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Abstract. We introduce a new problem we call Resolving Groupings of
Subsets which emerges from scenarios in which multiple computational
agents (algorithms or people) group distinct or overlapping, relatively
small, subsets of a very large dataset. The goal is to fuse this partial
information into a globally coherent grouping of the entire dataset. We
contribute fusion strategies and a means of determining whether there is
sufficient information from the subsets’ groupings to yield a stable con-
sensus grouping. For the opportunity when subsets can be actively com-
posed while the solution framework is executing, i.e. in an online setting
with active learning, we devise multiple strategies for adaptive subset
composition. The strategies rely on computationally inexpensive, non-
linear transformations of local evidence, such as accumulated pairwise
element co-occurrence in a group. The local evidence facilitates efficient
subset composition which contributes to attaining better accuracy more
quickly. Frequent adaptation rather than delayed adaptation provides
the most accurate empirical results.
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1 Introduction

We are interested in developing algorithmic frameworks for situations when nu-
merous, very small, subsets of a large dataset are each independently grouped
(a.k.a clustered, sorted, associated) and these groupings must subsequently be
fused to derive a consensus representing a grouping of the entire dataset. This
context is motivated by distributed data storage and cloud computing as well as
scenarios when human experts (instead of algorithms) form the groupings within
subsets of data. We provide detailed motivational examples in Section 3.

This problem, which we call Resolving Groupings of Subsets and abbreviate as
RGS , is a new problem instance within clustering. Until recently, most clustering
problems have assumed the availability of the entire data at a central location
and the algorithm’s goal is to cluster the entire dataset. Most recently, ensemble
approaches which employ diverse clustering methods and include a consensus
building component have been devised to address the unsupervised nature of
the clustering problem, which precludes a notion of ground truth or one true
answer [1, 2]. From a broad perspective, RGS , introduces a new goal within
clustering. Rather than identify clusters automatically within the dataset, its
goal is to resolve, via consensus, multiple groupings that have already been



2 Veeramachaneni et. al

identified, though on numerous, small subsets of the dataset, rather than the
entire dataset. RGS assumes that the entire dataset is covered collectively by
the subsets. It allows that independent subsets, of equal composition, might
yield different groupings, leading to a subproblem of resolving inconsistencies.
It allows any composition of the subset with respect to elements of the entire
dataset. That is, subsets may overlap with each other, or be distinct. It assumes
that the subset size, m, is greatly smaller than the entire data set of size n, i.e.
m << n. Intuitively, this assumption presents the problem of resolving missing
information. No information is available regarding how the dataset elements that
were not included in the subset would be grouped. If each subset was, in fact,
the entire dataset, the problem would reduce to be solely one of ensemble fusion.
If the subset size was much closer to the dataset size, the problem would reduce
to that of resolving missing labels.

This paper presents a novel framework for addressing RGS . Its contributions
address each of the challenges arising in developing RGS algorithms:

Challenge 1: How should multiple grouping outcomes, which are incomplete
with respect to the entire dataset and which collectively completely cover the
entire dataset, be accurately fused to identify a grouping of the entire dataset?
This challenge is pronounced because the subset size is assumed to be greatly
smaller than the entire data set of size. The assumption makes the challenge
significantly different from missing label approaches such as [3], though a modi-
fication is possible. Our contribution, described in Section 4 is a multidimensional
scaling (MDS) based approach which uniquely identifies outliers in the subset
groupings before fusing them.

Challenge 2: Can it be efficiently determined whether there is sufficient infor-
mation from the groupings of the subsets to yield a reliable consensus grouping?
Inherent in each RGS subset is missing information because the groupings of
elements of the dataset which are not in the subset are unknown. Intuitively,
the fusion algorithm “knits” together only partial information. How quickly the
fusion algorithm can confidently group each element of the dataset will depend
upon how much subsets overlap in composition, how efficiently they completely
cover the entire dataset and the consistency of element groupings across subsets.
We describe a systematic means of determining the information content and
information gain between fusing successive groupings into the consensus. We
define a stability index whose convergence indicates that additional grouping
information will not significantly contribute to a change in the consensus.

Challenge 3: If subsets can be actively selected from the entire dataset, how
should they be composed?
We assume this opportunity presents itself in two different versions. In the first
version there is some means available completely ahead of grouping and fusion, to
compose every subset. With no other knowledge of groupings, the best strategy
is to randomize subset selection.The second version of active subset selection is
both incremental and dynamic in nature. The challenge is, in view of current
grouping information and the application of a RGS algorithm, to dynamically
select the contents of one or more subsets to follow, incorporate their group-
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ings into up-to-date consensus groupings, then either iterate again or conclude
with a stable fusion. Our contribution, described in Section 5, introduces adap-
tive strategies that use information about currently amassed groupings to select
subsets of data elements to present for grouping. The most simple approach it-
eratively composes subsets of random elements. We present approaches that are
superior to random element subset composition and focus upon computationally
inexpensive approaches.

Another contribution of this paper is a public release of a RGS problem
and algorithm testing framework. The framework has two means of defining a
problem, its simulation data and ground truth: full scale emulation of agents and
dataset features, statistical sample of ground truth provided by a probabilistic
co-occurence matrix. This will encourage consistent definition and facilitate the
design and empirical evaluation of new fusion and adaptive subset composition
strategies.

Infact this area is currently of great interest among the research community.
[4] present an active strategy to seek distance measurements between points
in a database in order to cluster them. Similarly [5] seeks to fill a similarity
matrix for spectral clustering in minimum number of pairwise queries. Both
these approaches are substantially different from ours as they are not seeking
inputs from multiple agents about subsets. In addition [4] assumes availability
of features pertaining to the data. Perhaps, an example closest to our work is
[6]. They present a similar problem of clustering via crowd sourcing in which
multiple people cluster subsets of data (images). The focus is laid on fusing
multiple subset groupings via a Bayesian approach. But they do not provide an
active means of subset selection which is the focus of this paper.

We proceed as follows: Section 2 formalizes the problem description. Sec-
tion 3 provides motivating examples of RGS with additional details. Section 4
presents the fusion algorithm with MDS. Section 5 presents multiple active sub-
set composition strategies. Section 6 presents the experimental setup and results
achieved on test problems. Finally section ?? summarizes the paper.

2 Problem Formalization

We are given a dataset D(n) and multiple stochastic grouping agents A. We
provide a subset of data Qh = {i|i ∈ D(n), |Qh| = m} as an input to an agent
Ah. The agent groups this data into an arbitrary number of groups r denoted
as Gh = {g1h, . . . grh} where each gih = {j|j ∈ gih, j ∈ Qh} represents a group
of data elements. For evaluation purposes we may assume there exists a true
grouping of the entire data denoted as ΠG. We define two problems:

Static Resolving Groupings of Subsets: Multiple subsets Q1...h such that
the union of these subsets equals the entire data set are given. Each agent
groups one of these subsets and provides G1...h. The goal is to fuse the mul-
tiple groupings to form a consensus grouping C that is optimal according to
some qualitative metric of consensus. In a testing and validation framework
C can be compared to ΠG.
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Dynamic Resolving Groupings of Subsets: This problem is an iterative
process toward fusing multiple groupings to form a consensus grouping. In
an iteration, t, groupings are sought for Qt1...h via agents A1...h. These, and
any groupings of previous iterations, are fused into consensus C. At the end
of an iteration, whether to halt and return C as the consensus grouping or to
continue with another iteration is decided upon. If continuing, new subsets
Qt+1

1...h based on the information Gt1...h can be formulated via an active subset
composition algorithm.

2.1 Formal Agent Models

Our goal is to derive a grouping as close as possible to the true grouping ΠG of
the data D(n) whether the problem is static or dynamic. The true grouping is
assumed to be non-retrievable because subset groupings have errors with respect
to it. The source of error in subset groupings is the stochastic nature of the
grouping agent. Agent stochasticity injects errors between ground truth and
agent responses that are assumed to arise because an agent uses only its subset
of data as bases for comparison, agents are free to use different criteria to group
subsets, group separation may be uncertain, or a number of other factors.
We present two possible models of a stochastic grouping agent:

2.2 Co-occurrence matrix based agent model

In this model, the ground truth clustering for the dataset D(n) is captured in
a n× n co-occurrence matrix Π where Πij = 1 if data elements i and j belong
to the same cluster. A probabilistic version of this co-occurrence matrix, P (Π)
is used to represent the stochasticity and deviation from the ground truth. A
Bernoulli(B(n, p)) distribution is used to model the probabilistic co-occurrence
matrix given by P (Πij) = B(1, pij)). A grouping agent first generates a co-
occurrence matrix by sampling entries in Π via Piij ∼ B(1, pij). Referencing
this, it can group any subset of data Q.

2.3 Data driven, statistical, parameterized agent model

In this model, a dataset D(n, k) is generated where k denotes the feature di-
mensionality of the each data element. The true number of clusters s and the
number of data elements in each cluster ni where i = {1 . . . s} and n =

∑s
i=1 ni

is provided as input to the data generation method. The method uses a param-
eterized multivariate distribution P (x1, . . . xk|Θi) to generate data elements for
each cluster. The parameters of the multivariate model, Θi, can be varied to
generate clustering tasks of varied difficulty. A parameterized Gaussian dataset
using Ni(µ̄,Σ) is generated in [7] to evaluate the Bayesian k-means algorithm.

The agent is modeled via a machine learning clustering algorithm. An agent
is initialized with the parameters to execute the clustering algorithm and (the
subset Q (which provides features for each data element). The agent executes
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the clustering algorithm which references this dataset and the algorithm outputs
the groupings.

A number of choices are available for machine learning clustering algorithms,
e.g. kmeans, fuzzy-cmeans. Parameters for each clustering algorithm are r, γ, ᾱ
where r is the number of clusters into which the agent will group the data, γ is
the number of features the agent will use and ᾱ represents the probabilities of
selecting of the γ features. To generate multiple heterogeneous grouping agents,
a distribution over these three parameters and the clustering algorithm choices
is defined and an agent is formulated by sampling it. For example, an agent
A1(C = kmeans, β = 3, γ = 4, ᾱ) clusters the subset into 3 clusters by only using
4 out of the k features selected based on the probabilities in ᾱ using kmeans
algorithm. More fine grained parameterization in which one could select the
distance functions and other parameters within clustering algorithm is obviously
possible but not a focus of this paper.

Distributions over the parameterizations allows control of the properties of
the group of agents and hence the diversity in their groupings.

3 Motivation

We are motivated by a number of real world scenarios:
Situation Assessment Systems with Human Agents: In this scenario the
agents which group subset data are human analysts. The entire dataset is huge,
of diverse media and unstructured. It might include news material, internet
blog feeds and actor profiles. It is much too large and complex for any one
agent to completely analyze independently. Further, any one agent does not
have sufficiently broad expertise to assess the dataset from multiple vantage
points. Each analyst processes a subset of the complex, unstructured dataset
and is required to group the subset’s specific elements. Any basis for grouping
is admissible. It may be directed from some authority or it may be left open.
The problem is to develop a system which adaptively unites the groupings from
the domain experts. The system must knit together, i.e. synthesize, integrate
or merge, human discerned structure as it is elicited when analysts interpret
heterogenous unstructured data sources.

In this scenario, RGS exploits the latent knowledge of an analyst and compu-
tational clustering by agent algorithms is undesirable. The lattter would require
features and features extraction would reduce the knowledge being considered.
The key motivation for using analysts is to take advantage of their integrative as-
sessment capabilities.They are not expected to provide any explicit annotation,
descriptions or features of the subset and their groupings.

Clustering a big dataset: In this scenario we need to group a big dataset
located at a central location and our compute server is limited by its local mem-
ory size, compute power and bandwidth. It therefore cannot cluster the entire
dataset. To address this the server queries the for subsets multiple times and
each time an agent groups a subset. Then the server fuses the subset groupings.



6 Veeramachaneni et. al

Distributed datasets: Our final example is a distributed data storage sce-
nario. Due to multiple restrictions: bandwidth, data size and privacy, it is not
feasible to aggregate the data at a central location and then cluster. Consider
multiple data storage locations D1...d that each have an overlapping subset of
the dataset D(n, k). Each data storage location has an associated compute unit
that can execute an agent to cluster all its data or a subset of its data locally and
communicate the results. One server is designated to fuse the subset grouping.

4 Fusing Subset Groupings

In RGS , each grouping agent Ah groups a subset of the larger data and these
groupings must be fused. A variety of solutions are available in the literature for
building consensus when groupings are available for an entire dataset. However,
only [3], which is within the consensus clustering literature, explicitly attempts to
build consensus from subset groupings. It treats the problem as one of missing
data and solves it by estimating a mixture model via EM in the presence of
missing data. The authors show that the loss in accuracy is significant as the
amount of missing data increases from 10% to 50% [3]. Some of the accuracy
can be regained by increasing the number of grouping agents, h. This approach
is not applicable for our scenario because of the following reasons1:

Sparsity: RGS subset groupings yield very sparse information, in that, each o
grouping agent only clusters ∼ 5% of the data. Hence the amount of missing
information in our case is always> 50%.

Inconsistency across groupings: RGS assumes that agents behave stochas-
tically when grouping. It also assumes that each agent could be attending
to different aspects of the subset elements and can group the data into an
unrestricted number of clusters. This intended inconsistency and flexibility
make the problem of finding consensus in the subset groupings extremely
hard.

Our choice for fusion is a multidimensional scaling based approach [8], see
Algorithm 1. In this approach we first convert each partial solution Gh into a
co-occurrence matrix Ch of size n × n. Chij = 1 if the pair {i, j} has been put

together by Ah and the diagonal entries are initialized as C(h)
ii = 1. By doing

this we force the data elements for which we do not have grouping information
(from this grouping agent) each into their own group.

Each co-occurrence matrix is then converted to a distance matrix (1−C) and
squared. Two more transformations are further applied to this matrix resulting
in a so called “cross product matrix”, see Algorithm 1 for details.

Next we combine the multiple cross product matrices. This could be achieved
by simple averaging. However, a weighted average will make consensus more
accurate. We identify weights by ranking the cross product matrices based on

1 In fact we initially adopted this approach but found that the MDS approach pre-
sented later performs better.
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their correlation with each other and then assigning weights proportional to their
rank. Specific details are in Algorithm 1. This method assigns higher weight to
the subset grouping which has the most agreement with others. The grouping
which disagrees the most is considered as an outlier and has the lowest weight.
Note that assigning data elements, for which grouping information is missing,
to their own groups does not introduce disagreements between subset groupings
which include them and subset groupings which do not. This is because in both
cases the diagonals for C are 1.

We next apply PCA to the combined cross product matrix (which represents
the agreement between multiple partial groupings) to identify its principle com-
ponents. These components are a new set of “features” for the data elements,
(represented by F in Algorithm 1), in a new space. We execute a kmeans clus-
tering algorithm with silhouette distance based automatic cluster identification
on this new feature representation of the original dataset to find the groupings
of the entire dataset D(n).

5 Active Resolving Groupings of Subsets

Having described a method to fuse the groupings of subsets that works for both
static and active RGS , we now turn to the distinctive aspects of active RGS .
Our algorithm is outlined as follows:

In the first iteration subsets are composed randomly. The groupings from
the agents are fused and then examined to decide whether to continue or to
halt and return the current fused consensus grouping. If continuing, then, based
on the estimated consensus, a sampling distribution P (S|{C1 . . .Ch}) is formed
and the next set of subsets are composed by sampling data elements from this
distribution.

In Subsection 5.1 we present the loop halting criteria. In Subsection 5.2 we
describe multiple strategies for forming the distribution P (S|{C1 . . .Ch}).

5.1 Halting Iteration

To determine whether a consensus is stable and no further subsets need to be
grouped, we compare the consensus achieved at iteration t, Πt

C to the consensus
achieved in iteration t−1,Πt−1

C . We evaluate the mutual information between the
two groupings. Mutual information provides a comprehensive measure between
two sets of groupings [1]. Iteration stops if the mutual information between
some number of successive iterations is no greater than ε. This indicates that no
more consensus information is being gained via additional subset groupings. This
criteria could also be used to infer that the current active subset composition
strategy has converged to a solution and might be exchanged for another.

5.2 Active subset composition

All our methods depend on sampling a subset Qh = {i|i ∈ D(n), i = 1 . . .m} by
iteratively sampling from one of the two distributions:
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I A probability distribution P (S) where S = {1 . . . n}.
II A bivariate probability distribution P (si, sj) where si, sj = {1 . . . n} , and

i 6= j

We provide multiple strategies to set up this probability distribution as more
evidence is gathered. We gather two forms of evidence from multiple G1...h):

1. a cumulative pairwise co-occurrence matrix, C =
∑h
i=1 Ci

2. a cumulative pairwise sampling matrix, P =
∑h
i=1 Pi

Different strategies follow:

Baseline: Randomized selection In this method a subset consisting of m
data elements is generated by randomly drawing without replacement from D.
A uniform random distribution P (S) = U [1n]is used. Subsets for multiple agents
are generated by repeating this procedure h times.

Explore: Balanced pairwise presentation This method consults the accu-
mulative counts of the pairwise presentation matrix which records how many
times a pair of data elements has appeared together in a subsets. The pairwise
presentation matrix is first normalized with its maximum value. Each value is
then transformed into a probability of sampling for pair ij via

P (si, sj) =
exp (−Pij)∑
ij exp (−Pij)

(1)

This method attempts to balance the presentation of data element pairs such
that they are all equally presented. Balanced pairwise presentation is an ill-posed
problem because each pair presented so far is not independent of the previous
pairs presented due the possibility of repetition. To satisfy the constraint that
we present at least the required number of data elements, for one subset we
sequentially draw from the entire set while removing the repeated elements until
a total number of m unique data elements are selected.

Exploit-pairwise: Disambiguation of confused pairings This method re-
lies on the pairwise co-occurrence matrix, C which is updated and accumulated
each iteration. The intuition behind a naive co-occurrence based method is that
we decide not to present pairs of data elements that have been paired together
consistently. There are two limitations in this approach. One is that only pair-
wise co-occurrence is considered. The second is that this only considers the data
points that have been consistently paired together, but not the ones that are
consistently not paired together. To overcome the first drawback, we divide each
co-occurrence matrix entry, representing a pair, by the number of times the pair
has been presented together in a query. That is, we first element-wise divide the
pairwise co-occurrence matrix by the P.

Eij =
Cij
Pij

(2)
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This arithmetic produces values between [0, 1]. A value of 1 implies that the
products were put together 100% of the times they were presented together.
A value of 0 implies that they were not put together even though they were
presented together in one or multiple queries. A value of 0.5 indicates that the
pair was put together only 50% of the times they were presented together. The
closer this value to 0.5, the more confused the data is with respect to deciding
whether to consider the pair similar. They have been grouped in an ambiguous
way. To quantify this sense of ambiguity, we transform the E value into an
Ambiguity Index using a Gaussian function with a mean value at 0.5 and setting
a standard deviation of σ given by

AIij = G(Eij ;µ, σ). (3)

The Gaussian function is given by

G(e, µ, σ) = exp (−1× (
e− µ
σ

)2) (4)

The Gaussian function’s standard deviation, σ, controls how quickly the Am-
biguity Index drops off with respect to E. We then attempt to sample the pairs
from the data based on this index. We transform this index into probabilities by

Pij =
AIij∑
ij AIij

(5)

Based on the above equation, pairs with a higher Ambiguity Index will have
higher probability of being drawn from the dataset. It is likely that a higher value
of σ initially allows more exploration and, as iterations are executed, shrinking
σ will focus the subset selection towards more highly ambiguous pairs.

A Hybrid Strategy: Explore-Exploit-Tradeoff Neither Exploit-Pairwise
and Exploit-One-vs-Rest consider weighting the Ambiguity Index to take into
account the contrasting number of times sample pairs have been presented.
Consider, for example, the two pairs. Pair {1, 2} has an E value of 0.5 which
corresponds to and Ambiguity Index of 1 and the pair {2, 5} has an E value of
0.57 which corresponds to an Ambiguity Index of 0.956. However, the first pair
has been sampled 20 times where as the second has been sampled 14 times. This
contrast in pairwise presentation indicates that the pair {1, 2} is more frequently
confused because its evidence of 0.5 is based on more presentations.

To consult this information the hybrid strategy Explore-Exploit-Tradeoff com-
bines the Explore and Exploit-Pairwise selection strategies via decision logic.
Pairwise presentation matrix based selection provides the ability to achieve uni-
form presentation of pairs. Co-occurrence based selection merely relies on evi-
dence generated from the C. Combining these two strategies enables us to explore
new combinations of samples as well as exploit the evidence we have already
accumulated. Explore-Exploit-Tradeoff first picks a sample i from the data set
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randomly. Given i we collect its Ambiguity Index and pairwise presentation with
every other product as: {

AIi = AI[i]

Pi = P[i].
(6)

We then divide the remaining samples into three non overlapping sets de-
termined with the help of two parameterized thresholds, β1 and β2. β1 is a
presentation count, β2 is an Ambiguity Index :

s1 = {i|Pi < β1&AIi > β2}
s2 = {i|P < β1}
s3 = {i|AIi < β2}.

(7)

We first attempt to make choice from the first list s1 probabilistically with
probabliity of the i element proportional to wieghted sum of the ambiguity index
and the presentation count. These are the samples that are at least as ambiguous
as β2 with respect to i and have at least been presented β1 number of times with
i. If s1 is empty we flip a coin to choose between s2 and s3 and then choose a
product probabilistically from one of the two. This encourages the algorithm to
switch between exploration (Explore) and exploitation (Exploit-Pairwise). This
decision logic has a few parameters, i.e., β1, β2, µ and σ. β1 is an integer and
forces the algorithm to present every pair of samples at least β1 number of
times. Once the next sample j is selected the process starting from equation 7
is repeated by replacing i with j and removing i and j from the available set of
points.

6 Experimental Results and Discussion

We used the last model presented in section 2.3 to emulate an agent and the
grouping task. This model is most comprehensive. We generated the data via
multivariate Gaussian and set the dimensions k = 8 and specified the number of
clusters as 10. We first generated the centers for each cluster (which are the µ’s
for the means of the multiple variables in the Gaussian distribution). We then
generated the standard deviations for each dimension such that no two clusters
are closer than τ × σi+σj

2 . Thus τ gives us a, parameterized way to vary the
difficulty level of grouping task. We varied the τ value between [ 0.1, 0.2, 0.5, 1,
2, 5, 10, 20], 0.1 being the hardest and 20 being the easiest.

We ran experiments for two sizes of data 102 (case 1)and 103 (case 2). For
the Case 1 when the data size was 102 we had 8 data points per subset (8%) and
limited the number of subset presentations to 1000. For Case 2, where we had 103

we had 50 (5% of the entire data) data points per subset and limited the number
of subsets to 100. Due to larger data size, smaller fraction of data elements per
subset, and small number of subsets, Case 2 is harder to solve than Case 1. For
each of these cases we tested by varying the update frequency (number of subset
groupings performed before the active subset composition algorithm is used).
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Note that the update frequency is the same as the number of grouping agents,
h, since we are querying these agents in parallel. Based on the update frequency
the number of adaptive updates (only in the adaptive algorithms) is equal to
1000
h in the first case and 100

h in the second case. Finally, due to the stochastic
nature of our strategies we did 10 independent runs and present average results.
In all our experiments we compare the consensus achieved with the ground truth
via mutual information (higher the better).

Dynamic, static or complete In our first test we compared three different
algorithms. First algorithm generates subsets dynamically, the second algorithm
generates subsets randomly. Finally as a benchmark we designed an algorithm,
called Complete, in which we created multiple presentations each consisting of the
entire dataset. Multiple full presentations enable us to overcome the stochasticity
in the grouping agent. We used Case 1 to evaluate these algorithms. We fixed
the number of presentations to 500 and present the average result from 10 trials.
Figure 1 shows the results achieved for grouping tasks of different difficulty level
(as τ increases the difficulty of the grouping task reduces). We see that the static
(random) subset selection performs poorly even for an easy task. For a hard task
(τ = 1, we see that in fact adaptive subset selection performs better then the
complete presentation. As the difficulty level of the task reduces we see that
the adaptive algorithm increases in performance and attempts to approach the
performance of the complete
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Fig. 1. Comparison of three algorithms, Exploit, Explore-Exploit, and Random. The
difficulty of the problem increases as τ increases.

Comparison of different algorithms: Next we compare different adaptive
strategies we designed in this paper among each other and the random subset
selection strategy.
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Case 1: 102 data elements, 8 elements per subset, 1000 subset presen-
tations, h=1 Figure 2 shows results for grouping tasks of different difficulty
level. We present the results for Exploit-Pairwise, Random, and Explore-Exploit-
Tradeoff strategy. We see that the Exploit-Pairwise strategy performs better
than Random in all cases and the Explore-Exploit-Tradeoff strategy performs
slightly better than random. It should also be noted that the active subset se-
lection strategy quickly converges to a good solution in fewer presentations. For
tasks with higher difficulty level the Exploit-Pairwise strategy achieves the so-
lution faster and possibly should be stopped after a few presentations.

Case 2: 103 data elements, 50 elements per subset, 100 subset presen-
tations, h=1 Figure 3 presents the results for Case 2. We add an additional
active algorithm for comparison called Explore. We notice that Exploit-Pairwise
performs better than the rest. This case has more data elements. It is evident
from these figures that the algorithm has not converged and we can achieve
better results if we continue to do more presentations for Exploit-Pairwise.

Measuring stability In our results above we observe that for Case 2 the algo-
rithm seems to be still improving in accuracy when compared to ground truth.
Although we assume availability of ground truth for validation, in reality that
is not the case. In such a scenario we use the stability measurement to decide
whether to seek more subsets or not. Figure 4 tracks the stability measurement,
defined as mutual information between two subsequent grouping consensus, for
the two experiments. The improvment in performance of the consensus grouping
is also shown. We see that for the first case the stability quickly rises to a value of
0.9 and stabilizes there. This implies that beyond this point the subset groupings
are not providing any more information. For case 2 however the measurement is
much more erratic and the overall value is much lower than the Case 1. We can
notice that the performance for the case 2 is increasing.

Affect of number of grouping agent or update rate We now investigate
whether it is better to dynamically select subsets more frequently. Up until now
we have presented where we dynamically selected subsets after every iteration.
That is we updated our probabilistic model for selection presented in Section 5
every time we acquired a subset grouping result from the agent.

In Figure 5 we show the performance of different algorithms for Case 2 (100
queries, 103 data points). First we note that irrespective of our update rate
the Exploit strategy performs well across problems of different difficulty. The
margins are higher when the difficulty level is higher, which is what we expect.
Explore only strategy performs the worst and never improves. Another significant
observation we make is that for higher update rate (lower h) we are able to
retrieve results that are closer to ground truth. For example, compare the results
at problem difficulty level τ = 1. With update rate of h = 1 we are able to
retrieve a solution with a mutual information of 0.45 with the Exploit algorithm.
In contrast, with an update rate of h = 8, we are able to retrieve only somewhere
close to 0.1 even after 100 queries. Additionally at such a low update rate all
the algorithms perform equally well including the random one. These margins
however are less pronounced (still exist) for problems with lower difficulty levels.
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7 Conclusions

In this paper, we addressed the problem of RGS by actively seeking groupings
from subsets. We developed a few active subset composition strategies and ana-
lyzed them under different conditions. We found that it is beneficial to dynam-
ically select subsets after receiving each grouping information from a grouping
agent. Our algorithms and analysis can be applied in a wide variety of scenar-
ios including situations where humans are grouping data. In fact we provide a
framework to emulate grouping of an arbitrary dataset via humans.
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Algorithm 1 Fusing subset groupings

1: function combine-MDS({C(1) . . .Ch})
2: for each Ch do
3: Dh = 1− Ch

4: Sh = − 1
2
ΞDhΞ

T

5: where Ξ = I− 1T, I is an identity matrix, and m = 1
n

6: Divide Sh by its first eigen value
7: end for

8: Evaluate Rij =
trace{ST

(i)S(j)}√
trace{ST

(i)
S(i)}×trace{ST

(j)
S(j)}

∀i, j

9: E ← Eigen(R)
10: w = e1∑

e1

11: S =
∑h

i=1 wiSi

12: [ V1, V2] ← Eigen(S)
13: F = V1×diag(

√
(V2)

14: return F
15: end function

Algorithm 2 Active Resolving Groupings of Subsets

1: Choose number of agents h, number of data points per subset q
2: Form subsets Q1...h by selecting a random subset of data elements
3: Loop:
4: for each Ah do
5: Present the subsets Q1...h to agents A1...h

6: end for
7: Combine outputs of agents via Algorithm 1 to achieve ΠC

8: Decide whether to continue or halt.
9: If halting, return ΠC

10: Form a sampling distribution P (S|{C1 . . .Ch}), S = {1, n} where S = i implies
selection of data element i to form a query Q

11: for each Ah do
12: Build a subset Qh = {i|i ∈ D(n), |Qh| = m} ∼ P (S)
13: end for
14: Goto 3
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(b) τ = 0.2
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(c) τ = 0.1
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(d) τ = 0.2
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(e) τ = 2
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(f) τ = 5

Fig. 2. Comparison of three algorithms, Exploit, Explore-Exploit, and Random. The
difficulty of the problem decreases as τ increases.
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(a) τ = 0.1
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(b) τ = 0.2
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(c) τ = 0.1
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(d) τ = 0.2
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(e) τ = 2
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(f) τ = 5

Fig. 3. Comparison of four algorithms, Exploit-Pairwise, Explore-Exploit-Tradeoff , Ex-
plore and Random. The difficulty of the problem decreases as τ increases.
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(a) Case 1, h=1, Exploit-Pairwise
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(b) Case 2, h=1, Exploit-Pairwise

Fig. 4. Plot of stability measurement as we proceed with seeking groupings for subsets.
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(a) h=1
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(b) h=2
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(c) h=4
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(d) h=8

Fig. 5. Performance of different algorithms as we decrease the difficulty level of the
grouping task (from left to right) by varying the parameter τ . Different algorithms
performance is shown on a single plot. The update frequency is changed from 1-2-4-8
as we go from left to right top to bottom. The results are at the end of the 100 queries
in total.


