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Heterogeneous Choices
Configuration Summaries

Desktop Config Server Config Laptop Config
Black-Sholes 100% on GPU 100% on OpenCL Concurrently 25% on CPU and 75% on GPU

Poisson2D SOR Split on CPU followed by compute on GPU
Split some parts on OpenCL followed by com-
pute on CPU

Split on CPU followed by compute on GPU

SeparableConv. 1D kernel+local memory on GPU 1D kernel on OpenCL 2D kernel+local memory on GPU

Sort
Polyalgorithm: above 174762 2MS (PM),
then QS until 64294, then 4MS until 341,
then IS on CPU1

Polyalgorithm: above 7622 4MS, then 2MS
until 2730, then IS on CPU1

Polyalgorithm: above 76830 4MS (PM),
then 2MS until 8801 (above 34266 PM),
then MS4 until 226, then IS on CPU1

Strassen Data parallel on GPU
8-way parallel recursive decomposition on
CPU, call LAPACK when < 682 × 682

Directly call LAPACK on CPU

SVD

First phase: task parallism between
CPU/GPU; matrix multiply: 8-way paral-
lel recursive decomposition on CPU, call
LAPACK when < 42 × 42

First phase: all on CPU; matrix multiply: 8-
way parallel recursive decomposition on CPU,
call LAPACK when < 170 × 170

First phase: all on CPU; matrix multiply: 4-
way parallel recursive decomposition on CPU,
call LAPACK when < 85 × 85

Tridiagonal Solver Cyclic reduction on GPU Direct solve on CPU Direct solve on CPU

Summary of the different autotuned configurations for each benchmark, focusing on the primary
differences between the configurations. 1For sort we use the abbreviations: IS = insertion sort, 2MS =
2-way mergesort, 4MS = 4-way mergesort, QS = quicksort, PM = with parallel merge.
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CPU-only Config

Poisson2D SOR
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Sep. Convolution
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Hand-coded
 OpenCL

Sort
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GPU-only Config
Hand-coded OpenCL

Strassen
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Hand-coded OpenCL

SVD
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Tridiagonal Solver
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Benchmark performance when varying the machine and the program configuration. Execution time on
each machine is normalized to the natively autotuned configuration. Lower is better. Convolution, Sort,
and Strassen include Hand-coded OpenCL as a baseline taken from the NVIDIA SDK sample code. This
baseline uses NVIDIA-specific constructs and only runs on our Desktop system. These hand-coded
OpenCL baselines implement 1D separable convolution, radix sort, and matrix multiply respectively. As
additional baselines, SOR includes a CPU-only Config which uses a configuration autotuned with
OpenCL choices disabled and Sort includes GPU-only Config which uses PetaBricks bitonic sort on the
GPU.

Abstract
ZettaBricks is a language and compiler based on automatic poly-algorithm composition and autotuning
which addresses the portability, design complexity, and performance tuning challenges of exascale
machines. ZettaBricks automatically builds programs that are able to adapt to their environment. The
ZettaBricks language allows the programmer to code different algorithms for the same purpose then,
rather than requiring the programmer choose which one is more efficient for each given context, offload
the responsibility of finding the best algorithmic choices to the compiler and runtime system. The
compiler then generates further choices in how the programmer’s different algorithms can map to CPU
and GPU processors and memory systems. These choices are given to an empirical autotuning
framework that allows the space of possible implementations to be searched at installation time. Â The
rich choice space allows the autotuner to construct poly-algorithms that combine many different
algorithmic techniques, using both the CPU and the GPU, to obtain better performance than any one
technique alone.
We have shown how empirical autotuning can automatically determines the best mapping of programs
in a high level language across a heterogeneous mix of parallel processing units, including placement of
computation, choice of algorithm, and optimization for specialized memory hierarchies. With this, a
high-level, architecture independent language can obtain comparable performance to architecture
specific, hand-coded programs.
In evaluating our system across a range of different types of single node system we have shown that
algorithmic choices are required to get optimal performance across machines with different processor
mixes, and the optimal algorithm is very different in different architectures. We refute the conventional
wisdom that if using the GPU is viable it is always a win, and instead show that the choice of how and
when to use the GPU is much more complex, with no simple answer. Even when using the GPU is a
win, the best mapping of a program to the GPU differs between different types of GPUs. Finally, we
demonstrate that splitting work to run concurrently both on the GPU and the CPU can significantly
outperform using either processor alone. Experimental results show that algorithmic changes, and the
varied use of both CPUs and GPUs, are necessary to obtain up to a 16.5x speedup over using a single
program configuration for all architectures.
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Test Systems (left)
Codename CPU(s) Cores GPU OpenCL Runtime

Desktop Core i7 920 @2.67GHz 4 NVIDIA Tesla C2070 CUDA Toolkit 3.2
Server 4× Xeon X7550 @2GHz 32 None AMD APP SDK 2.5
Laptop Core i5 2520M @2.5GHz 2 AMD Radeon HD 6630M Xcode 4.2

Test Systems (right)
Codename CPU(s) Cores

Xeon8 Intel Xeon X5460 @3.16GHz 8
Xeon32 Intel Xeon X7560 @2.27GHz 32
AMD48 AMD Opteron 6168 @1.9GHz 48

Online Auotuning: SiblingRivalry
Adapting to Changing Load
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Adapting to Architecure Migrations
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Starting Configurations
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Adapting with Variable Accuracy
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