account for this off-line
tuning phase. This sub-set, marked with an asterisk in Table 6.20, was chosen among the
hardest instances with short enough running times, reducing the experimental cost for the
platform definition. Tuning the hyper-parameters on a small set of instances and testing
them further on “unseen” instances witnesses the generality of the tuned parameters.

6.5.5 Empirical Results

At the end of the Racing, 4 configurations were still active in the process, which are
presented in Table 6.21. These results clearly indicate that the most important sliding
window is W1, i.e., the Compass window for the impact measures, and it should be used
in its Extreme configuration with a size of 10 (i.e. taking as Compass inputs the maximal
of the last 10 impact measures assessed), not matter which kind/size of W2 is being used.
This fact emphasizes the need to identify rare-but-good improvements, greatly supporting
the idea raised by the proposal of the Extreme Credit Assignment, described in Section
5.2.2. Besides, the size of 10 for W1 could be interpreted by the following reasoning.

2In systems theory, positive feedback is a process in which a system responds to a perturbation in the
same sense of the perturbation, thus distancing the system from its original state.

154

6.5 Collaboration On Satisfiability Problems

Figure 6.15: Curve of the best fitness found in relation to the number of time steps elapsed,
for different values of Θ on Compass applied to the par16-1 instance, averaged over 50
runs.

Name W1 type, size W2 type, size C γ

A Extreme, 10 Instantaneous 7 1
B Extreme, 10 Average, 10 7 1
C Extreme, 10 Average, 50 7 1
D Extreme, 10 Extreme, 10 7 3

Table 6.21: Racing survivors for ExCoDyMAB hyper-parameters tuning

With the Extreme policy, a larger W1 would produce a long perdurability of the extreme
values, even when the behavior of the operator has already changed. In the other hand, a
shorter value, up to W1 = 1 (i.e., the same as choosing the Instantaneous policy) would
quickly forget these “rare-but-good” cases. One could suppose that an optimal size for
W1 depends on the fitness landscape and the operators used - further research is needed
to better understand the setting of this hyper-parameter.

To check the generality of those parameters, 50 runs were performed on the 22 SAT
instances with each of the 4 configurations, promoting an empirical comparison between
them, and also verifying their performances in relation to the baseline methods: the
original combinations of Compass and Ex-DMAB (including a Racing phase for Ex-DMAB
similar to that of ExCoDyMAB), and the Naive uniform selection of operators. The results
of this comparison are summarized in Table 6.22. Each cell value represents the number of
problems in which one architecture is significantly better than the other (using a Student
T-test with 95% confidence). For example, in the lower left corner, “18-2” means that

155

Chapter 6. Experimental Results

D outperformed Compass on 18 instances, while the opposite happened only 2 times.
Finally, the rightmost column shows the number of times that an architecture wins, minus
the times that it loses, as a global measure of comparative quality.

Compass Ex-DMAB Naive A B C D
∑

dom

Compass 9-9 22-0 4-18 2-17 2-18 2-18 -39
Ex-DMAB 9-9 22-0 0-18 0-21 0-21 0-21 -59

Naive 0-22 0-22 0-22 0-22 0-22 0-22 -132

A 18-4 18-0 22-0 0-1 0-5 0-2 46
B 17-2 21-0 22-0 1-0 0-2 3-1 59
C 18-2 21-0 22-0 5-0 2-0 4-0 70
D 18-2 21-0 22-0 2-0 1-3 0-4 55

Table 6.22: Comparative results on the 22 SAT instance: each cell indicates the number
of times the row-algorithm is better than the column algorithm according to a Student
T-test with 95% confidence.

After this analysis, between all the four survivors of the Racing procedure, the con-
figuration “C” was found to be the best for ExCoDyMAB, and was thus used for further
empirical comparison with the baseline techniques, namely, the original Compass-PM and
Ex-DMAB AOS combinations, and the Naive uniform choice. The results are presented
in Table 6.23. The columns show the mean number of false clauses after 5000 function
evaluations, averaged over 50 runs, and the standard deviation between parentheses. The
best results for each instance are highlighted in bold-face. As can be seen, ExCoDyMAB
outperforms the other techniques in the vast majority of the cases. These results will be
further discussed in the following.

6.5.6 Discussion

The dominance of ExCoDyMAB is overwhelming, and confirms the hypothesis that moti-
vated the combination of both Compass and DMAB approaches. These latter approaches
alone, within their respective original combinations, present a performance roughly equiv-
alent between each other on this experimental setting, and clearly inferior to the newly
combined one, ExCoDyMAB – though still outperforming in turn the Naive uniform se-
lection policy.

Another interesting point is the seemingly good generalization capacity of
ExCoDyMAB with respect to its hyper-parameters: the best configurations found by
F-Race on the 7 “training” instances showed to perform also very well when solving the
other 15 unseen instances. Moreover, the credits assigned by Compass are normalized
by construction, and this might result into a more robust technique with respect to the
configuration of its hyper-parameters. But this deserves further analysis; in the meantime,
the main drawback of this combination is still that of needing to count with a preliminary
expensive off-line tuning phase in order to achieve reasonable performance, specially in
what concerns the DMAB hyper-parameters.

156

6.5 Collaboration On Satisfiability Problems

Method ExCoDyMAB Compass Ex-DMAB Naive
Problem (C)

S
A
T
L
IB

4blocks 2.8 (0.9) 6 (0.9) 6.2 (0.9) 13.4 (0.6)
aim 1 (0) 1 (0) 1.2 (0.3) 3.6 (1.8)
f1000 10.3 (2.3) 30.9 (6.2) 16.4 (2.6) 55.8 (8.6)
CBS 0.6 (0.6) 0.4 (0.5) 1 (0.9) 7 (2.7)
flat200 7.2 (1.7) 10.6 (2.1) 10.7 (2.2) 37.7 (5.5)
logistics 6.5 (1.3) 7.6 (0.5) 8.8 (1.5) 17.9 (4.1)
medium 1.5 (1.5) 0 (0) 1.8 (1.6) 8.8 (3.4)
par16 15.2 (3.1) 64 (10.2) 24.1 (5.7) 131.1 (14.5)
sw100-p0 9.2 (1.2) 12.8 (1.4) 12.5 (1.7) 25.9 (3.4)
sw100-p1 0 (0) 0.5 (0.6) 1.1 (0.8) 11.3 (3.5)
uf250 0.9 (0.7) 1.8 (0.9) 1.7 (0.8) 9.1 (3.3)
uuf250 2.5 (1) 4.5 (1.2) 3.1 (1.1) 12.7 (3.2)

S
A
T
-R

ac
e’
06

Color 48 (2.5) 61.3 (2.2) 49.3 (3.4) 80.4 (6.6)
G125 8.8 (1.3) 20.6 (2) 13.5 (1.7) 28.8 (4.6)
Goldb-heqc 72.9 (8.5) 112.2 (15.2) 133.2 (15.9) 609.7 (96.2)
Grieu-vmpc 16.7 (1.7) 15.2 (1.7) 19.6 (1.8) 24.1 (3.3)
Hoons-vbmc 69.7 (14.5) 268.1 (44.6) 248.3 (24.1) 784.5 (91.9)
Manol-pipe 163 (18.9) 389.6 (37.2) 321 (38.1) 1482.4 (181.5)
Schup 306.6 (26.9) 807.9 (81.8) 623.7 (48.5) 1639.5 (169.9)
Simon 29.6 (3.3) 43.5 (2.7) 35.3 (6.3) 72.6 (11.3)
Velev-eng 18.3 (5.2) 29.5 (7.3) 118 (37.1) 394 (75.8)
Velev-sss 2 (0.6) 4.6 (1) 5.9 (3.9) 62.7 (25.2)

Table 6.23: Comparative results on the 22 SAT instances: average (std dev.) number of
false clauses (over 50 runs)

Note that this work was done before the proposal by us of the more robust rank-
based AOS approaches. In the same way, the Compass authors have come up with more
efficient Credit Assignment schemes that also integrate both impact measures, based on
the Pareto Front paradigm [Maturana et al., 2010b]. As a further work, a combination of
these newly proposed components will be analyzed on this scenario, hopefully achieving
better results while showing to be more robust with respect to its hyper-parameters (or
cheaper in relation to their off-line tuning).

It is also important to remember, as previously mentioned, that the purpose of this
work was not to build an overwhelming SAT solver, but rather to experiment and validate
the ExCoDyMAB as an AOS technique with an EA solving a general difficult and highly
multi-modal combinatorial problem. The main interesting result is that this set of bench-
marks was difficult enough to highlight the benefits of using the proposed combination of
Compass and Ex-DMAB rather than either separately – or than the naive blind choice.
The deliberate choice of several non-specialized operators was also an important point
to validate the control ability of ExCoDyMAB when facing variation operators of very
different efficiencies.

157

Chapter 6. Experimental Results

Finally, although the results presented in Table 6.23 show that a basic EA using
rather naive operators can indeed solve some instances, competing for SAT Race im-
plies using highly specialized operators, and possibly problem-dependent knowledge, as
done in [Wei et al., 2008]. We are currently working on this in collaboration with Uni-
versity of British Columbia, the AOS schemes choosing between state-of-the-art heuristics
for variable selection; however, by the time this manuscript is being written, there are no
conclusive results yet.

6.6 On Continuous Benchmark Problems

The experimental results surveyed in this Chapter up to now considered the AOS schemes
coupled with a Genetic Algorithm, and applied to artificial, boolean benchmark, and SAT
problems. In order to analyze the applicability of such methods in a totally different
context, we will present in this Section an empirical analysis of AOS schemes selecting
between some mutation strategies within a different EA, the Differential Evolution (DE)
algorithm (described in Section 2.4.5), applied to continuous optimization problems. In
this context, AOS is also sometimes referred to as Adaptive Strategy Selection (AdapSS)
[Gong et al., 2010a; Fialho et al., 2010b].

The experimental framework used in these experiments will be introduced in Section
6.6.1. The specific experimental settings will be presented in Section 6.6.2, while Section
6.6.4 will survey the empirical results. Finally, Section 6.6.5 will discuss the findings and
point out possible directions for further work. The results that will be analyzed here were
partially published in [Fialho et al., 2010b; Fialho and Ros, 2010].

6.6.1 Black-Box Optimization Benchmarking

The Black-Box Optimization Benchmarking (BBOB) is a workshop held yearly during
the ACM Genetic and Evolutionary Computation Conference (GECCO), starting from
2009 [Hansen et al., 2010b]. Partly organized by some members of the Project-team TAO,
INRIA Saclay - Île-de-France, the main objective of this workshop is to present and discuss
empirical comparisons of different optimization algorithms in the continuous domain, using
a common experimental framework.

As a result of this initiative, important contributions have been made to the research
field of empirical analysis of continuous optimizers. Firstly, the BBOB framework provides:
two well-defined and documented sets of benchmark functions, a noiseless and a noisy
one; an experimental set-up [Hansen et al., 2010a] for analyzing the algorithms in several
dimensions and function classes; and some post-processing scripts to generate graphs and
tables to assist the user into the analysis of the performance data. Thus, in case one wants
to empirically assess a given optimization algorithm, this task is greatly facilitated by the
use of the BBOB framework: the user only needs to interface his optimization algorithm
with the framework, allocate some CPU-time, launch some runs, and finally do the post-
processing with the aid of the available scripts. Accordingly, this experimental framework
can be (and should be) seen as a standard for the empirical analysis of optimization
algorithms: by using it, newly proposed algorithms, or new improvements to existing

158

6.6 On Continuous Benchmark Problems

algorithms, can be easily compared to state-of-the-art methods in a rigorous scientific
manner.

The empirical analysis that will be presented in this Section has greatly benefited from
the use of this experimental framework. More details will be given in the following.

6.6.2 Experimental Settings

The goal of the experiments that will be presented here is to assess the comparative
performances of the AOS schemes when coupled with the standard version of the Differ-
ential Evolution algorithm [Storn and Price, 1997], the only difference regarding the way
the mutation strategies are selected. As described in Section 2.4.5, the DE algorithm
is governed by three parameters: NP , F and CR, respectively denoting the population
size, the mutation scaling factor and the crossover rate. It must be emphasized that our
goal is not to compete with state-of-the-art continuous optimizers, but rather to pro-
vide another proof-of-concept of the possible benefits brought by the AOS paradigm, in
a totally different context in relation to both, the underlying EA (just GAs were con-
sidered in the previous empirical analyses) and problem domain (continuous in lieu of
boolean/combinatorial). Hence, no specific effort was put on tuning the DE parameters
with respect to the problem at hand. Population size NP is set to 10×d (as recommended
by [Storn and Price, 2008]), where d denotes the dimension of the search space; mutation
scaling factor F is set to .5, and crossover rate CR is set to 1. This latter choice provides
to DE the invariance property with respect to rotation, while stressing the impact of the
application of the mutation strategies (although being counter-intuitive, CR = 1 means
no crossover at all, only mutation strategies are applied), consequently emphasizing the
gain brought by each AOS scheme on their control.

The set of variation operators is composed of four standard mutation strategies, re-
taining the same as in [Gong et al., 2010a] for the sake of comparative evaluation:

1. “DE/rand/1”: vi = xr1 + F ·
(
xr2 − xr3

)

2. “DE/rand/2”: vi = xr1 + F ·
(
xr2 − xr3

)
+ F ·

(
xr4 − xr5

)

3. “DE/rand-to-best/2”: vi = xr1 +F ·
(
xbest− xr1

)
+F ·

(
xr2 − xr3

)
+F ·

(
xr4 − xr5

)

4. “DE/current-to-rand/1”: vi = xi + F ·
(
xr1 − xi

)
+ F ·

(
xr2 − xr3

)

where xi is the current (or target) individual, xbest is the current best one, and
xr1 ,xr2 ,xr3 ,xr4 and xr5 are individuals uniformly drawn in the population.

As mentioned before, two benchmark sets of single-objective continuous functions
are available in the BBOB framework, a noiseless [Hansen et al., 2009a] and a noisy
[Hansen et al., 2009b] one. Only the noiseless testbed will be considered here. It involves
24 functions divided into 5 classes, according to their most relevant characteristics:

� 5 separable functions;

� 4 functions with low or moderate conditioning;

159

Chapter 6. Experimental Results

� 5 unimodal functions with high conditioning;

� 5 multi-modal functions with adequate global structure;

� and 5 multi-modal functions with weak global structure.

Additionally, for each of these 24 functions, there are 15 instances defined by different
translation and rotation transformations over the original function. The noiseless testbed,
described in detail in [Hansen et al., 2009a], thus totalizes 360 different function instances.

The framework enables experimentation on different dimensions (although the post-
processing scripts, by default, consider only d ∈ {2, 3, 5, 10, 20, 40}). As a representative
set, experiments were done for d ∈ {5, 20}. But for the shorter dimension, the results
attained are much less interesting: the problems are too quickly solved; consequently,
not much significant difference can be observed between the performance of the different
AOS schemes. For this reason, only the results for d = 20 will be reported here; the
results on d = 5 can be found in [Fialho and Ros, 2010]. The stopping conditions of each
optimization run are: the achievement of the optimum solution fopt (with tolerance 10−8),
or the maximum number of function evaluations attained, this latter being fixed at 105×d.

An informative measure of performance used in this experimental framework is the
so-called Expected Running Time (ERT), which can be defined as follows: given a target
function value, ERT is the empirical expected number of function evaluations for achieving
a fitness value below the target. Formally, it is measured as the ratio of the number of
function evaluations for reaching the target value over successful trials, plus the maximum
number of evaluations for unsuccessful trials, divided by the number of successful trials.
In addition to the standard ECDF plots used throughout this Chapter, a different kind
of plot will be used here, the ECDF-ratio, which clearly depicts the speed-up ratio of one
technique with respect to the others.

All the combinations involving rank-based and Extreme-based Credit Assignment
schemes were tried on this experimental setting and will be compared in the following.
Besides, the PM Operator Selection technique (Section 4.4.1) will also be considered here,
but combined with a different Credit Assignment scheme, the average of relative fitness
improvements. This combination, proposed in [Gong et al., 2010a] and referred to as PM-
AdapSS-DE, is a preliminary outcome of our on-going collaboration with the China Univer-
sity of Geosciences, which later motivated the assessment of the bandit-based approaches
on this domain [Fialho et al., 2010b]. For the sake of completeness, the PM-AdapSS-DE
method will be reminded in Section 6.6.3.

As done for the other empirical analyses presented in this Chapter, each AOS combi-
nation had its hyper-parameters tuned off-line prior to the experiments used to gather the
comparative results. The same tuning procedure defined in Section 6.2.2 was used, inde-
pendently for each dimension. The only difference is that each elimination round happens
after one run over all the function instances, what in fact corresponds to 360 performance
results for each of the AOS schemes under comparison, up to 11 runs over all instances or
one configuration left. The best hyper-parameter configuration found for each of them on
dimension 20, used in the experiments that will be analyzed in the following, is presented
in Table 6.24.

160

6.6 On Continuous Benchmark Problems

Credit/OpSel SLMAB DMAB MAB AP

AbsExt C100W500 C100G.1W10 C100W500 P.2A.1B.3W500

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F) C.5D1W100 C.5D.75W50 C.5W50 C.5W50

RMAB (F) C.5D.9W50 C.5D.5W50 C.5W50 C.5W50

Table 6.24: Hyper-parameter configurations used on BBOB dimension 20

Besides the comparison between the different AOS methods proposed here, the best
AOS combination will be further compared with some other baseline approaches, namely,
the Naive uniform selection between the same four strategies, and four variants of DE,
each one applying only one of the considered strategies. Finally, a kind of optimal baseline
is defined by a state-of-the-art continuous optimizer, the CMA-ES with an Increasing
POPulation size restart strategy (IPOP-CMA-ES) [Auger and Hansen, 2005], which was
tested with the same parameter tuning as used in [Hansen, 2009a].

It is important to note that, differently from the ART scenarios (Section 6.3) and
the boolean benchmark problems (Section 6.4), in this experimental setting the fitness
function should be minimized.

6.6.3 The PM-AdapSS-DE Method

The PM-AdapSS-DE AOS method uses as Operator Selection mechanism the Probability
Matching (PM), described in Section 4.4.1. Equally motivated by the need of a higher
robustness in order to be efficient in a variety of different problems with the same hyper-
parameter configuration, its Credit Assignment employs a different kind of normalization
scheme, that takes place on the impact measurement level; while our Normalized schemes
(Section 5.2.3) do so in the Credit Assignment output level.

The relative fitness improvement ηi, proposed in [Ong and Keane, 2004], measures the
impact of an operator application as:

ηi =
δ

cfi
· |pfi − cfi| (6.1)

where i = {1, · · · , NP} refers to each individual of the population of size NP , δ is the
fitness of the best-so-far solution in the population, and pfi and cfi represent, respectively,
the fitnesses of the target parent and of the generated offspring. In case of no improvement
(i.e., the offspring is worse than or equal to its target parent), the impact is assessed as
being null. Finally, the credit assigned to each strategy is the Absolute Average value of
these impact measures.

Besides the relative measure, a main difference of this AOS method with respect to
the other methods tried in this thesis is that it assigns credit to the operators and updates
their empirical estimates only once per generation, based on their production during the
given generation. Hence, there is no hyper-parameter W on the Credit Assignment side;
the only hyper-parameters that remain to be tuned are the ones from PM: the minimal

161

Chapter 6. Experimental Results

probability of selecting each operator pmin, and the adaptation rate α. These hyper-
parameters were also off-line tuned, in the same way as for the other methods, using the
ranges of values defined for AP in Table 6.4: the best configuration found by F-Race uses
pmin = 0 and α = 0.6.

Although being a quite simple method, a good performance is achieved mainly due to
its robust Credit Assignment. However, as discussed in Section 5.2.4, it is still based on
the raw values of the fitness improvements to some extent, thus not being as robust as our
proposed Credit Assignment schemes, as shown in the empirical comparison that will be
presented in the following.

6.6.4 Empirical Results

As previously mentioned, a complete set of experiments on this scenario involves 1 run
on each of the 15 instances for each of the 24 functions, thus summing up to 360 results
for each technique. Given this huge quantity of numerical data, it would be meaningless
to present the detailed results for each function in the form of Tables, as done for the
previous benchmark scenarios. Standard ECDFs and ECDF speed-up ratio plots are used
instead, summarizing the results for the functions altogether, and for each function class.

The main objective of these experiments is to confirm the expectation that, based on
the very robust rank-based Credit Assignment and on the optimal EvE balance provided by
the bandit-based Operator Selection, the combinations involving RMAB and the different
versions of AUC and SR should perform better than all the other considered methods on
such an heterogeneous scenario. In this way, thus, both the performance and the robustness
are jointly assessed, as all methods will use a single hyper-parameter configuration over
all functions.

This empirical comparison will be performed in four different steps, as follows. Firstly,
a representative configuration for the rank-based AOS schemes will be chosen; then it will
be compared with the variants of DE using a single mutation strategy; also with other AOS
schemes considered in this thesis; and finally with further baseline approaches. Results
for each of these steps are summarized, respectively, in Figures 6.16, 6.17, 6.18, and 6.19;
they will be now discussed in turn.

Selection of a Representative for the Rank-based Methods

Different alternatives for rank-based Credit Assignment were proposed in Sections 5.2.4
and 5.2.5, namely, Area-Under-Curve (AUC) and Sum-of-Ranks (SR), assigning ranks
over fitness improvements, and Fitness-based Area-Under-Curve (FAUC) and Fitness-
based Sum-of-Ranks (FSR), which are comparison-based methods that use ranks over
fitness values. For each of them, there are still two options for the decaying mechanism,
the parameterized one, referred to as Decay, and the parameter-less NDCG, which is
equivalent to Decay with d = 0.4. The total number of possibilities proposed and tried
in this thesis, always in combination with the RMAB Operator Selection technique, thus
sums up to 8. All of them were compared to one another. The ECDF for each of them,
for all results over all functions, and separately for each function class, are presented in

162

6.6 On Continuous Benchmark Problems

Figure 6.16. As can be seen from these aggregated results, their behavior is rather the
same; the choice of the method to be compared with the other baseline approaches is thus
determined by convenience, as follows.

Firstly, the comparison-based feature provided by the methods that use ranks over
the fitness values (FAUC, FSR) can not be precisely assessed on this scenario, as there
are no instances being defined by monotonous transformations over the original function
[Hansen et al., 2009a]. Therefore, it becomes interesting to note that, although provid-
ing such extra level of robustness, these methods still perform equivalently to the other
versions that use ranks over fitness improvements (AUC and SR), while in the previous
experimental scenarios the latter frequently outperformed the former. Hence, it is pre-
ferred to keep the comparison-based ones. Then, between FAUC and FSR, the first is
chosen, by having shown a better performance on a couple of scenarios, although being
significantly equivalent in most cases. Finally, the NDCG version is preferred, by being
parameter-less. The chosen rank-based AOS combination is thus NDCG/FAUC-RMAB,
which will be referred to as FAUC-B in the following, for the sake of brevity.

Comparison of FAUC-B with DE using a Single Strategy

FAUC-B is firstly compared with the standard DE algorithm using a single strategy, with
four variants (DE1 . . . DE4), each one using one of the four mutation strategies considered
by the AOS schemes, defined in Section 6.6.2.

The global picture (Figure 6.17a) shows in the legends that FAUC-B, DE1 and DE3
are able to solve at least one instance for 15 functions out of 24, while DE2 solves 12. DE4
shows unable to solve any of the functions on this dimension (although being occasionally
used by the adaptive schemes); hence, it will be neglected in the remainder of this analysis.

Compared withDE1, FAUC-B shows to be around 3 times faster in approximately 90%
of all the considered cases. DE2 is around 20 times slower than FAUC-B on around 65%,
50%, 80% and 40% of the trials, respectively, for the separable, moderate, ill-conditioned
and weak-structure function classes, while not solving any instance for the multi-modal
class. DE3 is the best one out of the single strategies, performing roughly 10 times faster
than DE2; overall, it is around 2 times slower than FAUC-B.

It is worth noting that all the schemes failed on most multi-modal functions: 2 out of
the 5 separable functions are multi-modal and were not solved by any of the schemes, in
addition to the multi-modal class, in which only 2 out of 5 functions were solved by some
of the schemes, and the weak-structure class, where only 1 out of 5 functions were solved
in at least one trial.

Comparison of FAUC-B with other AOS Schemes

The second series of experiments compare FAUC-B with the other bandit-based approaches
proposed in this thesis, namely, MAB (Section 5.3.1), DMAB (Section 5.3.2), and SLMAB
(Section 5.3.3), and with the baseline AP (Section 4.4.2), all using the Absolute Extreme
Credit Assignment (Section 5.2.2). It is also compared with PM-AdapSS-DE, the method
that uses PM being fed by Absolute Average of relative fitness improvements, detailed in

163

Chapter 6. Experimental Results

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-picklef1-24 FAUC-Decay

FAUC-NDCG

FSR-Decay

FSR-NDCG

SR-Decay

SR-NDCG

AUC-Decay

AUC-NDCG

(a) all functions

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-picklef1-5 FAUC-Decay

FAUC-NDCG

FSR-Decay

FSR-NDCG

SR-Decay

SR-NDCG

AUC-Decay

AUC-NDCG

(b) separable functions

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-picklef6-9 FAUC-Decay

FAUC-NDCG

FSR-Decay

FSR-NDCG

SR-Decay

SR-NDCG

AUC-Decay

AUC-NDCG

(c) moderate functions

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-picklef10-14 FAUC-Decay

FAUC-NDCG

FSR-Decay

FSR-NDCG

SR-Decay

SR-NDCG

AUC-Decay

AUC-NDCG

(d) ill-conditioned functions

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-picklef15-19 FAUC-Decay

SR-Decay

FSR-Decay

FAUC-NDCG

FSR-NDCG

SR-NDCG

AUC-Decay

AUC-NDCG

(e) multi-modal functions

0 1 2 3 4 5 6 7 8
log10 of (ERT / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fu

n
ct

io
n
s

pickledata/2-t5-21-0_S.5_K1.0_W100-pickle

pickledata/2-t5-12-1_S.5_K1.0_W50-pickle

pickledata/2-t5-12-0_S.5_K0.75_W50-pickle

pickledata/1-t15-9-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-1_S.5_K1.0_W50-pickle

pickledata/1-t15-19-0_S.5_K0.9_W50-pickle

pickledata/2-t5-21-1_S.5_K1.0_W50-pickle

pickledata/1-t15-9-0_S.5_K0.5_W50-picklef20-24 FSR-Decay

AUC-NDCG

FAUC-Decay

FAUC-NDCG

FSR-NDCG

SR-Decay

SR-NDCG

AUC-Decay

(f) weak-structure functions

Figure 6.16: Standard ECDF plots of the distribution of ERT over dimension for combi-
nations of RMAB with all the rank-based credit assignment schemes, for all functions and
sub-groups with d = 20 and target 10−8.

164

6.6 On Continuous Benchmark Problems

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-24

DE1: 15/15

DE2: 15/12

DE3: 15/15

DE4: 15/0

(a) all functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-5

DE1: 3/3

DE2: 3/3

DE3: 3/3

DE4: 3/0

(b) separable functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f6-9

DE1: 4/4

DE2: 4/3

DE3: 4/4

DE4: 4/0

(c) moderate functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f10-14

DE1: 5/5

DE2: 5/5

DE3: 5/5

DE4: 5/0

(d) ill-conditioned functions

-1 0 1
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f15-19

DE1: 2/2

DE2: 2/0

DE3: 2/2

DE4: 2/0

(e) multi-modal functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f20-24

DE1: 1/1

DE2: 1/1

DE3: 1/1

DE4: 1/0

(f) weak-structure functions

Figure 6.17: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with the DE using only one out of the four available mutation strategies. The speed-up
ratios are the pairwise ratios of the number of function evaluations for FAUC-B to surpass
the target function value 10−8, over the one of the baseline techniques, over all trials for
each function. Pairs where both trials failed are disregarded, pairs where one trial failed
are visible in the limits being > 0 or < 1 (for this reason, some lines are not visible, as
they coincide with the axes). The legends also indicate the number of functions that were
solved in at least one trial (FAUC-B first).

165

Chapter 6. Experimental Results

Section 6.6.3.

Globally speaking (Figure 6.18a), FAUC-B is approximately 1.5 times faster than most
of the other AOS schemes in around 90% of the trials, except for the PM-AdapSS-DE,
which is outperformed in approximately half of the trials, performing faster than FAUC-B
in around 15% of the function trials. More specifically, FAUC-B is up to 10 times faster
than the standard MAB in half of the trials, while being 2 times faster than DMAB and
SLMAB in around 75% of the trials.

This global assessment corresponds roughly to the speed-up ratios attained on the
separable, moderate and ill-conditioned function classes. Again, none of the schemes are
able to perform well on multi-modal functions, with only 2 functions being solved by all
schemes in the multi-modal class, and only 1 in the harder weak-structure class. Although
the low number of successful trials on these latter classes, FAUC-B still outperforms all
the schemes in most trials.

Comparison of FAUC-B with further Baseline Approaches

The last empirical comparison, whose results are illustrated in Figure 6.19, considers two
extremes. On the one side there is the Naive uniform operator selection. FAUC-B shows
to be around 1.5 times faster than Naive-DE on around 80% of the trials for all unimodal
functions in the separable, moderate and ill-conditioned function classes. It attains the
same speed-up ratio on approximately 65% and 55% of the trials, respectively, for the
multi-modal and weak-structure function classes.

On the other side there is the state-of-the-art continuous optimizer IPOP-CMA-ES
[Auger and Hansen, 2005], which significantly outperforms FAUC-B in around 90% of the
trials for all cases. Besides, it succeeds in solving all the 5 functions for the multi-modal
class, while FAUC-B and all the other schemes previously considered solve only 2; and it
also solves 2 functions for the weak structure class, one more than all the other schemes.

6.6.5 Discussion

Differently from the other scenarios previously analyzed in this Chapter, the use of the
BBOB experimental framework enabled a much broader and realistic assessment of the
proposed AOS schemes. By the evaluation of the methods on the many functions with
different characteristics and levels of difficulty, treated as black-boxes, it showed to be an
ideal scenario in order to depict the gain in robustness brought by the use of rank-based
Credit Assignment schemes.

And indeed, the NDCG/FAUC-RMAB (simply referred to as FAUC-B) AOS method,
a representative of all the proposed rank-based methods, succeeded in outperforming in
the vast majority of the cases: the standard DE using each of the considered mutation
strategies, the Naive uniform strategy selection, all the other bandit-based approaches,
as well as two other baseline adaptive schemes, Adaptive Pursuit and PM-AdapSS-DE.
This performance improvement of the FAUC-B with respect to the others, in terms of
Expected Running Time (ERT) to achieve a given function target value, is attributed
mostly to: (i) the use of a rank-based Credit Assignment, which is robust with respect to

166

6.6 On Continuous Benchmark Problems

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-24

pm: 15/15

AP: 15/15

DMAB: 15/15

SLMAB: 15/15

MAB: 15/15

(a) all functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-5

pm: 3/3

AP: 3/3

DMAB: 3/3

SLMAB: 3/3

MAB: 3/3

(b) separable functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f6-9

pm: 4/4

AP: 4/4

DMAB: 4/4

SLMAB: 4/4

MAB: 4/4

(c) moderate functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f10-14

pm: 5/5

AP: 5/5

DMAB: 5/5

SLMAB: 5/5

MAB: 5/5

(d) ill-conditioned functions

-1 0 1
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f15-19

pm: 2/2

AP: 2/2

DMAB: 2/2

SLMAB: 2/2

MAB: 2/2

(e) multi-modal functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f20-24

pm: 1/1

AP: 1/1

DMAB: 1/1

SLMAB: 1/1

MAB: 1/1

(f) weak-structure functions

Figure 6.18: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with other AOS combinations. The speed-up ratios are the pairwise ratios of the number
of function evaluations for FAUC-B to surpass the target function value 10−8, over the
one of the baseline techniques, over all trials for each function. The legends indicate the
number of functions that were solved in at least one trial (FAUC-B first). 167

Chapter 6. Experimental Results

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-24

Naive: 15/15

CMA: 15/19

(a) all functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f1-5

Naive: 3/3

CMA: 3/3

(b) separable functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f6-9

Naive: 4/4

CMA: 4/4

(c) moderate functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f10-14

Naive: 5/5

CMA: 5/5

(d) ill-conditioned functions

-1 0 1
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f15-19

Naive: 2/2

CMA: 2/5

(e) multi-modal functions

-2 -1 0 1 2
log10 of FEvals(A1)/FEvals(A0)

p
ro

p
o
rt

io
n

f20-24

Naive: 1/1

CMA: 1/2

(f) weak-structure functions

Figure 6.19: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with the Naive uniform operator selection and the state-of-the-art IPOP-CMA-ES opti-
mizer. The speed-up ratios are the pairwise ratios of the number of function evaluations
for FAUC-B to surpass the target function value 10−8, over the one of the baseline tech-
niques, over all trials for each function. The legends also indicate the number of functions
that were solved in at least one trial (FAUC-B first).

168

6.6 On Continuous Benchmark Problems

the very different situations tackled within this benchmark suite, while efficiently following
the changes in the qualities of the strategies (the reduction of the AUC for one operator,
by definition, results in the augmentation of the AUC for one of the others); and to
(ii) the use of a bandit-based Operator Selection, which has already shown to be very
efficient in the other experimental settings. FAUC-B, as well as the other methods using
ranks over the fitness values instead of fitness improvements, still provide an extra layer
of robustness that was not challenged in this scenario, that of being comparison-based:
in case there were instances derived by monotonous transformations over the original
functions, the performance gap could be even bigger, possibly with the comparison-based
methods (FAUC and FSR) significantly outperforming the simply rank-based methods
(AUC and SR). This situation should be further addressed in the near future.

Moreover, PM-AdapSS-DE [Gong et al., 2010a] (Section 6.6.3), showed to be the best
out of the four other adaptive schemes, what confirms the gain in robustness achieved by
the use of a relative instead of a raw reward. It is also worth noticing that, as for the other
simpler benchmark scenarios, DMAB greatly outperformed the standard MAB by the use
of its change-detection test, while SLMAB was able to closely follow its performance,
both of them performing very similarly to AP. But, although improving over MAB, both
DMAB, SLMAB and AP techniques performed rather equivalently to the Naive uniform
strategy, and this puts into question their efficiency in this experimental setting.

Compared to the Naive uniform approach, it is true that the efficiency gain presented
by FAUC-B seems to be moderate in relation to the price to pay for an adaptive scheme
in terms of computational complexity. Nevertheless, it should be observed that the Naive
uniform strategy considers here a small number of strategies, most of which performing
well: DE1 and DE3 perform quite well; although much slower, DE2 still reaches the
target; the only inefficient strategy is DE4. In the general case, however, the performance
of the strategies is unknown; the performance of the above strategies was assessed through
extensive experiments. The use of an AOS scheme remains thus relevant in the general
case.

Additionally, though much improved over the results of all mentioned approaches used
within DE, the best results of the FAUC-B +DE algorithm remains far below those of the
state-of-the-art optimizer IPOP-CMA-ES. But the DE algorithm that FAUC-B has been
applied to is the very standard one; several improvements have been recently proposed to it,
e.g., adding adaptive parameter control for F and CR [Qin et al., 2009]. The applicability
of FAUC-B in DE framework opens the path for fruitful research using the numerous recent
DE variants.

Another further work is to address the multi-modality issue: all tested algorithms failed
on most multi-modal functions (40% of the separable class, plus all the functions for the
multi-modal and weak structure classes). In the same way as for the work on SAT problems
(Section 6.5), in order to efficiently tackle multi-modal problems, the maintenance of some
level of diversity in the population should also be accounted somehow for the rewarding
of operator applications, as discussed in Section 4.5.2.

169

Chapter 6. Experimental Results

6.7 Hyper-Parameters Analysis

As discussed in Section 6.2.1, the AOS mechanisms analyzed in this work have their own
hyper-parameters (Table 6.2), whose values might critically impact their performances.
This issue has been addressed using the F-Race, as described in Section 6.2.2, and the
best hyper-parameter configuration for each considered AOS has been determined and
further used on each of the different empirical comparisons presented in this Chapter. It
is, however, important to study the hyper-parameters, in order to identify which of them
should receive more attention during the tuning process when addressing a new problem.
An analysis of their sensitivity will be presented in Section 6.7.1.

Another important aspect concerning the hyper-parameter configuration of the AOS
schemes is how robust they are when tackling different problems. For instance, the meth-
ods based on the raw values of fitness improvements are expected to be very problem-
dependent, as discussed in Section 5.2.3, while the rank-based methods are expected to
be more robust to different situations. An analysis of their robustness will be presented in
Section 6.7.2.

The results that will be analyzed here were partially published in [Fialho et al., 2010a;
Fialho et al., 2010c; Fialho and Ros, 2010].

6.7.1 On the Sensitivity of the Hyper-Parameters

When only 1 or 2 hyper-parameters are concerned, a 3-D plot of the response surface
of these parameters gives a clear picture (as has been done in [Da Costa et al., 2008] for
AP and DMAB on some artificial scenarios, for instance). However, for each AOS tech-
nique, there are the hyper-parameters of both Operator Selection and Credit Assignment
schemes: only MAB and SLMAB combined with the Extreme or Average Credit Assign-
ment schemes have 2 hyper-parameters; DMAB and AP, combined with the same Credit
Assignment schemes, have respectively 3 and 4 hyper-parameters; and RMAB with any
of the rank-based schemes has 3 (see the list in Table 6.2). This is why ECDF plots
will be also used for this analysis, as described in the following. Another alternative could
have been to use some parameter setting procedure like REVAC [Nannen and Eiben, 2007]

(Section 3.3.2), that gives an idea of the sensitivity of all parameters it optimizes while
finding its optimal value.

ECDF Sensitivity Plots

Though ECDF sensitivity plots have been generated for all AOS schemes and all scenarios
previously presented, only a few series of plots offering typical behavior will be depicted and
analyzed into detail here. All the non rank-based methods are considered with the AbsExt
Credit Assignment. This scheme was chosen because it performs best in most cases; for a
few exceptions, the Instantaneous performed slightly better, but the corresponding ECDF
plots looked rather similar, though involving one less hyper-parameter, the size W of
the rewards window (expect for SLMAB, which needs W anyway). For the rank-based
methods, the RMAB with the Decay/AUC Credit Assignment is considered. Accordingly,

170

6.7 Hyper-Parameters Analysis

the other alternatives could have been tried, but they present rather similar performance
in most scenarios; between Decay and NDCG, the former is preferred so as to be able
to also analyze the decay factor D. For each of these AOS combinations, its sensitivity
with respect to its hyper-parameters will be analyzed on four benchmark problems, a kind
of representative set of all the different problems considered in this thesis: the Uniform
scenario with ∆T = 500, the ART (0.1, 39, 0.5, 3) with ∆T = 200, and the OneMax and
Royal Road boolean benchmark problems.

All figures display a number of ECDF curves representing the results of the same AOS
method on the same scenario. For the artificial scenarios, the x-axis represents the TCR,
ranging from the value of the optimal strategy (i.e., the highest possible value on average
for any AOS) down to the value that would, on average, be gathered by the Naive uniform
strategy (hopefully the lowest possible value on average for any AOS). For the OneMax
and Royal Road cases, the x axis represents the number of generations to achieve the
optimum, starting from 4500 for the former and zero for the latter problem, up to the
average number of generations taken by the Naive uniform choice. The y-axis shows the
proportion of runs that reached the corresponding x value, out of the total number of runs
considered.

For each benchmark problem, a large amount of experimental results have been gath-
ered during the Racing procedure, and at least 11 runs have been performed for all hyper-
parameter combinations of the factorial design sketched by the values in Table 6.4. The
results over these 11 runs will be used for the analysis on the OneMax and Royal Road
problems; this explains possible divergences between the best configurations considered
here and the ones presented in the tables of results corresponding to each scenario. Ex-
periments on the Uniform and ART artificial scenarios are significantly cheaper, in terms
of computational time; hence, for these scenarios, even the parameter configurations that
did not make it through the end of the Racing procedure have been run 50 times for the
sake of the sensitivity analysis.

Two lines are given as references on each plot: the top-left-most line (continuous,
and green on color printouts), labelled with a “**” and referred to as “Best/All”, repre-
sents the overall best results, in terms of average TCR (or number of generations to the
optimum in the OneMax and Royal Road cases), obtained on this scenario by a single
hyper-parameter configuration, between all the AOS combinations, after the number of
runs considered for each scenario. The next line going down/right, labelled with a “*”
and referred to as “Best/This”, represents the results obtained by the best configuration
of hyper-parameters for the AOS scheme named on the caption of the sub-figure, under
the plot. The discrepancy between both lines shows in detail how different are the per-
formances of the considered AOS and of that of the method that performed best on this
scenario.

At the other extreme of each sub-figure, the bottom-right-most line (solid, red on color
printouts) represents the ECDF of all runs for the particular AOS, i.e., for all hyper-
parameter configurations ever tried (the average performance of the complete factorial
design from values given on Table 6.4). The lines in-between represent partial aggregations
of these runs. More precisely, if the best results have been obtained for a given set of hyper-
parameters (recalled in the legend), each line represents the ECDF obtained when one

171

Chapter 6. Experimental Results

hyper-parameter is varied over all its values used in the Racing procedure, while all others
are kept to the optimal value found. If a line corresponding to a given parameter is close
to the line of the best configuration, it is a clear indication that the results are not very
sensitive to this hyper-parameter. Oppositely, a high difference indicates a high sensitivity.
Besides the ECDF curve, the average and standard deviation of the performance are also
presented in the legends of the plots for each of the different aggregations considered.

Sensitivity Analysis

In order to facilitate the comparison of the impact of the hyper-parameters on the per-
formance of each AOS technique on the different benchmark problems, and possibly find
common sensitivity hints for their tuning, the plots are grouped by technique. Figure
6.20 presents the ECDF sensitivity plots for the baseline AbsExt-AP method, for the sake
of comparison. Figure 6.21 depicts in each column the plots for both AbsExt-MAB and
AbsExt-SLMAB, while Figure 6.22 shows the plots for AbsExt-DMAB on the right and
Decay/AUC-RMAB on the left column.

 0

 25

 50

 75

 100

 16000 18000 20000 22000 24000

**AbsIns-DMAB C.1 G10 W1: 24787 43
*AbsExt-AP P.05 A.9 B.9 W10: 22090 110

P.05 A.9 B.9 Wx (4 confs.): 19780 2650
P.05 A.9 Bx W10 (4 confs.): 22021 141
P.05 Ax B.9 W10 (4 confs.): 21736 428
Px A.9 B.9 W10 (4 confs.): 19062 2619
Px Ax Bx Wx (256 confs.): 17468 2297

(a) AbsExt-AP on Uniform ∆T = 500

 0

 25

 50

 75

 100

 7000 7500 8000 8500 9000 9500

**AbsExt-DMAB C10 G1 W50: 8852 499
*AbsExt-AP P.1 A.3 B.6 W50: 7959 632

P.1 A.3 B.6 Wx (4 confs.): 7055 905
P.1 A.3 Bx W50 (4 confs.): 7918 594
P.1 Ax B.6 W50 (4 confs.): 7922 598
Px A.3 B.6 W50 (4 confs.): 7588 747
Px Ax Bx Wx (256 confs.): 6970 821

(b) AbsExt-AP on ART (0.1, 39, 0.5, 3)

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

**NormExt-AP P0 A.9 B.9 W100: 5012 225
*AbsExt-AP P0 A.9 B.6 W500: 5046 121

P0 A.9 B.6 Wx (4 confs.): 5923 643
P0 A.9 Bx W500 (4 confs.): 5141 244
P0 Ax B.6 W500 (4 confs.): 5434 494
Px A.9 B.6 W500 (4 confs.): 5715 798

Px Ax Bx Wx (256 confs.): 6085 682

(c) AbsExt-AP on OneMax

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

**D/FAUC-RMAB C.1 D0.9 W100: 5819 2522
*AbsExt-AP P0 A.3 B.1 W10: 6300 3814

P0 A.3 B.1 Wx (4 confs.): 13954 8407
P0 A.3 Bx W10 (4 confs.): 10451 6968
P0 Ax B.1 W10 (4 confs.): 10930 7974
Px A.3 B.1 W10 (4 confs.): 10859 7308
Px Ax Bx Wx (256 confs.): 13080 7355

(d) AbsExt-AP on Royal Road

Figure 6.20: ECDF sensitivity plots for AbsExt-AP

172

6.7 Hyper-Parameters Analysis

Starting with the combination of Adaptive Pursuit (AP) Operator Selection and Abso-
lute Extreme (AbsExt) Credit Assignment, the global picture with respect to sensitivity is
rather clear. The adaptation rate α and the learning rate β are very robust indeed: their
aggregated ECDF plots are very close to the curves representing the best configuration
for this technique on all problems. The minimal probability pmin is a much more sensitive
parameter, as expected (and as discussed in Section 4.4.2); but its sensitivity clearly (and
intuitively) depends on the number of operators and on the maximum value tried for it:
on the ART scenario it seems to be as insensitive as α and β (Figure 6.20b); however,
only two operators are considered in this case, thus the total exploration when using the
maximum value tried for pmin (= 0.2) sums up to “only” 40% of exploration; while on the
Royal Road scenario, which has 5 operators, pmin=0.2 refers to a complete Naive uniform
behavior. The window size W is the most sensitive parameter on all cases. Altogether, AP
seems to be quite robust with respect to its hyper-parameters, but its global performance,
when compared to the bandit-based approaches on most benchmark scenarios considered
in this thesis, make it a poor choice anyway.

The scaling factor C and the sliding window size W are common hyper-parameters
for all bandit-based approaches. Starting with C, for MAB, SLMAB and DMAB, it is
definitely a very sensitive parameter. As discussed in Section 5.3.4, when using Credit
Assignment schemes based on the raw values of fitness improvements, C has a double role
on the bandit-based approaches: besides controlling the Exploration versus Exploitation
balance of the Operator Selection, it needs to account for the different ranges of fitness
improvements (which tend to vary as the search goes on, and according to the problem
at hand). For RMAB, C still seems to be a sensitive hyper-parameter; however, as can
be seen in the captions of the respective plots, the winner configurations for the different
problems all use C ≤ 1, while values up to 100 are being considered in the corresponding
(dark blue) curve, consequently greatly degrading its aggregated performance. From this
alternative analysis, thus, it can be said that the use of a rank-based scheme fulfills its
original motivation, that of providing an invariant range of rewards during all the search
process on a given problem, and over different problems, what reflects in similar C values
being used by the winner configurations. Conversely, the winner configurations of the
other bandit-based approaches use very different values for C on the different problems;
for instance, SLMAB uses C = 0.01 on the OneMax problem, and C = 100 on the ART
problem. More on this will be discussed in the robustness analysis presented in Section
6.7.2.

The window size W also seems to be very sensitive for the bandit-based approaches,
specially on the Uniform and ART scenarios, in which there is a strong link between W
and ∆T : for values ofW larger than the epoch size, the frequency of the changes will result
in using too old information. This issue becomes even more important for the approaches
other than RMAB, in which there is one window for each operator: in the worst case,
a window might contain rewards as old as K × W steps ago, K being the number of
operators. For instance, the “steps” shown in the corresponding ECDF curves for MAB,
DMAB and RMAB on the Uniform scenario (respectively, on Figures 6.21a, 6.22a and
6.22b), clearly depict how large values for W are hindering the overall performance of
the aggregated distribution in this case. This hyper-parameter becomes less sensitive in

173

Chapter 6. Experimental Results

 0

 25

 50

 75

 100

 16000 18000 20000 22000 24000

**AbsIns-DMAB C.1 G10 W1: 24787 43
*AbsExt-MAB C5 W10: 23278 73

C5 Wx (4 confs.): 20880 2258
Cx W10 (7 confs.): 19554 2565
Cx Wx (28 confs.): 18286 2186

(a) AbsExt-MAB on Uniform ∆T = 500

 0

 25

 50

 75

 100

 16000 18000 20000 22000 24000

**AbsIns-DMAB C.1 G10 W1: 24787 43
*AbsExt-SlMAB C5 W10: 21614 812

C5 Wx (4 confs.): 18147 2417
Cx W10 (7 confs.): 18482 1985
Cx Wx (28 confs.): 17137 1570

(b) AbsExt-SLMAB on Uniform ∆T = 500

 0

 25

 50

 75

 100

 7000 7500 8000 8500 9000 9500

**AbsExt-DMAB C10 G1 W50: 8852 499
*AbsExt-MAB C100 W10: 8586 568

C100 Wx (4 confs.): 7985 830
Cx W10 (7 confs.): 7065 743
Cx Wx (28 confs.): 6963 614

(c) AbsExt-MAB on ART (0.1, 39, 0.5, 3)

 0

 25

 50

 75

 100

 7000 7500 8000 8500 9000 9500

**AbsExt-DMAB C10 G1 W50: 8852 499
*AbsExt-SlMAB C100 W50: 8768 529

C100 Wx (4 confs.): 8162 698
Cx W50 (7 confs.): 7237 771
Cx Wx (28 confs.): 7079 768

(d) AbsExt-SLMAB on ART (0.1, 39, 0.5, 3)

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

**NormExt-AP P0 A.9 B.9 W100: 5012 225
*AbsExt-MAB C100 W10: 8505 969

C100 Wx (4 confs.): 8866 842
Cx W10 (7 confs.): 14000 2386
Cx Wx (28 confs.): 14099 2190

(e) AbsExt-MAB on OneMax

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

**NormExt-AP P0 A.9 B.9 W100: 5012 225
*AbsExt-SlMAB C.01 W100: 5773 368

C.01 Wx (4 confs.): 6599 1116
Cx W100 (7 confs.): 6899 969
Cx Wx (28 confs.): 7294 1100

(f) AbsExt-SLMAB on OneMax

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

**D/FAUC-RMAB C.1 D0.9 W100: 5819 2522
*AbsExt-MAB C10 W50: 7861 5287

C10 Wx (4 confs.): 10859 6995
Cx W50 (7 confs.): 12842 8446
Cx Wx (28 confs.): 14354 8130

(g) AbsExt-MAB on Royal Road

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

**D/FAUC-RMAB C.1 D0.9 W100: 5819 2522
*AbsExt-SlMAB C.1 W100: 10440 7204

C.1 Wx (4 confs.): 14741 7857
Cx W100 (7 confs.): 13330 7860

Cx Wx (28 confs.): 14417 7858

(h) AbsExt-SLMAB on Royal Road

Figure 6.21: ECDF sensitivity plots for AbsExt-MAB and AbsExt-SLMAB

174

6.7 Hyper-Parameters Analysis

the more realistic OneMax and Royal Road scenarios, in which there is no clear relation
between operators qualities and time. For SLMAB, the W hyper-parameter has a double
role: it controls both the size of the sliding window and the size of the intrinsic memory of
the relaxation update rule used on the Operator Selection side; for this reason, it seems to
be much more sensitive to this hyper-parameter than the other bandit-based approaches
on three out of the four cases (except for the ART , in which it is as sensitive as for the
other approaches). More specifically, in the case of RMAB, as there is only one window
for all operators, (intuitively) larger window sizes are preferred.

The DMAB change-detection threshold γ shows not to be sensitive on the Uniform and
ART scenarios. A tentative interpretation goes as follows. As the range of rewards for
the best operator are the same during the whole search process, on the Uniform scenario
it seems that 3/4 of values tried for DMAB γ perform well (see again the “step” on
around 75% of the cyan-colored distribution in Figure 6.22a); indeed, in this case, from
the values explored, only λ ∈ {100, 1000} achieve a TCR much worse than the others, as
these thresholds are too big in relation to the actual changes in the reward distributions,
thus not triggering any restart. Along the same lines, on the ART scenario, whenever
there is an exchange in the reward distributions, i.e., whenever an outlier reward (of
value 39 in this case) is received, as it is much higher than the expectation of the previous
distribution (= 3), most values tried will succeed in detecting the change. For the OneMax
and Royal Road problems, the best operator might present very different expected reward
during the search process, thus there is no value for γ that works optimally during all
the search; for this reason, in these cases, the γ threshold appears to be as sensitive as
the very sensitive scaling factor C. In more realistic scenarios, having different reward
ranges during the search is very likely to be the case; hence, this hyper-parameter tends
to hinder the performance of DMAB (although still outperforming the standard MAB in
most cases), while requiring a considerable amount of computational time for its off-line
tuning when compared to the other methods.

Accordingly, the RMAB ranking decay factor D is also much less sensitive on the
Uniform scenario: as the rewards received are always already ranked somehow according
to the quality of the operator (despite some overlap between subsequent operators), the
operator qualities are already ranked by construction, thus not needing an extra decaying
factor in order to efficiently differ between them. Anyway, even for the other scenarios, it
does not seem to be as sensitive as the other hyper-parameters; expect for the Royal Road
case, in which it is surprisingly more sensitive than W , although much less sensitive than
the scaling factor C. Another empirical proof of the non-sensitivity of this hyper-parameter
is related to the fact that, in most empirical performance comparisons presented in this
Chapter, the Decay version using some high value for D showed equivalent performance
to the NDCG version, which is basically the same as using Decay with D = 0.4, as shown
in Figure 5.1. It is also worth noticing that the fact that this hyper-parameter is always
bounded between 0 and 1 results in a much easier and cheaper off-line tuning than those of
the scaling factor C and the change-detection threshold γ, which have no known bounds.

175

Chapter 6. Experimental Results

 0

 25

 50

 75

 100

 16000 18000 20000 22000 24000

**AbsIns-DMAB C.1 G10 W1: 24787 43
*AbsExt-DMAB C.5 G10 W10: 24512 51

C.5 G10 Wx (4 confs.): 22146 2364
C.5 Gx W10 (7 confs.): 22742 1801

Cx G10 W10 (7 confs.): 21901 3078
Cx Gx Wx (196 confs.): 19270 2952

(a) AbsExt-DMAB on Uniform ∆T = 500

 0

 25

 50

 75

 100

 16000 18000 20000 22000 24000

**AbsIns-DMAB C.1 G10 W1: 24787 43
*D/AUC-RMAB C.1 D1.0 W50: 23256 120

C.1 D1.0 Wx (4 confs.): 20844 2496
C.1 Dx W50 (5 confs.): 22965 213

Cx D1.0 W50 (7 confs.): 19325 3550
Cx Dx Wx (140 confs.): 18058 3012

(b) Decay/AUC-RMAB on Uniform ∆T = 500

 0

 25

 50

 75

 100

 7000 7500 8000 8500 9000 9500

**AbsExt-DMAB C10 G1 W50: 8852 499
*AbsExt-DMAB C10 G1 W50: 8852 499

C10 G1 Wx (4 confs.): 7838 990
C10 Gx W50 (7 confs.): 8584 713
Cx G1 W50 (7 confs.): 7739 1074

Cx Gx Wx (196 confs.): 7013 1115

(c) AbsExt-DMAB on ART (0.1, 39, 0.5, 3)

 0

 25

 50

 75

 100

 7000 7500 8000 8500 9000 9500

**AbsExt-DMAB C10 G1 W50: 8852 499
*D/AUC-RMAB C1 D0.9 W100: 8028 679

C1 D0.9 Wx (4 confs.): 6955 986
C1 Dx W100 (5 confs.): 7266 1184

Cx D0.9 W100 (7 confs.): 7202 779
Cx Dx Wx (140 confs.): 6636 922

(d) Decay/AUC-RMAB on ART (0.1, 39, 0.5, 3)

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

**NormExt-AP P0 A.9 B.9 W100: 5012 225
*AbsExt-DMAB C.5 G100 W50: 5395 365

C.5 G100 Wx (4 confs.): 5674 641
C.5 Gx W50 (7 confs.): 6408 1066

Cx G100 W50 (7 confs.): 6763 1962
Cx Gx Wx (196 confs.): 7335 2100

(e) AbsExt-DMAB on OneMax

 0

 25

 50

 75

 100

 4500 5000 5500 6000 6500 7000 7500

**NormExt-AP P0 A.9 B.9 W100: 5012 225
*D/AUC-RMAB C.01 D0.75 W500: 5060 308

C.01 D0.75 Wx (4 confs.): 5644 567
C.01 Dx W500 (5 confs.): 5329 486

Cx D0.75 W500 (7 confs.): 6388 1294
Cx Dx Wx (140 confs.): 7090 1226

(f) Decay/AUC-RMAB on OneMax

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

**D/FAUC-RMAB C.1 D0.9 W100: 5819 2522
*AbsExt-DMAB C10 G100 W50: 7350 4681

C10 G100 Wx (4 confs.): 11348 7349
C10 Gx W50 (7 confs.): 12950 7505

Cx G100 W50 (7 confs.): 12948 7904
Cx Gx Wx (196 confs.): 13776 7481

(g) AbsExt-DMAB on Royal Road

 0

 25

 50

 75

 100

 0 2000 4000 6000 8000 10000 12000 14000

**D/FAUC-RMAB C.1 D0.9 W100: 5819 2522
*D/AUC-RMAB C.1 D1.0 W100: 8369 3544

C.1 D1.0 Wx (4 confs.): 9923 5436
C.1 Dx W100 (5 confs.): 10874 5298

Cx D1.0 W100 (7 confs.): 13544 7795
Cx Dx Wx (140 confs.): 13712 7132

(h) Decay/AUC-RMAB on Royal Road

Figure 6.22: ECDF sensitivity plots for AbsExt-DMAB and Decay/AUC-RMAB

176

6.7 Hyper-Parameters Analysis

6.7.2 On the Robustness of the Hyper-Parameters

The sensitivity of a given hyper-parameter might be alleviated by the robustness of the
method with respect to many different problems, i.e., even if a lot of effort is needed for
the preliminary off-line tuning of this parameter, in case the configuration found by the
off-line tuning performs reasonably well for several different problems, the computational
budget spent on this initial effort might become worth the expense.

In this Section, the robustness of the AOS schemes with respect to their hyper-
parameters is analyzed on two experimental scenarios: firstly, on the OneMax problem
and on 3 other problems defined by monotonous transformations of OneMax; then, on the
very heterogeneous set of functions provided by BBOB.

Robustness on Transformations over the OneMax Problem

A first series of experiments was conducted, based on the OneMax problem, to analyze
the expected gain in robustness provided by the use of the rank-based Credit Assignment
schemes (Section 5.2.4) and, specially, the invariance with respect to monotonous trans-
formations (leading to the so-called comparison-based property) featured by the schemes
using ranks over the fitness values instead of ranks over the fitness improvements (Section
5.2.5).

As presented in Section 6.4.2 (and as done for every performance benchmarking sce-
nario considered in this Chapter), the F-Race procedure was first used to tune the hyper-
parameters of all the AOS schemes prior to the comparison of their average empirical
performance on the OneMax problem. For the robustness analysis that will be presented
here, this same hyper-parameter configuration found to be the best on the OneMax prob-
lem for each technique was used for its assessment on functions defined by monotonous
non-linear transformations over the original OneMax function F , namely: log(F), exp(F),
and F2.

The complete results, gathered with the same experimental setting used in the origi-
nal performance comparison presented in Section 6.4.2, can be found on Table 6.25. The
average performance (number of generations to optimum) on the original and on the three
transformed functions are presented for each AOS scheme. These performance measures
are ranked independently for each function, and the first column of the Table summarizes
this ranks, by presenting their sum; the Table is sorted by this column: the more robust
technique is the one with lowest values for

∑
r. Additionally, the second column presents

the gap between the worst and the best performance achieved by each AOS scheme over
all four functions, what can be seen as a complementary view of their robustness with
respect to this experimental scenario. Finally, as done on the previously analyzed per-
formance comparisons, the best result for each function is highlighted with bold-face and
grey background, like this , and the statistically equivalent results are displayed with a
grey background.

These results empirically confirm several expectations. Firstly, the rank-based meth-
ods that use the rank of the fitness improvements, AUC-RMAB and SR-RMAB, achieve
an overall better performance, while showing to be quite robust with respect to the

177

Chapter 6. Experimental Results

∑
r (h-l) F =

∑
bi log(F) exp(F) (F2) AOS technique

12 485 5103 427 5195 430 5562 950 5588 950 Decay/AUC-RMAB
13 244 5231 503 5421 524 5475 422 5475 422 NDCG/SR-RMAB
15 362 5215 374 5347 547 5577 634 5575 534 Decay/SR-RMAB
18 1321 5097 230 6295 1176 4974 201 4984 184 NormExt-AP
19 108 5444 252 5458 382 5511 347 5403 332 NormIns-DMAB
24 300 5366 478 5434 596 5650 887 5666 881 NDCG/AUC-RMAB
31 0 5652 644 5652 644 5652 644 5652 644 Decay/FSR-RMAB
31 807 5123 218 5431 223 5930 334 5792 382 AbsExt-AP
36 0 5667 729 5667 729 5667 729 5667 729 NDCG/FSR-RMAB
41 0 5726 399 5726 399 5726 399 5726 399 Decay/FAUC-RMAB
46 54 5728 204 5767 312 5780 329 5726 263 NormIns-AP
50 172 5718 239 5805 279 5748 227 5890 386 AbsIns-AP
54 0 5796 420 5796 420 5796 420 5796 420 NDCG/FAUC-RMAB
54 186 5750 251 5782 251 5936 277 5875 287 AbsAvg-AP
62 355 5790 226 5910 271 6048 337 6145 319 NormAvg-AP
65 2591 5376 285 7967 718 7722 2151 6138 516 AbsExt-DMAB
74 706 6427 597 6956 784 7133 866 6808 691 NormExt-SLMAB
77 3310 5508 823 8818 3653 7173 3288 6865 2861 NormExt-DMAB
80 2673 5480 276 8079 743 7961 653 8153 684 AbsIns-DMAB
80 502 7193 1614 6890 1294 7370 1033 7392 1117 NormAvg-DMAB
81 2285 5997 593 6345 644 8282 2044 7639 1807 NormExt-MAB
83 1905 6662 961 8277 1553 6507 839 6372 786 NormIns-SLMAB
92 225 8013 671 7893 681 8021 582 8118 738 NormIns-MAB
96 365 7903 638 8023 716 8268 949 8008 874 NormAvg-MAB
97 631 7494 611 8122 724 8125 1159 8075 740 AbsAvg-DMAB
108 6971 6059 667 8863 694 13030 3053 12136 949 AbsExt-SLMAB
111 7089 8198 683 7910 549 14999 0 14999 0 AbsAvg-MAB
111 8423 6576 705 8721 695 14999 0 9838 1430 AbsIns-SLMAB
112 182 8463 818 8593 753 8577 737 8645 862 NormAvg-SLMAB
112 7083 8369 891 7916 635 14999 0 14999 0 AbsIns-MAB
113 7052 9044 840 7947 1267 14999 0 14999 0 AbsExt-MAB
114 845 8347 596 8899 808 9192 862 8395 721 AbsAvg-SLMAB

Table 6.25: Results of each AOS scheme on the original OneMax function and on three
other functions defined by monotonous transformations over it. The schemes were ranked
on each function, and the first column presents the sum of their ranks, which defines the
order of their presentation in the table. The second column depicts the difference between
the highest and the lowest average performance of each AOS scheme over all the four
functions.

monotonous transformations. Although the comparison-based counterparts FAUC-RMAB
and FSR-RMAB are less competitive, their invariance property is verified (exactly the
same performance on all the functions, (h− l)=0); this might show to be more beneficial
in a bigger and more difficult class of problems. For all the other approaches, the best
results in terms of robustness are achieved using Normalized versions of the Extreme (or

178

6.7 Hyper-Parameters Analysis

Instantaneous for DMAB) Credit Assignment schemes; this also confirms the expectations
after discussion in Section 5.2.3.

Between the Operator Selection techniques other than RMAB, the baseline probability-
based AP approach is the most robust: all its combinations are ranked in the first half of
the Table. Its best combination in terms of performance, the NormExt-AP, achieves the
best result in three out of four functions; however, it does not cope well with such a simple
transformation as the logarithmic one. This result clearly demonstrates that the lack of
invariance under simple nonlinear transformation could eventually cause some serious loss
of efficiency for more difficult problems.

In what concerns the other bandit-based approaches using Credit Assignment schemes
based on the raw values of fitness improvements, only the NormIns-DMAB is surprisingly
able to perform well on this experimental scenario. A huge variance is shown in the
results of the other combinations involving DMAB and MAB. Although presenting a
smaller variance, SLMAB is still a bad choice, due to its non-competitive performance,
populating mostly the bottom of the ranked Table, together with MAB.

Robustness on the BBOB Functions

An alternative analysis of the robustness of each AOS technique with respect to its hyper-
parameters was done in the context of the BBOB benchmark scenario. Here, instead
of using the same hyper-parameter configuration over different problems, the opposite
approach is taken: different off-line tuning procedures were done, considering different
groups of functions, and the best hyper-parameter configurations found for each of them
are compared. A robust technique should present similar best hyper-parameter setting on
most of the different cases, while still presenting competitive performance.

In the same way as for the empirical performance analysis presented in Section 6.6, the
NDCG/FAUC-RMAB is used here as a representative of all the rank-based AOS schemes,
being simply referred to as FAUC-B. MAB and SLMAB are disregarded here, due to their
poor performance; the robustness of FAUC-B is compared to those of PM-AdapSS-DE, AP
and DMAB, these two latter being coupled with the AbsExt Credit Assignment scheme.

Six different tuning procedures were performed for each dimension d ∈ {5, 20}, which
are: tuning considering independently each of the 5 function classes; and tuning consider-
ing all functions. The best configuration found for each technique on each of the analyzed
cases is presented in Table 6.26.

This tuning experiment confirms again the higher robustness of FAUC-B: {C = .5,W =
50} is always the best configuration; except for the multi-modal and weak-structure class
functions, in which none of the techniques was able to perform well, as discussed in Section
6.6. For the PM-AdapSS-DE, the benefits of using a relative instead of a raw reward are
also shown on dimension 20, with always a very low value for pmin, and a high one for the
adaptation rate α.

For AP, however, several configurations reached the end of the Racing process, all of
them sharing P.2 and W500, but presenting all possible combinations for the adaptation
rate α and the learning rate β. This could be seen as a good sign, possibly showing the
robustness of this AOS combination; however, the use of pmin=0.2 in fact confirms that the

179

Chapter 6. Experimental Results

d = 5 FAUC-B PM-AdapSS-DE AbsExt-AP AbsExt-DMAB
separable C.5W50 P.05α.9 P.2α.6β.6W500 C10γ.01W100
moderate C.5W50 P.05α.3 P.2α.9β.3W50 C.01G100W50

ill-conditioned C.5W50 P0α.9 P.2α.6β.3W500 C100G1000W500
multi-modal C.5W50 P.05α.9 P.2α.9β.3W500 C100G1W50

weak-structure C1W500 P.05α.1 P.2α.9β.6W50 C100γ.1W50
all functions C.5W50 P0α.9 P.2α.3β.6W500 C100γ.1W50

d = 20 FAUC-B PM-AdapSS-DE AbsExt-AP AbsExt-DMAB
separable C.5W50 P0α.9 P.2α.3β.1W500 C100γ.01W50
moderate C.5W50 P0α.9 P.2α.9β.3W500 C100γ.01W50

ill-conditioned C.5W50 P0α.9 P.2α.6β.3W500 C100γ.01W50
multi-modal C1W50 P0α.3 P.2α.3β.1W100 C100γ.01W50

weak-structure C.01W50 P0α.9 P.2α.3β.3W100 C100γ.01W50
all functions C.5W50 P0α.6 P.2α.1β.1W500 C100γ.1W50

Table 6.26: Robustness analysis: best hyper-parameters configuration found for each tech-
nique on the BBOB benchmark set for dimensions 5 and 20, off-line tuned under different
conditions.

method is presenting a behavior very close to the Naive uniform approach: as 4 mutation
strategies are considered in this experimental scenario, the completely uniform behavior
would be achieved with pmin=0.25, regardless the other parameters.

The same kind of conclusions can be drawn for the tuning experiments of DMAB. The
configurations found for the different situations were all quite similar, with C100, γ ≤ .1
and W50. However, a very high scaling factor C was found to be the best; this means that
much more weight was given to the exploration term of the UCB formula, i.e., although
knowing which is the current best strategy, the algorithm prefers to explore the others.
Besides, a very low value for the Page-Hinkley change detection threshold γ was chosen in
most cases; this means that the probability of having restarts during the search is really
high, also favoring the exploration, consequently dramatically degrading the performance
of the method.

After all, the single fact that the same hyper-parameter tuning is found to be the
best on different situations is not sufficient to conclude that a given technique is robust.
Intuitively, if the final performance is as good as the uniform one, the configurations
found are meaningless. The FAUC-B and the PM-AdapSS-DE, while presenting similar
configurations for different situations, also perform very well, as shown in the empirical
comparison presented in Section 6.6.

6.8 General Discussion

The use of so many and distinct benchmark scenarios was motivated by the possibility
of analyzing different properties of the AOS schemes. On the artificial scenarios (Section
6.3), for instance, the agility to adapt to completely different situations was assessed under
different conditions with respect to the definition of the artificial reward distributions and

180

6.8 General Discussion

to the level of informativeness of the received rewards. On the other hand, the results
on the boolean benchmark problems (Section 6.4) represent the preliminary experiments
in which the AOS schemes were analyzed in situ, selecting between different evolutionary
operators within a real EA, applied to fitness landscapes with very different characteristics
and levels of complexity. In Section 6.5, the DMAB Operator Selection technique was
evaluated in the light of the hard combinatorial Boolean Satisfiability (SAT) problems, by
using a third party Credit Assignment scheme that aggregates both fitness and diversity.
Finally, on the Black-Box Optimization Benchmarking (BBOB) scenario, not only the
performance of the techniques was assessed, but also their robustness, given the very
heterogeneous benchmark function set provided by it; besides, in this case, yet another
problem domain was tackled, the continuous one, by coupling the AOS schemes with a
Differential Evolution (DE) algorithm.

After the description of the contributions for AOS in Chapter 5, these experiments
provided enough empirical evidence to draw, under different benchmarking conditions,
the following conclusions, somehow matching most of our expectations:

1. DMAB Operator Selection technique performs better than MAB, AP, Naive uniform,
and possibly equivalently to Oracle whenever available:
True. Indeed, DMAB is the overall winner technique in most cases. The price to
pay for this gain in performance with respect to the standard MAB is the need to
tune two very sensitive and problem-dependent hyper-parameters, the scaling factor
C and the change-detection threshold γ. Given this mentioned problem-dependency,
DMAB consequently does not perform well on scenarios considering many different
problems, such as BBOB.

2. SLMAB Operator Selection technique performs equivalently or better than DMAB,
while having one hyper-parameter less:
False. This is the only notable deception with respect to the original expectation. In
fact, SLMAB performed equivalently or better than DMAB only in some artificial
scenarios (Section 6.3), and on the experiments within BBOB, in which both of
DMAB and SLMAB performed rather poorly. In the other cases using real EAs,
however, SLMAB was not able to efficiently follow the dynamics of the operator
qualities (see, e.g., its behavior plot on the OneMax problem, in Figure 6.12d),
being outperformed even by the standard MAB in some cases. Besides, as for the
other bandit-based approaches, there is still the need to tune the (also very sensitive)
scaling factor C.

3. Extreme Credit Assignment scheme performs better than the Instantaneous and Av-
erage ones:
True. Except for the artificial scenarios with small ∆T , in which more up-to-date
information is needed in order to follow the very quick abrupt changed (thus prefer-
ring the Instantaneous scheme), Extreme performs better in most cases, including
the boolean benchmark and the SAT problems. On the BBOB scenario, however,
only Extreme was tried to date; the evaluation of the Average and Instantaneous
counterparts is left for further work.

181

Chapter 6. Experimental Results

4. Normalized versions perform equivalently or better than the Absolute versions of
the Credit Assignment schemes, while being more robust with respect to its hyper-
parameters:
True. In terms of performance, on the analyzed scenarios, they performed equiv-
alently in most cases, while being better in a few cases. The gain in robustness by
the use of this simple normalization scheme is clearly shown in the analysis on the
transformed OneMax functions, presented in Section 6.7.2. However, it can be said
to be significantly outperformed, in terms of robustness, by the rank-based schemes,
which should thus be preferred, as discussed in the following.

5. RMAB Operator Selection with the rank-based Credit Assignment schemes perform
equivalently or better than the other AOS combinations, while being very robust with
respect to their hyper-parameters:
True. Even in the artificial and boolean benchmark problems, in which the methods
were off-line tuned for each problem (thus hindering the effects of the higher robust-
ness), the different combinations of RMAB showed to be able of following closely
the performance of the other AOS combinations in most cases. And, intuitively,
the more heterogeneous the scenario, i.e., the more different problems need to be
tackled by the same hyper-parameter configuration, the clearer the benefits brought
by the higher robustness, as shown in the BBOB scenario, in which RMAB is the
clear winner. It is important to note that, besides the robustness, most of the effi-
ciency in adaptation is also due to the Credit Assignment schemes in this case, while
the bandit-based Operator Selection technique is responsible for controlling the EvE
balance with respect to the operator selection. Furthermore, between the AUC and
SR, the former showed to outperform the latter in the vast majority of the cases,
being equivalent otherwise; then, between the AUC and the FAUC, the latter should
be preferred just in case the robustness with respect to monotonous transformations
is needed, otherwise the AUC should be employed.

Summarizing all these empirical evidences, to date, the AUC-RMAB remains as the
recommended technique in case one wants to employ the AOS paradigm on his own al-
gorithm. The last choice that needs to be made, between the Decay and the NDCG
alternatives, is not critical and depends on whether there is some available budget for
the tuning of the decay factor D or not, as the NDCG has shown to present similar but
slightly inferior performance in most cases.

182

Part IV

General Conclusion

Chapter 7

Final Considerations

Evolutionary Algorithms (EAs) are stochastic algorithms that tackle search and optimiza-
tion problems based on the Darwinian evolution paradigm. EAs have already shown to
perform well in many different domains of application that are not tractable by standard
methods, mainly because they do not make any strong assumption about the problem to be
solved, and also due to the many parameters that enable the user to adapt the algorithm
to the problem at hand, as discussed in Chapter 2. These many parameters, although
providing the mentioned flexibility, are the main responsible factor for the fact that EAs
are rarely used by researchers from other domains, as there are no general guidelines for
their setting.

After the survey on parameter setting in EAs presented in Chapter 3, instead of using
an expensive off-line tuning technique, the behavior of the algorithm should be rather
adapted while solving the problem, according to the current needs of the search with
respect to the Exploration versus Exploitation (EvE) balance. Taking as an example
the choice of which operator should be applied, perturbative operators should be used to
explore the search space in the initial stages of the search or when there is the need of
escaping from stagnation, while fine-tuning operators should be preferred whenever there
are promising regions that need to be further verified.

The use of feedback from the search to on-line adapt the selection of the operator to be
applied is commonly referred to as Adaptive Operator Selection (AOS). In this work, we
proposed different contributions to AOS, which will be summarized in Section 7.1. Section
7.2 will conclude this manuscript by sketching possible directions for further work.

7.1 Summary of Contributions

In order to perform AOS, one needs to define two elements, as described in Chapter 4
and depicted in Figure 4.1. After an operator application, the Credit Assignment scheme
transforms its impact on the search process into a numerical reward, which is used to
maintain an up-to-date estimation of its performance. Based on these empirical estimates,
the Operator Selection mechanism selects the next operator to be applied.

Different approaches for both Credit Assignment and Operator Selection components

185

Chapter 7. Final Considerations

have been proposed in this thesis, resulting in novel AOS methods. These contributions
are detailed in Chapter 5, and can be briefly summarized as follows.

The proposed Credit Assignment schemes use as a measure of impact the fitness im-
provement of the offspring with respect to its parent (or to the best of its parents in the
case of crossover operators). The first proposal, simply referred to as Extreme Credit As-
signment, rewards the operator with the maximum fitness improvement recently achieved
by it, based on the assumption that outlier high improvements might be equally or more
important than frequent but moderate ones. Although showing to be very efficient, this
scheme provides a very problem-dependent behavior to the AOS methods for two rea-
sons: (i) different problems have different fitness ranges, consequently reward ranges; and
(ii) the magnitude of the fitness improvements tends to vary as the search advances (the
closer to the optimum, usually the rarer and smaller the improvements). In the quest for
a higher robustness, a simple normalization scheme was first proposed. Although allevi-
ating the problem-dependency, the Normalized schemes are still based on the raw values
of fitness improvements to some extent. This led us to further propose two Credit As-
signment schemes based on ranks over the fitness improvements, which showed to be very
robust: the first method is inspired by a Machine Learning paradigm, referred to as Area-
Under-Curve (AUC), while the second simply uses the Sum-of-Ranks (SR) to evaluate
the operator qualities. An extra level of robustness (with a small price to pay in terms
of efficiency) was further achieved by the use of ranks over fitness values instead of ranks
over fitness improvements: the resulting algorithms are totally comparison-based, i.e.,
invariant with respect to monotonous transformations over the original fitness function.
The respective methods are referred to as Fitness-based Area-Under-Curve (FAUC) and
Fitness-based Sum-of-Ranks (FSR).

The Operator Selection issue was tackled as another instance of the Exploration versus
Exploitation (EvE) dilemma: the operator that is found to perform better than the others
should be used as much as possible (exploitation), while other operators should also be
tried from time to time (exploration), as one of them might become the new best one at a
further (unknown) instant of the search. This dilemma has been intensively studied in the
context of yet another Machine Learning paradigm (more specifically in Game Theory), the
Multi-Armed Bandit (MAB). A first tentative application of this paradigm to the Operator
Selection problem used the Upper Confidence Bound (UCB) algorithm [Auer et al., 2002],
which provides asymptotic optimality guarantees with respect to total cumulated reward;
but these guarantees hold only in the original and stationary context of MAB problems,
while the AOS context is very dynamic: the performance of the operators continuously
vary as the search goes on. As a consequence, different proposals were made in order to be
able to efficiently use the MAB paradigm in the AOS context. The first proposal on this
direction, referred to as Dynamic Multi-Armed Bandit (DMAB), uses a statistical test to
trigger a restart of the MAB process whenever a change on the operator quality distribution
is detected. This method has shown to be very efficient, but different problems have fitness
landscapes with different dynamics, what makes its restarting mechanism to be also highly
problem-dependent. This led us to propose the Sliding Multi-Armed Bandit (SLMAB),
which accounts for the AOS dynamics by continuously adapting the weight of the received
rewards, according to how frequent each operator has been applied: the less frequent,

186

7.2 Further Work

the more outdated is its corresponding empirical estimate, consequently the higher should
be the weight of the instant reward received, and vice-versa. In practice, however, this
mechanism did not show to perform as good as expected. The last proposal, referred
to as RMAB, is indeed the simplest one; the AOS dynamics are in fact handled on the
Credit Assignment side by the rank-based schemes in a transparent way: as the ranking
considers the rewards received by all operators, the application of one operator affects
the perceived quality of all the others; in this way, their quality estimates are always
sufficiently up-to-date by construction.

A last contribution concerns the empirical assessment of the resulting AOS methods.
Firstly, some artificial scenarios were proposed to analyze their behavior on different con-
trolled environments. And secondly, a very extensive empirical analysis of all the proposed
AOS methods, also compared with some baseline methods, was performed and analyzed
in detail (Chapter 6): they were assessed within a Genetic Algorithm applied to the pro-
posed artificial scenarios, to other boolean benchmark problems, as well as to the hard
Boolean Satisfiability problems; and within a Differential Evolution algorithm applied to
a comprehensive benchmark set of continuous functions.

Based on the empirical evidences gathered from this analysis, in case one wants to
apply the AOS paradigm to his own algorithm/problem, the recommended AOS method
as of today is the combination of the AUC Credit Assignment scheme with the RMAB
Operator Selection mechanism: it achieves state-of-the-art performance, while also being
very robust with respect to its hyper-parameters when applied to different problems.

7.2 Further Work

A major drawback of the final recommended AOS method is that its remarkable robust-
ness and its state-of-the-art performance remains limited, mostly, to unimodal problems.
In order to efficiently tackle multi-modal problems, the impact of the operator applica-
tion with relation to the population diversity should also be considered somehow, while
just the fitness is being currently regarded. This explains why none of the methods were
able to perform well on the multi-modal functions of the BBOB testbed. Some prelim-
inary work has been done on this direction (Section 6.5), using the Compass method
from Universitè d’Angers as Credit Assignment, assessed within a GA in the context of
Boolean Satisfiability (SAT) problems (see Section 6.5). But in this work, only the very
sensitive and problem-dependent DMAB Operator Selection technique was used. Further
work should concern the preservation of the achieved level of robustness and efficiency
in the framework of the Pareto Dominance-based Credit Assignment scheme proposed in
[Maturana et al., 2010b], which is a follow-up of the Compass method.

An alternative approach for tackling multi-modal problems can be found in the state-of-
the-art optimizer IPOP-CMA-ES [Auger and Hansen, 2005], which was used as a baseline
for comparison on the experiments within BBOB. Instead of modifying its adaptive mech-
anism, it uses a deterministic parameter control of the population size: after some number
of generations, if no improvement has been achieved, the size of the population is doubled
and the search is restarted from scratch. Bigger the population, higher are the chances

187

Chapter 7. Final Considerations

of finding the global optimum, as it enables a better parallel exploration of the multiple
peaks of the fitness landscape. This approach should be tried in the near future, by incor-
porating the restarting/population size control mechanism into the underlying algorithms
that were tried with the AOS schemes, namely, GAs and DE.

Coming back to the work on SAT problems, the AOS methods were used to select
between rather naive operators, thus not achieving competitive performance. In order
to possibly take part in SAT races, further work should concern, thus, the autonomous
selection between state-of-the-art operators for SAT. Indeed, we are currently working in
collaboration with University of British Columbia on this topic; but, as of today, there are
no conclusive results yet.

Along the same line, in the work within the DE algorithm applied to continu-
ous problems, the AOS methods were combined with the very standard version of
DE. Several more efficient DE variants exist nowadays, such as the JADE algorithm
[Zhang and Sanderson, 2009], which, besides using improved mutation strategies, also em-
ploys the on-line adaptation of some of the DE parameters, namely, the mutation scaling
factor F and the crossover rate CR. As a continuation of the collaboration work with
the China University of Geosciences, the PM-AdapSS-DE method (Section 6.6.3) was
tried within JADE, achieving significantly better results than when combined with the
standard algorithm ([Gong et al., 2010b], currently under review). A natural next step in
this case would be to try our rank-based AOS methods with JADE, in order to possibly
achieve more competitive results when compared to state-of-the-art optimizers such as the
IPOP-CMA-ES [Auger and Hansen, 2005].

Another path for further work, that is also being currently explored in the scope of a
collaboration, this time with the City University of Hong Kong, involves the DE algorithm
again, but applied to multi-objective problems. This work is still in a very preliminary
stage, and the main difficulty for the time being is, as in the standard non-adaptive frame-
work, to define how to efficiently evaluate the quality of the solutions (and consequently
the impact of the operator application) with respect to the different objectives.

As it can be seen from all these on-going collaborations, the AOS paradigm is indeed
very useful and general enough to be applied to many different contexts. But up to now,
we have considered their application only to the selection of operators within EAs. The
developed AOS methods should also be further assessed within different kinds of meta-
heuristics and stochastic algorithms; and at a higher level of abstraction, selecting between
heuristics instead of operators, what is commonly referred to as Hyper-Heuristics. For in-
stance, the upcoming “International Cross-Domain Heuristic Search Challenge”1 seems to
be an interesting experimental framework to evaluate the AOS mechanisms at the level of
Hyper-Heuristics. On this challenge, optimization algorithms will be evaluated over sev-
eral kinds of combinatorial problems (MAX-SAT, bin-packing, flow-shop and scheduling);
a promising approach would be to feed the AOS mechanism with heuristics that perform
well on each of these domains, and then let it on-line select between them, hopefully
discovering and exploiting the heuristics that are more adapted for each problem domain.

1http://www.asap.cs.nott.ac.uk/chesc2011

188

http://www.asap.cs.nott.ac.uk/chesc2011

Bibliography

[Abdullah et al., 2007] cited page(s) 25

S. Abdullah, E.K. Burke, and B. McCollum. A hybrid evolutionary approach to the
university course timetabling problem. In Proc. IEEE Congress on Evolutionary Com-
putation (CEC), pages 1764–1768, 2007.

[Angeline, 1995] cited page(s) 41

P.J. Angeline. Adaptive and self-adaptive evolutionary computations. In Computational
Intelligence: A Dynamic Systems Perspective, pages 152–161. IEEE, 1995.

[Angelov et al., 2003] cited page(s) 26

P.P. Angelov, Y. Zhang, J.A. Wright, V.I. Hanby, and R.A. Buswell. Automatic design
synthesis and optimization of component-based systems by evolutionary algorithms. In
E. Cantú-Paz et al., editor, Proc. Genetic and Evolutionary Computation Conference
(GECCO), volume 2724 of LNCS, pages 1938–1950. Springer, 2003.

[Arabas et al., 1994] cited page(s) 32

J. Arabas, Z. Michalewitz, and J. Mulawka. GAVAPS - a genetic algorithm with varying
population size. In Proc. IEEE Congress on Evolutionary Computation (CEC), pages
73–78. IEEE, 1994.

[Arbib, 2002] cited page(s) 12

M.A. Arbib, editor. The Handbook of Brain Theory and Neural Networks. MIT, 2002.

[Auer et al., 2002] cited page(s) 5, 52, 68, 68, 79, 80, 82, 186

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi-armed bandit
problem. Machine Learning, 47(2-3):235–256, 2002.

[Auger and Hansen, 2005] cited page(s) 94, 160, 166, 187, 188

A. Auger and N. Hansen. A restart CMA evolution strategy with increasing population
size. In B. McKay et al., editor, Proc. IEEE Congress on Evolutionary Computation
(CEC), volume 2, pages 1769–1776. IEEE, 2005.

[Auger and Teytaud, 2010] cited page(s) 30

A. Auger and O. Teytaud. Continuous lunches are free plus the design of optimal
optimization algorithms. Algorithmica, 57(1):121–146, 2010.

189

BIBLIOGRAPHY

[Bäck et al., 2000] cited page(s) 32

T. Bäck, A.E. Eiben, and N.A.L. van der Vaart. An empirical study on GAs without
parameters. In M. Schoenauer et al., editor, Proc. Intl. Conf. on Parallel Problem
Solving from Nature (PPSN), volume 1917 of LNCS, pages 315–324. Springer, 2000.

[Bäck, 1992] cited page(s) 39

T. Bäck. The interaction of mutation rate, selection, and self-adaptation within a genetic
algorithm. In R. Männer et al., editor, Proc. Intl. Conf. on Parallel Problem Solving
from Nature (PPSN), pages 87–96. Elsevier, 1992.

[Balaprakash et al., 2007] cited page(s) 36, 36, 38, 103

P. Balaprakash, M. Birattari, and T. Stützle. Improvement strategies for the F-Race
algorithm: Sampling design and iterative refinement. In T. Bartz-Beielstein et al.,
editor, Hybrid Metaheuristics, volume 4771 of LNCS, pages 108–122. Springer, 2007.

[Barbosa and Sá, 2000] cited page(s) 48, 49, 50, 52, 57

H.J.C. Barbosa and A.M. Sá. On adaptive operator probabilities in real coded genetic
algorithms. In Workshop on Advances and Trends in Artificial Intelligence for Problem
Solving, XX Intl. Conf. of the Chilean Computer Science Society (SCCC), 2000.

[Bartz-Beielstein et al., 2005] cited page(s) 37, 103

T. Bartz-Beielstein, C.W.G. Lasarczyk, and M. Preuss. Sequential parameter optimiza-
tion. In B. McKay et al., editor, Proc. IEEE Congress on Evolutionary Computation
(CEC), pages 773–780. IEEE, 2005.

[Battiti et al., 2008] cited page(s) 40

R. Battiti, M. Brunato, and F. Mascia. Reactive Search and Intelligent Optimization.
Operations research/Computer Science Interfaces. Springer, 2008.

[Beyer, 1995] cited page(s) 41

H.-G. Beyer. Toward a theory of evolution strategies: Self-adaptation. Evolutionary
Computation, 3(3):311–347, 1995.

[Bibai et al., 2010] cited page(s) 25

J. Bibai, P. Savéant, M. Schoenauer, and V. Vidal. An evolutionary metaheuristic based
on state decomposition for domain-independent satisficing planning. In R. Brafman et
al., editor, Proc. Intl. Conf. on Automated Planning and Scheduling (ICAPS), pages
15–25. AAAI Press, 2010.

[Birattari et al., 2002] cited page(s) 36, 36, 36, 36, 36, 102, 102

M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm for con-
figuring metaheuristics. In W.B. Langdon et al., editor, Proc. Genetic and Evolutionary
Computation Conference (GECCO), pages 11–18. Morgan Kaufmann, 2002.

[Birattari et al., 2009] cited page(s) 38

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. Automated algorithm tuning
using F-Races: Recent developments. In M. Caserta et al., editor, Proc. Metaheuristic
Intl. Conference. University of Hamburg, 2009.

190

BIBLIOGRAPHY

[Birattari, 2004a] cited page(s) 102

M. Birattari. On the estimation of the expected performance of a metaheuristic
on a class of instances. How many instances, how many runs? Technical Report
TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Belgium, Brussels, Bel-
gium, 2004.

[Birattari, 2004b] cited page(s) 102

M. Birattari. The Problem of Tuning Metaheuristics as Seen from a Machine Learning
Perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium, 2004.

[Bradley, 1997] cited page(s) 75

A.P. Bradley. The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

[Branke et al., 2003] cited page(s) 18

J. Branke, C. Barz, and I. Behrens. Ant-based crossover for permutation problems. In
E. Cantú-Paz et al., editor, Proc. Genetic and Evolutionary Computation Conference
(GECCO), pages 754–765. Springer, 2003.

[Burges et al., 2005] cited page(s) 74

C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender.
Learning to rank using gradient descent. In Proc. Intl. Conf. on Machine Learning
(ICML), pages 89–96. ACM, 2005.

[Burke et al., 2010] cited page(s) 41, 62

E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R. Qu. Hyper-heuristics: A
survey of the state of the art. Technical Report NOTTCS-TR-SUB-0906241418-2747,
School of Computer Science and Information Technology, University of Nottingham,
2010.

[Chan et al., 2005] cited page(s) 18

C.-H. Chan, S.-A. Lee, C.-Y. Kao, and H.-K. Tsai. Improving EAX with restricted 2-opt.
In H.-G. Beyer et al., editor, Proc. Genetic and Evolutionary Computation Conference
(GECCO), pages 1471–1476. ACM, 2005.

[Christensen and Oppacher, 2001] cited page(s) 30

S. Christensen and F. Oppacher. What can we learn from No Free Lunch? A first
attempt to characterize the concept of a searchable function. In L. Spector et al., editor,
Proc. Genetic and Evolutionary Computation Conference (GECCO), pages 1219–1234.
Morgan Kaufmann, 2001.

[Clune et al., 2005] cited page(s) 37

J. Clune, S. Goings, B. Punch, and E. Goodman. Investigations in Meta-GA: panaceas
or pipe dreams? In H.-G. Beyer et al., editor, Proc. Genetic and Evolutionary Compu-
tation Conference (GECCO), pages 235–241. ACM, 2005.

191

BIBLIOGRAPHY

[Collet and Schoenauer, 2003] cited page(s) 3

P. Collet and M. Schoenauer. GUIDE: Unifying evolutionary engines through a graphical
user interface. In P. Liardet et al., editor, Proc. Intl. Conf. on Artificial Evolution (EA),
volume 2936 of LNCS, pages 203–215. Springer, 2003.

[Conover, 1999] cited page(s) 102

W.J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 1999.

[Cook, 1971] cited page(s) 15, 151

S.A. Cook. The complexity of theorem-proving procedures. In Proc. ACM Symposium
on Theoryof Computing (STOC), pages 151–158. ACM, 1971.

[Da Costa and Schoenauer, 2009] cited page(s) 3, 20

L. Da Costa and M. Schoenauer. Bringing evolutionary computation to industrial ap-
plications with guide. In F. Rothlauf et al., editor, Proc. Genetic and Evolutionary
Computation Conference (GECCO), pages 1467–1474. ACM, 2009.

[Da Costa et al., 2008] cited page(s) 5, 50, 68, 69, 80, 84, 84, 90, 105, 170

L. Da Costa, Á. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection with
dynamic multi-armed bandits. In C. Ryan et al., editor, Proc. Genetic and Evolutionary
Computation Conference (GECCO), pages 913–920. ACM, 2008.

[Das et al., 2009] cited page(s) 25

S. Das, A. Abraham, U.K. Chakraborty, and A. Konar. Differential evolution using a
neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computa-
tion, 13(3):526–553, 2009.

[Davis, 1989] cited page(s) 48, 48, 49, 50, 52, 56, 56, 56

L. Davis. Adapting operator probabilities in genetic algorithms. In J.D. Schaffer et al.,
editor, Proc. Intl. Conf. on Genetic Algorithms (ICGA), pages 61–69. Morgan Kauf-
mann, 1989.

[Deb, 2001] cited page(s) 15, 26

K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. John Wiley & Sons, 2001.

[DeJong and Spears, 1990] cited page(s) 30, 30, 30, 30

K. DeJong and W.M. Spears. An analysis of the interacting roles of population size
and crossover in genetic algorithms. In H.-P. Schwefel et al., editor, Proc. Intl. Conf.
on Parallel Problem Solving from Nature (PPSN), pages 38–47. Springer, 1990.

[DeJong, 2006] cited page(s) 3, 12, 18, 21, 31

K. DeJong. Evolutionary Computation. A unified Approach. MIT, 2006.

[DeJong, 2007] cited page(s) 19, 20, 31, 32, 33, 33, 33, 34, 39, 42

K. DeJong. Parameter setting in EAs: a 30 year perspective. In Lobo et al. [2007],
pages 1–18.

192

BIBLIOGRAPHY

[Dorigo et al., 1996] cited page(s) 12, 12

M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics – Part B,
26(1):29–41, 1996.

[Eberhart et al., 2001] cited page(s) 12, 12

R.C. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence. Morgan Kaufmann, 1st
edition, 2001.

[Eiben and Schoenauer, 2002] cited page(s) 14, 14, 16, 16

A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing Let-
ters, 82(1):1–6, 2002.

[Eiben and Smith, 2003] cited page(s) 3, 16, 28

A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer, 2003.

[Eiben and van Hemert, 1999] cited page(s) 41

A.E. Eiben and J.I. van Hemert. SAW-ing EAs: adapting the fitness function for solving
constrained problems. In D. Corne et al., editor, New ideas in optimization, chapter 26,
pages 389–402. McGraw-Hill, 1999.

[Eiben et al., 1999] cited page(s) 4, 31, 34, 35, 35

A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in Evolutionary
Algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[Eiben et al., 2004] cited page(s) 32

A.E. Eiben, E. Marchiori, and V. Valko. Evolutionary algorithms with on-the-fly pop-
ulation size adjustment. In X. Yao et al., editor, Proc. Intl. Conf. on Parallel Problem
Solving from Nature (PPSN). Springer, 2004.

[Eiben et al., 2006] cited page(s) 32, 33, 33

A.E. Eiben, M.C. Schut, and A.R. de Wilde. Is self-adaptation of selection pressure and
population size possible? In T.P. Runarsson et al., editor, Proc. Intl. Conf. on Parallel
Problem Solving from Nature (PPSN), volume 4193 of LNCS, pages 900–909. Springer,
2006.

[Eiben et al., 2007] cited page(s) 4, 4, 4, 4, 30, 34, 39, 39, 41, 46

A.E. Eiben, Z. Michalewicz, M. Schoenauer, and J.E. Smith. Parameter control in
evolutionary algorithms. In Lobo et al. [2007], pages 19–46.

[Eiben, 2002] cited page(s) 27

A.E. Eiben. Evolutionary computing: the most powerful problem solver in the universe?
Dutch Mathematical Archive, 5/3:126–131, 2002.

[Fialho and Ros, 2010] cited page(s) 62, 77, 89, 158, 160, 170

Á. Fialho and R. Ros. Analysis of adaptive strategy selection within differential evo-
lution on the BBOB-2010 noiseless benchmark. Research Report RR-7259, INRIA,
2010.

193

BIBLIOGRAPHY

[Fialho et al., 2008] cited page(s) 50, 68, 69, 71, 84, 133, 134

Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Extreme value based adaptive
operator selection. In G. Rudolph et al., editor, Proc. Intl. Conf. on Parallel Problem
Solving from Nature (PPSN), volume 5199 of LNCS, pages 175–184. Springer, 2008.

[Fialho et al., 2009a] cited page(s) 69, 84, 133, 141

Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Dynamic multi-armed ban-
dits and extreme value-based rewards for adaptive operator selection in evolutionary
algorithms. In T. Stützle et al. [2009], pages 176–190.

[Fialho et al., 2009b] cited page(s) 50, 69, 72, 84, 141

Á. Fialho, M. Schoenauer, and M. Sebag. Analysis of adaptive operator selection tech-
niques on the royal road and long k-path problems. In F. Rothlauf et al., editor, Proc.
Genetic and Evolutionary Computation Conference (GECCO), pages 779–786. ACM,
2009.

[Fialho et al., 2010a] cited page(s) 5, 69, 69, 85, 87, 87, 90, 90, 91, 92, 105, 170

Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Analyzing bandit-based adaptive
operator selection mechanisms. Annals of Mathematics and Artificial Intelligence –
Special Issue on Learning and Intelligent Optimization, 2010.

[Fialho et al., 2010b] cited page(s) 6, 62, 69, 73, 77, 89, 158, 158, 160

Á. Fialho, R. Ros, M. Schoenauer, and M. Sebag. Comparison-based adaptive strategy
selection in differential evolution. In R. Schaefer et al., editor, Proc. Intl. Conf. on
Parallel Problem Solving from Nature (PPSN). Springer, 2010.

[Fialho et al., 2010c] cited page(s) 6, 69, 69, 73, 77, 89, 105, 133, 170

Á. Fialho, M. Schoenauer, and M. Sebag. Toward comparison-based adaptive operator
selection. In M. Pelikan et al., editor, Proc. Genetic and Evolutionary Computation
Conference (GECCO). ACM, 2010.

[Fogel et al., 1966] cited page(s) 12, 22

L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial Intelligence through Simulated Evo-
lution. John Wiley, 1966.

[Fogel, 1995] cited page(s) 12, 22

D.B. Fogel. Evolutionary Computation. Toward a New Philosophy of Machine Intelli-
gence. IEEE, 1995.

[Fogel, 1998] cited page(s) 12

D.B. Fogel. Evolutionary Computing: The Fossile Record. IEEE, 1998.

[Gagliolo and Schmidhuber, 2008] cited page(s) 68

M. Gagliolo and J. Schmidhuber. Algorithm selection as a bandit problem with un-
bounded losses. Technical Report IDSIA - 07 - 08, IDSIA, 2008.

194

BIBLIOGRAPHY

[Garnier and Kallel, 2000] cited page(s) 140, 140, 141, 142

J. Garnier and L. Kallel. Statistical distribution of the convergence time of evolutionary
algorithms for long-path problems. IEEE Transactions on Evolutionary Computation,
4(1), 2000.

[Gelly et al., 2007] cited page(s) 6

S. Gelly, S. Ruette, and O. Teytaud. Comparison-based algorithms are robust and
randomized algorithms are anytime. Evolutionary Computation, 15(4):411–434, 2007.

[Giger et al., 2007] cited page(s) 48, 49, 49, 59

M. Giger, D. Keller, and P. Ermanni. AORCEA - an adaptive operator rate controlled
evolutionary algorithms. Computers & Structures, 85(19-20):1547 – 1561, 2007.

[Goldberg et al., 1991] cited page(s) 34

D.E. Goldberg, K. Deb, and B. Korb. Don’t worry, be messy. In R. K. Belew et al., edi-
tor, Proc. Intl. Conf. on Genetic Algorithms (ICGA), pages 24–30. Morgan Kaufmann,
1991.

[Goldberg et al., 1992] cited page(s) 32

D.E. Goldberg, K. Deb, and J.H. Clark. Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6:333–362, 1992.

[Goldberg et al., 1995] cited page(s) 20

D.E. Goldberg, H. Kargupta, J. Horn, and E. Cantu-Paz. Critical deme size for serial
and parallel genetic algorithms. Technical Report IlliGAL Report 95002, IlliGAL, 1995.

[Goldberg, 1989] cited page(s) 12, 22

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, 1989.

[Goldberg, 1990] cited page(s) 52, 52

D.E. Goldberg. Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning, 5(4):407–426, 1990.

[Gong et al., 2010a] cited page(s) 62, 158, 159, 160, 169

W. Gong, Á. Fialho, and Z. Cai. Adaptive strategy selection in differential evolution.
In M. Pelikan et al., editor, Proc. Genetic and Evolutionary Computation Conference
(GECCO). ACM, 2010.

[Gong et al., 2010b] cited page(s) 62, 188

W. Gong, Á. Fialho, Z. Cai, and H. Li. Adaptive strategy selection in differential
evolution for numerical optimization. Information Sciences, 2010. (currently under
review).

[Grefenstette, 1986] cited page(s) 30, 30, 30, 30

J.J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms. IEEE
Transactions on Systems, Man and Cybernetics – Part B, 16:122–128, 1986.

195

BIBLIOGRAPHY

[Hansen and Ostermeier, 2001] cited page(s) 6, 22, 25, 33, 40, 41

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation, 9(2):159–195, 2001.

[Hansen et al., 2009a] cited page(s) 159, 160, 163

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA,
2009. Updated Feb 2010.

[Hansen et al., 2009b] cited page(s) 159

N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization
benchmarking 2009: Noisy functions definitions. Technical Report RR-6869, INRIA,
2009.

[Hansen et al., 2009c] cited page(s) 25

N. Hansen, A. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for handling
uncertainty in evolutionary optimization with an application to feedback control of
combustion. IEEE Transactions on Evolutionary Computation, 13(1):180–197, 2009.

[Hansen et al., 2010a] cited page(s) 158

N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization
benchmarking 2010: Experimental setup. Technical Report RR-7215, INRIA, 2010.

[Hansen et al., 2010b] cited page(s) 158

N. Hansen, A. Auger, R. Ros, S. Finck, and P. Poš́ık. Comparing results of 31 algorithms
from the black-box optimization benchmarking BBOB-2009. In M. Pelikan et al., editor,
GECCO (Companion). ACM, 2010.

[Hansen, 2008] cited page(s) 34

N. Hansen. Adaptive encoding: How to render search coordinate system invariant. In
G. Rudolph et al., editor, Proc. Intl. Conf. on Parallel Problem Solving from Nature
(PPSN), pages 205–214. Springer, 2008.

[Hansen, 2009a] cited page(s) 160

N. Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 noiseless
testbed. In F. Rothlauf et al., editor, GECCO (Companion), pages 2389–2396, 2009.

[Hansen, 2009b] cited page(s) 25

N. Hansen. References to CMA-ES applications, December 2009. Available at:
http://www.lri.fr/ hansen/cmaapplications.pdf, Lastly accessed on: Oct 18th 2010.

[Hartland et al., 2007] cited page(s) 84

C. Hartland, N. Baskiotis, S. Gelly, O. Teytaud, and M. Sebag. Change point detection
and meta-bandits for online learning in dynamic environments. In Proc. Conférence
Francophone sur l’Apprentissage Automatique (CAPS), 2007.

196

BIBLIOGRAPHY

[Hatta et al., 1997] cited page(s) 57

K. Hatta, K. Matsuda, S. Wakabayashi, and T. Koide. On-the-fly crossover adaptation
of genetic algorithms. In Proc. Intl. Conf. Genetic Algorithms in Engineering Systems:
Innovations and Applications, pages 197–202, 1997.

[Hatta et al., 2001] cited page(s) 57, 57

K. Hatta, S. Wakabayashi, and T. Koide. Adaptation of genetic operators and param-
eters of a genetic algorithm based on the elite degree of an individual. Systems and
Computers in Japan, 32(1):29–37, 2001.

[Herrera and Lozano, 1998] cited page(s) 33

F. Herrera and M. Lozano. Fuzzy genetic algorithms: Issues and models. Technical
Report DECSAI-98116, University of Granada, Dept. of Computer Science and A.I.,
1998.

[Herrera and Lozano, 2001] cited page(s) 60

F. Herrera and M. Lozano. Adaptive genetic operators based on coevolution with fuzzy
behaviors. IEEE Transactions on Evolutionary Computation, 5(2):149–165, 2001.

[Hesser and Männer, 1990] cited page(s) 39

J. Hesser and R. Männer. Towards an optimal mutation probability for genetic algo-
rithms. In H.-P. Schwefel et al., editor, Proc. Intl. Conf. on Parallel Problem Solving
from Nature (PPSN), pages 23–32. Springer, 1990.

[Hinkley, 1970] cited page(s) 5, 68

D.V. Hinkley. Inference about the change point from cumulative sum-tests. Biometrika,
58(3):509–523, 1970.

[Ho et al., 1999] cited page(s) 48, 49, 58, 60

C.W. Ho, K.H. Lee, and K.S. Leung. A genetic algorithm based on mutation and
crossover with adaptive probabilities. In P.J. Angeline et al., editor, Proc. IEEE
Congress on Evolutionary Computation (CEC), volume 1, pages 768–775. IEEE, 1999.

[Holland, 1975] cited page(s) 12, 22

J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[Holland, 1993] cited page(s) 145, 146

J.H. Holland. Royal road functions. In Internet Genetic Algorithms Digest 7:22. MIT,
1993.

[Hoos and Stützle, 2000] cited page(s) 152

H.H. Hoos and T. Stützle. SATLIB: An Online Resource for Research on SAT, pages
283–292. IOS Press, 2000. Available at: www.satlib.org, Lastly accessed on Oct 18th
2010.

197

BIBLIOGRAPHY

[Horn et al., 1994] cited page(s) 137

J. Horn, D.E. Goldberg, and K. Deb. Long path problems. In Y. Davidor et al., editor,
Proc. Intl. Conf. on Parallel Problem Solving from Nature (PPSN), pages 149–158.
Springer, 1994.

[Horn, 1997] cited page(s) 27

J. Horn. The nature of niching: genetic algorithms and the evolution of optimal, coop-
erative populations. PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[Hutter and Hamadi, 2005] cited page(s) 43

F. Hutter and Y. Hamadi. Parameter adjustment based on performance prediction:
Towards an instance-aware problem solver. Technical Report MSR-TR-2005-125, Mi-
crosoft Research, 2005.

[Hutter et al., 2006] cited page(s) 4

F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown. Performance prediction and
automated tuning of randomized and parametric algorithms. In Proc. Intl. Conf. on
Principles and Practice of Constraint Programming (CP), number 4204 in LNCS, pages
213–228. Springer, 2006.

[Hutter et al., 2009] cited page(s) 37, 37

F. Hutter, H.H. Hoos, K. Leyton-Brown, and T. Stützle. ParamILS: an automatic algo-
rithm configuration framework. Journal of Artificial Intelligence Research, 36(1):267–
306, 2009.

[Ibanez et al., 2009] cited page(s) 25

O. Ibanez, L. Ballerini, O. Cordón, S. Damas, and J. Santamaŕıa. An experimental
study on the applicability of evolutionary algorithms to craniofacial superimposition in
forensic identification. Information Sciences, 179(23):3998–4028, 2009.

[Igel et al., 2007] cited page(s) 41

C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi-objective
optimization. Evolutionary Computation, 15(1):1–28, 2007.

[J. Romero et al., 2007] cited page(s) 26

J. Romero et al., editor. The Art of Artificial Evolution: A Handbook on Evolutionary
Art and Music. Natural Computing Series. Springer, 2007.

[Jansen et al., 2005] cited page(s) 32

T. Jansen, K.A. DeJong, and I. Wegener. On the choice of the offspring population size
in evolutionary algorithms. Evolutionary Computation, 13(4):413–440, 2005.

[Järvelin and Kekäläinen, 2000] cited page(s) 74

K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly relevant
documents. In Proc. Intl. ACM Conf. on Research and Development in Information
Retrieval, pages 41–48. ACM, 2000.

198

BIBLIOGRAPHY

[Jones, 1994] cited page(s) 145

T. Jones. A description of Holland’s Royal Road. Evolutionary Computation, 2(4):409–
415, 1994.

[Julstrom, 1995] cited page(s) 48, 48, 49, 50, 52, 56, 56

B. Julstrom. What have you done for me lately? Adapting operator probabilities in
a steady-state genetic algorithm. In L.J. Eshelman et al., editor, Proc. Intl. Conf. on
Genetic Algorithms (ICGA), pages 81–87. Morgan Kaufmann, 1995.

[Julstrom, 1997] cited page(s) 48, 48, 49, 50, 52, 56, 56, 57

B.A. Julstrom. Adaptive operator probabilities in a genetic algorithm that applies three
operators. In Proc. ACM Symposium on Applied Computing (SAC), pages 233–238.
ACM, 1997.

[Kamalian et al., 2005] cited page(s) 26

R. Kamalian, Y. Zhang, H. Takagi, and A.M. Agogino. Reduced human fatigue in in-
teractive evolutionary computation for micromachine design. In Intl. Conf. on Machine
Learning and Cybernetics, pages 5666–5671. IEEE, 2005.

[Keijzer et al., 2002] cited page(s) 3, 20, 93

M. Keijzer, J.J. Merelo, G. Romero, and M. Schoenauer. Evolving Objects: a general
purpose evolutionary computation library. In P. Collet et al., editor, Proc. Intl. Conf.
on Artificial Evolution (EA), volume 2310 of LNCS, pages 229–241. Springer, 2002.
Available at: http://eodev.sourceforge.net/, Lastly accessed on Oct 18th 2010.

[Klir and Yuan, 1995] cited page(s) 12

G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice
Hall, 1st edition, 1995.

[Koza et al., 2000] cited page(s) 26

J.R. Koza, M.A. Keane, J. Yu, F.H. Bennett, and W. Mydlowec. Automatic creation of
human-competitive programs and controllers by means of genetic programming. Genetic
Programming and Evolvable Machines, 1(1-2):121–164, 2000.

[Koza et al., 2003] cited page(s) 16

J.R. Koza, M.A. Keane, and M.J. Streeter. What’s AI done for me lately? Genetic pro-
gramming’s human-competitive results. IEEE Intelligent Systems, 18(3):25–31, 2003.

[Koza, 1992] cited page(s) 12, 22

J. R. Koza. Genetic Programming: On the Programming of Computers by means of
Natural Evolution. MIT, 1992.

[Koza, 1994] cited page(s) 12, 22

J.R. Koza. Genetic programming II : automatic discovery of reusable programs. Complex
adaptive systems. MIT, 1994.

199

BIBLIOGRAPHY

[Koza, 2010] cited page(s) 26

J.R. Koza. Annual hummies awards, 2010. Available at: http://www.genetic-
programming.org/hc2005/main.html, Lastly accessed on Oct 18th 2010.

[Krasnogor, 2002] cited page(s) 18

N. Krasnogor. Studies on the Theory and Design Space of Memetic Algorithms. PhD
thesis, University of the West of England, 2002. Supervisor: Dr. J.E. Smith.

[Lai and Robbins, 1985] cited page(s) 5, 68, 79, 80

T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

[Lardeux et al., 2006] cited page(s) 15, 18

F. Lardeux, F. Saubion, and J.-K. Hao. GASAT: a genetic local search algorithm for
the satisfiability problem. Evolutionary Computation, 14(2):223–253, 2006.

[Lee and Takagi, 1993] cited page(s) 60

M.A. Lee and H. Takagi. Dynamic control of genetic algorithms using fuzzy logic
techniques. In Proc. Intl. Conf. on Genetic Algorithms (ICGA), pages 76–83. Morgan
Kaufmann, 1993.

[Lobo and Goldberg, 1997] cited page(s) 48, 49, 52, 57

F.G. Lobo and D.E. Goldberg. Decision making in a hybrid genetic algorithm. In B.
Porto et al., editor, Proc. IEEE Congress on Evolutionary Computation (CEC), pages
121–125. IEEE, 1997.

[Lobo et al., 2007] cited page(s) 4, 31, 192, 193

F.G. Lobo, C.F. Lima, and Z. Michalewicz, editors. Parameter Setting in Evolutionary
Algorithms, volume 54 of Studies in Computational Intelligence. Springer, 2007.

[Luchian and Gheorghies, 2003] cited page(s) 48, 49, 52, 58, 58

H. Luchian and O. Gheorghies. Integrated-adaptive genetic algorithms. In W. Banzhaf
et al., editor, Proc. European Conf. on Advances in Artificial Life, volume 2801 of
Lecture Notes in Computer Science, pages 635–642. Springer, 2003.

[Luke and Panait, 2006] cited page(s) 22

S. Luke and L. Panait. A comparison of bloat control methods for genetic programming.
Evolutionary Computation, 14(3):309–344, 2006.

[Martikainen and Ovaska, 2006] cited page(s) 15

J. Martikainen and S.J. Ovaska. Fitness function approximation by neural networks in
the optimization of MGP-FIR filters. In IEEE Mountain Workshop on Adaptive and
Learning Systems, pages 7–12, 2006.

[Maturana and Saubion, 2007a] cited page(s) 60

J. Maturana and F. Saubion. On the design of adaptive control strategies for evolution-
ary algorithms. In N. Monmarché et al., editor, Proc. Intl. Conf. on Artificial Evolution
(EA), volume 4926 of LNCS. Springer, 2007.

200

BIBLIOGRAPHY

[Maturana and Saubion, 2007b] cited page(s) 60

J. Maturana and F. Saubion. Towards a generic control strategy for evolutionary algo-
rithms: an adaptive fuzzy-learning approach. In Proc. IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2007.

[Maturana and Saubion, 2008a] cited page(s) 4, 48, 49, 49, 51, 51, 51, 52, 58, 58, 59, 63, 150,

151, 152

J. Maturana and F. Saubion. A compass to guide genetic algorithms. In G. Rudolph et
al., editor, Proc. Intl. Conf. on Parallel Problem Solving from Nature (PPSN), volume
5199 of LNCS, pages 256–265. Springer, 2008.

[Maturana and Saubion, 2008b] cited page(s) 60

J. Maturana and F. Saubion. From parameter control to search control: Parameter con-
trol abstraction in evolutionary algorithms. Constraint Programming Letters - Special
Issue on Autonomous Search, 4:39–65, 2008.

[Maturana et al., 2009a] cited page(s) 4, 7, 51, 63, 69, 84, 150

J. Maturana, Á. Fialho, F. Saubion, M. Schoenauer, and M. Sebag. Extreme com-
pass and dynamic multi-armed bandits for adaptive operator selection. In Proc. IEEE
Congress on Evolutionary Computation (CEC), pages 365–372. IEEE, 2009.

[Maturana et al., 2009b] cited page(s) 59

J. Maturana, F. Lardeux, and F. Saubion. Controlling behavioral and structural pa-
rameters in evolutionary algorithms. In Proc. EA’09, 2009.

[Maturana et al., 2010a] cited page(s) 7, 51, 150

J. Maturana, Á. Fialho, F. Saubion, M. Schoenauer, F. Lardeux, and M. Sebag. Adap-
tive operator selection and management in evolutionary algorithms. In Y. Hamadi et
al, editor, Autonomous Search. Springer, 2010. (to appear).

[Maturana et al., 2010b] cited page(s) 49, 49, 59, 94, 156, 187

J. Maturana, F. Lardeux, and F. Saubion. Autonomous operator management for
evolutionary algorithms. Journal of Heuristics, 2010.

[Maturana, 2009] cited page(s) 41

J. Maturana. Generic Parameter Control for Evolutionary Algorithms. PhD thesis,
Université d’Angers, Angers, France, 2009.

[Merz and Freisleben, 1997] cited page(s) 16, 25

P. Merz and B. Freisleben. Genetic local search for the TSP: new results. In Proc. IEEE
Congress on Evolutionary Computation (CEC), pages 159 –164, 1997.

[Michalewicz, 1996] cited page(s) 3

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer,
3rd edition, 1996.

201

BIBLIOGRAPHY

[Mitchell et al., 1992] cited page(s) 145

M. Mitchell, S. Forrest, and J.H. Holland. The royal road for genetic algorithms: Fitness
landscapes and GA performance. In Proc. European Conf. on Artificial Life (ECAL),
pages 245–254, 1992.

[Mitchell, 1998] cited page(s) 23

M. Mitchell. An Introduction to Genetic Algorithms. MIT, 1998.

[Moore, 1991] cited page(s) 31

G.A. Moore. Crossing the Chasm: Marketing and Selling High-Tech Products to Main-
stream Customer. Collins Business Essentials, 1991.

[Mueller-Gritschneder et al., 2009] cited page(s) 15

D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann. A successive approach to
compute the bounded pareto front of practical multiobjective optimization problems.
SIAM Journal on Optimization, 20(2):915–934, 2009.

[Nannen and Eiben, 2007] cited page(s) 38, 170

V. Nannen and A.E. Eiben. Relevance estimation and value calibration of evolutionary
algorithm parameters. In M. Veloso et al., editor, Proc. Intl. Joint Conf. on Artificial
Intelligence (IJCAI), pages 975–980, 2007.

[Niehaus and Banzhaf, 2001] cited page(s) 48, 49, 52, 61

J. Niehaus and W. Banzhaf. Adaption of operator probabilities in genetic programming.
In Proc. European Conf. on Genetic Programming (EuroGP), pages 325–336. Springer,
2001.

[Obradovic and Srikumar, 2000] cited page(s) 16

Z. Obradovic and R. Srikumar. Constructive neural networks design using genetic
optimization. Facta Universitatis - Mathematics and Informatics Series, 15:133–146,
2000.

[Ong and Keane, 2004] cited page(s) 161

Y.-S. Ong and A.J. Keane. Meta-Lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation, 8(2):99–110, 2004.

[Page, 1954] cited page(s) 83, 83, 83

E.S. Page. Continuous inspection schemes. Biometrika, 41:100–115, 1954.

[Pitman and King, 2009] cited page(s) 26

M. Pitman and A. King. Engineering solutions to optimise the design of carbon-neutral
tall office buildings. In Proc. Intl. Conf. on Solutions for a Sustainable Planet, 2009.

[P.J. Bentley et al., 2002] cited page(s) 26

P.J. Bentley et al., editor. Creative evolutionary systems. Morgan Kaufmann, 2002.

[P.J.M. Laarhoven et al., 1987] cited page(s) 14

P.J.M. Laarhoven et al., editor. Simulated annealing: theory and applications. Kluwer,
1987.

202

BIBLIOGRAPHY

[Porumbel et al., 2010] cited page(s) 25

D.C. Porumbel, J.-K. Hao, and P. Kuntz. An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring. Computers
and Operations Research, 37(10):1822–1832, 2010.

[Price et al., 2005] cited page(s) 12, 23, 23, 24, 24, 25

K. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical Approach to
Global Optimization. Springer, 2005.

[Qin et al., 2009] cited page(s) 62, 169

A.K. Qin, V.L. Huang, and P.N. Suganthan. Differential evolution algorithm with strat-
egy adaptation for global numerical optimization. IEEE Transactions on Evolutionary
Computation, 13(2):398–417, 2009.

[Quick et al., 1996] cited page(s) 145

R.J. Quick, V.J. Rayward-Smith, and G.D. Smith. The royal road functions: Descrip-
tion, intent and experimentation. In Proc. AISB Workshop on Evolutionary Computing,
volume 1143 of LNCS, pages 223–235. Springer, 1996.

[Quiroz et al., 2007] cited page(s) 15, 26

J. Quiroz, L. Sushil, A. Shankar, and S. Dascalu. Interactive genetic algorithms for user
interface design. In Proc. IEEE Congress on Evolutionary Computation (CEC). IEEE,
2007.

[Rechenberg, 1972] cited page(s) 12, 21

I. Rechenberg. Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien
des Biologischen Evolution. Fromman-Hozlboog Verlag, 1972.

[Rudolph, 1997] cited page(s) 140

G. Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag Dr. Kovac,
1997.

[Schwefel, 1975] cited page(s) 33, 41

H.-P. Schwefel. Evolutionsstrategie und numerishe Optimierung. PhD thesis, Technical
University of Berlin, 1975.

[Schwefel, 1981] cited page(s) 12, 21

H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons, 1981.
1995 – 2nd edition.

[Schwefel, 1995] cited page(s) 32, 41

H.-P. Schwefel. Evolution and Optimum Seeking. Sixth-Generation Computer Technol-
ogy. Wiley Interscience, 1995.

[Semet and Schoenauer, 2006] cited page(s) 25

Y. Semet and M. Schoenauer. On the benefits of inoculation, an example in train
scheduling. In M. Cattolico et al., editor, Proc. Genetic and Evolutionary Computation
Conference (GECCO), pages 1761–1768. ACM, 2006.

203

BIBLIOGRAPHY

[Singh, 2006] cited page(s) 26

V. Singh. Automatic Seismic Velocity Inversion using Multi-Objective Evolutionary
Algorithms. PhD thesis, École des Mines de Paris, 2006.

[Sinz et al., 2006] cited page(s) 152

C. Sinz, N. Amla, J. Marques-Silva, E. Zarpas, D. Le-Berre, and L. Simon. SAT-Race’06,
2006. Available at: http://fmv.jku.at/sat-race-2006/, Lastly accessed on Oct 18th 2010.

[Smit and Eiben, 2009] cited page(s) 38

S.K. Smit and A.E. Eiben. Comparing parameter tuning methods for evolutionary
algorithms. In Proc. IEEE Congress on Evolutionary Computation (CEC), pages 399–
406. IEEE, 2009.

[Smith, 1993] cited page(s) 32

R. Smith. Adaptively resizing populations: an algorithm and analysis. In S. Forrest et
al., editor, Proc. Intl. Conf. on Genetic Algorithms and their Applications, page 653.
Morgan Kaufmann, 1993.

[Smith, 1998] cited page(s) 40

J.E. Smith. Self Adaptation in Evolutionary Algorithms. PhD thesis, University of the
West of England, Bristol, 1998.

[Smith, 2008] cited page(s) 39

J.E. Smith. Self-adaptation in evolutionary algorithms for combinatorial optimisation.
In C. Cotta et al., editor, Adaptive and Multilevel Metaheuristics, volume 136 of Studies
in Computational Intelligence, pages 31–57. Springer, 2008.

[Spears, 1995] cited page(s) 39, 41

W.M. Spears. Adapting crossover in evolutionary algorithms. In J.R. McDonnell et al.,
editor, Proc. Conf. on Evolutionary Programming, pages 367–384. MIT, 1995.

[Srinivas and Patnaik, 1994] cited page(s) 58

M. Srinivas and L.M. Patnaik. Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics – Part B,
24(4):656–667, 1994.

[Storn and Price, 1995] cited page(s) 25

R. Storn and K. Price. Differential evolution - a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012, Intl. Com-
puter Science Institute, 1995.

[Storn and Price, 1997] cited page(s) 12, 23, 159

R. Storn and K. Price. Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359,
1997.

204

BIBLIOGRAPHY

[Storn and Price, 2008] cited page(s) 24, 25, 159

R. Storn and K. Price. Differential evolution homepage, 2008. Available at:
http://www.ICSI.Berkeley.edu/˜storn/code.html, Lastly accessed on Oct 18th 2010.

[T. Stützle et al., 2009] cited page(s) 4, 194

T. Stützle et al., editor. Proc. Intl. Conf. on Learning and Intelligent Optimization,
volume 5851 of LNCS. Springer, 2009.

[T. Yu et al., 2008] cited page(s) 3, 25

T. Yu et al., editor. Evolutionary Computation in Practice, volume 88 of Studies in
Computational Intelligence. Springer, 2008.

[Tan, 2007] cited page(s) 26

R.R. Tan. Hybrid evolutionary computation for the development of pollution prevention
and control strategies. Journal of Cleaner Production, 15(10):902 – 906, 2007.

[Thathachar and Sastry, 1985] cited page(s) 53

M.A.L. Thathachar and P.S. Sastry. A class of rapidly converging algorithms for learning
automata. IEEE Transactions on Systems, Man and Cybernetics – Part B, SMC-
15:168–175, 1985.

[Thierens, 2005] cited page(s) 52, 53, 53, 54, 61, 69, 90, 90, 100

D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In
H.-G. Beyer et al., editor, Proc. Genetic and Evolutionary Computation Conference
(GECCO), pages 1539–1546. ACM, 2005.

[Thierens, 2007] cited page(s) 52

D. Thierens. Adaptive strategies for operator allocation. In Lobo et al. [2007], pages
77–90.

[Tuson and Ross, 1998] cited page(s) 48, 56, 57

A. Tuson and P. Ross. Adapting operator settings in genetic algorithms. Evolutionary
Computation, 6(2):161–184, 1998.

[Ursem, 2002] cited page(s) 59

R.K. Ursem. Diversity-guided evolutionary algorithms. In J.J. Merelo-Guervós et al.,
editor, Proc. Intl. Conf. on Parallel Problem Solving from Nature (PPSN), pages 462–
474. Springer, 2002.

[Vajda et al., 2008] cited page(s) 33, 33

P. Vajda, A.E. Eiben, and W. Hordijk. Parameter control methods for selection oper-
ators in genetic algorithms. In G. Rudolph et al., editor, Proc. Intl. Conf. on Parallel
Problem Solving from Nature (PPSN), pages 620–630. Springer, 2008.

[Verel et al., 2010] cited page(s) 93

S. Verel, P. Collard, and M. Clergue. States-based evolutionary algorithm. In Workshop
Self-Star at PPSN Conference, 2010.

205

BIBLIOGRAPHY

[Wei et al., 2008] cited page(s) 63, 157

W. Wei, C.-M. Li, and H. Zhang. Switching among non-weighting, clause weighting,
and variable weighting in local search for sat. In Proc. Intl. Conf. on Principles and
Practice of Constraint Programming (CP), pages 313–326. Springer, 2008.

[Whitacre et al., 2006] cited page(s) 6, 49, 50, 52, 61, 71

J. Whitacre, T. Pham, and R. Sarker. Use of statistical outlier detection method in
adaptive evolutionary algorithms. In M. Cattolico et al., editor, Proc. Genetic and
Evolutionary Computation Conference (GECCO), pages 1345–1352. ACM, 2006.

[Whitley and Watson, 2005] cited page(s) 30

L.D. Whitley and J.P. Watson. Complexity theory and the no free lunch theorem. In
E.K. Burke et al., editor, Search Methodologies: Introductory Tutorials in Optimization
and Decision Support Techniques, pages 1–23. Springer, 2005.

[Whitley, 1994] cited page(s) 23

L.D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65–85, 1994.

[Wolpert and Macready, 1997] cited page(s) 30, 42

D.H. Wolpert and W.G. Macready. No Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[Wong et al., 2003] cited page(s) 48, 49, 52, 58

Y.-Y. Wong, K.-H. Lee, K.-S. Leung, and C.-W. Ho. A novel approach in parameter
adaptation and diversity maintenance for GAs. Soft Computing, 7(8):506–515, 2003.

[Yeomans et al., 2003] cited page(s) 26

J.S. Yeomans, G.H. Huang, and R. Yoogalingam. Combining simulation with evolu-
tionary algorithms for optimal planning under uncertainty: An application to municipal
solid waste management planning in the regional municipality of Hamilton-Wentworth.
Journal of Environmental Informatics, 1(2), 2003.

[Yuan and Gallagher, 2004] cited page(s) 36

B. Yuan and M. Gallagher. Statistical racing techniques for improved empirical evalu-
ation of evolutionary algorithms. In X. Yao et al., editor, Proc. Intl. Conf. on Parallel
Problem Solving from Nature (PPSN), volume 3242 of LNCS, pages 172–181. Springer,
2004.

[Yuan and Gallagher, 2007] cited page(s) 37

B. Yuan and M. Gallagher. Combining meta-EAs and racing for difficult EA parameter
tuning tasks. In Lobo et al. [2007], pages 121–142.

[Zaharie, 2009] cited page(s) 25

D. Zaharie. Influence of crossover on the behavior of differential evolution algorithms.
Applied and Soft Computing, 9(3):1126–1138, 2009.

206

BIBLIOGRAPHY

[Zhang and Sanderson, 2009] cited page(s) 188

J. Zhang and A.C. Sanderson. JADE: Adaptive differential evolution with optional ex-
ternal archive. IEEE Transactions on Evolutionary Computation, 13(5):945–958, 2009.

207

	I General Introduction
	Introduction
	Context/Motivation
	Main Contributions
	Operator Selection
	Credit Assignment
	Empirical Validation

	Organization

	II Background Review
	Evolutionary Algorithms
	Introduction
	Modus Operandi
	Components
	Problem-dependent Components
	Representation-specific Components
	General Components

	Popular EA Variants
	Evolution Strategies
	Evolutionary Programming
	Genetic Programming
	Genetic Algorithms
	Differential Evolution

	Application Areas
	Discussion

	Parameter Setting in EAs
	Introduction
	Parameters Influence and Possible Settings
	Parent and Offspring Population Sizes
	Selection Procedures
	Offspring Production
	Stopping Criterion
	Representation

	Classification of Parameter Setting Techniques
	Which parameter is changed?
	How the changes are made?
	Which evidences guide the changes?
	Which is the scope of the change?

	Discussion

	Adaptive Operator Selection
	Introduction
	Adaptive Operator Selection
	Credit Assignment
	How to measure the Impact?
	How to assign Credit?
	Whom to assign Credit to?
	Compass: Aggregating Fitness and Diversity

	Operator Selection
	Probability Matching
	Adaptive Pursuit

	Some Adaptive Operator Selection Combinations
	Fitness-based Approaches
	Diversity-based Approaches
	Fuzzy-based Approaches
	Other Approaches
	AOS within Other Evolutionary Algorithms

	Discussion

	III Contributions
	Contributions to Adaptive Operator Selection
	Introduction
	Contributions to Credit Assignment
	Basic Credit Assignment Scheme: Fitness Improvements
	Extreme Fitness Improvement
	Normalized Fitness Improvement
	Rank-based Credit Assignment Schemes
	Comparison-based Credit Assignment Schemes

	Contributions to Operator Selection
	Basic Operator Selection Scheme: Multi-Armed Bandit
	Dynamic Multi-Armed Bandit
	Sliding Multi-Armed Bandit
	Rank-based Multi-Armed Bandit

	Contributions to Empirical Assessment
	Base Artificial Scenario: Uniform
	Boolean and Outlier Scenarios
	Two-Value Scenarios

	Discussion

	Experimental Results
	Introduction
	General Experimental Settings
	AOS Combinations and respective Hyper-Parameters
	Off-line Tuning of Hyper-Parameters
	Performance Indicators and Results Presentation

	On Artificial Scenarios
	Experimental Settings
	Results on Uniform, Boolean and Outlier Scenarios
	Results on ART Scenarios
	Discussion

	On Boolean Benchmark Problems
	Experimental Settings
	The OneMax Problem
	The Long K-Path Problem
	The Royal Road Problem
	Discussion

	Collaboration On Satisfiability Problems
	Compass + Ex-DMAB = ExCoDyMAB
	SAT Problems
	Experimental Settings
	Architecture definition and tuning of hyper-parameters
	Empirical Results
	Discussion

	On Continuous Benchmark Problems
	Black-Box Optimization Benchmarking
	Experimental Settings
	The PM-AdapSS-DE Method
	Empirical Results
	Discussion

	Hyper-Parameters Analysis
	On the Sensitivity of the Hyper-Parameters
	On the Robustness of the Hyper-Parameters

	General Discussion

	IV General Conclusion
	Final Considerations
	Summary of Contributions
	Further Work

	Bibliography

