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System Complexities

e Compiler complexity
e Open Research Compiler

e ~3.5 million lines of
C/C++ code

e Trimaran’s compiler

e ~ 800,000 lines of
C code

e Architecture Complexity
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LCS
NP-Completeness 4\

e Many compiler problems are NP-complete
e Thus, implementations can’t be optimal
e Compiler writers rely on heuristics
e |n practice, heuristics perform well
e ...but, require a lot of tweaking
e Heuristics often have a focal point
e Rely on a single priority function

LCS
Priority Functions 4\

e A heuristic’s Achilles heel
e A single priority or cost function often dictates the
efficacy of a heuristic
e Priority functions rank the options available to a
compiler heuristic

e List scheduling (identifying instructions in worklist to
schedule first)

e Graph coloring register allocation (selecting nodes to
spill)
e Hyperblock formation (selecting paths to include)
e Any priority function is legal




LCS
Our Proposal 4\

e Use machine-learning techniques to
automatically search the priority function
space
e Increases compiler’s performance
e Reduces compiler design complexity

LCS
Qualities of Priority Functions 4\

e Can focus on a small portion of an
optimization algorithm
e Don't need to worry about legality checking
e Small change can yield big payoffs
e Clear specification in terms of input/output
e Prevalent in compiler heuristics




An Example Optimization LZ?

Hyperblock Scheduling

e Conditional execution is potentially very
expensive on a modern architecture

e Modern processors try to dynamically predict
the outcome of the condition
e This works great for predictable branches...
e But some conditions can’t be predicted

e If they don’t predict correctly you waste a lot
of time

Example Optimization LZ?
Hyperblock Scheduling b
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Example Optimization LZ?

Hyperblock Scheduling

Assume a[1] is 0
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Example Optimization LZ?
Hyperblock Scheduling (using predication) b
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Example Optimization LZ?

Hyperblock Scheduling

e There are unclear tradeoffs

e In some situations, hyperblocks are faster than traditional
execution

e In others, hyperblocks impair performance
e Many factors affect this decision

e Accuracy of branch predictor
Availability of parallel execution resources
Effectiveness of the compiler's scheduler
Parallelizability and predictability of the program

e Hard to model

Example Optimization LZ?

Hyperblock Scheduling [Mahlke]

e Find predicatable regions of control flow
e Enumerate paths of control in region
e Exponential, but in practice it's okay
e Prioritize paths based on four path
characteristics
e The priority function we want to optimize

e Add paths to hyperblock in priority order
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Trimaran’s Priority Function 4\
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LCS
Our Approach 4\

e Trimaran uses four characteristics

e What are the important characteristics of a
hyperblock formation priority function?

e Our approach: Extract all the characteristics
you can think of and let a learning technique
find the priority function




LCS
Genetic Programming 4\

e Searching algorithm analogous to Darwinian
evolution
e Maintain a population of expressions

/
predictability X 4.1

LCS
Genetic Programming 4\

e Searching algorithm analogous to Darwinian
evolution
e Maintain a population of expressions

e Selection

o The fittest expressions in the population are more
likely to reproduce

e Reproduction
o Crossing over subexpressions of two expressions
e Mutation




General Flow
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e Randomly generated initial

population seeded with the
compiler writer's best
guess
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e Compiler is modified to use

the given expression as a
priority function

Each expression is
evaluated by compiling and
running the benchmark(s)

Fitness is the relative
speedup over Trimaran’s
priority function on the
benchmark(s)




General Flow

Create initial population
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e Just as with Natural
Selection, the fittest
individuals are more likely
to survive
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e Use crossover and
mutation to generate new
expressions

e And thus, generate new
compilers
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Experimental Setup 4\

e Collect results using Trimaran

e Simulate a VLIW machine
» 64 GPRs, 64 FPRs, 128 PRs
o 4 fully pipelined integer FUs
o 2 fully pipelined floating point FUs
e 2 memory units (L1:2, L2:7, L3:35)
e Replace priority functions in IMPACT with our
GP expression parser and evaluator

LCS
Outline of Results 4\

e High-water mark

e Create compilers specific to a given application
and a given data set

e Essentially partially evaluating the application
e Application-specific compilers
e Compiler trained for a given application and data
set, but run with an alternate data set

e General-purpose compiler

e Compiler trained on multiple applications and
tested on an unrelated set of applications
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Training the Priority Function

Compiler
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Application-Specific Compilers

Compiler
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Hyperblock Results LZ?

Application-Specific Compilers (High-Water Mark)

35
‘ITraining input @ Novel input
34
(add (sub (cmul (gt (cmul $b0 0.8982 $d17)...8d7)) (cmul $b0 0.6183 $d28)))
2.5
a (add (div $d20 $d5) (tern $b2 $d0 $d9))
3
@
[
o
(7]

129.compress
g721encode
g721decode
huff_dec
huff_enc
rawcaudio
rawdaudio
mpeg2dec
Average

Training the Priority Function "Z?

General-Purpose Compilers

Compiler
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Hyperblock Results

General-Purpose Compiler
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LCS
Running Time 4\

e Application specific compilers
e ~1 day using 15 processors
e General-purpose compilers
e Dynamic Subset Selection [Gathercole]
¢ Run on a subset of the training benchmarks at a time
e Memoize fitnesses
e ~1 week using 15 processors

e This is a one time process!
e Performed by the compiler vendor

GP Hyperblock Solutions LZ?

General Purpose

(add ]
(sub (mul exec_ratio_mean 0.8720) 0.9400) } Intr on that doesn’t affect
(mul 0.4762 solution

(cmul (not has_pointer_deref)
(mul 0.6727 num_paths)
(mul 1.1609
(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))
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GP Hyperblock Solutions Y

General Purpose lab

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400)
(mul 0.4762
(emul (not has_pointer_deref) } Favor paths that don’t

(mul 0.6727 num_paths) have pointer dereferences
(mul 1.1609

(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

GP Hyperblock Solutions Y

General Purpose lab

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400)
(mul 0.4762 Favor highly parallel
(cmul (not has_pointer_deref) (fat) paths
(mul 0.6727 num_paths)
(mul 1.1609
(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))
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GP Hyperblock Solutions LZ?

General Purpose

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400) If @ path calls a
(mul 0.4762 subroutine that may
(cmul (not has_pointer_deref) have side effects
(mul 0.6727 num_paths) . ’
(mul 1.1609 penalize it

(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)

(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

LCS
Our Proposal 4\

e Use machine-learning techniques to
automatically search the priority function
space
e Increases compiler’s performance
e Reduces compiler design complexity
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Eliminate the Human from the |LCS
Loop 4\

e So far we have tried to improve existing
priority functions
e Still a lot of person-hours were spent creating the
initial priority functions
e Observation: the human-created priority
functions are often eliminated in the 1st
generation

e \What if we start from a completely random
population (no human-generated seed)?

Another Example LZ?

Register Allocation

e An old, established problem
e Hundreds of papers on the subject

e Priority-Based Register Allocation
[Chow,Hennessey]
e Uses a priority function to determine the worth of

allocating a register

e Let’s throw our GP system at the problem

and see what it comes up with
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Importance of Priority Functions
Speedup over a constant priority function
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‘ B Trimaran's function B GP's function
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Advantages our System

Provides

LCS

%

e Engineers can focus their energy on more

important tasks

e Can quickly retune for architectural changes
e Can quickly retune when compiler changes

e Can provide compilers catered toward
specific application suites

e e.g., consumer may want a compiler that excels
on scientific benchmarks
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LCS
Related Work 4\

e Calder et al. [TOPLAS-19]
e Fine tuned static branch prediction heuristics
e Requires a priori classification by a supervisor
e Monsifrot et al. [AIMSA-02]
e Classify loops based on amenability to unrolling
e Also used a priori classification
e Cooper et al. [Journal of Supercomputing-02]
e Use GAs to solve phase ordering problems

LCS
Conclusion 4\

e Performance talk and a complexity talk

e Take a huge compiler, optimize one priority
function with GP and get exciting speedups

e Take a well-known heuristic and create
priority functions for it from scratch

e There’s a lot left to do
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LCS
Why Genetic Programming? 4\

e Many learning techniques rely on having pre-
classified data (labels)

® e.g., statistical learning, neural networks, decision
trees

e Priority functions require another approach
e Reinforcement learning
e Unsupervised learning

e Several techniques that might work well

e e.g., hill climbing, active learning, simulated
annealing
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LCS
Why Genetic Programming 4\

e Benefits of GP
e Capable of searching high-dimensional spaces
e ltis a distributed algorithm
e The solutions are human readable

e Nevertheless...there are other learning
techniques that may also perform well

Genetic Programming "‘2?

Reproduction

branches 7.5
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