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Abstract

It’s now possible to take all of your favorite courses online. With growing popularity,
Massive Open Online Courses (MOOCs) offer a learning opportunity to anyone with
a computer - as well as an opportunity for researchers to investigate student learning
through the accumulation of data about student-course interactions. Unfortunately,
efforts to mine student data for information are currently limited by privacy concerns
over how the data can be distributed. In this thesis, we present a generative model
that learns from student data at the click-by-click level. When fully trained, this
model is able to generate synthetic student data at the click-by-click level that can
be released to the public.

To develop a model at such granularity, we had to learn problem submission
tendencies, characterize time spent viewing webpages and problem submission grades,
and analyze how student activity transitions from week to week. We further developed
a novel multi-level time-series model that goes beyond the classic Markov model and
HMM methods used by most state-of-the art ML methods for weblogs, and showed
that our model performs better than these methods. After training our model on a
6.002x course on edX, we generated synthetic data and found that a classifier that
predicts student dropout is 93% as effective (by AUC) when trained on the simulated
data as when trained on the real data. Lastly, we found that using features learned
by our model improves dropout prediction performance by 9.5%.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Research Scientist
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Chapter 1

Introduction

1.1 Background

Massive Open Online Courses (MOOCs) have recently emerged as potential solutions

to meet increasing demands for higher-level education. A number of platforms, such

as edX, Coursera, Udacity, and Khan Academy provide courses in a wide range of

topics, from New Venture Finance to Statistical Inference and more. This method of

education has become quite popular.

In 2012, MIT offered an online version of its Circuits and Electronics class (6.002),

which initially drew about 150,000 students, with 7,157 completing and passing the

course. Since then, a number of other universities, including Harvard, have joined

this effort. Now named edX, the program offers 300 different courses and has more

than 1 million unique students enrolled. Course options are often either free or

relatively inexpensive, and thus are much more affordable for the general population

than a traditional four-year college education. MOOCs therefore have the potential to

provide education for millions of students worldwide. It would be tremendously useful

to understand how students learn online, to improve courses and create meaningful

student learning experiences.

Due to the increasing participation in MOOCs, data on student learning can now

be accumulated at an unprecedented scale. MOOCs can track and record every step

students take as they engage with course material. The types of student interaction

15



include clicking on links for viewing study resources, submitting answers to problems

and exercises, and posting or asking questions in forums. Scientists looking at this

data can conduct research and find answers to a wide variety of questions, such as

"Which students are likely to drop out, and why?", "What areas of this course are

most challenging for students?", and "What types of study behaviors lead to the best

results?" Researchers, educational experts, and professors can mine this data to gain

greater understanding about the learning process and improve existing courses.

Hence there emerges the need to make student data open and available to the

public. However, with this data, there is a need to protect student privacy. For

example, it is reasonable to assume that most students would prefer to not have

their identity linked to analytics regarding their educational progress and/or grades.

Thus itâĂŹs critical for the success of MOOCs that personal data never becomes

identifiable.

The limitations of data anonymization are well documented. For example, the

simple act of anonymizing the identity of students is not very effective. Someone

looking at course forum posts could deduce student identities, given each student’s

actions. Since there are many possible ways for third parties to infer identities, it is

difficult to reason about which anonymization schemes or techniques offer what types

of protection guarantees. One standard for data anonymization is k-anonymity (i.e.

given data, a group of k - 1 members described in that data cannot be used to figure

out identities of other group members). Applying ideas and standards of anonymity

toward MOOC data could lead to safer informational distribution.

1.2 Thesis Goals

In this thesis, we pursue a full machine learning method to model student data gath-

ered on edX. Once the model is trained on a course’s data, it is then able to generate

synthetic student data. When carefully designed, the computer generated data should

conceal individual student contributions, and be able to be freely distributed without

loss of student privacy.

16



The challenging aspect is to design a model that captures the patterns and insights

found in course data (e.g., identifying student types and their learning habits or

relative usefulness and difficulty of course resources, such as lecture notes or assigned

problems). The data set contains important nuances, such as varying behavior of

students over the weeks of the course, intrinsic differences between students, and

problem submission results. In general, existing machine learning models cannot be

directly applied.

Two important design considerations for model development are noted below.

Model granularity. The first consideration is the level of data granularity we wish

to model. Most existing research on online student learning has delved into

describing student activity at a broad level (e.g., calculating total time spent

online, the number of correct submissions, the average length of a forum post,

and so on). On the other hand, one can model the data as a time-series sequence

of clicks through every course resource (URL) and every problem submission

made by a student working through a course. We believe that building a model

on a click-by-click level can support a greater variety of studies and lead to more

types of conclusions.

Having noted the click-by-click level, the data also presents a unique challenge

at a week-by-week level. While most web log data mining considers individual

sequences drawn from the same distribution, each week in a course usually covers

new material. Students therefore interact with a different set of resources each

week. A good model must then learn time-series behavior for each week and be

able to characterize how individual students transition in behavior over time.

This may prove to be useful in understanding which students will dropout.

Generative vs. discriminative. A second design choice insists that the model

be generative (learning the distribution over all of the variables) rather than

discriminative (learning how to predict certain variables given information about

other variables). This is partly because the model aims to be able to create

simulated students and not just make individual predictions about the students.
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The model also aims to capture the distribution of these sequences and the

process behind how students create them. In this case, a generative model

provides deeper and fuller characterization of the data than a discriminative

one.

1.3 Thesis Contributions

Our approach to modeling time series data can be of interest intrinsically and theo-

retically. When applied to real student data, however, the model furthers the cause

of understanding student learning in two major ways.

1. Our project presents the first complete attempt to model online student data.

Covering a number of aspects, such as time-series activity, week-by-week student

behavior, trends regarding how long students spend on webpages and how accu-

rately they answer questions, the work is capable of answering many important

questions about learning.

As a generative model, synthetic student data can be generated containing

patterns similar to that of real data. We will demonstrate that this synthetic

data protects student privacy for public information release, so that our project

could have a large impact in opening educational research to more people.

2. Our model extracts useful features about students that provide new value to-

wards understanding student learning. Learned features are model-inferred

quantities that cannot be gleaned from the data directly. Once model parame-

ters are learned on a set of given student data, they provide greater insight into

individual student behavior than what was previously achievable.

We will show that these features can be useful in one important area, namely,

predicting student dropouts. Predicting which students will drop out of a course

and when is a notable question with regard to MOOCs, because it looks at what

factors might indicate or influence student decisions. It turns out that using

18



the inferred features from our model in a logistic regression model to predict

weekly dropouts improves prediction accuracy.

1.4 Key Findings

As the focus of our work is to build a general model for the data, and not towards

drawing particular conclusions from it, our findings largely involve how well the model

fits the data.

∙ A machine learning model for dropout trained on synthetic data is only 7.5%

worse than one trained on real data, as measured by Area Under the Curve

(AUC).

∙ Student features learned by the time-series model are valuable. A machine

learning model that uses these features to predict student dropout improves

upon one that uses only simple features from an average AUC score of .81 to

an average of .89.

∙ Student click-by-click data closely follows a Markov process. However, our novel

time-series model, a combination of a Hidden Markov model and a Markov

model, improves log-likelihood fit by 6.8%.

∙ Synthetic data generated by our model preserves relatively how well individual

student features contribute to dropout predictions. When a machine learning

model is trained using one or two features at a time from a set of five easily

computable features, there is a correlation of .72 between the rankings when

the training data is synthetic versus real.

∙ Student activity on a week-by-week basis can be well-characterized by a Gaus-

sian Mixture model. There are about 20 primary types or clusters of users in

one edX course.
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∙ Problem submission behavior does not follow the Markov process. Instead,

students make problem submissions in groups that are better characterized by

the Latent Dirichlet Allocation process.

∙ Unsurprisingly, the time spent viewing each course resource or the assessments

of each problem submission can be better described using a parametric model

taking into account both the student and the resource / problem, rather than

by considering either only the student or only the resource / problem.

1.5 Related Work

This work draws upon ideas and results from the following three areas of research:

time series models, data anonymization methods, and MOOC data analyses.

1. Discrete time series models. In this broad area, the most well-known models

are Markov chains and Hidden Markov models (HMMs). As a secondary ap-

proach, click-stream data of web surfers has been clustered using a mixture of

HMMs, trained using an adapted EM (Expectation-Maximization) algorithm

[3]. These existing approaches are relevant to modeling student click-stream

data. For instance, transitions between resources often manifest as clicking on

links between web pages, thus exhibiting clear Markov chain behavior.

The main novel approach to modeling the identities of the event sequences

(webpage IDs and problem IDs) in this thesis is an integrated Markov chain

and HMM generative model. In this model, the emission probability of the

next event in the sequence is a function of both the current hidden state and

the last event in the sequence, thereby combining Markov chains and HMMs. In

chapter 6 we explain why this approach specifically fits the data, and we detail

the precise model definition and training procedures. Additionally, learning a

mixture of these combined Markov chain-HMM models captures some of the

differences between student learning behavior.
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2. Data anonymization methods. While other methods such as clustering

or randomization could be useful in this context, they provide no insight into

learning actual student behavior. Instead, we propose to ensure privacy by de-

veloping a generative model for the students and then sampling event sequences

from the model. Steps are taken to ensure anonymity in the training process.

One measure is to remove resources that only a few individuals visit, so as to not

identify these individuals. All individual student parameters are not explicitly

kept or shared, but rather modeled to come from a smooth distribution.

3. MOOC research Detailed research has been done on several aspects of edX

course data. Other works characterize dropout rates [8] or problem submissions

[5]. While neither is the focus of this paper, we borrow simple approaches from

both. One aspect of modeling student event sequences involves developing a

structure for problem submissions. We also use dropout predictions as a key

method for validation of our model.

1.6 Thesis Outline

The rest of the thesis is organized into the following chapters.

∙ Chapter 2 introduces the data collected on edX courses and the necessary data

curation steps.

∙ Chapter 3 explains the full problem we attempt to solve in the thesis and an

overview of the complete machine learning model solution.

∙ Chapter 4 presents the problem topic model that characterizes how students

choose which problems to solve.

∙ Chapter 5 presents the event descriptions model that learns the distribution of

time spent on viewing resources and assessments of problem submissions, across

students and across individual resources and problems.
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∙ Chapter 6 presents the Latent-Explicit Markov Model, a novel time-series model,

and explains the model’s training equations and its application to edX data.

∙ Chapter 7 presents the course level model of learning how student activity

transitions from week to week.

∙ Chapter 8 describes the methods used to validate the full model and the dis-

covered results.

∙ Chapter 9 concludes the thesis by summarizing important takeaways and future

topics for research.
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Chapter 2

MOOC Data

In this thesis we worked with student data from classes offered on EdX, in particular

the 6.002 Circuits and Electronics course in fall 2012. The data was maintained in a

database outlined by the MOOCdb schema [1].

We present a brief overview of what the course data looks like, from a 6.002x

Course Report [7]. The course attracted around 30,000 students who viewed at least

10 resources. Around 18,000 made at least one problem submission and about 3,000

received a certificate for passing the course. Among these students, 87% were men,

and as a group were well-educated, with 42% having received a bachelor’s degree.

The population was diverse by location, with India and US the most well-represented

of the 150 countries that had at least one participant. The median student age at 25

years was slightly higher than that of a typical undergraduate student.

Among the course materials, there were approximately 50 distinct HTML web-

pages, which collectively contained over 400 lecture videos and nearly 200 problems.

The EdX tracking system logged around 35 million separate events of student inter-

action which provide the data stored in the database.

2.1 Data Details

The database consists of 24 tables that detail all of the student actions in the course,

including student information, student feedback, and course materials. For example,
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it contains tables about each course resource (URL) viewed, each problem answer

submitted, and each forum post made by the students, the IP address the actions

came from, and the parent / child relationships between all of the resources and

problems. Our project focused on the student observation events (where students

browse some resource on the course website) and submission events (where a student

submits an answer to a course problem), and utilized only those tables. Table 2.1

presents the details of the 6.002x data in our database.

Table Name Number of entries

observed_events 25,726,044 events across all students

resources 210,085 distinct resources

submissions 7,854,754 events across all students

assessments 7,854,754 assessments, one per submission

problems 1,864 distinct subproblems

Table 2.1: Database Table Summary

Figure 2-1 provides a sense of number of observation (browsing) and submission

events on a weekly basis. Observed events peak early in the course as more students

view the course at the beginning and subsequently leave, a phenomena commonly

referred to as stopout. Problem submissions are less frequent at the beginning of the

course and pick up around week 7, when the midterm was first released. The number

of submissions reaches a peak at weeks 10-11.

In the course database, there were approximately 200,000 distinct labeled re-

sources. Among these resources, about 113,000 of these were purely structural, meant

for maintaining parent-child relationships between course components, and these re-

sources were not found on the course website itself. This leaves about 97,000 resources

that students interacted with. This set contains every little component of each web-

page in the course, from each clip or section of a video to every page of the course

textbook. The breakdown of the types of these resources is shown below in Table 2.2.

In our database, each observed event is associated with a URL which is of a
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Figure 2-1: Event activity by week. Observations peak early in the course and then
decrease as students leave. Submissions spike around week 10, a little after the
midterm was released.

Informational Problem Lecture video Book Forum Wiki Profile None

65 108,900 25,756 1,173 39,739 1,037 2 33,413

Table 2.2: Resource category breakdown.

particular type. Thus we are able categorize the observed events into types. Figure 2-

2 shows the frequencies of each type of observed events for each week in the course.

The activities are shown for informational, problem, lecture video, book,forum, and

wiki.

Once again, the number of problem and book resources spike around week 8 and

week 16, soon after the midterm and final exams were released.

The database stores rich information about the student activity. To build a sta-

tistical model of student browsing and submission activity, we chose a subset of fields.

These fields are:

∙ Event type: an element of {observation, submission}
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Figure 2-2: Observation event activity by week. The event counts for each observation
category tend to follow the trends of the total observations by week, with “lecture
videos" being the most browsed and “problem" and “book" the next most browsed.

∙ URL ID: ID of the observed resource (for observations)

∙ Problem ID: ID of the problem that was submitted (for submissions)

∙ Duration: Time spent viewing the resource in seconds (for observations)

∙ Assessment Grade: Grade assigned to the submission (for submissions)

2.2 Data Extraction and Assembly

We wrote scripts to extract the data from the databases into files, formatted to

reflect the sequential aspect of the data. The process involved looking up all of

the events associated with each student in the “observed_events" and “submissions"

tables, sorting them by time stamp, and then querying the associated duration and

grade for them. For further analysis and interpretation of the model results, the

“resources" and “problems" tables were useful for looking up the URL and problem
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names.

Next, we divided these event sequences by week, with each week designated to

start on Monday. Each week’s worth of student sequences was written to a separate

file. This separation reflects the differences in activity per week. Because new course

material is revealed each week, students tend to work with new resources and problem

for that week. With such differences in weekly behavior, it makes sense to analyze

the activity on a week by week basis. This reasoning is further detailed in the next

chapter. In practice, dividing the data into weekly sections also enabled us to train

models on a per week basis, making it computationally tractable. A sample of 13

sequential events for a student is shown in Table 2.3.

Event Type Event Name Event ID Duration Grade

Observation info/ 27 39

Observation progress/ 6 17

Observation courseware/ 10 2

Observation courseware/Week_12/ 11 69

Observation
courseware/Week_12/The_Operational_-

Amplifier_Abstraction/1/ 388 16

Observation

courseware/Week_12/The_Operational_-
Amplifier_Abstraction/1/video/S23V1-

_Review_previous_amplifier-
_abstraction/_cR8XukMGdjk 3291 173

Observation
courseware/Week_12/The_Operational_-

Amplifier_Abstraction/1/ 388 143

Observation

courseware/Week_12/The_Operational_-
Amplifier_Abstraction/4/video/S23V4-

_Op_Amp-_abstraction/_vLuFuBK5B-g 2077 695

Submission S23E1_Non-Inverting_Amplifier/4/1/ 40 0

Submission S23E1_Non-Inverting_Amplifier/3/1/ 36 0

Submission S23E1_Non-Inverting_Amplifier/4/1/ 40 0

Submission S23E1_Non-Inverting_Amplifier/3/1/ 36 1

Submission S23E1_Non-Inverting_Amplifier/4/1/ 40 1

Table 2.3: A sample of 13 sequential events for a student.
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2.3 Data Curation and Preprocessing

The data we extracted had a few issues that needed careful handling. We curated

the original data through the following steps.

Insert session break events: Although the original sequences contain timestamps

for observation and submission events, there is no indication of sessions or dis-

tinct blocks of time when a student is engaged with the course material. Stu-

dents are likely to engage with the course in an on and off fashion. We intend

to capture these continuous blocks of time when students are engaged with the

course as “sessions".

To separate the students weekly event sequences into sessions we introduce ses-

sion breaks. We start by inserting a session break event at the beginning of

every weekly sequence, at the end of the sequence. Then we insert a break be-

tween any consecutive pair of events that are at least one hour apart (evaluated

using the difference of timestamps). Thus an hour of no activity by a student

is considered as a separation between two distinct activity sessions. This sep-

aration of events is useful in modeling sequences because student may engage

differently when he revisits the website. There were initially 33,580,798 total

events in our extracted data, and this step separated them into 789,907 distinct

engagement sessions.

Filter out rarely visited resources and problems: For each week of the course,

there are a number of resources and problems visited by the students. To reduce

the size of this event set for simplicity, training run time, and to ensure that

individual observations or submissions on rare resources or problems do not

reveal student identities, we filter out the events corresponding to the visits to

less frequented resources. These resources are defined as the ones whose visits

account for less than .05% of all visits across all the resources. For problems, we

set the threshold as less than .3% for that week. Once we remove such events,

the number of observation events drops from 25,726,044 to 17,143,777 (for the

entire course) and the number of submissions drops from 7,854,754 to 5,825,201.
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Recalculate durations: The duration values in the database were initially incor-

rect. We recalculated the duration for each observation event using the event

timestamps. Each observation event’s duration is calculated as the difference

between the timestamp of the next event and its own timestamp. If this differ-

ence is more than one hour (i.e. the next event is a session break event), then

the observation duration is designated to be a fixed 100 seconds.

Remove submissions for a solved problem: Once a student has correctly solved

a problem, recordings of subsequent submissions for that problem are an arti-

fact of the UI design. That is, there is only one submit button for multiple

subproblems. Hence, any answer submitted later should not be taken as an

attempt to solve the problem. When we remove such submissions, the number

of total submission events drops from 5,825,201 to 3,602,654.

Summary: By the end of this process, we had examined the data, explored its

properties, and extracted the sequences which we wish to analyze. In the next set of

chapters we present a series of models that we developed to characterize this data.
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Chapter 3

Modeling a Digital Student

Our goal is to model a digital student’s engagement patterns on the course website.

Student activity however can be defined at different levels of granularity.

At the highest level, one can capture the behavior of students using covariates

- for example calculating the number of resources visited in a week, the total time

spent engaged in the course, the number of distinct problems answered, the number of

forum posts, etc. One can then model students behavior by clustering these covariates

on a weekly basis[6], or using a state space model over these covariates [8].

At a more detailed granularity, one might model students’ interactions with

specific course resources. For example, [9] models social interactions on the forums.

At the finest granularity, one can model the data as it is generated, a time-

series sequence of clicks. These clicks capture browsing specific course resources (or

URLs) and submissions for problems. This detailed level of granularity is what we

are after. Many insights into student learning such as: which resources are helpful for

solving the next problem and how successful students are at repeatedly answering a

difficult problem, can be gleaned at the click-by-click level. Thus modeling the student

at this granularity is important for generation of synthetic student sequences as we

do not a priori limit the purpose of the synthetic student sequences.

In addition, to modeling click-by-click data, we challenge ourselves to characterize

each interaction, namely the time spent viewing each resource and the grade assigned

to each problem submission. Thus, by modeling every aspect of the student data as
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much as possible, the synthetic data generated from the model will be flexible in al-

lowing outside researchers to analyze the data, draw conclusions and build predictive

models.

Other modeling work with MOOC students data: We bring up two other

studies that attempt to model MOOC students data in order to compare and contrast

with our work.

In [8], the authors apply a Hidden Markov model to learn how features describing

overall student activity transition from week to week. Their model then predicted

whether each student would drop out of the course, as one of the features in their

model. We need to build a generative model from which more flexible features can

be calculated from the raw click-stream data.

Another study [4] used Latent Dirichlet Allocation to learn groups of course re-

sources that similar students viewed together. While this analysis dives into greater

detail at a per-resource analysis, it does not consider the relative time the event

occurred at, and cannot uncover some types of insights that a time-series model can.

3.1 Click-by-Click Level Data

Imagine a student as he navigates through an edX course. He might first start at

the course homepage, then visit a particular module of the course. Once there, he

might view a few lecture videos, or read parts of the online textbook. Then the

student might attempt several problems. Depending on whether these are correct, he

could attempt some more problems, or go back to the textbook and then retry those

problems. These sequences of events define the activity of a digital student on an

online platform. Each is represented using the five tuple described in the following

figure and table.

For each event, we want to model the “event locations" - the identities of the par-

ticular URL visited or problem attempted - and the “event descriptors," the attributes

that characterize that event. For viewing course resources, this means the amount
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Type Event descriptors

Event locations

< t, uid, pid, d, a >

Figure 3-1: A 5-tuple that defines an event in the event sequences. 𝑡 is the type of the
event. 𝑢𝑖𝑑 and 𝑝𝑖𝑑 represent the event locations or the resource locations. 𝑑 represents
the duration of this event and 𝑎 represents the assessment if a problem submission
was part of this event.

Field Name Field Description

Type (t) an element of {observation, submission, session break}

URL ID (𝑢𝑖𝑑) ID of the observed resource (for observations)

Problem ID (𝑝𝑖𝑑) ID of the problem that was submitted (for submissions)

Duration (d) Time spent viewing the resource in seconds (for observations)

Assessment Grade (a) Grade assigned to the submission (for submissions)

Table 3.1: Event tuple descriptions

of time a student spent on that resource, measured in seconds. For problem sub-

missions, this means whether the submission was correct or incorrect (in this course

there was no partial credit for answers). These considerations sufficiently capture the

basic process of how students engage with an online course. These, as we will see

offer sufficient complexity and difficulties in the modeling process.

Our goal is to build a statistical model from which we can learn how students

navigate through the events in a course, and be able to generate click-by-click samples.

In this problem formulation, there are several factors we do not account for.

1. Timestamp of each event: In our methodology, we do not capture the exact

time in a day or week when the student interacts with the platform. While

it would be a interesting challenge to model the times during the day and

week each student is active on the online course, we argue that our model
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captures most of the temporal aspects of the student activity (just not the

exact timestamps). This is because, the events we model are ordered, and the

sequence is comprised of sessions separated by session break events. Hence much

of the time aspect of student engagement is already captured.

2. Engagement with forums: This work does not consider student engagement

with forums. While we model the visits to the forums, we do not model exact

content of the posts or the nature of the engagement, that is, responses or

question-asking. This is an aspect we could work on in future.

3. Exact answer submitted (for open-ended problems): For many open-

ended questions, there is often a set of common incorrect answers [5]. It may be

useful to understand and analyze students sequence of submission of incorrect

answers. Currently we only consider whether the student answered correctly or

incorrectly.

3.2 Challenges

The task of building a model for these student sequences poses the following key

challenges.

Week-to-week variability: Student behavior in an online course changes dramat-

ically as the course progresses. At the beginning of the course, students are just

exploring the website and course structure. For courses that follow a weekly

schedule, each week new materials appear in the form of notes, lecture videos,

homework problems, and labs. The complexity and the nature of the content

dictates the way students engage with the course. Thus between each week of

a course, there is a huge difference between what students do, the amount of

time they spend, and our model needs to account for that. There may also be a

midterm and final for the course, and during these periods the serious students

would spend more time solving problems. For courses that do not adhere to a

weekly schedule, we would need to separate student activity based on modules.
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Generating locations for events: The question “Where will this student go next?"

is fundamentally the most difficult aspect to model. While information such

as the student’s previous event(s), his previous activity history, and the week

number are useful, the problem of how we can best combine these patterns

to make accurate predictions about his next event is challenging. With about

100,000 event locations, the next event location can be hard to determine.

Generating event descriptions: Event descriptions characterize the event by

specifying the duration for a observed event and specifying whether or not the

student’s submissions is correct or wrong for a problem submission event. Learn-

ing a very good model for the event descriptors would be akin to learning how

engaged a student is in the material or how well he has understood the material,

which are both important problems. The event location (that is the particular

resource or problem) will have a major effect on the durations and the assess-

ments. For example, resources range from videos to intro pages of a textbook,

and problems range from easy to difficult. Additionally, individual students

have different tendencies when viewing resources and answering problems. For

example, some students spend more time on book vs lecture videos. Through

our model we would have to capture inter-resource variability and inter-student

variability when generating descriptions for events.

Generating student data for the entire course: As compared to an on-campus

course, where most students participate in the course from beginning to the end,

edX has a low barrier to entry, where most students are only casually interested

in the course and take part for only a few weeks. Our model hopes to capture

all types of students, and so must learn how students behavior changes from

week to week in the course. This task involves discovering the relationships

between many weekly variables, from the number of events in a week to the

performance on problem submissions to the average time spent on resources.

As these variables exist on a week by week basis, learning how each might affect

the other is a challenging problem.
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3.3 Multi-Level Modeling

To address the challenges we pointed out above, we defined models at different levels.

In the following sections we give an overview of each model, and show how we pull

them together to create a composite model of a MOOC student. In subsequent

chapters we present each individual model separately.

3.3.1 Week Level Models

These models are trained on the event sequences for each individual week.

Generative model for event location sequences: We developed a model to

learn how students transition from one event location to another. Such dis-

crete time-series data is often modeled with an HMM or Markov model. For

this application, we propose the Latent-Explicit Markov Model (LEMM), which

combines the main ideas from both models. While in the Markov model, the

next event is dependent on the previous event, and in the HMM the next event

is dependent on the hidden state, in the LEMM the next event is dependent

on both as depicted in Figure 3-2. The reasoning for this, along with the full

model description and learning algorithm, is presented in Chapter 6.

Generative model for capturing problem submission behavior Since sub-

missions in event sequences often appear consecutively, we design a problem

topic model to learn groups of problems that are submitted together without a

visit to a resource in between. These problem groups are learned by applying

a Latent Dirichlet Allocation algorithm, treating a set of consecutive problem

submissions as a document. The model, its motivations, and the training pro-

cedure are presented in Chapter 4.

Generative model for event descriptors: Lastly, a set of parametric models

are used to generate how much time students spend on each course resource

and how they perform on each problem submission. A model first learns the

distribution of grades per problem and duration of time spent per URL, across
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Figure 3-2: Comparison of LEMM to HMM and Markov model, by their directed
graphical representation

all students. Then it estimates for each student the average percentile of his

submission success rates over the submission events, and the average percentile

of his observation durations over the observed events. The models, their defini-

tions, and nuances, and the learning algorithm are presented in Chapter 5.

3.3.2 Course Level Model

In addition to learning the models on the week-by-week data, we extract week-by-week

features for each student. These features are then modeled via a course level model.

In particular, from the event descriptor model we will infer for each student a feature

derived from his duration model and another feature derived from his assessments
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model. From the LEMM model, we can extract for each student a set of counts for

the hidden states. These reflect how often a student viewed a location belonging to

each of the hidden states learned by the model.

These student features by week are used as a bridge between the course level and

week level models. The week level features provide a brief description of a student’s

activity for that week. When a student’s weekly features during the course are joined

together, they represent his overall activity for the whole course. The course level

model then learns the distribution of these full feature vectors across all the students.

We use a Gaussian Mixture model to explain the distribution of these feature vectors.

3.3.3 Training Summary

The overall modeling steps are shown in Figure 3-3. The overall model training

procedure is summarized in the following key steps.

1. For each week, train a problem topic model. Replace the 𝑝𝑖𝑑 in the data with

the problem groups ID.

2. For each week, train a LEMM on the event sequences (treating the set of URL

IDs and problem group IDs as the event locations). The learned LEMM model

infers the hidden states for each student and generate for each student the

"hidden state counts" as weekly features.

3. For each week, train the event description models. Label each student with

a feature generated from his duration model and a feature generated from his

assessments model.

4. Train a Gaussian Mixture model over the concatenated feature vectors for all

students, for the entire course.

3.3.4 Data generation

To generate synthetic student data, the course level model samples a set of high level

features (for all weeks) from the Gaussian mixture model. By capturing the distri-

38



...

...

...

Course Level Model

Week 1
Features

Week 1
Models

Week 1
Data

Week 2
Features

Week 2
Models

Week 2
Data

Week 15
Features

Week 15
Models

Week 15
Data

Figure 3-3: Full model training overview

bution of the full features from student to student, the course level model enables a

coherent generation of week to week event sequences. These high level features are

then given to the week level models for sequence generation. The week level models

use these features to sample the full event sequences for that week which are consis-

tent with the desired features.

Summary: In this chapter we presented the overview of our modeling methodology

for a digital student. We presented the key challenges and highlights of our approach.

In next four chapters we present details about each model separately.
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Chapter 4

Problem Topic Model

The problem topic model captures how students navigate through the problems dur-

ing the week. This captures what problems they submit answers for and whether or

not they consult resources in between multiple problems. In particular, we consider se-

quences of consecutive problem submissions, made without consulting other resources

in between as a group. Capturing which problems students answer with/without tran-

sitioning to other resources is important because researchers are often interested in

analyzing these transitions, for example to figure out which resources were helpful in

solving a problem. In order for our model to be able to generate synthetic data that

exhibit such behavior, it must correctly capture the sets of problem often submitted

together. Due to the way the online platform is designed, we observe three common

submission patterns in the course data. These are:

Submitting for a multi-part problem. A student clicks the submit button to

submit all parts of a multi-part problem at once. He could have attempted any

or all of the subproblems, since there is only one submit button available, there

are multiple submission events with the same timestamp.

Repeat submissions. A student clicks on the same submit button two or more

times, after getting part(s) of the problem wrong. He can re-attempt the prob-

lem without accessing a course resource in between.

Submitting multiple problems. A student clicks two or more submit buttons
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to submit parts of multiple problems, without accessing a course resource in

between.

A screen shot of a problem submission page is depicted in Figure 4-1, showing

how these three use cases are possible.

The problem submission aspect of the data needs to be separated from the rest of

the time-series modeling. Whereas the order of observation events is fundamental, the

exact order of the problem submissions is not meaningful when they are all submitted

with the same button and have the same timestamp. The model will deduce which

groups of problems are often submitted together, either because they belong to the

same problem section or because they belong on the same web page and are similar

enough that students answer them together. By separating the problem submissions

from the rest of the sequence, the model better reflects the process by which students

interact with the course - they submit a group of problems with once click, rather

than go through events click-by-click as with observation events. To fit this model

in our time-series framework, we have the LEMM model learn the problem group

ID. The problem topic model, described in this chapter, learns which problems are

submitted given the group.

As with the other week level models, we build this model for each week of the

course. For the rest of this chapter, the entities involved are specific to one particular

week.

4.1 Model Definition

Consider the set of commonly answered problems for the week to be 𝑝 ∈ 1, 2, 3, . . . 𝑃 .

Our goal is to learn a set of problem groups, or problem topics, that are submitted

together. A problem topic could be represented with a 𝑃 dimensional vector such as:

.21 .0 .31 ... .14 .0

where 𝑖𝑡ℎ component is the probability that any problem drawn from this topic is
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Figure 4-1: Snapshot of homework page. The two problems have two subparts. The
student may submit answers to H11P1 by clicking on the check button under it.
When trying to check, he may or may not have attempted both the subparts.

problem 𝑖. Since this vector represents a probability vector, its component sum is 1.

We note that one such problem topic cannot capture all the possible groupings

based on the submissions from all the students. We instead model the submissions
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as coming from 𝑇 such groups, where each group 𝑗 is represented with its own 𝑃

dimensional probability vector

𝜑𝑗 ∈ R𝑃 , 𝑗 = 1, 2, ...𝑇

where 𝜑𝑗 is the probability vector corresponding to the 𝑗𝑡ℎ topic. These probability

vectors are the parameters of the model. The question of when a student makes

submissions from each problem group is learned by the event location model, to be

discussed in Chapter 7.

To learn these 𝑇 groupings, we draw a parallel between learning how problem

submissions co-occur in groups and the classical methodologies of topic modeling

that model the co-occurence of words in a document. As a result of this mapping, we

are able to use a technique called Latent Dirichlet Allocation (LDA) for learning our

model parameters.

In the next section we give an overview of the Latent Dirichlet Allocation algorithm

as it is applied in language modeling. We then present how we map our problem to

this modeling technique. Section 4.2 presents the learning and inference approach.

Section 4.3 presents the results of our learning.

4.1.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation posits that in a set of documents, each document may be

viewed as containing a mixture of topics. The distribution of topics 𝜃 is a Multinomial

distribution represented as 𝜃 ∈ R𝐽 . Given a corpus of words 𝑊 , each topic has a word

distribution given by 𝜑𝑗, a Multinomial distribution of dimension |𝑊 |. The model

assumes a Dirichlet prior on both 𝜃 and 𝜑 and a particular process by which documents

consisting of words are formed [2]. A set of documents each of length 𝑛 is generated

as follows:

1. Sample a distribution over topics 𝜃 ∈ R𝐽 for each document from the Dirichlet

prior Dir(𝛼).
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2. Sample per-topic word distributions, 𝜑𝑗 ∀𝑗 topics from the Dirichlet prior Dir(𝛽).

These are shared across documents.

3. To generate the 𝑛 words for each document, follow these steps:

For 𝑘 = 1, 2, ...𝑛 do

Sample a topic 𝑗𝑘 ∼ 𝑀𝑛(𝜃),

Sample a word 𝑤𝑘 ∼ 𝑀𝑛(𝜑𝑗),

where 𝑀𝑛 represents the Multinomial distribution.

This process follows a bag-of-words model where the order of words do not matter.

4.1.2 Application of LDA

So how can we use LDA to learn groups of problems? It turns out that there is a

strong parallel between the problem submissions setting and the documents of words

setting. If we consider the following mapping

words (𝑊 ) → problems (𝑃 )

documents → consecutive submissions

topics of words → topics of problems

then we have a way to apply LDA. Treating each consecutive sequence of sub-

missions as a document, and each problem as a word, we arrive at the following

interpretation of how students select which problems to make submissions for.

First, a student selects a single topic or group of problems (in contrast to the LDA

model). Each topic corresponds to a group of problem commonly submitted together

(either from the same problem section or not). Then the student repeatedly selects

a new problem to answer according the topic probabilities, also following a bag-of-

words model. The number of submissions the student makes in this problem group
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depends on per-topic parameters to be later defined and learned by the model. This

process allows a student to answer the question multiple times in the same group,

which reflects the situation where he submits wrong answers. This LDA interpretation

yields a process that can reasonably explain how a student makes their selection of

submissions.

4.2 Model Training

1. Assemble the problem documents across all students. For each

student’s event sequence, group the submission events that are not separated

by any observation event. Each such group of consecutive submission events

are considered a document. Index the documents 𝑚 = 1, 2, ...𝑀 .

2. For each choice of the number of topics 𝑇 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥], do:

3. Learn the LDA parameters on the documents 𝐷𝑚. These parameters

are the set of 𝑇 problem topics

𝜑𝑗 ∈ 𝑅𝑃 , 𝑗 ∈ [𝑇 ]

There exist established algorithms to optimize the LDA parameters. For

this project we use a library that performs collapsed Gibbs sampling.

4. Evaluate the log likelihood of the model. The log likelihood score of

a document of length 𝑛 given the topic parameters 𝜑𝑗 and 𝛼 is

∫︁
𝑝(𝜃|𝛼) log

(︂ 𝑛∏︁
𝑘=1

𝑇∑︁
𝑗=1

𝑝(𝑤𝑘|𝜑𝑗)𝑝(𝜑𝑗|𝜃)

)︂
𝑑𝜃

such that the prior distribution of 𝜃 is Dir(𝛼).
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5. Select the final choice for 𝑇 . Use the best computed log likelihood score

to pick an approximately optimal value for 𝑇 , the number of topics.

6. Learn the lengths of the documents. Steps 1 - 4 set up the data and

learn the LDA parameters. This step is needed in addition to LDA in order

the learn the average lengths of documents, so that the model can generate

synthetic data.

For each topic 𝜑𝑗, define 𝑠𝑗 as a length parameter for topic 𝑗, interpreted

as the average length of a document weighted by its composition of topic 𝑗.

The LDA algorithm estimates the latent topic distributions per document

𝜃𝑚,𝑚 ∈ [𝑀 ]. We then estimate the parameter 𝑠𝑗 as

𝑠𝑗 =

∑︀𝑀
𝑚=1 𝑝(𝑗|𝜃𝑚) · |𝐷𝑚|∑︀𝑀

𝑚=1 𝑝(𝑗|𝜃𝑚)

where |𝐷| is the number of problems in document 𝐷.

7. Sample problems for a new document, given topic 𝑗. Sample a

document length 𝑙 uniformly from the range [
𝑠𝑗
2
,
3𝑠𝑗
2

]. For 𝑖 = 1, 2, ... 𝑙,

sample a problem from 𝑀𝑛(𝜃𝑗).

As a last step we specify how this model interacts with the event location model. For

training the full model, we perform the following steps.

1. Train the problem topic model by applying LDA as described.

2. For each document 𝐷𝑚, use the learned 𝜃𝑚 to identify the most significant topic

𝑗𝑚 by probability.

3. For each original sequence of event locations, replace the sets of consecutive

problem submissions (documents 𝐷𝑚) by a single submission event with prob-

lem group ID 𝑗𝑚.
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The simplification to represent a document by a single topic is demonstrated

to be reasonable by the data. When we compute for each document 𝐷𝑚 the

most significant topic 𝑗𝑚 by probability, the average probability of this most

significant topic is .92.

4. Train the event location model to learn the sequence of URL IDs and problem

group IDs.

The model makes the assumption that the 𝑡𝑜𝑝𝑖𝑐 𝐼𝐷 of the problems answered

is important to the time-series data. The particular 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 submitted are as-

sumed to be not important given their topic ID. Furthermore, the simplification

in step 3 is necessary because the event location model needs discrete elements

as input data - in this case, the problem topic ID.

To sample synthetic event location sequences, we

1. Use the event location model to generate the sequences of event locations and

topic IDs.

2. For each proble topic, use the problem topic model to sample problems according

to 𝜑𝑗 and 𝑠𝑗.

4.3 Model Results

As mentioned, we test our models on the fall 2012 offering of 6.002. For this course,

there was an average of 63 commonly solved problems per week that make up the

weekly problem corpus for the model. About 59% of students attempted at least one

problem, and among these students they averaged 15 submissions per week.

As described, from the event sequences in each week the algorithm composed

the groups of submissions, or documents to be learned by LDA. The LDA training

procedure typically found that between 8 and 15 problem topics per week was optimal.

Each topic on average consisted of 6 problems that had a probability at least .25 of

being sampled when the topic occurred. The log-likelihood per problem of the data
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using our model is shown in Figure 4-2, compared to the entropy of the problem

distribution. If 𝑛𝑝, 𝑝 = 1, 2, ...𝑃 are the counts of the submissions of problem 𝑝, and

𝑛 is the total count of all problem submissions in a particular week, the entropy is

defined as

𝑃∑︁
𝑗=1

𝑛𝑗

𝑛
· log

𝑛𝑗

𝑛
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Figure 4-2: Problem topic model performance. For all weeks, the model easily out-
performs a baseline model (entropy), on an average by 66%.

The scores suggest that the model performs extremely well in fitting the data. To

give an idea of what problem topics are learned, we present the following sample of

topics from the 15th week of the 6.002 course in Table 4.1.

In this sample, topics one and three correspond to one section of problems that are

submitted with the same button. But topics two and four show groups of problems

that some students submit together in one go without making an observation event

in between.
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Topic Problem Name Problem Part

1 S26E3_A_Hot_Processor 1

S26E3_A_Hot_Processor 2

S26E3_A_Hot_Processor 3

2 S24E3_Inverting_Amplifier_Generalized 1

S24E3_Inverting_Amplifier_Generalized 2

S24E4_Generalization_to_impedances 1

S24E5_Generalization_to_nonlinear_elements 2

3 S25E1_Positive_Feedback_Gain 1

S25E1_Positive_Feedback_Gain 2

S25E1_Positive_Feedback_Gain 3

4 S24E1_Summing_Amplifier 2

S24E1_Summing_Amplifier 3

S24E1_Summing_Amplifier 4

S24E2_Difference_Amplifier 3

S24E2_Difference_Amplifier 4

S24E2_Difference_Amplifier 5

S24E3_Inverting_Amplifier_Generalized 1

S24E3_Inverting_Amplifier_Generalized 2

Table 4.1: Sample topics from week 15. Note we only display four of the 12 topics
learned for that week, and only the main problems in each topic.
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Chapter 5

Generating Event Descriptors

Once the event identities are modeled, the remaining information of interest are the

durations for the observation events and the assessments, or grades, for the submission

events. An event description model learns how these (discrete) fields are distributed

across individual problems and URLs and across students. These fields measure or

estimate how long students spend on each URL, and how successfully they’ve learned

the material by problem.

Specifically, the data to be modeled here are the complete event sequences, where

one sequence 𝐸𝑗 = 𝑒1, 𝑒2, ...𝑒𝑘 has elements which contain all five fields described in

chapter 3. For each event, given the URL ID or problem ID, we want to predict the

durations and grades. Each duration is an integer number of seconds in the range

[0, 1440] and each grade is either correct or incorrect.

5.1 Model Considerations

Here are a number of targets to design the model for.

1. Week by week generative model. Again it is sensible to train a model for each

week, when different URLs are commonly viewed and different problems are

answered. A generative model is needed to sample new durations and grades in

addition to predicting them.
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2. Captures inter-resource variability. Some URLs have video lectures, others are

brief transition webpages. Similarly, there are harder and easier problems. The

model should learn the variances in how each URL or problem affects durations

and grades.

3. Captures inter-student variability. The model should learn the variances in

how long each student spends on viewing resources and how accurately each

student submits answers. The model should also be able learn for each student

a feature for durations and a feature for assessments, so that student durations

and grades can be characterized across weeks using the course level model.

5.2 Modeling Durations Spent on Course Resources

Training the model for labeling durations is outlined below. The algorithm runs on

the event sequences from one week at a time.

1. Assemble data. For all pairs of students 𝑖 = 1, 2, ...𝑆 and URL IDs 𝑢 =

1, 2, ...𝑈 , calculate

𝑑𝑖,𝑢 : the average time spent by student 𝑖 on URL 𝑢 (across all visits by that

student to that resource).

2. Estimate probability distributions of durations for each resource.

Let 𝑑|𝑢 denote the random variable of durations spent by students on URL 𝑢.

Then the cumulative (discrete) probability distribution function is estimated

from the observed data as

𝐹𝑑|𝑢(𝑑) =
1

𝑆

𝑆∑︁
𝑖=1

𝐼(𝑑𝑖,𝑢 ≤ 𝑑)

where 𝐼(·) is the indicator variable. A non-parametric approximation to

this distribution (for memory and runtime purposes) can be attained by

computing the deciles of the distribution.
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3. Compute duration percentiles. For a student 𝑖 and URL 𝑢 pair, find

the percentile value of the time spent by 𝑖 on resource 𝑢, relative to other

students. This percentile 𝑓𝑖,𝑢 is calculated as

𝑓𝑖,𝑢 = 𝐹𝑑|𝑢(𝑑𝑖,𝑢)

In practice, look up where 𝑑𝑖,𝑢 lies on the approximation for 𝑑|𝑢.

4. Model the distribution of percentiles by student. For a student 𝑖,

assemble the observed duration percentiles 𝑓𝑖,𝑢 values for all resources 𝑢.

Suppose that the random variable 𝑓 |𝑖 is drawn from a normal distribution

𝑓𝑖,𝑢 ∼ 𝑁(𝑟𝑖, 𝜎)

where 𝑟𝑖 is the mean of the distribution, a parameter specific to 𝑖. The

maximum likelihood estimate for 𝑟𝑖 is computed as

𝑟𝑖 =
1

|𝑈𝑖|
∑︁
𝑢∈𝑈𝑖

𝑓𝑖,𝑢

where 𝑈𝑖 is the set of URLs that student 𝑖 visited that week. 𝜎 is taken

as constant across all students, and is estimated as the average standard

deviation among 𝑓 |𝑖.

𝜎 =
1

𝑆

𝑆∑︁
𝑖=1

√︃
1

|𝑈𝑖|
∑︁
𝑢∈𝑈𝑖

(𝑓𝑖,𝑢 − 𝑟𝑖)2

5. Sample a duration for student 𝑖 on URL 𝑢. Given 𝑟𝑖, the percentile

of the duration for the event is sampled as

𝑓 ∼ 𝑁(𝑟𝑖, 𝜎)
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and the duration for the event is

𝐹−1
𝑑|𝑢(𝑓)

In this model, we aim to recognize the effects of both URL ID and student on

event duration. First it learns the cumulative probability distribution of durations as

𝐹𝑑|𝑢(𝑑) for URL 𝑢. Each student 𝑖 is assumed to view resources for time periods at a

similar percentile for each resource. For each URL 𝑢 the student visits, the duration

percentile 𝑓𝑖,𝑢 is assumed to be drawn from the normal distribution 𝑁(𝑟𝑖, 𝜎). Thus

his parameter 𝑟𝑖 ∈ [0, 1] describes how long he tends to view URLs relative to other

students. The duration is then 𝐹−1
𝑑|𝑢(𝑓𝑖,𝑢).

Once trained, the student parameters 𝑟𝑖 are given to the course level model, which

learns the distribution for these parameters in relation to the other low level param-

eters across weeks. To sample new labels, the event description model must be given

the resource ID 𝑢 (by the event ID model) and the student parameter 𝑟 (by the course

level model). To generate a label for each event, the description model samples the

duration percentile given 𝑟, looks up the distribution 𝐹𝑑|𝑢(𝑑), and computes the new

duration using the distribution and the desired percentile.

5.3 Modeling Assessments

The training procedure for the assessments model similarly computes the distribution

of submission results per problem and the average ranking of each student over his

submissions.

1. Assemble data. For all pairs of students 𝑖 = 1, 2, ...𝑆 and problem ids

𝑝 = 1, 2, ...𝑃 , calculate
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𝑐𝑖,𝑝 : whether 𝑖 got problem 𝑝 correct on any of his submissions (1 if yes else

0)

𝑎𝑖,𝑝 : the number of submission attempts by student 𝑖 on problem 𝑝

The estimated success rate 𝑠𝑖,𝑝 of student 𝑖 on problem 𝑝 is

𝑠𝑖,𝑝 =
𝑐𝑖,𝑝 + 1

𝑎𝑖,𝑝 + 2

which is a Bayesian estimate for the success to be explained later.

2. Estimate probability distributions of success rates for each prob-

lem. Let 𝑠|𝑝 denote the random variable of success rates of all students on

problem 𝑝. Then the cumulative probability distribution is estimated from

the observed data as

𝐹𝑠|𝑝(𝑠) =
1

𝑆

𝑆∑︁
𝑖=1

𝐼(𝑠𝑖,𝑝 ≤ 𝑠)

A non-parametric approximation to this distribution can again be attained

by computing the deciles of the distribution.

3. Compute success rate percentiles. For a student 𝑖 and problem 𝑝 pair,

find the percentile value of the success rate of 𝑖 relative to other students.

The relative ranking 𝑓𝑖,𝑝 is

𝑓𝑖,𝑝 = 𝐹𝑠|𝑝(𝑠𝑖,𝑝)

In practice, look up where 𝑠𝑖,𝑝 lies on the approximation for 𝑠|𝑝.

4. Model the distribution of percentiles by student. For a student

𝑖, assemble success rate percentiles 𝑓 |𝑖, the 𝑓𝑖,𝑝 values for all problems 𝑝.

Suppose they are drawn from a normal distribution. In particular,
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𝑓𝑖,𝑝 ∼ 𝑁(𝑔𝑖, 𝜎)

where 𝑔𝑖 is the mean of the distribution, a parameter specific to 𝑖. The

maximum likelihood estimate for 𝑔𝑖 is computed as

𝑔𝑖 =
1

|𝑃𝑖|
∑︁
𝑝∈𝑃𝑖

𝑓𝑖,𝑝

where 𝑃𝑖 is the set of problems that student 𝑖 answered that week. 𝜎 is

a constant across all students, and is estimated as the average standard

deviation among 𝑓 |𝑖.

𝜎 =
1

𝑆

𝑆∑︁
𝑖=1

√︃
1

|𝑃𝑖|
∑︁
𝑝∈𝑃𝑖

(𝑓𝑖,𝑝 − 𝑔𝑖)2

5. Sample a grade for student 𝑖 on problem 𝑝. Given 𝑔𝑖, the percentile

of the success rate for the event is sampled as

𝑓 ∼ 𝑁(𝑔𝑖, 𝜎)

and the success rate for the problem is

𝐹−1
𝑠|𝑝 (𝑓)

Finally, the problem submission is labeled correct with probability equal to

the success rate.

For modeling assessments, each problem 𝑝 has a cumulative probability distribu-

tion 𝑠|𝑝 over the success rates of students. A student that has a success rate 𝑠 of

solving a problem will solve the problem correctly on each attempt with probability

𝑠. Similar to the duration model, each student 𝑖 has a parameter 𝑔𝑖 ∈ [0, 1] that
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describes his relative accuracy at solving problems. For each problem he attempts

to solve, his success rate relative ranking 𝑓 is assumed to be drawn from the normal

distribution 𝑁(𝑔𝑖, 𝜎) for some constant 𝜎, and his success rate is 𝐹−1
𝑠|𝑝 (𝑓) . Then the

parameter 𝑔𝑖 can similarly be interpreted as the average percentile that the student

correctly answers questions at.

Learning the appropriate parameters for the assessment model is a more chal-

lenging task than for the durations because the true success rate 𝑟 for each student-

problem pair is not observed directly. The estimation for success rate 𝑠𝑖,𝑝 =
𝑐𝑖,𝑝+1

𝑎𝑖,𝑝+2

comes from the posterior expected value of a student’s success rate, given that the

success rate is a priori believed to be uniformly likely between 0 and 1. In fact this

prior distribution is supported by the training data, that the distribution of success

rates over student problem pairs appears quite close to uniform for most problems.

Just as with the duration model, the assessments model labels each student with

a parameter that is given to the course level model to learn the relationships between

this feature and other student features. In the synthetic data generation process, the

assessments model is asked to assign a grade given the problem 𝑝 (from the event

ID model) and the sampled student parameter 𝑔 (from the course level model). The

success rate percentile is sampled using 𝑔, and then the success rate is computed using

𝑠|𝑝.

5.4 Model Discussion

Note that in this model the descriptions (durations or grades) are not assumed to

be normally distributed per event ID. Instead, the model assumes that the “relative

ranking" of a description is normally distributed with respect to the student’s pa-

rameters. For each resource or problem, the description distributions are estimated

non-parametrically, as enough students have accessed these events to make this esti-

mation meaningful.

One further direction of research for modeling descriptions beyond this paper is

to analyze students’ tendencies for durations and grades over groups of webpages or
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problems. Since the parameters 𝑑 and 𝑔 applies for a student across all resources and

problems, the model assumes that durations and grades depend only on the student

and not on the particular resource or problem, relative to the overall population.

That is, students don’t spend a longer time viewing any particular group of resources

and don’t have more success on any group of problems, given individual parameters.

This might be an oversimplification, since some students might spend relatively longer

on certain topics or answer better on certain problems, according to his interests or

academic strengths.

It would be interesting to research how other factors affect how well students do on

particular problems or how long they spend on certain resources (for example, how

many observation events a student has or which other resources a student visits).

However, that may be a challenging problem because per week each student may not

visit enough resources or attempt enough submissions to yield useful information on

smaller sets of resources or problems.

5.5 Model Results

The model performs reasonably well when trained and tested on the 6.002 course in

fall of 2012. To gather experimental results, we train the models on each week of the

course, observe the distribution of the durations or grades per event, and compute

the errors between predicted durations or grades (the mean of the estimate normal)

and the actual fields. The following discusses what the duration and assessment fields

look like in the data and the fit of our model.

5.5.1 Durations

The average duration by resource is distributed according to the following figure.

Among resources visited by at least 500 students, “Static_Discipline_and_Boolean_Logic

/3/video/S4V3_Why_Digital" had the longest average duration with an average

of 577 seconds and “Overview/edx_introduction/3/problem/ex_practice" had the

shortest at 5 seconds.
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Figure 5-1: Distribution of average durations by resource. The distribution is right
skewed with the most common average duration of around 60 seconds.

Resource Name Duration (s)

Static_Discipline_and_Boolean_Logic/3/video/S4V3_Why_Digital 577

Incremental_Analysis/5/video/S7V5_Incremental_Method_Insight 540

Inside_the_Gate/5/video/S5V5_Switch_Model 522

Dependent_Sources_and_Amplifiers
/3/video/S8V3_Example_Dependent_Source_Circuit

508

Inside_the_Gate/19/video/S5V16_Inverters_Based_on_SR_Model 494

Table 5.1: Resources with longest average duration

Resource Name Duration (s)

Overview/edx_introduction/3/problem/ex_practice_limited_checks 5

Week_2_Tutorials/4 7

Week_2_Tutorials/6 7

Overview/edx_introduction/3/problem/ex_practice_limited_checks_3 8

Circuits_with_Nonlinear_Elements/17 9

Table 5.2: Resources with shortest average duration
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We compare the performance of the description model at predicting durations

compared to baseline predictors that only consider the identity of the URL or student.

The two baseline predictors estimate the mean duration for each resource or for each

student. The metric to evaluate the predictors are mean squared error (MSE) and

mean absolute error (MAE).

Predictor MSE MAE

By Student 318 144

By Resource 301 119

Description Model 267 89

Table 5.3: Duration model performance. In both metrics, our description model beats
the baseline (smaller errors are better).

5.5.2 Assessments

We similarly present the results from the assessments model. Problem difficulties

(success rates) are displayed below, with “H10P3_An_L_Network/6/1/" being the

most challenging problem attempted by at least 500 students at 2.0% accuracy across

all submissions and “Q3Final2012/2/1/" the easiest problem at 97.1% accuracy.

Problem Name Problem Part Accuracy

H10P3_An_L_Network 5 2.0%

H10P3_An_L_Network 6 2.1%

H5P1_Zero-Offset_Amplifier 3 2.9%

H8P3_Memory 5 3.1%

H10P2_New_Impedances 7 3.3%

Table 5.4: Most difficult problems

The distribution of student assessment parameters is shown below in Figure 5-

3. This distribution might be expected to be approximately uniform, because the
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Figure 5-2: Distribution of grades by problem. Average grades are fairly well spread
out between 0 and 1, with an overall average a little below .5.

Problem Name Problem Part Accuracy

Q3Final2012 1 97.1%

Sample_Numeric_Problem 1 96.5%

Sample_Algebraic_Problem 1 92.5%

S2E1_Circuit_Topology 1 92.4%

H7P1_Series_and_Parallel_Inductors 1 92.3%

Table 5.5: Least difficult problems

interpretation of the parameter is the typical ranking of each student by problem.

However, it turns out that more students consistently answer questions at a lower

ranking than at a higher ranking, leading to average performances that have fewer

top students.

Finally, the assessment model also compares well to baseline predictors that only

predict the mean grade for each problem or for mean grade for each student. The

log-likelihood metrics are calculated from the probability of seeing the grade per

submission attempt, according to the predicted success rate for that student on that

problem. The comparison of the assessment with the baseline predictors is shown in

Table 5.6.
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Figure 5-3: Distribution of grades by student. The distribution is somewhat right
skewed, with more students having a low grade parameter.

Predictor Log-Likelihood Cross Validation

By Student -.41 -.42

By Problem -.43 -.43

Description Model -.36 -.37

Table 5.6: Assessment model performance. Our model beats the baseline in both
metrics as expected.
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Chapter 6

Event Location Model

(Latent-Explicit Markov Model)

6.1 Model Motivations

Having detailed how we handle issues such as grouping problems and describing

events, we turn to the core problem of modeling the sequences of event locations,

the URL IDs (the 𝑢𝑖𝑑) and the problem groups (groups of 𝑝𝑖𝑑). Intuitively, student

click-stream data contains both local and global properties. At a local level, students

typically transition from one event to another by clicking on the available links, or by

interacting with different components of a webpage in a certain order. This behavior

is precisely described by a Markov model„ which are commonly used in web-based

systems.

On a global level, student behavior is affected by his own interests, background,

goals, and previous interaction with the course. That is, students tend to focus on

certain groups of links; for example, one student might read a lot of forum posts,

another may frequently watch video lectures, while yet another may read lectures

notes and make many problem submissions. So there exist factors that determine the

event locations at a higher level.

Once again, we can draw a parallel between the student event data and text

documents. Whereas documents contain sequences of words, student click-stream
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Figure 6-1: Markov model directed graph

data contain sequences of event locations. Documents also have similar local and

global properties, with local word patterns largely determined by grammar and phrase

sequences, and global word patterns influenced by what topic(s) the document is

written about. It turns out that two major concepts from document modeling apply

to this data - n-grams and topic modeling.

N-grams in documents provide a statistical count of observed short sequences, and

in fact 2-gram models are essentially Markov models. For click stream data, 2-grams,

or Markov models, seem appropriate as a student’s next action depends largely on

what resource on the website he previously observed. A directed graphical diagram

for Markov models can be drawn as in Figure 6-1.

Topic modeling (for example by LSA, LDA, or NMF), the second major idea in

document modeling, reveals groups of words that often appear together, or in the case

of student data, resources or problems that appear together. However, topic model-

ing usually assumes a bag-of-words model where the order of the words is ignored.

Conversely, event sequences provide an order of event locations that can aid in the

discovery of topics, as students tend to observe one topic at a time before switching

to another. A new approach to topic modeling for our data could be effective.

Hence we propose using a Hidden Markov Model (HMM) to capture the topic

transitions. We introduce hidden states in the graphical model, such that each hidden

state represents a topic of events, as shown in Figure 6-2.

The emission probabilities at each state correspond to the probabilities of the

associated problem topic. Instead of topics being drawn independently for each new

word or event, the next topic is drawn from a distribution or topic, conditional upon

the previous topic (in general, more likely to stay the same topic). In addition, the
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Figure 6-2: Proposed directed graphical model

topic the student views next (may be the same as the current) depends on both the

previous topic and which event location he is currently viewing.

Under this interpretation, a student, depending on their topic preferences, views

topics in groups, and the exact event locations they select depend on both the topic

and the previous event location. To relate back to the original works on topic model-

ing, we can use an existing topic modeling technique to provide a good first estimate

for the event topics, or the hidden states in the HMM. Then the HMM training

procedure can refine the topic distributions.

It turns out that this merged Markov model-HMM structure we investigate is only

slightly better than a simple Markov model. However, another major contribution of

the merged model is that it can infer a distribution over the hidden states for each

event sequence. This provides valuable feature descriptions for each sequence that

makes week by week continuations of sequences coherent.

6.2 Model Definition

A fully descriptive model of the event location sequences combines a Markov model

with an HMM. We call this model, the key new construct of the thesis, a Latent-

Explicit Markov Model (LEMM). It is a variant in the family of Markov models

where the output depends on both a latent factor (the hidden state) and an explicit

factor (the previous observed output). The data modeled in this section is the set of
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student sequences where sequence 𝑒1, 𝑒2, ...𝑒𝑛 is made up of event locations. The set

of event locations 𝐿 is the union of the set of URL IDs, the set of problem topic IDs,

and the singleton set of the session break event. The LEMM is a directed graphical

model defined by the following components:

1. 𝐿, set of output event locations

2. 𝑆, set of hidden states or topics

3. 𝑇 , a transition function. 𝑇 (𝑠𝑖, 𝑒𝑖+1, 𝑠𝑖+1) = 𝑃𝑟[𝑠𝑖+1|𝑠𝑖, 𝑒𝑖+1)]

4. 𝑂, an output function. 𝑂(𝑠𝑖, 𝑒𝑖, 𝑒𝑖+1) = 𝑃𝑟[𝑒𝑖+1|𝑠𝑖, 𝑒𝑖)]

5. 𝑃0, the initial joint state, event location distribution over 𝑆 × 𝐿

The hidden states in 𝑆 correspond to the topics or sets of resources / problem

groups that tend to be observed together.

An instance of a student sequence is initialized with the first output event and

the first hidden topic. The next event is generated from the current event and hidden

topic, and then the next hidden topic is generated from the new event and current

topic. The process repeats to produce the entire event sequence. Mathematically, the

probability of a sequence of events and states is given by

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛, 𝑠1, 𝑠2, ...𝑠𝑛]

= 𝑃𝑟[𝑒1, 𝑠1] ·
𝑛∏︁

𝑖=2

𝑃𝑟[𝑒𝑖, 𝑠𝑖|𝑒𝑖−1, 𝑠𝑖−1]

= 𝑃𝑟[𝑒1, 𝑠1] ·
𝑛∏︁

𝑖=2

𝑃𝑟[𝑒𝑖|𝑒𝑖−1, 𝑠𝑖−1] · 𝑃𝑟[𝑠𝑖|𝑒𝑖, 𝑠𝑖−1]

= 𝑃0(𝑒1, 𝑠1) ·
𝑛∏︁

𝑖=2

𝑂(𝑠𝑖−1, 𝑒𝑖−1, 𝑒𝑖) · 𝑇 (𝑠𝑖−1, 𝑒𝑖, 𝑠𝑖)

where we use the definition of 𝑂 and 𝑇 as the output and transition functions,
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respectively. The probability of the sequence itself is

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛] =
∑︁

𝑠1,𝑠2,...𝑠𝑛

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛, 𝑠1, 𝑠2, ...𝑠𝑛]

taking the sum over all possibilities of the hidden states. This directed graphical

model is similar to that of an HMM, but now the output emissions and state transi-

tions are dependent on both the most recent emission and state. This is justified by

the Markov principle that the next output is generated strongly conditioned on the

last output.

The transition and output functions are structured to reduce the number of pa-

rameters, by decomposing them into independent functions over the current state and

over the current event. That is, we assume

𝑇 (𝑠𝑖, 𝑒𝑖+1, 𝑠𝑖+1) ∼ 𝑇1(𝑠𝑖, 𝑠𝑖+1) · 𝑇2(𝑒𝑖+1, 𝑠𝑖+1)

𝑂(𝑠𝑖, 𝑒𝑖, 𝑒𝑖+1) ∼ 𝑂1(𝑠𝑖, 𝑒𝑖+1) ·𝑂2(𝑒𝑖, 𝑒𝑖+1)

Further, the functions 𝑇1 and 𝑂1 map to exactly the HMM transition and output

functions, which specify the distribution of transitions to 𝑠1 and the emissions of 𝑒1

from a given state 𝑠0, for all combinations of 𝑠0, 𝑠1, and 𝑒1. They can be any joint

discrete probability functions over the spaces 𝑆 × 𝑆 and 𝑆 × 𝐿 respectively.

The function 𝑂2 is exactly the Markov transition function between events, cal-

culated as the ratio of the number of transitions from 𝑒0 to 𝑒1 to the number of

appearances of 𝑒0 for all pairs 𝑒0, 𝑒1. Lastly, the function 𝑇2 outputs the conditional

probability of transitioning to 𝑠0 given event 𝑒0. By Bayes rule, we derive

𝑃𝑟[𝑠0|𝑒0] =
𝑃𝑟[𝑠0] · 𝑃𝑟[𝑒0|𝑠0]

𝑃𝑟[𝑒0]

∼ 𝑃𝑟[𝑒0|𝑠0)

= 𝑂1(𝑠0, 𝑒0)
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In the second step we assume no prior knowledge of states. Therefore, learning

𝑂1 immediately yields 𝑇2.

6.3 Model Training

The Latent-Explicit Markov Model is constructed so that it can be trained similarly

as an HMM, via an Expectation Maximization (EM) algorithm. There are four sets

of parameters to train for - 𝑇1, 𝑂1, 𝑇2, 𝑂2, given a set of training sequences

{𝐸𝑘 = [𝑒𝑘,1, 𝑒𝑘,2, ...𝑒𝑘,𝑛𝑘
]|𝑘 = 1, 2, ...𝑚}

In this notation there are 𝑚 sequences, one per student for that week. The 𝑘𝑡ℎ

sequence has 𝑛𝑘 events and the 𝑖𝑡ℎ event of sequence 𝑘 is 𝑒𝑘,𝑖.

𝑂2 is learned by counting transitions just as with a Markov model. 𝑇1, 𝑂1 (and

therefore 𝑇2) are optimized using the EM algorithm as with an HMM. The algorithm

estimates the distribution of hidden states, 𝑃𝑟[𝑆𝑘,𝑖 = 𝑠|𝐸𝑘], and uses these to find

maximum likelihood estimators for the transition function 𝑇1 and emission function

𝑂1. Finally, 𝑇2 is easy to deduce given 𝑂1.

As with the other models, the LEMM is trained on a week-by-week basis.

6.3.1 Markov Training

A training algorithm should first estimate the Markov component parameters, as

these don’t change during the HMM training process. Let 𝐶(𝑒0) denote the number

of times event 𝑒0 appears in the set of sequences {𝐸𝑘} and 𝐶(𝑒0, 𝑒1) denote the number

of times the consecutive pair 𝑒0, 𝑒1 appears in {𝐸𝑘}, for any pair of event locations

𝑒0, 𝑒1. Then a smoothed Markov function would be

𝑂2(𝑒0, 𝑒1) =
𝐶(𝑒0, 𝑒1) + 𝛾

𝐶(𝑒0) + 𝛾 · |𝐿|
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where 𝛾 is some small constant. This Markov formulation turns out to overly

favor the most common transitions among the student sequences. That is, sequences

generated by this model would generally output events that are common to many

students. However, in reality the majority of students investigate some less common

events according to his own preferences. Hence we use a modified Markov model that

redistributes transition probabilities toward less popular events, to better capture

each student’s diversity of events. The modified output function is

𝑂2(𝑒0, 𝑒1) =

𝐶(𝑒0,𝑒1)
𝐶(𝑒0)

+ 𝛾[︁∑︀
𝑒∈𝐿

𝐶(𝑒0,𝑒)
𝐶(𝑒)

]︁
+ 𝛾 · |𝐿|

∼ 𝐶(𝑒0, 𝑒1)

𝐶(𝑒0)
+ 𝛾

The value for 𝛾 is chosen by optimizing for log-likelihood on a held-out test set of

data.

6.3.2 HMM Training

Next, we detail an EM algorithm to learn the parameters for the overall model. The

HMM training outline is as follows, which is essentially the same as for the standard

HMM. Only the exact form of each step differs in implementation. For simplicity, we

consider from this point on only a single sequence 𝑒1, 𝑒2, ...𝑒𝑛 as the given data, but

the process applies naturally to multiple sequences.

1. Initialize HMM parameters 𝑇1 : 𝑆×𝑆 → 𝑅 and 𝑂1 : 𝑆×𝐿 → 𝑅 using LDA,

as described below.

2. (E Step) Compute the probability distributions for the hidden states

𝑃𝑟[𝑠𝑖 = 𝑠|𝑇1, 𝑂1]
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for 𝑠 ∈ 𝑆, 𝑖 = 1, 2, ...𝑛 (using a forward-backward algorithm).

3. (M Step) Recompute the parameters 𝑇1 and 𝑂1 given the hidden state prob-

ability distributions to optimize the log-likelihood

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛] =
∑︁

𝑠1,𝑠2,...𝑠𝑛

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛, 𝑠1, 𝑠2, ...𝑠𝑛]

4. If the new parameters are “close" to the previous parameters, stop. Else go

back to step 2.

Each step is explained in detail below.

Initialization of HMM parameters.

As mentioned, the hidden states for the model correspond to the topics that

students might be interested in. Therefore, training an LDA model on the sequences

provides a good estimate of the topics or hidden states in the model. Specifically,

we take each sequence to be a document, and the event locations to be the words in

the LDA model. Learning the topics over the event locations, given all of the events

sequences, yields the initial hidden state emissions for the HMM. This provides a

reasonable first guess for the hidden states in the model, and makes it likely that

the HMM training will converge to a solution that agrees somewhat with the LDA

inference of the topic contents.

E Step.

In the estimation step, the distribution of hidden states for each step is deduced

as the following modification to the forward-backward algorithm. Let

𝛼[𝑖, 𝑠] = 𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑡, 𝑆𝑖 = 𝑠|𝜃]

for all states 𝑠 where 𝜃 denotes the estimated parameters so far. The algorithm

calculates all values of 𝛼 using the “forward" algorithm or a dynamic programming

algorithm. We initialize for all 𝑠

70



𝛼[1, 𝑠] = 𝑃0(𝑠)

Then, for 𝑖 = 2, 3, ...𝑛 and all 𝑠 the values for 𝛼 are calculated as

𝛼[𝑖, 𝑠] =
∑︁
𝑠′

𝛼[𝑖− 1, 𝑠′] ·𝑂(𝑠′, 𝑒𝑖−1, 𝑒𝑖) · 𝑇 (𝑠′, 𝑒𝑖, 𝑠)

which is a sum over all choices of the previous state 𝑠′. Similarly, let

𝛽[𝑖, 𝑠] = 𝑃𝑟[𝑒𝑖+1, 𝑒𝑖+2, ...𝑒𝑛|𝑆𝑖 = 𝑠, 𝜃]

All values for 𝛽 are calculated by initializing values for 𝛽[𝑛, 𝑠] and iterating as

𝛽[𝑛, 𝑠] = 1

𝛽[𝑖, 𝑠] =
∑︁
𝑠′

𝛽[𝑖 + 1, 𝑠′] ·𝑂(𝑠, 𝑒𝑖, 𝑒𝑖+1) · 𝑇 (𝑠, 𝑒𝑖+1, 𝑠
′)

for all 𝑠, and this time summing over possible choices of the next state 𝑠′. Both

sequences of calculations take 𝑂(𝑛 · |𝑆|2) runtime.

The probability of any sequence is given by

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛|𝜃] =
∑︁
𝑠

𝛼[𝑛, 𝑠]

Finally, the probability of having state 𝑠 at time 𝑖 is

𝑃𝑟[𝑆𝑖 = 𝑠|𝑒1, 𝑒2, ...𝑒𝑛, 𝜃] =
𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛, 𝑆𝑖 = 𝑠|𝜃]

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛|𝜃]

=
𝛼[𝑖, 𝑠] · 𝛽[𝑖, 𝑠]∑︀

𝑠 𝛼[𝑛, 𝑠]

M Step.

That summarizes the estimation procedure. Given these estimates, the maximiza-

tion step optimizes the parameters 𝑇1 and 𝑂1 by selecting the maximum likelihood
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values. As with the standard HMM training algorithm, the transition between states

is considered to be a Markov model. Therefore, the best estimate for the probability

of transition from state 𝑠0 to 𝑠1 is estimate for all pairs 𝑠0, 𝑠1 as

𝑇1(𝑠0, 𝑠1) =
count(𝑠0, 𝑠1)
count(𝑠0)

where count(𝑠0, 𝑠1) is the (expected) count of consecutive appearances of states 𝑠0

and 𝑠1 in the sequence, and count(𝑠0) is the (expected) count of states 𝑠0. Specifically,

count(𝑠0, 𝑠1) =
𝑛−1∑︁
𝑖=1

𝑃𝑟[𝑆𝑖 = 𝑠1|𝑆𝑖−1 = 𝑠0]

=
𝑛−1∑︁
𝑖=1

𝛼[𝑖− 1, 𝑠0] ·𝑂(𝑠0, 𝑒𝑖−1, 𝑒𝑖) · 𝑇 (𝑠0, 𝑒𝑖, 𝑠1) · 𝛽[𝑡, 𝑠1]∑︀
𝑠 𝛼[𝑛, 𝑠]

count(𝑠0) =
𝑛∑︁

𝑖=1

𝑃𝑟[𝑆𝑖 = 𝑠0]

=
𝑛∑︁

𝑖=1

𝛼[𝑡, 𝑠0] · 𝛽[𝑡, 𝑠0]∑︀
𝑠 𝛼[𝑛, 𝑠]

Finally, to estimate the output function 𝑂1, we want to find the MLE of 𝑂1 for

the overall probability of observing the data

log𝑃𝑟[𝑒1, 𝑒2, ...] =
𝑛∑︁

𝑖=1

∑︁
𝑠∈𝑆

Pr[𝑠𝑖 = 𝑠] · log

[︂
𝑂1(𝑠, 𝑒𝑖+1) ·𝑂2(𝑒𝑖, 𝑒𝑖+1)∑︀

𝑒∈𝐸 𝑂1(𝑠, 𝑒) ·𝑂2(𝑒𝑖, 𝑒)

]︂
given 𝑂2 as fixed. For each initial state 𝑠, the target function is differentiable

analytically with respect to the values of 𝑂1(𝑠, 𝑒) for all pairs of 𝑠 and 𝑒. Hence

it’s feasible to use gradient descent to select the parameters for 𝑂1 to optimize

𝑃𝑟[𝑒1, 𝑒2, ...|𝑠1, 𝑠2, ...].

𝑂1 represents the updated estimation of what the hidden topics over the events are.

Altogether, the EM algorithm alternates estimating the hidden states and optimizing

parameters until converges, at which point it has learned the best LEMM.
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6.4 Model Results

We test for the accuracy of the model again on the same 6.002 course. Our metric for

evaluating the model is average log-likelihood per event. Given a trained model and

test data, we can compute the probability of observing the data as

𝑃𝑟[𝑒1, 𝑒2, ...𝑒𝑛] =
∑︁
𝑠

𝛼[𝑛, 𝑠]

as detailed in the previous section. We compute the average log-likelihood per

event by dividing the sum of the log-likelihood values over all event sequences by the

total number of events across all sequences. This provides an intuitively understand-

able metric for how well the model fits the data on a event by event basis. When

we refer to cross validation log-likelihood scores, we mean 5-fold cross validation. To

compute this metric, we randomly partition the data into five sections. For each

of the five sections, we train our model on the other four sections and test for the

log-likelihood score on the fifth, and take average score over the five sections.

The following chart depicts the learning curve for training the LEMM, that is

the cross validation log likelihood score of the model, when given certain numbers of

training samples.

Furthermore, we calculate the weekly cross validation scores for the log-likelihood

fit of the data for the LEMM, in comparison to the simpler Markov chain or HMM

predictors. The scores in Figure 6-4 depict a week by week comparison between the

LEMM and the Markov model.

We omit showing the comparison to HMMs because they perform much worse

than either the LEMM or the Markov model. For EdX students, our model improves

upon these scores by 6.8% over the Markov model, and by 90% over the HMM. From

the cross validation scores, our model is a better fit for the data than either of the

models alone. As an interpretation of the actual per-event log-likelihood values, the

model assigns an (geometric) average of 𝑒−2.13 ≈ .12 probability for each event. While

this seems reasonable, Figure 6-5 puts the distribution of the next-event predictions

in perspective.
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Figure 6-3: LEMM learning curve. The training makes rapid progress under about
500 training samples and approximately reaches a plateau near 1200 samples.
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Figure 6-4: Comparison of LEMM and Markov models. The LEMM performs better
in every week except for the first, although usually by only a small amount.

Over the course of all the event sequences, most events are easily predictable, but

there is a definite tail for surprise events that skew the mean scores higher than the

median.
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Figure 6-5: Distribution of LEMM log likelihoods by event. Most events are easy to
predict, but there is a clear tail of hard-to-predict events.

6.5 Training Considerations

A number of issues in the training step arose when writing the software. Here we

discuss some of the details of how we implemented the algorithm and the reasons

behind the design choices.

Initializing hidden state transitions. Since the hypothesis is that students tend

to stay on the same topic, the state transitions are initialized such that each

state transition back to state with some probability 𝜌 and to all other states

with equal probability. We choose 𝜌 = .8.

Selecting Markov smoothing constant 𝛾. We tested various levels of 𝛾 using

cross validation, and found that 𝛾 = .0001 is approximately optimal.

Learning initial hidden topics. We considered several topic learning approaches,

such as training LDA or LSA models treating sequences as documents, or clus-
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tering resources based upon their URL pathname. Although they perform rea-

sonably similarly, LDA proved as least as good as the others and sufficiently

fast.

Selecting number of hidden topics. Again we tested several values for the

number of hidden topics, between 5 and 30, and found that 10 topics was

generally effective each week.

Caching probabilities for faster runtime. A naive implementation of the algo-

rithm required a very long time to run. We optimized the training process by

precomputing all probabilities

𝑇 (𝑠0, 𝑒1, 𝑠1) ∀𝑠0, 𝑒1, 𝑠1

𝑂(𝑠0, 𝑒1, 𝑒1) ∀𝑠0, 𝑒0, 𝑒1

during each iteration of the EM algorithm, before the hidden state estimation

step. Computing each value of 𝑇 requires iterating over all possible next states,

taking 𝑂(|𝑆|) time. Computing each value of 𝑂 requires iterating over all pos-

sible next events, taking 𝑂(|𝐿|) time.

Therefore, computing all the of the probabilities during the E step would require

𝑂(𝑁 · |𝑆|2 · (|𝑆|+ |𝐿|)) time, where 𝑁 is the total number of events in all of the

student sequences. Precomputing the 𝑇 and 𝑂 values takes 𝑂(|𝑆|2 · |𝐿|) and

𝑂(|𝑆| · |𝐿|2) time, for a total runtime of 𝑂(𝑁 · |𝑆|2 + |𝑆|2 · |𝐿| + |𝑆| · |𝐿|2).

As 𝑁 ∼ 106, |𝑆| ∼ 101, |𝐿| ∼ 103, the runtime for the cached version is mostly

dominated by the first term. This term is dramatically less than the runtime

for the naive implementation.

6.6 Topic Features

As previously mentioned, the LEMM learns particular features for each sequence that

can be useful for the course level model. In the training procedure for an LEMM,
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the forward-backward algorithm infers for each sequence the probability distribution

over the set of hidden states for each event 𝑃𝑟[𝑆𝑖 = 𝑠], 𝑖 = 1, 2, ... 𝑛, 𝑠 ∈ 𝑆. Over

the entire sequence, the total counts of the hidden states or topics 𝑓𝑠 are the features

and are computed as

𝑓𝑠 =
𝑛∑︁

𝑖=1

𝑃𝑟[𝑆𝑖 = 𝑠]

The loose interpretation of the total counts is how inclined each student is to

visit resources or answer problems belonging to each hidden topic. In that light, our

LEMM is also an algorithm for learning topics over events that utilizes the time-series

structure, unlike traditional topic modeling.

In addition to being essential to training the parameters of the LEMM, the distri-

bution of hidden topics are useful features for the course level model to capture topic

trends across week by week sequences, and can also separately be used to improve

dropout predictions. Learning these features for students makes the LEMM especially

valuable, beyond the small improvement in log-likelihood over Markov models. The

course level model learns the distribution of these topics week by week, and speci-

fies in the data generation process the hidden state distribution for each synthetic

student.

6.7 Mixture of Latent-Explicit Markov Models

6.7.1 Model Description and Training

The LEMM is successful at explaining how students transition from event to event.

However, we hypothesize that students differ from one another enough that their

behavior might be better described by multiple LEMMs. Students may differ in

the topics that they pursue or in their direct link to link transition tendencies. A

mixture of LEMMs is a collection of LEMMs that describe disjoint subsets of the

student sequences. For example, the sequences {𝐸𝑘} can be partitioned into 𝑔 clus-

ters 𝐶1, 𝐶2, ...𝐶𝑔 and then a LEMM can be trained on each cluster of sequences. This

77



would enable students to be grouped with others with similar behavior and charac-

teristics, and provide a more accurate and fine-grained model.

The clustering procedure works similarly to other mixture models, for example a

mixture of Gaussians. From an initial clustering, the algorithm first trains a LEMM

on each cluster. Then it reestimates the (soft) membership of each sequence to clus-

ters, based upon the log-likelihood scores assigned by each LEMM to the sequence.

The process is carried out until the clusters converge. This training method is an-

other instance of an EM algorithm. We describe the algorithm with the following

pseudocode.

1. Randomly initialize the membership matrix M, where 𝑀𝑘,𝑗 =

𝑃𝑟[𝐸𝑘 belongs to cluster 𝑗].

2. For each 𝑗 = 1, 2, ...𝑔, train 𝐿𝐸𝑀𝑀𝑗 for cluster 𝑗 where sequences 𝑘 are

weighted proportional to 𝑀𝑘,𝑗.

3. Calculate for each 𝑘, 𝑗 the probabilities 𝑃𝑟[𝐸𝑘|𝐿𝐸𝑀𝑀𝑗]. Set memberships

𝑀𝑘,𝑗 =
𝑃𝑟[𝐸𝑘|𝐿𝐸𝑀𝑀𝑗]∑︀
𝑗′ 𝑃𝑟[𝐸𝑘|𝐿𝐸𝑀𝑀𝑗′ ]

4. Repeat until 𝑀 converges.

In this formulation, there a few different ways we can choose to share some pa-

rameters across the different LEMM mixtures. The two sets of parameters that can

be shared are the topics (states) and the Markov model.

To make topics global, and not specific to individual mixtures, we can reestimate

the topic contents only once per iteration. The topics are fixed and not reestimated

during the individual LEMM training, and so the resulting mixture of LEMMs will

share a single set of topics or hidden states. This has the nice interpretation that

there is a single set of topics across the events in the course, and the clusters differ
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in their distribution and transitions over the topics.

Similarly, it is possible to estimate the Markov model only once using all of the

student sequences, and not for each cluster of sequences. This supposes that student

transitions are the same across clusters given the topics they look for.

Making either set of parameters (topics or Markov model) global reduces the

number of parameters in the mixture model and increases stability at the possible

expense of losing individual behavior. Note that the two components can be treated

as global or individual to clusters independent of each other. For example, in the

formulation where both topics and transition behavior are deemed global parameters,

the clusters differ only in their distributions over the hidden states or topics.

6.7.2 Model Results

With many more parameters than the single LEMM, the LEMM mixture tended to

perform better by log-likelihood fit on the training data. Typically, around 8 - 12

mixtures of students were appropriate per week in the course. However, the likelihood

results on a held-out test set were more inconclusive. With cross validation scores

that are quite similar to those from the single LEMM, the mixture model does not

appear to fit the data much better. Table 6.1 compares the four possible LEMM

mixtures by likelihood fit on both the training and test data.

Model Global Params LLH Per Event Cross Validation
Per Event

Single LEMM NA -2.07 -2.13

LEMM Mixture Topics, Markov -1.95 -2.08

LEMM Mixture Topics -1.93 -2.10

LEMM Mixture Markov -1.89 -2.13

LEMM Mixture None -1.88 -2.12

Table 6.1: LEMM mixture performance. The mixtures have a significantly better
log-likelihood score than the single LEMM, with better scores for variants with more
parameters. However all of the models perform similarly on held-out test data.
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In practice, it may be more reasonable to use a single LEMM due to simplicity

and a much faster training procedure. Training a single LEMM is already expensive

both in runtime (approximately 3 hours per week’s data) and in RAM (approximately

4 GB). Implementing a feasibly fast LEMM mixture model required leveraging one

core per mixture, running in parallel. We used an Amazon EC2 machine with 16

cores and 64 GB of RAM. Even with these configurations, the LEMM Mixture model

still takes on the order of 15 hours to train on each week’s data, as each iteration of

the EM algorithm requires retraining an LEMM.
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Chapter 7

Course Level Model

Recall that some of the week level models learned particular features about each

student in the data each week. Additionally, it is easy to compute some simple

features about each student’s sequence to help describe his activity for the week. The

simple features we choose characterize the level of engagement for each student in

three different ways: the number of events he had, his number of distinct sessions,

and the number of submissions he made. The full set of feature vectors for each

student in one week is outlined in Table 7.1.

Feature Category Directly
Observable

From LEMM From Event Desc
Model

Feature Names Number of events Hidden state 1
count

Duration
parameter 𝑟

Number of
submissions

. . . Assessment
parameter 𝑔

Number of sessions Hidden state 𝑆
count

Table 7.1: Student features, computed for each week

The course level model learns how these feature vectors transition from week to

week for most students. This model provides the backbone of the broader patterns

and trends in the student data, such as which students tend to drop out or the
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Figure 7-1: Concatenated student feature vectors

trajectories of how well different types of students do in the course.

The data the model is trained over is the set of full feature vectors that are the

concatenation of each student’s weekly feature vectors. This full feature vector has

size 𝑊 · 𝐹 where 𝑊 is the number of weeks in the course and 𝐹 is the number

of features compiled about the student’s activity each week. The goal is to learn

a probability distribution over these high-dimensional vectors, which would mean

discovering the common types of students and their paths as their navigate through

the course.

7.1 Model Definition

We fit a Gaussian Mixture Model on the set of the normalized full feature vectors.

To normalize the input vectors, we subtract from each vector the global mean and

then divide each component by the component-wise standard deviations.

We choose this model because it is a widely established model for unsupervised

learning. It is able to learn a distribution of data points when they are hypothesized

to come from different clusters (in this case, different types of students).

With 𝑀 mixtures, the model parameters are

{𝜇𝑗,Σ𝑗, 𝑤𝑗}, 𝑗 = 1, 2, ...𝑀

Each mixture is defined by the mixture mean 𝜇𝑗, covariance matrix Σ𝑗, and weight
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𝑤𝑗. The likelihood of observing a data point 𝑥 from this mixture model would then

be

𝑀∑︁
𝑗=1

𝑤𝑗 ·𝑁(𝑥;𝜇𝑗,Σ𝑗)

The standard training procedure for a Gaussian Mixture model is an EM algo-

rithm, that alternately estimates which cluster each data point belongs to given a

guess for the model parameters, and optimizes the parameters given the estimate

for cluster memberships. The number of mixtures 𝑀 is chosen based on the Bayes

Information Criterion (BIC) of the model fit.

Each Gaussian mixture can be interpreted as one group or type of student, with

the means corresponding to the week by week average student. This model makes

the assumption that the distributions of the features by week are approximately

multivariate normal distributions in each cluster, which is generally reasonable.

One spot where the true distribution deviates from this assumption is that for

the features “number of events", “number of sessions", and “number of submissions",

there is a high density of students with value of 0 at these features. These 0 values

are in fact important to the data because they indicate when students stop being

involved in the course or stop trying to solve problems. A mixture of Gaussians when

learned on this distribution will still generate a solid mass of students with 0 values

in this features when negative feature values get rounded up to 0. However, a more

sophisticated training algorithm to handle these edge values could be used and be

more effective.

7.2 Application of Model

We train and test our model on same 6.002 course in the fall of 2012, which took

place over approximately 16 weeks. Using 10 hidden topic features learned by the

LEMM, there were 240 features in the vector space. Of the approximately 30,000

students who viewed at least 10 webpages, 20 mixtures of students were empirically
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appropriate according to the BIC.

Figure 7-2 gives some idea of the general activity of the students in the course,

by clusters. The largest 5 clusters of students are shown, when the Gaussian mixture

model is trained with 10 clusters. While one cluster participated during the entire

course, the other clusters in the data set only looked more casually at the course

material for approximately 2, 3, 7, and 10 weeks respectively before dropping out.
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Figure 7-2: Clusters of student activity by week. Of these five largest clusters of
students, one group participates through the whole course, and the rest drop out at
differnt weeks.

Another look at the students can be demonstrated by looking at the relationships

between features of the clusters, instead of only considering number of events. After

model training, the following plots show the distributions of the cluster means. The

plots are two-dimensional slices of the means, with each of the shown dimensions

being an aggregate value over all of the weeks.

The graphs indicate positive relationships between the a cluster’s number of events

and number of submissions, and between the number of events and the assessment

parameter. Neither of these trends are unexpected.

One easy-to-grasp measure of fit for the model is the average distance each feature
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Figure 7-3: 2-D slices of cluster means. The more active clusters (as measured by
more events) tend to make more submissions and get better grades.

vector to the nearest cluster mean. In units of standard deviation per feature, the

average distance over all students to the nearest cluster mean was 9.09, or a distance

of .038 per feature. Among the students who attempted at least 100 submissions,

the average distances were 18.4 and .977 per feature. Students who have little overall

activity tend to be close to a nearest cluster whereas there is naturally more variety

among students who work through the entire course. Given the high dimensionality
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of the feature vectors, being able to fit 20 clusters to 30,000 students at this level of

accuracy is a good fit.
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Chapter 8

Experimental Results

This chapter examines our full model developed for the Circuits and Electronics

(6.002) course offering in the fall of 2012. This was the second semester of the first ma-

jor course offered on edX. Approximately 30,000 students participated in this course,

with 18,000 submitting at least one answer and nearly 3,000 receiving a certificate

for passing the course.

The experimental procedure consisted of the following:

∙ Cleaning and reformatting data from the MOOCdb database

∙ Training week level models on each week’s data as presented in Chapter 4,

Chapter 5 and Chapter 6

∙ Training a course level model over per-student concatenated features as pre-

sented in Chapter 7

∙ Using the course-level model to generate synthetic student features

∙ Using week-level models to generate synthetic student sequences
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8.1 How Good Are Our Models?

8.1.1 How Well Do Our Models Fit?

To validate the first goal, we tested the accuracy of all three-week-level models and

the course-level model, usually in terms of log-likelihood. These results have already

been discussed in the earlier chapters that detailed each model.

Table 8.1 summarizes the average log-likelihood scores for each model component

on both training and test data, showing the overall fit of the multi-level model.

Component LLH Per Event Cross Validation
Per Event

LEMM -2.07 -2.13

Prob Topics -1.29 -1.36

Durations NA NA

Assessments -.36 -.37

Course Level 321 294

Table 8.1: Model component likelihood scores

8.1.2 Do Our Models Produce Synthetic Data Valuable For

Data Mining?

Number of
Events

Number of
Submissions

Number of
sessions

Grade
Param

Duration
Param

Table 8.2: Basic features. Used as a baseline set of features that should be preserved
in the synthetic data.

To test whether we are able to generate synthetic sequences or synthetic features that

have value in data mining, we performed the following experiments:
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Build a predictive model over the real data: In this experiment, we extract

features (given in Table 8.2) from the real student sequences. We then build

a dropout prediction model using logistic regression and report cross-validated

accuracy of this model on the real data. We call this experiment PRD.

Build a predictive model over synthetic features: In this experiment, we

generate feature vectors for 10,000 synthetic students using the course level

model. We then build a dropout predictive model via logistic regression and

test the model on the real data. We call this experiment PSF.

Build a predictive model over synthetic sequences: In this experiment, we

generate 10,000 synthetic student sequences from our trained models. We then

extract features (given in Table 8.2) from these sequences and build a dropout

prediction model via logistic regression. We then test model on the real student

data. We call this experiment PSS.

In all of our experiments, we chose logistic regression for faster computation and

stability of results. It turns out that using a Support Vector Machine yields similar

results. For the weekly prediction problem, features are calculated for data up to

that week and then weighted exponentially with respect to time. A logistic regression

model is trained on these features, and the output variable is whether each student

dropped out of the course by the next week. The definition of “dropout", how we

assemble covariates for the logistic regression from the weekly feature data and the

way we normalize data, is presented in Appendix 9.3.

The results from these three experiments are presented in Figure 8-1.
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Figure 8-1: Retention of dropout-predictive information in synthetic data.

In most weeks, there is small drop in score when PRD (models relying on real data)

are compared to PSF (models developed on top of synthetic features) and a slightly

larger drop when PRD is compared to PSS (models developed on top of the synthetic

sequences). 90



Some dropoff in prediction accuracy is to be expected when the predictor is

trained on synthetic data, because almost any synthetic data will lose some infor-

mation or have some deviation from reality. The average AUC scores drop from .827

to .774 when the ML model is trained on the real data (PRD) to when trained

on the synthetic features (PSF). The average AUC score when trained on the syn-

thetic sequences is still .764 (PSS). As the performance difference is small (around

7.5% between real sequences and synthetic sequences), these synthetic sequences are

seemingly still valuable for performing data mining. Thus, outside and independent

researchers could develop meaningful machine learning/data mining models, if this

synthetic data were to be released.

Predicting dropout for the second week of the course is the most difficult, as can be

seen in all three experiments. The prediction problem difficulty appears to decrease

later in the course. Possibly, students remaining in the later stages of the course are

the more motivated and therefore less likely to drop out.

8.1.3 Do Our Models Preserve Data Characteristics?

In our second experiment, we compared the ranking of features, in terms of their

predictive power, when the ranking was derived on the synthetic dataset versus when

the ranking was derived on the real dataset.

Researchers perform studies to identify valuable features from data. To see how

feasible this would be with our synthetic data, we proceeded with the following ex-

periment:

Evaluate features on both real and synthetic data: We compute the 5 features

listed in section 8.2 for each student in the real student data and the synthetic

data.

Compose feature sets: For the 5 features we listed in Table 8.2, we compose a

single feature set by picking one feature at a time (5 members in this set) and

double features set by picking 2 features at a time (10 members in this set).
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Build models on synthetic sequences: Using each member of the single set, we

build a dropout prediction model and report its AUC performance. We do the

same for the members of the double features set. We obtain 15 AUC values.

Build models on real sequences: Using each member of the single feature set,

we build a dropout model on the real data and report its performance. We do

the same for the double features set. We obtain 15 AUC values.

Figure 8-2 shows the relationship between the ranking of the two sets of 15 AUC

values. We calculated the correlation between AUCs of models built on top of syn-

thetic sequences and real sequences as well as the correlation between the rankings of

the AUCs. Finally, we calculated these metrics under the single feature set and the

double features set individually.
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Figure 8-2: Comparison of relative feature performance. The trend appears roughly
linear along the x = y line.

8.1.4 Can Our Models Protect Privacy?

We argue that our models successfully ensure privacy. First, none of the model pa-

rameters depend heavily on any particular sequence. Second, the data was originally
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Feature Set AUC Correlation Rank Correlation

Single Feature .91 .90

Double Features .97 .49

Single + Double .95 .72

Table 8.3: Relative Feature Performance Statistics

cleaned to remove URLs that only a few students visited and problem submissions

that only a few students made. Additionally, timestamp information is not considered

in our models. Finally, in each of our models, the parameters are learned across a

number of students together. We further explain intricacies involved in each of the

models below:

∙ In the problem topic model, problem topics are computed across all student

submissions and cannot be traced back to any one student.

∙ In the event description models, distribution of durations and grades are com-

puted only for non-rare URLs and problems. The individual students’ duration

and assessment parameters are not released but instead are given to the course

level model.

∙ In the LEMM model, the Markov transition model contains aggregate transition

counts across all students. The hidden state emissions and transitions are again

based on cumulative (hidden) behaviors.

∙ In the course-level model, while the computed student features reveal individual

activity, the learned parameters only capture a smooth distribution over the

features. As each cluster has around 600 or more students, the Gaussian means

and variances do not reveal anything about individual students.
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8.2 Can Our Models Produce Predictive Features?

To answer this question, we evaluated our models to see if they provide valuable

"features" for machine learning. We examined the feature value for the same dropout

prediction problem defined in section 8.1.2 by performing the following experiments.

1. Use behavioral features as predictors: For all the students, we extract the

basic features listed in Table 8.2. These can be directly computed from the real

data. We then train a logistic regression model on the real data using these

features. We report the cross-validation accuracy and call this experiment BF.

2. Use behavioral features + PCA features as predictors: We extract

the basic features listed in Table 8.2 and PCA features learned on the event

counts. To derive these PCA features, we compute the vector of counts of how

often a student visited each resource or answered each problem. PCA solves

a dimensionality reduction problem on these vectors to get a lower dimension

description of event counts. We then train a logistic regression model on the

real data using these features. We report the cross-validation accuracy and call

this experiment BF-PCA.

3. Use hidden state features from LEMM: For each student, we infer the

hidden state for each event in his sequence using the learned LEMM model. We

then aggregate the total hidden state counts for each hidden state. We train a

logistic regression model on the real data using these features. We report the

cross-validation accuracy and call this experiment LEMM-F.

Leveraging LEMM-learned topic features improves dropout prediction accuracy,

according to AUC, by 9.5% over the basic features and 7.0% over the PCA-learned

features. This experiment confirms the claim that LEMM captures information be-

yond what simple features directly observable from event sequences can capture.

Furthermore, features learned by the PCA algorithm on basic event counts can be

considered as latent topic features. These features, while improving upon prediction
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Figure 8-3: LEMM-aided dropout predictions. Here are the results of the three
different experiments: BF, BF-PCA and LEMM-F. For almost all the weeks, the
LEMM-F experiment does better than BF and BF-PCA. Thus we can say that
features generated from LEMM provide good predictive value.
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performance when compared to basic features, are still not as valuable as the topics

learned by LEMM.

The general dropout prediction performance is similar to the results mentioned in

[8], as a basis of comparison. Some of the differences in experimental setup include

how "dropout" is defined and how to utilize features from all of the previous weeks.

In this brief exploration into dropout prediction, it appears promising that LEMM

topic features can make a strong impact on dropout prediction accuracy.

96



Chapter 9

Conclusion

9.1 Contributions

This thesis project involved many steps. We iterated over several versions of data cu-

ration, problem formulation, general approaches and models, and training algorithms.

For each idea, we implemented and experimented with the course data. In the end,

the main contributions of this thesis are both conceptual and practical, as follows:

1. Constructed the first complete model for analyzing student learning in online

courses. Our generative model is able to generate synthetic student data that

can be freely distributed.

2. Designed a novel generative model, LEMM, to explain student time-series data.

This application is a better fit than the common HMM or Markov models. Also,

we derived equations to train model parameters.

3. Applied LDA to model problem topics. This application has further potential

to contribute to understanding how students choose which problems to consec-

utively attempt.

4. Designed a model for generating event descriptions, presenting a way to under-

stand how long students spend on web pages and how well they solve problems.
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5. Validated the full student model by comparing how machine learning models

developed with synthetic data perform on the real data.

6. Improved upon simple features for predicting dropout by augmenting them with

LEMM-learned features.

9.2 Key Results

The project successfully provides a method of generating synthetic student data for

MOOCs. In the process, we obtained the following key outcomes:

1. There were approximately 20 main clusters or types of students in the fall 2012

6.002 course, when we fit the best Gaussian Mixture model on simple week-by-

week features of the students.

2. LEMMs improved upon the cross validation log-likelihoods of the students’

event ID sequences by 6.8% and 90% over Markov models and Hidden Markov

models, respectively.

3. Applying LDA to consecutive problem submissions in students’ event sequences

yielded a log-likelihood fit that is 66% better than the entropy of simple problem

distribution.

4. An events description model that accounts for variations among events and

among students performed between 17% and 12% better than models that ac-

count for only one of the variances on duration and assessment predictions,

respectively.

5. A logistic regression predictor for dropout performed only 7.5% worse when

trained on the model-generated synthetic data than when trained on the real

data, in terms of AUC score.

6. Using LEMM-learned features improved dropout predictions by 9.0% in terms

of AUC score, compared to using only directly computable student features.
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7. When training a logistic regression predictor on one or two directly computable

features at a time (out of 5 possible) and ranking their usefulness in predicting

dropout, there was a .72 correlation between the rankings on the synthetic data

and on the real data.

9.3 Areas of Further Research

Such a broad and open-ended project allows us many further directions for continued

work.

The structure of our method, to develop a modular course-level model and three

week level models, allows for further development of individual components. In par-

ticular, there are likely easy improvements to be made to the course level model and

to the event descriptions model. The course level model applies the common Gaus-

sian Mixture model to the sets of student features, but as explained earlier, these

features may not be normally distributed. In addition, other choices of interface

features between the course level model and week level models could be potentially

more effective. For generating descriptions, our model only assumes one duration and

one assessment parameter per student; however, these descriptions are probably also

influenced by which topics the student is more interested in or which materials he has

already viewed.

Additionally, our project omitted information collected by edX that could be use-

ful in developing a complete learning model. For example, a possible model could

incorporate student information, such as gender, age, or country to aid the under-

standing of how these demographics may relate to online learning. We also did not

use course information, such as resource types, student interaction types, problem

types, or the structure of problems by parent/child relationships. For some courses,

this information may not be available, but further investigation into these fields would

lead to more conclusions in the future.
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Appendix: Predict Dropout

Given a training set of student sequences and a test set of sequences,

1. For each week 𝑚 = 1, 2, ...𝑘 perform on the training set:

2. Calculate the set of students 𝐼 who have not yet dropped out by

week 𝑚. Define a student to have dropped out by week 𝑚 if he doesn’t

have at least 10 events in any week beyond week 𝑖.

3. For students 𝑖 ∈ 𝐼, calculate the explanatory variables 𝑓𝑖. These

are the five features listed in Table 8.2. The feature vectors are computed

for the student 𝑖’s sequences in weeks 1, 2, ...𝑚 as 𝑓𝑖,1, 𝑓𝑖,2, ...𝑓𝑖,𝑚 and then

weighted exponentially by time as

𝑓𝑖 =
𝑚∑︁
𝑗=1

𝛾𝑚−𝑗 · 𝑓𝑖,𝑗

for some constant 𝛾 ∈ (0, 1). This means that more recent weeks are

weighted more heavily.

4. Normalize the explanatory variables. For features 1, 2, and 3, the

normalization involves a standard computation of the sample mean and

variance. For features 𝑠 = 4, 5, the mean and variance are estimated as

𝑓 [𝑠] =

∑︀
𝑖𝑤𝑖[𝑠] · 𝑓𝑖[𝑠]∑︀

𝑖 𝑤𝑖[𝑠]
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𝜎2
𝑓𝑠 =

∑︀
𝑖 𝑤𝑖[𝑠] · (𝑓𝑖[𝑠] − 𝑓𝑠)

2∑︀
𝑖 𝑤𝑖[𝑠]

This is a weighted estimate, where the weights are

𝑤𝑖[4] = 𝑓𝑖[2]

𝑤𝑖[5] = 𝑓𝑖[1] − 𝑓𝑖[2]

5. For students in 𝐼, compute the output variables 𝑦𝑖, dropout of student

𝑖 for week 𝑚 + 1.

6. Train a logistic regression on the training set. The training set is the

set of normalized input-output pairs

𝑓𝑖 − 𝑓

𝜎𝑓

, 𝑦𝑖

7. Compute the ROC curve and the AUC score for the predictor on

the test set. For each sequence in the test set, compute the same features,

normalized by the already-computed means and variances. Evaluate the

predictions of the logistic regression on these data points.
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