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Agenda

My group’s technical focus
— Bio-inspired intelligence ... evolutionary algorithms
» Machine learning: regression, classification, optimization

— Different “application” areas

» Flavor design, wind resource prediction, wind farm layout
optimization, network coding, analog CAD ...

» Systems:
= meta-heuristic optimization
= auto-tuning

 Optimizing Sparse Matrix Algebra
 Learning Quality of Service Models for VMs
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New Approaches... with Artificial Intelligence

Bio-Inspired
Intelligence
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Machine Learning

Evolutionary Algorithms
Genetic Algorithms,
Genetic Programming
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Why Evolutionary Machine Learning?

Black box approach

Ability to model and optimize
e Systems with human in loop

e Machines

« System of systems

»  Optimization Goal :argmin £(X)
X

 Traditional methods

— Gradient based methods

— Convex Optimization

— Linear programming
 Types of problems

— Continuous valued

— Integer problems

— Combinatorial problems

e Cannot work with
— Non differentiable functions

— When no analytic expression is
available

— Non convex
— Large scale complex systems

Black box approach

Candidate
Solution

Response

Human Machine  system/Process

Other Advantages
 Parallelizable
* No gradient needed
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Evolutionary Optimization

Evolutionary
strategies
New candidate solutions Particle Swarm
Optimization
A e
X Genetic
) Selection and Algorithms
galnd!date Variation to generate
olutions e
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Evolutionary Regression and Classification
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\ Transparent

expression

Symbolic regression
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Similar to Neural Nets
Iteratively reduces the errors by choosing better solutions

The output is a mathematical expression that captures non-linear
interactions

The final solution is transparent!

Capability to produce many alternate explanations
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Optimizing Sparse Matrix Algebra

“Smart”
“More”
Project

2007-2010
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MORE Framework

PROGRAM INTERFACE | MAPPING COMPONENT
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Learning High Performance Maps

Map Optimization by Genetic Algorithm

Propose Initial Select and Vary Maps optimized
Maps t
r ? FitnessEvaluation
- : —
hd v v execution: time
while f # 0 Data Mapper Simulator v
do m m
d=d+1 execution time
—P>p=p*f maps
S(d.: f Program Analyzer
f=fAx-p .__ _ ' Parse Tree
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Mapping Operator Balance Results
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Number of Operations
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Number of Operations

Processor Number Processor Number

Random Map Optimized Map

Mean (SD) Best of Run|Best of Runs|Relative
( OP/s) (OP/s) to ADBC

ADBC 3.17E+09 (6 .39E+08) |3.71E+09 |10

RANDMU 8 06E+09 (3.23E08) |8.68E+09 [2.54X

BALANCINGMU|947E+09 (1.70E08) |9.78E+09 (299X

BALANCINGMU(9.56E+09 (1.45E08) [(992E+09 (301X

+ RANDSWAP
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Machine Learning for Virtualization

Figure 2. VMware vSphere Datacenter Physical Topology

Figure 4. Hosts, Clusters, and Resource Pools X )
vCenter Server vSphere Client Web access terminal
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Detecting Breakdown Points of VMs

Current Paradigm Can we do better?

e Client demands a certain web  Model application
server response time performance/SLA from

 Sysadmin heuristically resource use

constructs a resource Potentially a means toward
allocation configuration that

should satisfy the SLA dynamic resource allocation

— Throttling each VM for

- Generous resource _
power savings

overprovisioning because:

— Service levels are complex — migration out - to give
and hard to model more resources
— Resource allocations are — migration in —
static consolidation for power
— Resource sharing is difficult savings
to optimize manually — Replication to increase
— Shared resources don’t throughput
translate linearly to service
levels

EvoDesignOpt Evolutionary Design & Optimization Group E@PE}EL/L,
11 _

CSAIL




