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NP-Completeness

 Many compiler problems are NP-complete
 Thus, implementations can’t be optimal

 Compiler writers rely on heuristics
 In practice, heuristics perform well
 …but, require a lot of tweaking

 Heuristics often have a focal point
 Rely on a single priority function

Priority Functions

 A heuristic’s Achilles heel
 A single priority or cost function often dictates the

efficacy of a heuristic
 Priority functions rank the options available to a

compiler heuristic
 List scheduling (identifying instructions in worklist to

schedule first)
 Graph coloring register allocation (selecting nodes to

spill)
 Hyperblock formation (selecting paths to include)

 Any priority function is legal
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Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity

 Can focus on a small portion of an
optimization algorithm
 Don’t need to worry about legality checking

 Small change can yield big payoffs
 Clear specification in terms of input/output
 Prevalent in compiler heuristics

Qualities of Priority Functions
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An Example Optimization
Hyperblock Scheduling

 Conditional execution is potentially very
expensive on a modern architecture

 Modern processors try to dynamically predict
the outcome of the condition
 This works great for predictable branches…
 But some conditions can’t be predicted

 If they don’t predict correctly you waste a lot
of time

Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0 
time

re
so

ur
ce

s

Misprediction
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Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0 
time

re
so

ur
ce

s

Example Optimization
Hyperblock Scheduling (using predication)

if (a[1] == 0)

else

Assume a[1] is 0 
time

re
so

ur
ce

s

Processor simply discards results
of instructions that weren’t
supposed to be run
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Example Optimization
Hyperblock Scheduling

 There are unclear tradeoffs
 In some situations, hyperblocks are faster than traditional

execution
 In others, hyperblocks impair performance

 Many factors affect this decision
 Accuracy of branch predictor
 Availability of parallel execution resources
 Effectiveness of the compiler’s scheduler
 Parallelizability and predictability of the program

 Hard to model

Example Optimization
Hyperblock Scheduling [Mahlke]

 Find predicatable regions of control flow
 Enumerate paths of control in region

 Exponential, but in practice it’s okay
 Prioritize paths based on four path

characteristics
 The priority function we want to optimize

 Add paths to hyperblock in priority order
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Trimaran’s Priority Function
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Our Approach

 Trimaran uses four characteristics

 What are the important characteristics of a
hyperblock formation priority function?

 Our approach: Extract all the characteristics
you can think of and let a learning technique
find the priority function
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Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions

num_ops 2.3 predictability 4.1

- /

*

Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions
 Selection

 The fittest expressions in the population are more
likely to reproduce

 Reproduction
 Crossing over subexpressions of two expressions

 Mutation
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General Flow

Create initial population
(initial solutions)

Evaluation

Selection

 Randomly generated initial
population seeded with the
compiler writer’s best
guess

Create Variants

done?

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Compiler is modified to use
the given expression as a
priority function

 Each expression is
evaluated by compiling and
running the benchmark(s)

 Fitness is the relative
speedup over Trimaran’s
priority function on the
benchmark(s)
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General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Just as with Natural
Selection, the fittest
individuals are more likely
to survive

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Use crossover and
mutation to generate new
expressions

 And thus, generate new
compilers
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Experimental Setup

 Collect results using Trimaran
 Simulate a VLIW machine

 64 GPRs, 64 FPRs, 128 PRs
 4 fully pipelined integer FUs
 2 fully pipelined floating point FUs
 2 memory units (L1:2, L2:7, L3:35)

 Replace priority functions in IMPACT with our
GP expression parser and evaluator

Outline of Results
 High-water mark

 Create compilers specific to a given application
and a given data set

 Essentially partially evaluating the application
 Application-specific compilers

 Compiler trained for a given application and data
set, but run with an alternate data set

 General-purpose compiler
 Compiler trained on multiple applications and

tested on an unrelated set of applications
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Training the Priority Function

Compiler

A.c B.c C.c D.c

A B C D

1 2

Training the Priority Function
Application-Specific Compilers

Compiler

A.c B.c C.c D.c

A B C D

1 2
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Hyperblock Results
Application-Specific Compilers (High-Water Mark)
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(add (sub (cmul (gt (cmul $b0 0.8982 $d17)…$d7)) (cmul $b0 0.6183 $d28)))

(add (div $d20 $d5) (tern $b2 $d0 $d9))

Training the Priority Function
General-Purpose Compilers

Compiler

A.c B.c C.c D.c

A B C D

1
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Hyperblock Results
General-Purpose Compiler
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Validation of Generality
Testing General-Purpose Applicability
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Running Time
 Application specific compilers

 ~1 day using 15 processors
 General-purpose compilers

 Dynamic Subset Selection [Gathercole]
 Run on a subset of the training benchmarks at a time

 Memoize fitnesses
 ~1 week using 15 processors

 This is a one time process!
 Performed by the compiler vendor

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
      (cmul (not has_pointer_deref)

    (mul 0.6727 num_paths)
    (mul 1.1609

 (add (sub
       (mul (div num_ops dependence_height) 10.8240)
       exec_ratio)
          (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

           (sub 1.1039 num_ops_max))
   (sub (mul dependence_height_mean num_branches_max)
             num_paths)))))))

GP Hyperblock Solutions
General Purpose

Intron that doesn’t affect
solution
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(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
      (cmul (not has_pointer_deref)

    (mul 0.6727 num_paths)
    (mul 1.1609

 (add (sub
       (mul (div num_ops dependence_height) 10.8240)
       exec_ratio)
          (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

           (sub 1.1039 num_ops_max))
   (sub (mul dependence_height_mean num_branches_max)
             num_paths)))))))

GP Hyperblock Solutions
General Purpose

Favor paths that don’t
have pointer dereferences

GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
      (cmul (not has_pointer_deref)

    (mul 0.6727 num_paths)
    (mul 1.1609

 (add (sub
       (mul (div num_ops dependence_height) 10.8240)
       exec_ratio)
          (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

           (sub 1.1039 num_ops_max))
   (sub (mul dependence_height_mean num_branches_max)
             num_paths)))))))

Favor highly parallel
(fat) paths
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GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
      (cmul (not has_pointer_deref)

    (mul 0.6727 num_paths)
    (mul 1.1609

 (add (sub
       (mul (div num_ops dependence_height) 10.8240)
       exec_ratio)
          (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

           (sub 1.1039 num_ops_max))
   (sub (mul dependence_height_mean num_branches_max)
             num_paths)))))))

If a path calls a
subroutine that may
have side effects,
penalize it

Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity
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Eliminate the Human from the
Loop

 So far we have tried to improve existing
priority functions
 Still a lot of person-hours were spent creating the

initial priority functions
 Observation: the human-created priority

functions are often eliminated in the 1st

generation
 What if we start from a completely random

population (no human-generated seed)?

Another Example
Register Allocation

 An old, established problem
 Hundreds of papers on the subject

 Priority-Based Register Allocation
[Chow,Hennessey]
 Uses a priority function to determine the worth of

allocating a register
 Let’s throw our GP system at the problem

and see what it comes up with



19

Register Allocation Results
General-Purpose Compiler
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Importance of Priority Functions
Speedup over a constant priority function
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Trimaran's function GP's function

Advantages our System
Provides

 Engineers can focus their energy on more
important tasks

 Can quickly retune for architectural changes
 Can quickly retune when compiler changes
 Can provide compilers catered toward

specific application suites
 e.g., consumer may want a compiler that excels

on scientific benchmarks
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Related Work

 Calder et al. [TOPLAS-19]
 Fine tuned static branch prediction heuristics
 Requires a priori classification by a supervisor

 Monsifrot et al. [AIMSA-02]
 Classify loops based on amenability to unrolling
 Also used a priori classification

 Cooper et al. [Journal of Supercomputing-02]
 Use GAs to solve phase ordering problems

Conclusion

 Performance talk and a complexity talk
 Take a huge compiler, optimize one priority

function with GP and get exciting speedups
 Take a well-known heuristic and create

priority functions for it from scratch
 There’s a lot left to do
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Why Genetic Programming?
 Many learning techniques rely on having pre-

classified data (labels)
 e.g., statistical learning, neural networks, decision

trees
 Priority functions require another approach

 Reinforcement learning
 Unsupervised learning

 Several techniques that might work well
 e.g., hill climbing, active learning, simulated

annealing
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Why Genetic Programming

 Benefits of GP
 Capable of searching high-dimensional spaces
 It is a distributed algorithm
 The solutions are human readable

 Nevertheless…there are other learning
techniques that may also perform well

Genetic Programming
Reproduction

num_ops 2.3 predictability 4.1
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