
1. INTRODUCTION

Algorithms for Cable Network Design on
Large-scale Wind Farms

Constantin Berzan

Tufts University

Kalyan Veeramachaneni

James McDermott

Una-May O’Reilly

Evolutionary Design and Optimization Group

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract. Laying out the network of power cables between wind tur-
bines and substations incurs a significant cost when building a wind farm.
For small farms, an expert can often identify a good layout by hand, or
by simulating all the possible layouts. But for larger farms, these ap-
proaches are no longer applicable. We present some initial work towards
automating the design of cabling layouts for large-scale wind farms. We
build a problem model that incorporates the relevant real-world con-
straints, and then decompose the problem into three layers: the circuit,
the substation, and the full farm. In the case when there is a single cable
type, the circuit and substation layers map to graph problems (the un-
capacitated and capacitated minimum spanning tree). For the full farm
layer, we present a greedy top-down algorithm to find a feasible solu-
tion. In the case when there are multiple cable types, we focus on the
first layer, presenting an algorithm to find the optimal circuit. We then
discuss under what conditions the problem can be simplified to the case
with a single cable type.

1 Introduction

A collector system is the network of cables and transformers that harvest the
energy from wind turbines and make it available to the electric grid. Designing
the collector system for a wind farm is a complex problem, and a good design
can lead to lower construction and operation costs.

To define the problem, we consider six types of entities. The turbines pro-
duce energy from wind. The energy needs to be delivered to nearby grid points.
Turbines cannot be connected directly to the grid. Instead, sets of turbines are
connected to substations, using transport cables. The turbines connected to a
substation form a tree topology, and each branch rooted at the substation is
called a circuit. Each segment of cable in a circuit needs to have enough capac-
ity for the number of turbines downstream. Finally, each substation is connected

1

1. INTRODUCTION

to a grid point with a single high-voltage export cable. Figure 1 shows an exam-
ple layout. There are multiple types of transport cables, with different costs and
capacities. There is also a limit on how many turbines can be connected to the
same substation. The cost of a substation depends on the location where it is
built. Similarly, the cost of a transport cable depends on the terrain in which it
is buried.

grid point

substation

turbine
transport cables

export cable

circuit

Fig. 1: An example layout with two grid points, three substations, and a total of
20 turbines in five circuits.

The collector system design problem is to place the substations, and deter-
mine the network of cables, such that all turbines are connected via substations
to the grid, all capacity constraints are satisfied, and the total cost is minimized.
For small farms, this problem is typically solved by hand, or by using brute-force
techniques that try all possible cable layouts. This quickly becomes infeasible for
larger farms, and cleverer approaches have started to appear in the literature [3].
We are interested in developing an automated technique for designing the collec-
tor system of large farms (up to 1000 turbines). This paper presents some initial
steps in that direction.

The rest of this paper is structured as follows: In section 2, we present our
model of the problem. In section 3 we propose a decomposition into three layers:
the Circuit, Substation, and Full Farm Problem. In section 4 we discuss our ter-
rain grid and cable cost function. In section 5 we investigate the case when there
is a single cable type, because this makes the problem much simpler. We show
that the Circuit and Substation problems map to well-studied graph problems,
and we present a top-down greedy algorithm for finding a feasible solution to
the Full Farm Problem. Next, we look at multiple cable types in section 6. We
present an algorithm for finding the optimal solution to the Circuit problem. In
section 7, we present some experiments to determine under what conditions the

2

2. OUR MODEL

problem can be simplified to a single cable type. We conclude and discuss ideas
for future work in section 8.

2 Our Model

We worked with a domain expert to extract a model of the problem that incorpo-
rates all the relevant real-world constraints. We only consider a simplification of
the problem, where the substation locations are known. We are thus concerned
only with connecting turbines to substations. Furthermore, we assume that all
turbines have the same power rating. This allows us to express all constraints
in numbers of turbines, instead of amperes or megawatts. An instance of the
problem contains the following input data:

– An array T of turbines described by their location: ti = (xi, yi).
– An array S of substations described by their location: si = (xi, yi).
– The maximum number of turbines per substation: nS . (This constraint comes

from the maximum power rating of a substation.)
– The maximum number of turbines per circuit: nC . (This constraint comes

from the “thickest” type of cable available.)
– The cost KC(u, v, n) of connecting two sites with a transport cable of capac-

ity n. A site can be a turbine or a substation. The value of n ranges from 1 (a
cable for a single turbine) to nC (a cable of the maximum allowed capacity).

A solution is an array of circuits Cij for each substation si ∈ S. Each circuit
is a tree, represented by a tuple (Vij , Eij). Vij = {vijk} is a set of turbines, and
Eij = {eijk} is a set of cables between the turbines in Vij . The turbine vij0 that
connects directly to the substation is called the circuit root. The cost of a circuit
Cij = (Vij , Eij) attached to substation si is given by:

K(Cij) = KC(vij0, si, |Vij |) +
∑

(u,v)∈Eij

KC(u, v, fuv)

where fuv is the flow through the directed edge (u, v). Each turbine produces
one unit of flow: fuv = 1 +

∑

(t,u)∈Eij
ftu.

The cost of a substation is simply the added cost of its circuits. (The substa-
tion locations are fixed, so we do not consider the cost of building the substations,
or the cost of connecting them to the grid.) The total cost of a solution is:

Ktotal =
∑

si∈S

∑

Cij∈si

K(Cij)

Our goal is to minimize Ktotal under these constraints:

– Each turbine appears in exactly one circuit, i.e. Vij form a partition of T .
– All circuits are trees, i.e. Eij is a tree of Vij for each circuit.
– No transport cable is overloaded, i.e. fuv ≤ nC for all (u, v) in all Eij .
– No substation is overloaded, i.e.

∑

j |Vij | ≤ nS for all substations si.

3

3. PROBLEM DECOMPOSITION

3 Problem Decomposition

We find it useful to divide the full cabling problem into smaller subproblems,
which can be investigated individually. Figure 2 illustrates the three layers that
we consider.

circuit problem

circuit root

substation problem

Fig. 2: The full farm problem, one substation problem, and one circuit problem.

The Circuit Problem1. This is the simplest and smallest version of the prob-
lem. We are given a set of turbines ti that form a single circuit, and t0 is the root
of the circuit (the turbine that connects directly to the substation). The goal is
to connect all the turbines to the root in a way that minimizes cost. The solution
is a spanning tree of ti. The cost of each edge is given by KC(u, v, n), where n is
the number of turbines downstream. From discussions with our domain expert,
a typical circuit contains at most 14 turbines (each rated at 1.5 MW).

The Substation Problem. This is a problem of intermediate complexity. We
are given a substation s, and the set of turbines ti that connect to it. The goal
is to connect the turbines to the substation as inexpensively as possible. The
solution looks like a spanning tree rooted at s. We do not know how many
circuits to use, or which turbines to assign to which circuits. No circuit can have
more than nC turbines. From discussions with our domain expert, a typical
substation contains at most 42 turbines (i.e. 3 circuits at maximum capacity).

The Full Farm Problem. This is the cabling problem in its full complexity.
We are given a set of substations, and a set of turbines. We do not know how

1 The name ‘circuit’ comes from the electrical circuit formed by a set of turbines. It
is unrelated to the notion of circuit in graph theory.

4

4. THE CABLE COST FUNCTION

to assign turbines to circuits, or circuits to substations. The solution looks like
a forest of spanning trees rooted at the substations. The goal is to be able to
solve the full problem for up to 1000 turbines.

4 The Cable Cost Function

In the real world, the cost of a cable from one location to another depends on
the type of cable used, and the terrain in which it is buried. We model the
topography of the terrain using a 2D grid of cells. After we place our sites
(turbines and substations) on this grid, we compute all pairwise costs between
them. Each cell is square and has eight neighbors. To obtain the pairwise costs
k(u, v), we run Dijkstra’s single-source shortest path algorithm starting at each
site, and add up the cell values on the least-cost path between sites. Figure 3
shows an example. For a grid of V cells, each instance of Dijkstra’s algorithm
runs in O(V log V), since the number of edges is roughly four times the number
of nodes in the graph. The total running time is thus O(N · V log V), where N

is the number of sites (turbines and substations).

0.2 0.2 0.1 0.5 0.5

0.3

0.4

0.4

0.4

0.2 0.1 0.5 0.5

0.2 0.1 0.5 0.5

0.2 0.1 0.5 0.5

0.3 0.2 0.4 0.4

x

y

Fig. 3: An example terrain grid. The numbers in the cells indicate cost, and the
arrows indicate cell connectivity. The shortest path between the two turbines
indicated has cost 0.2+

√
2 ·0.1+0.1+0.1+

√
2 ·0.4. (We add up the cell values,

including source and destination, and we multiply by
√
2 for diagonal steps.)

We then determine the cost function KC(u, v, n) based on the pairwise cost
k(u, v), and the number n of turbines whose energy that cable transports. We
present the single-cable-type and multiple-cable-types cases separately, because
the problem is much simpler in the former case.

5

5. SOLUTIONS FOR A SINGLE CABLE TYPE

4.1 A Single Cable Type

With a single cable type, the cable cost does not depend on the amount of energy
flow on the cable (i.e., the n parameter is ignored). The cost function thus differs
from the pairwise cost by only a constant. Without loss of generality, we can
assume that the constant is one:

KC(u, v, n) = k(u, v)

4.2 Multiple Cable Types

With multiple cable types, the pairwise cost between sites serves as a rough
notion of distance, and the cost of a cable also depends on the amount of energy
flow through it. Following a recent paper by Dutta and Overbye [3], we obtain
information about cable costs from the publicly available documents of the Black
Nubble wind farm [11] in Maine. This farm uses 3 MW turbines with a power
rating of 52.3 A each. The cost of trenching is $15 per foot, and the cable types
are as follows:

cable type rating (amps) capacity (# turbines) adjusted capacity cost ($/ft)
1/0 AWG 150 2.9 5.8 5
4/0 AWG 211 4.0 8.0 10
500 kcmil 332 6.3 12.6 12
750 kcmil 405 7.7 15.4 26
1000 kcmil 462 8.8 17.6 38

We divide the turbine power rating by two, and add the trenching cost, to
obtain our final cost function:

KC(u, v, n) =















20 · k(u, v) : n ≤ 5
25 · k(u, v) : n ≤ 8
27 · k(u, v) : n ≤ 12
41 · k(u, v) : n ≤ 15

5 Solutions for a Single Cable Type

When there is a single cable type, our problems map nicely to existing problems
in the literature. We first discuss these relationships, and then present an efficient
algorithm for finding a feasible solution to the full farm problem.

5.1 Relationship to Existing Problems

MST for the Circuit Problem. A spanning tree of an undirected graph
is a subgraph that connects all nodes, and contains no cycles. The Minimum
Spanning Tree (MST) of an undirected graph is the spanning tree with minimum
total edge cost, out of all spanning trees. There exist efficient algorithms for

6

5. SOLUTIONS FOR A SINGLE CABLE TYPE

computing the MST of a graph. For example, Prim’s algorithm [14] runs in
O(E + V log V), where V is the number of vertices in the graph, and E is the
number of edges. The MST of a set of turbines gives the optimal solution to the
Circuit Problem.

CMST for the Substation Problem. The Capacitated Minimum Spanning
Tree (CMST) Problem is a constrained version of the MST. Amberg, Domschke
and Voß [1] provide a good survey. One node is designated as the root, and the
capacity constraint states that no branch from the root can have more than K

nodes. The CMST is the shortest spanning tree that satisfies this capacity con-
straint. This is an NP-hard problem [13]. There have been numerous exact and
approximate algorithms proposed for solving it [1, 4, 16]. Any existing approach
to solving the CMST applies directly to our problem. The CMST with the sub-
station as the root, and nC as the capacity constraint gives the optimal solution
to the Substation Problem.

LAND for the Full Farm Problem. The Local Access Network Design
(LAND) Problem is concerned with connecting end users to the backbone net-
work. This is the second stage in a hierarchical design process, where the first
stage determines the backbone itself [4]. LAND is typically split into subprob-
lems, which are solved sequentially. For example, one decides how many con-
centrators to use (concentrator quantity problem), where to place them (con-
centrator location problem), how to assign terminals to concentrators (terminal
clustering problem), and how to connect the terminals to their concentrators
(terminal layout problem) [10]. These four problems correspond roughly to: de-
ciding how many substations to use, where to put them, how to assign turbines
to substations, and how to connect the turbines to their respective substations.
Solutions to the terminal clustering and layout problems apply directly to our
Full Farm Problem. The concentrator quantity and location problems apply to
an extension of our problem, where the substation locations are not known in
advance.

5.2 Finding a feasible solution to the Full Farm Problem

Knowing that solutions to LAND carry over to our Full Farm Problem, we
now present one such approach. Our algorithm proceeds in a greedy top-down
manner that closely resembles a hierarchical solution to LAND, described by
Gouveia and Lopes [10]. First, we associate turbines to substations, ensuring
that the substation capacity nS is satisfied. Then, we arrange the turbines of
each substation into circuits, ensuring that the circuit capacity nC is satisfied.

We formulate the problem of associating turbines to substations as a minimum-
cost flow problem. Each turbine is a source producing one unit of flow, and each
substation is a sink accepting at most nS units of flow. Figure 4 illustrates the
resulting network. We estimate the cost of connecting turbine t to substation

7

5. SOLUTIONS FOR A SINGLE CABLE TYPE

s as the pairwise cost from t to s. Our goal is to assign all turbines to substa-
tions in a way that minimizes cost, while satisfying capacity constraints. (We
can visualize this as choosing the best out of all feasible forests of star trees
rooted at substations.) To find this assignment, we run Goldberg’s2 min-cost
flow algorithm [5].

dummy

sink .
.
.

.

.

.

t1

t2

t3

t4

tn

s1

s2

sk

capacity = n

weight = 0
s

(demand = n)

substations

(demand = 0)
turbines

(demand = -1)

capacity = 1

weight = k(t , s)i j

Fig. 4: Flow network for determining the association of turbines to substations.

Once we obtain a turbine-to-substation assignment, we are left with several
substation problems to solve. For each of these problems, we approximate the
CMST with the Esau-Williams (EW) heuristic, using nC as the capacity limit.
Gavish [4] discusses how EW works, and Kershenbaum [9] shows how to imple-
ment it in O(n2 log n).

5.3 Results and Discussion

Figure 5 shows an example layout for 200 nodes with a uniform random dis-
tribution. For the reader’s convenience, we have delimited the area spanned by
the tree rooted at each substation. Notice that for substation 0, cables from two
different circuits cross over each other.

Figure 6 shows an example layout for 1000 nodes with a uniform random
distribution. (Precomputing the pairwise costs took 23.6 seconds on a 200x200
terrain grid, and finding the actual solution took only 2.1 seconds3.) The layout
looks quite messy, with cables criss-crossing everywhere. Notice that there are
many substations in the center-left area, and very few in the center-right area.
This forces the turbines in the center-right area to connect to far-away substa-
tions. To illustrate this, Figure 7 shows the same layout, hiding every tree except
the one rooted at substation 12.
2 The source code retrieved from http://www.igsystems.com/cs2/download.html re-
quires a license if used commercially.

3 All times reported in this paper are CPU times on an Intel Core 2 Duo P8400 CPU.

8

http://www.igsystems.com/cs2/download.html

5. SOLUTIONS FOR A SINGLE CABLE TYPE

Fig. 5: Example layout for 7 substations, 193 turbines, nS = 30, and nC = 10.
Yellow circles represent substations. Smaller green circles represent turbines. The
background shows the terrain grid (white = cheap, red = expensive).

Finally, Figure 8 shows an example layout for 1000 nodes, where the turbines
and substations are spaced roughly equally. We are reassured by the intuitive
look of the result, where turbines are connected to nearby substations.

In summary, our algorithm has the following limitations:

– When associating turbines to substations, we do not know the real cost of as-
sociating turbine ti to substation sj , because this cost depends on the other
associations made. We approximate this cost by k(ti, sj), and find the best
turbine-to-substation associations using this approximation. These associa-
tions remain fixed in the second part of the algorithm. It is not guaranteed
that the associations obtained this way will lead to an optimal solution.

– We solve the CMST problems using the EW heuristic, which gives good
solutions, but usually not optimal ones.

– Our resulting layouts may contain intersecting cables. This usually happens
when there are not enough substations in an area.

We are not aware of any other attempts at solving the wind farm collector
system design problem automatically at this scale. For this reason, we cannot
compare our solution to work done by others. We hope that this algorithm will
provide a baseline for comparing solutions in the future. Our algorithm may also
be used to generate an initial feasible solution in a more advanced optimization
process.

9

5. SOLUTIONS FOR A SINGLE CABLE TYPE

Fig. 6: Example layout for 24 substations, 976 turbines, nS = 42, and nC = 14.

Fig. 7: The same layout as in Figure 6, showing only the tree rooted at substation
12. There are few substations in the center-right area, so turbines are forced to
make distant connections.

10

6. SOLUTIONS FOR MULTIPLE CABLE TYPES

Fig. 8: Example layout for 24 substations and 976 turbines that are conveniently
located. nS = 42, and nC = 14.

6 Solutions for Multiple Cable Types

When there are multiple cable types, our problem does not map directly to
existing problems in graph theory or network design. In this section, we describe
our attempts at solving the Circuit Problem optimally. Our main result is the
divide-and-conquer algorithm in section 6.4. The Substation and Full Problems
with multiple cable types remain unexplored.

6.1 Exhaustively Listing all Trees

We started by exhaustively listing all possible trees for a given set of turbines, and
evaluating each one in turn. According to Cayley’s formula [2], there are nn−2

possible spanning trees for a complete graph with n nodes. Prüfer numbers [15]
provide a one-to-one mapping between such trees and (n-2)-digit numbers, where
each digit ranges from 1 to n. Rothlauf and Goldberg [17] describe the process
of converting a Prüfer number into a tree, and vice versa.

This method took about a minute for n = 8, slowing down quickly for larger
n. We used it to validate the results of more advanced approaches.

6.2 Integer Linear Programming

Linear Programming is a mathematical method of optimizing a linear objective
function, while satisfying a set of linear constraints. Linear programs are widely

11

6. SOLUTIONS FOR MULTIPLE CABLE TYPES

used in business and economics, and there are a number of efficient algorithms
for their solution. Unfortunately, if some variables have to be integers, then the
problem becomes NP-hard.

We formulated the circuit problem as a linear program with binary and
integer variables. The idea is to determine which cable type (if any) is used on
each edge, and how much flow travels on that edge. An edge is represented as
a triple (i, j, k), meaning an edge from i to j of capacity k. The set of all edges
is E. If we have b cable types and n turbines, we have a total of bn2 possible
edges. We denote the cost of edge (i, j, k) by cijk. Let binary variable xijk be 1
iff edge (i, j, k) is used, and integer variable fij represent the flow on that edge.
The problem is then to minimize:

∑

(i,j,k)∈E

cijk · xijk

subject to:

(i)
∑

k

k · xijk ≥ fij , ∀i, j

(ii)
∑

j

fij −
∑

j

fji = 1, ∀i 6= 0

(iii)
∑

j

fj0 = n− 1

(iv)
∑

k

xijk ≤ 1, ∀i, j

(v) xijk ∈ {0, 1}
(vi) fij ∈ {0, 1, ..., nC}

Each turbine produces one unit of flow. Constraint (i) ensures that the cable
used on edge (i, j) can accommodate the amount of flow on that edge. Constraint
(ii) ensures the conservation of flow, and constraint (iii) ensures that all turbines
are connected to the root. Constraint (iv) prevents placing multiple cables on
the same edge. Finally, integrality constraints (v) and (vi) ensure that we get a
valid solution.

Our formulation has Θ(bn2) variables and Θ(bn2) constraints. We have used
the lp solve library to solve inputs with up to 8 turbines, but found it to be
too slow beyond that. Interestingly, the time to find the solution depended a
lot on what cost function was used. For a simpler cost function (KC(u, v, n) =
k(u, v) if n ≤ 2, k(u, v) · 7 otherwise), we were able to solve inputs with up to
11 turbines.

6.3 Backtracking Algorithm

We developed an algorithm that builds the tree incrementally, in a fashion similar
to Prim’s MST algorithm. At each step, an edge with flow information (u, v, n)
is added to the current tree. We make sure that u is in the existing tree, v is
not yet in the tree, and the new edge does not cause an overflow at u. We then

12

6. SOLUTIONS FOR MULTIPLE CABLE TYPES

recurse, continuing to add edges until we have a full tree, or until the current
tree is worse than the best complete tree seen so far. Upon returning from the
recursion, we take the edge (u, v, n) back, and try another one. Our algorithm
therefore follows the classical paradigm of backtracking search.

To avoid expanding poor branches, we developed a heuristic based on the
MST. We use the same heuristic in the Divide-and-Conquer Algorithm, which
we describe next. With the backtracking algorithm, we were able to solve inputs
with up to 10 turbines.

6.4 Divide-and-Conquer Algorithm

Our algorithm uses a divide-and-conquer approach with memoization. The main
insight of the algorithm is that a circuit problem can be split into smaller circuit
problems, and that the solutions to the smaller problems can be reused.

6.4.1 The Algorithm. We denote a problem by a tuple (R, T), where R is
a root node, and T is a set of nodes to be connected to the root. We denote the
cost of a solution by C(R, T). The problem (R, T) can be divided in two ways:

– Partition the set T into two subsets T1, T2, and solve the problems (R, T1)
and (R, T2). The cost of solving the original problem is simply the sum of
costs for the two subproblems: C(R, T) = C(R, T1) + C(R, T2). Figure 9a
illustrates this.

– Pick a node t0 ∈ T , connect t0 to R, and solve the problem (t0, T
′), where

T ′ = T \ {t0}. The cost of solving the original problem is the cost of the
edge from t0 to R, plus the cost of solving the smaller problem: C(R, T) =
KC(t0, R, |T | − 1) + C(t0, T

′). Figure 9b illustrates this.

The base case is a single node, which requires no connections, and has cost
zero. To solve a problem optimally, we divide it into subproblems in all possible
ways, picking the one with the smallest cost. The solution for a subproblem can
be used by multiple larger problems. To avoid repeated computation, we save
the optimum cost, and the divide that leads to it, for each subproblem that we
solve.

For a circuit of n nodes, there are n possible roots and 2n−1 possible sets
of turbines to connect to each root. The total number of subproblems is thus
n · 2n−1. This fits into memory comfortably for n = 14. However, time is still a
concern, because there are on the order of 2|T | ways of dividing each problem
(R, T) into subproblems. For this reason, we would like to “expand” as few
subproblems as is required to guarantee that we find the optimal solution to the
original circuit problem.

6.4.2 An Admissible Heuristic. We developed a heuristic to help us expand
a subproblem only if it may lead to a cost better than the currently known best.
The heuristic cost of solving subproblem (R, T), denoted by H(R, T), is obtained

13

6. SOLUTIONS FOR MULTIPLE CABLE TYPES

R

T

T1
T2

R

(a) splitting into two subproblems

R

T

R

T'

t0

(b) reducing to a smaller problem

Fig. 9: “Divide” step of the algorithm.

by computing the Minimum Spanning Tree of T ∪ {R}, and charging for one
unit of flow on each edge. When dividing a problem into subproblems, we first
compute the heuristic cost of solving the subproblems. If that results in a cost
larger than the best cost known so far for the original problem, then we do not
expand the subproblems.

This approach guarantees that we will find the optimum cost for a problem as

long as the heuristic never overestimates the true cost of solving a subproblem.
In other words, the heuristic needs to be admissible: H(R, T) ≤ C(R, T). Our
heuristic is admissible if a simple property holds for the cost function: The same
amount of flow cannot cost more on a cheap edge than on an expensive edge:
k(a, b) ≤ k(c, d) ⇒ KC(a, b, n) ≤ KC(c, d, n) for any flow n.

The proof of admissibility is straightforward. Consider the problem (R, T). A
solution is a spanning tree of T ∪{R}. Let n = |T | be the number of edges in such
a spanning tree. Let (ai, bi) be the edges in the MST, sorted in increasing order
by length. Let (ci, di) be the edges in the optimal solution, sorted in increasing

14

6. SOLUTIONS FOR MULTIPLE CABLE TYPES

order by length. We have:

H(R, T) =
n
∑

i=1

KC(ai, bi, 1) (1)

≤
n
∑

i=1

KC(ci, di, 1) (2)

≤
n
∑

i=1

KC(ci, di, fi) = C(R, T) (3)

The first inequality holds because k(ai, bi) ≤ k(ci, di) (otherwise we would con-
tradict the definition of the MST). The second inequality holds because the cost
function on a particular edge is monotonically increasing with respect to flow.
This proves that the heuristic is admissible: H(R, T) ≤ C(R, T). ⊓⊔

6.4.3 Empirical Evaluation. We have implemented this algorithm in Python,
and validated it against the exhaustive search for small inputs (n = 7). We also
ran our algorithm on randomly-generated inputs with n = 14, using the cost
function described in section 4.2. Our turbines were distributed uniformly within
the rectangle [0, 1]× [0, 1]. The terrain grid was given by the function:

1 +
∣

∣4 · (x− 0.5)2 − 8 · (y − 0.3)3
∣

∣

Figure 10 shows that the algorithm scales exponentially. For 14 turbines, the
average runtime was 11.3 seconds, with a standard deviation of 3.5 seconds. For
15 turbines, the average was 33.7 seconds, with a 18.6-second standard deviation.
(The time to precompute the pairwise costs was negligible.)

7 8 9 10 11 12 13 14 15 16 17 18
number of nodes

10-2

10-1

100

101

102

103

ru
n

tim
e

(lo
g

sc
al

e)

Scaling of DPSolver

Fig. 10: Scaling of the Divide-and-Conquer algorithm. 100 trials for n from 7 to
14; 20 trials for n from 15 to 18.

15

7. WHEN A SINGLE CABLE TYPE IS GOOD ENOUGH

6.5 Summary

Our main result for multiple cable types is the divide-and-conquer algorithm
presented above. It finds the optimal circuit for 14 turbines in less than a minute.
For multiple cable types, the Substation and Full Farm Problems remain open.

7 When A Single Cable Type Is Good Enough

This section discusses under what circumstances a multiple-cable-types problem
can be simplified to a single-cable-type problem. Recall that for a single-cable-
type Circuit Problem, the MST gives an optimal solution instantly. If we have
multiple cable types, Figure 11 shows an example where the MST is not optimal.
But if we compute the minimum spanning tree, and then evaluate the multiple-
cable-types cost function on it, how far from optimal can it get? If it is close
to optimal on average, then we can use the single-cable-type methods explored
in section 5 to solve multiple-cable-types problems, without a large sacrifice in
solution quality.

1
2

3

4

5 6

7

8
9

10

11

12 13

0

optimal (len=175.60, cost=3614.10)

1
2

3

4

5 6

7

8
9

10

11

12 13

0

MST (len=167.51, cost=3776.85)

Fig. 11: An example where the MST and the optimal circuit are not the same.
Node 0 is the circuit root. The optimal circuit connects turbine 1 directly to
the root, increasing the length of the tree, but reducing the overall cost, because
fewer high-capacity cables are required. The length of the MST is 95.4% of the
length of the optimal circuit, and the cost of the MST is 104.5% of the optimal
circuit cost.

We found that with the cost function in section 4.2, the MST does very well.
On 100 trials, the average ratio between the MST cost and the optimal tree cost
was 1.023, with a standard deviation of 0.032. (We found the optimal tree using
the algorithm from section 6.4.) We believe that the MST performs so well for

16

7. WHEN A SINGLE CABLE TYPE IS GOOD ENOUGH

two reasons. Let’s take another look at our cost function:

KC(u, v, n) =















20 · k(u, v) : n ≤ 5
25 · k(u, v) : n ≤ 8
27 · k(u, v) : n ≤ 12
41 · k(u, v) : n ≤ 15

First, our cheapest cable can handle up to 5 turbines. Therefore, if all branches
from the root of the MST have at most 5 turbines, then the MST is automatically
optimal. Second, for up to 12 turbines, the cost of trenching dominates the
cost of the actual cables ($15/ft compared to $5/ft, $7/ft, and $12/ft). The
MST minimizes trenching length. Alternative trees likely lose more money on
additional trenching length, than they gain by using thinner cables. We ran some
more experiments to determine what factors affect this ratio.

7.1 The Effect of the Cost Function on MST Circuit Quality

We tested our default cost functionKC(u, v, n), and two additional cost functions
shown in Figure 12 in the Appendix. We used our original terrain grid, and 14
uniformly-distributed turbines. All statistics are based on 100 trials.

cost function
mst/opt ratio run time (sec)
mean stdev mean stdev

KC (default) 1.023 0.032 11.3 3.5
K1

C (implausible) 2.255 0.348 30.0 5.1
K2

C (plausible) 1.112 0.076 48.0 9.7

K1
C is an unrealistic cost function, which does not exhibit economies of scale.

The function heavily penalizes branches with more than two turbines. This
means that the optimal tree usually has many small branches, whereas the MST
has fewer and larger branches. The MST is therefore a very poor solution. The
average run time of the algorithm also increases, with respect to the original cost
function.

K2
C does exhibit economies of scale, but the thinnest cable handles only two

turbines. The MST is not as good as it is for the original cost function, and the
runtime increases even more.

We conclude that the cost function substantially affects the run time of the
divide-and-conquer algorithm, and the quality of the MST circuit.

7.2 The Effect of the Terrain Grid on MST Circuit Quality

We tested several different grids, pictured in Figure 13 in the Appendix. Each
grid had 50x50 cells. We used our original cost function KC(u, v, n), and 14
uniformly-distributed turbines. All statistics are based on 100 trials.

17

7. WHEN A SINGLE CABLE TYPE IS GOOD ENOUGH

terrain grid function
mst/opt ratio run time (sec)
mean stdev mean stdev

G (default) 1.023 0.032 11.3 3.5
G1 (hills) 1.015 0.022 12.3 4.0

G2 (uniform) 1.024 0.029 11.1 2.5
G3 (random) 1.023 0.031 11.5 3.0

We conclude that with our default cost function, the terrain grid does not
substantially affect the running time of the divide-and-conquer algorithm, or the
quality of the MST circuit.

7.3 The Effect of Turbine Placement on MST Circuit Quality

We tested several schemes for placing turbines. In the ‘chain’ placement scheme,
we place the turbines on a line with a random slope, and then perturb the
position of each. In the ‘far’ placement scheme, we first place the circuit root,
and then place the turbines randomly, making sure that no turbine is closer to
the root than half the diagonal of the grid’s bounding rectangle. Figure 14 in
the Appendix shows examples.

We used our original cost function and original terrain grid. All statistics are
based on 100 trials.

turbine placement scheme
mst/opt ratio run time (sec)
mean stdev mean stdev

uniform 1.023 0.032 11.3 3.5
chain 1.006 0.008 9.0 0.4
far 1.049 0.049 27.9 13.4

We conclude that different turbine placement schemes may affect running
time, but do not significantly affect the quality of the MST circuit.

7.4 Summary and Discussion

Here is a summary of how the three factors affect the run time of the divide-
and-conquer algorithm, and the quality of the MST circuit:

factor affects MST quality affects run time
cost function yes yes

turbine placement not significant yes
terrain grid not significant not significant

The divide-and-conquer algorithm can thus be used to evaluate how “well-
behaved” is the cost function in a multiple-cable-types problem. If the cost ratio
between the MST and the optimal tree is close to 1 on average, then a good so-
lution can be found using the single-cable-type solutions in section 5. Otherwise,
finding a good solution to the Full Farm remains an open problem.

18

8. CONCLUSION AND FUTURE WORK

8 Conclusion and Future Work

This paper makes three main contributions:

– We propose a model of the wind farm collector system design problem (sec-
tion 2), and we decompose the problem into three layers: the Circuit, Sub-
station, and Full Farm Problem (section 3).

– For the single-cable-type case, we present a greedy top-down algorithm for
finding a feasible solution to the Full Farm Problem (section 5.2). The algo-
rithm solves a min-cost flow problem to assign turbines to substations, and
then uses the Esau-Williams heuristic to arrange each substation’s turbines
into circuits. It scales up to 1000 turbines. Solutions given by this algorithm
can be used as a baseline for comparing future algorithms, and as initial
solutions in more advanced optimization schemes.

– For the multiple-cable-types case, we present a divide-and-conquer algorithm
for finding an optimal solution to the Circuit Problem (section 6.4). This
algorithm can be used to determine whether simplifying the problem to the
single-cable-type case would result in a large or small sacrifice in solution
cost (section 7.4).

There are many possible directions for future work:

Improving terrain modeling. Modeling a terrain with regions of different
costs falls under the Weighted Region Problem (WRP). Our terrain grid (section
4) is a very simple solution, and Mitchell, Payton, and Keirsey [12] discuss some
of its limitations. First of all, using a fine grid over a large area is inherently slow.
Second, the grid causes digitization bias due to the fact that only rectilinear and
diagonal path segments are allowed [12]. Using a better solution to the WRP
could reduce running time and improve accuracy.

A more accurate cost function. Our cost function for multiple cable types
(section 4.2) could be made more accurate by treating trenching cost, road con-
struction cost, and cable cost separately.

Finding the optimal circuit faster in the multiple-cable-types case.

An easy way to make our divide-and-conquer algorithm (section 6.4) faster is
to rewrite it in C. We could also try formulating our Circuit Problem as a
minimum-cost-flow problem. Our cost function would likely be concave (due to
economies of scale), which makes the minimum-cost-flow problem NP-hard [6].
Another potentially useful related problem is the Fixed Charge Problem, where
the cost function involves a fixed charge for using each edge, and a variable
cost per unit flow: Cij(nij) = dij + kij · nij . This problem is also NP-hard
[7]. Finally, two methods that appear often in the literature on combinatorial
optimization are branch-and-bound, and Lagrangian relaxation. Both could be
worth investigating.

19

9. ACKNOWLEDGMENTS

Improving the Full Problem solution in the single-cable-type case. Our
initial solution to the Full Problem (section 5.2) could be improved by using a
more advanced CMST heuristic, instead of Esau-Williams. We could then take
this initial solution, and try to improve it using stochastic search (hill climbing,
tabu search, simulated annealing, evolutionary algorithms, etc).

Solving the Substation and Full Problems in the multiple-cable-types

case. The Substation and Full Problems remain open in the multiple-cable-types
case. Since even the small Circuit Problem is hard to solve deterministically in
this case, we speculate that an evolutionary algorithm would be appropriate
here.

Allowing arbitrary merge points. In our model, cables from different tur-
bines can only be merged at a turbine or substation. In the real world, it might
be possible to merge cables at arbitrary locations. This could reduce the total
length of cable required, but it adds complexity to the problem. Approaches to
the (NP-hard) Minimal Steiner Tree Problem [8] might apply.

Forbidding cable intersections. If overlapping cables are a problem when
constructing real collector systems, we could investigate ways of disallowing in-
tersecting edges in our algorithms.

Charging for branches. Our model does not incorporate the cost of branching
cables at a turbine. If this cost is high, it might be better to have chains of
turbines connected to a substation, instead of trees.

Choosing substation locations. All algorithms discussed in this paper as-
sume that the substation locations are known. It would be useful to have an
algorithm that finds good substation locations, either by picking from a list of
candidates, or without any prior restrictions.

9 Acknowledgments

We are grateful to Nicholas Robinson (AWS OpenWind) for providing advice and
knowledge of the domain. We also thank the MIT Summer Research Program
for making this work possible.

References

1. Anita Amberg, Wolfgang Domschke, and Stefan Voß. Capacitated minimum span-
ning trees: Algorithms using intelligent search, 1996.

2. A. Cayley. A theorem on trees. Quarterly Journal of Mathematics, 23:376–378,
1889.

20

9. ACKNOWLEDGMENTS

3. S. Dutta and T. J. Overbye. A clustering based wind farm collector system cable
layout design. In Power and Energy Conference at Illinois (PECI), 2011 IEEE,
pages 1–6, feb. 2011.

4. Bezalel Gavish. Topological design of telecommunication networks-local
access design methods. Annals of Operations Research, 33:17–71, 1991.
10.1007/BF02061657.

5. Andrew V. Goldberg. An efficient implementation of a scaling minimum-cost flow
algorithm. Journal of Algorithms, 22(1):1–29, 1997.

6. G. M. Guisewite and P. M. Pardalos. Algorithms for the single-source uncapaci-
tated minimum concave-cost network flow problem. Journal of Global Optimiza-
tion, 1:245–265, 1991. 10.1007/BF00119934.

7. Dorit S. Hochbaum and Arie Segev. Analysis of a flow problem with fixed charges.
Networks, 19(3):291–312, 1989.

8. F. K. Hwang and Dana S. Richards. Steiner tree problems. Networks, 22(1):55–89,
1992.

9. A. Kershenbaum. Computing capacitated minimal spanning trees efficiently. Net-
works, 4(4):299–310, 1974.

10. Gouveia L. and Lopes M. J. Using generalized capacitated trees for designing the
topology of local access networks. Telecommunication Systems, 7:315–337, 1997.

11. Maine Mountain Power, LLC. Preliminary Engineering for the Black Nubble Wind
Farm 34.5 kV Collector System and 115 kV Interconnection Facility 54 MW Facil-
ity. http://www.maine.gov/doc/lurc/projects/redingtonrevised/Documents/

Section01_Development_Description/Development_Electric/E_Pro_Reports/

5.1_Electrical_Power_Line_Report.pdf, 2007.
12. Joseph S. B. Mitchell, David W. Payton, and David M. Keirsey. Planning and

reasoning for autonomous vehicle control. International Journal of Intelligent Sys-
tems, 2(2):129–198, 1987.

13. C. H. Papadimitriou. The complexity of the capacitated tree problem. Networks,
8(3):217–230, 1978.

14. R. C. Prim. Shortest connection networks and some generalizations. Bell System
Technology Journal, 36:1389–1401, 1957.

15. H. Prüfer. Neuer beweis eines satzes über permutationen. Archiv für Mathematik
und Physik, 27:742–744, 1918.

16. Günther R. Raidl and Christina Drexel. A predecessor coding in an evolutionary al-
gorithm for the capacitated minimum spanning tree problem. In Chris Armstrong,
editor, Late Breaking Papers at the 2000 Genetic and Evolutionary Computation
Conference, pages 309-316, Las Vegas, NV, pages 309–316. 2000.

17. Franz Rothlauf and David Goldberg. Pruefer Numbers and Genetic Algorithms:
A Lesson on How the Low Locality of an Encoding Can Harm the Performance of
GAs. In Marc Schoenauer, Kalyanmoy Deb, Gnther Rudolph, Xin Yao, Evelyne
Lutton, Juan Merelo, and Hans-Paul Schwefel, editors, Parallel Problem Solving
from Nature PPSN VI, volume 1917 of Lecture Notes in Computer Science, pages
395–404. Springer Berlin / Heidelberg, 2000. 10.1007/3-540-45356-3 39.

21

http://www.maine.gov/doc/lurc/projects/redingtonrevised/Documents/Section01_Development_Description/Development_Electric/E_Pro_Reports/5.1_Electrical_Power_Line_Report.pdf
http://www.maine.gov/doc/lurc/projects/redingtonrevised/Documents/Section01_Development_Description/Development_Electric/E_Pro_Reports/5.1_Electrical_Power_Line_Report.pdf
http://www.maine.gov/doc/lurc/projects/redingtonrevised/Documents/Section01_Development_Description/Development_Electric/E_Pro_Reports/5.1_Electrical_Power_Line_Report.pdf

A. ADDITIONAL FIGURES FOR THE MST QUALITY EXPERIMENTS

A Additional figures for the MST quality experiments

0 2 4 6 8 101214
turbines

20
2527

41

m
ul
tip

lie
r

(a) KC

0 2 4 6 8 101214
turbines

1
7

m
ul
tip

lie
r

(b) K1

C

0 2 4 6 8 101214
turbines

5
8
12
15m

ul
tip

lie
r

(c) K2

C















20 · k(u, v) : n ≤ 5
25 · k(u, v) : n ≤ 8
27 · k(u, v) : n ≤ 12
41 · k(u, v) : n ≤ 15

{

k(u, v) : n ≤ 2
7 · k(u, v) : n ≤ 15















5 · k(u, v) : n ≤ 2
8 · k(u, v) : n ≤ 5

12 · k(u, v) : n ≤ 10
15 · k(u, v) : n ≤ 15

Fig. 12: Cost functions used in MST quality experiments.

22

A. ADDITIONAL FIGURES FOR THE MST QUALITY EXPERIMENTS

(a) G(x, y) = 1 + |4 · (x − 0.5)2 − 8 ·
(y − 0.3)3|

(b) G1(x, y) = 1 + |123 sin(10x) +
45 cos(8y)|

(c) G2 = 1 (d) G3 = rand(1.0, 2.0)

Fig. 13: Terrain grids used in MST quality experiments.

23

A. ADDITIONAL FIGURES FOR THE MST QUALITY EXPERIMENTS

1
2 345 6 7 8

9 1011 12 13

0

'chain' placement

1

2

34

56

7

8

91011
12

13

0

'far' placement

Fig. 14: Examples of the ‘chain’ and ‘far’ turbine placements, with the optimal
circuits shown.

24

