Improving Compiler

Heuristics with
Machine Learning

Mark Stephenson

Una-May O'Reilly

Martin C. Martin

Saman Amarasinghe

Massachusetts Institute of Technology

LCS

System Complexities

e Compiler complexity
e Open Research Compiler

e ~3.5 million lines of
C/C++ code

e Trimaran’s compiler

e ~ 800,000 lines of
C code

e Architecture Complexity

LCS
A
Features Pentium® | Pentium 4
(3M) (55M)
Superscalar v v
Branch v
prediction
Speculative v
execution
MMU and v
improved

FPU

LCS
NP-Completeness 4\

e Many compiler problems are NP-complete
e Thus, implementations can’t be optimal
e Compiler writers rely on heuristics
e |n practice, heuristics perform well
e ...but, require a lot of tweaking
e Heuristics often have a focal point
e Rely on a single priority function

LCS
Priority Functions 4\

e A heuristic’s Achilles heel
e A single priority or cost function often dictates the
efficacy of a heuristic
e Priority functions rank the options available to a
compiler heuristic

e List scheduling (identifying instructions in worklist to
schedule first)

e Graph coloring register allocation (selecting nodes to
spill)
e Hyperblock formation (selecting paths to include)
e Any priority function is legal

LCS
Our Proposal 4\

e Use machine-learning techniques to
automatically search the priority function
space
e Increases compiler’s performance
e Reduces compiler design complexity

LCS
Qualities of Priority Functions 4\

e Can focus on a small portion of an
optimization algorithm
e Don't need to worry about legality checking
e Small change can yield big payoffs
e Clear specification in terms of input/output
e Prevalent in compiler heuristics

An Example Optimization LZ?

Hyperblock Scheduling

e Conditional execution is potentially very
expensive on a modern architecture

e Modern processors try to dynamically predict
the outcome of the condition
e This works great for predictable branches...
e But some conditions can’t be predicted

e If they don’t predict correctly you waste a lot
of time

Example Optimization LZ?
Hyperblock Scheduling b
Assume a[1] is 0
7 time
if (a[1] = 0) WU N N
I | WVVZINNN

Example Optimization LZ?

Hyperblock Scheduling

Assume a[1] is 0

%///////% time

if (a

else

00
NI

VU A AN

resources

Example Optimization LZ?
Hyperblock Scheduling (using predication) b
Assume a[1] is 0 _
Za: N
ele g %

m Processor simply discards results

of instructions that weren’t
supposed to be run

Example Optimization LZ?

Hyperblock Scheduling

e There are unclear tradeoffs

e In some situations, hyperblocks are faster than traditional
execution

e In others, hyperblocks impair performance
e Many factors affect this decision

e Accuracy of branch predictor
Availability of parallel execution resources
Effectiveness of the compiler's scheduler
Parallelizability and predictability of the program

e Hard to model

Example Optimization LZ?

Hyperblock Scheduling [Mahlke]

e Find predicatable regions of control flow
e Enumerate paths of control in region
e Exponential, but in practice it's okay
e Prioritize paths based on four path
characteristics
e The priority function we want to optimize

e Add paths to hyperblock in priority order

LCS
Trimaran’s Priority Function 4\

0.25 :if segment, has hazard

hazard, = . .
1 :if segment, is hazard free

dep _height,

dep _ratio, = FI——
Favor frequently max .,.ydep _height;

executed paths

height,
op _ratio, = op _heighi ' paths
max ,_,_yop _ height,
v

priority;, = exec _ratio, - hazard, -(2.1-dep _ratio, — op _ratio,)

_

Favor short

Penalize paths with hazards Favor parallel paths
LCS
Our Approach 4\

e Trimaran uses four characteristics

e What are the important characteristics of a
hyperblock formation priority function?

e Our approach: Extract all the characteristics
you can think of and let a learning technique
find the priority function

LCS
Genetic Programming 4\

e Searching algorithm analogous to Darwinian
evolution
e Maintain a population of expressions

/
predictability X 4.1

LCS
Genetic Programming 4\

e Searching algorithm analogous to Darwinian
evolution
e Maintain a population of expressions

e Selection

o The fittest expressions in the population are more
likely to reproduce

e Reproduction
o Crossing over subexpressions of two expressions
e Mutation

General Flow

Create initial population
(initial solutions)

'

— Evaluation

}

done?

}

Selection

}

— Create Variants

LCS

lab

e Randomly generated initial

population seeded with the
compiler writer's best
guess

General Flow

Create initial population
(initial solutions)

|

Evaluation

'

done?

|

Selection

|

— Create Variants

A

LCS

lab

e Compiler is modified to use

the given expression as a
priority function

Each expression is
evaluated by compiling and
running the benchmark(s)

Fitness is the relative
speedup over Trimaran’s
priority function on the
benchmark(s)

General Flow

Create initial population
(initial solutions)

|

— Evaluation

|

done?

L

Selection

'

— Create Variants

LCS

lab

e Just as with Natural
Selection, the fittest
individuals are more likely
to survive

General Flow

Create initial population
(initial solutions)

|

— Evaluation

|

done?

|

Selection

|

—{| Create Variants

LCS

lab

e Use crossover and
mutation to generate new
expressions

e And thus, generate new
compilers

10

LCS
Experimental Setup 4\

e Collect results using Trimaran

e Simulate a VLIW machine
» 64 GPRs, 64 FPRs, 128 PRs
o 4 fully pipelined integer FUs
o 2 fully pipelined floating point FUs
e 2 memory units (L1:2, L2:7, L3:35)
e Replace priority functions in IMPACT with our
GP expression parser and evaluator

LCS
Outline of Results 4\

e High-water mark

e Create compilers specific to a given application
and a given data set

e Essentially partially evaluating the application
e Application-specific compilers
e Compiler trained for a given application and data
set, but run with an alternate data set

e General-purpose compiler

e Compiler trained on multiple applications and
tested on an unrelated set of applications

11

Training the Priority Function

Compiler

LCS

%

Training the Priority Function
Application-Specific Compilers

Compiler

LCS

%

12

Hyperblock Results LZ?

Application-Specific Compilers (High-Water Mark)

35
‘ITraining input @ Novel input
34
(add (sub (cmul (gt (cmul $b0 0.8982 $d17)...8d7)) (cmul $b0 0.6183 $d28)))
2.5
a (add (div $d20 $d5) (tern $b2 $d0 $d9))
3
@
[
o
(7]

129.compress
g721encode
g721decode
huff_dec
huff_enc
rawcaudio
rawdaudio
mpeg2dec
Average

Training the Priority Function "Z?

General-Purpose Compilers

Compiler

13

LCS
A

Hyperblock Results

General-Purpose Compiler

‘l Train data set @ Novel data set‘

I—

0.5.0.
ST
dnpoeadg

v <c
c o

Validation of Generality

Testing General-Purpose Applicability

LCS
A

abesany
dewdiw

owapso

100680
XSUON /{7
UUIAIB'ZG0
Badlizel

nojuba ¢zo

14

LCS
Running Time 4\

e Application specific compilers
e ~1 day using 15 processors
e General-purpose compilers
e Dynamic Subset Selection [Gathercole]
¢ Run on a subset of the training benchmarks at a time
e Memoize fitnesses
e ~1 week using 15 processors

e This is a one time process!
e Performed by the compiler vendor

GP Hyperblock Solutions LZ?

General Purpose

(add]
(sub (mul exec_ratio_mean 0.8720) 0.9400) } Intr on that doesn’t affect
(mul 0.4762 solution

(cmul (not has_pointer_deref)
(mul 0.6727 num_paths)
(mul 1.1609
(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

15

GP Hyperblock Solutions Y

General Purpose lab

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400)
(mul 0.4762
(emul (not has_pointer_deref) } Favor paths that don’t

(mul 0.6727 num_paths) have pointer dereferences
(mul 1.1609

(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

GP Hyperblock Solutions Y

General Purpose lab

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400)
(mul 0.4762 Favor highly parallel
(cmul (not has_pointer_deref) (fat) paths
(mul 0.6727 num_paths)
(mul 1.1609
(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)
(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

16

GP Hyperblock Solutions LZ?

General Purpose

(add
(sub (mul exec_ratio_mean 0.8720) 0.9400) If @ path calls a
(mul 0.4762 subroutine that may
(cmul (not has_pointer_deref) have side effects
(mul 0.6727 num_paths) . ’
(mul 1.1609 penalize it

(add (sub
(mul (div num_ops dependence_height) 10.8240)
exec_ratio)

(sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)
(sub 1.1039 num_ops_max))

(sub (mul dependence_height_mean num_branches_max)
num_paths)))))))

LCS
Our Proposal 4\

e Use machine-learning techniques to
automatically search the priority function
space
e Increases compiler’s performance
e Reduces compiler design complexity

17

Eliminate the Human from the |LCS
Loop 4\

e So far we have tried to improve existing
priority functions
e Still a lot of person-hours were spent creating the
initial priority functions
e Observation: the human-created priority
functions are often eliminated in the 1st
generation

e \What if we start from a completely random
population (no human-generated seed)?

Another Example LZ?

Register Allocation

e An old, established problem
e Hundreds of papers on the subject

e Priority-Based Register Allocation
[Chow,Hennessey]
e Uses a priority function to determine the worth of

allocating a register

e Let’s throw our GP system at the problem

and see what it comes up with

18

19

lab

LCS

lab

LCS

‘ B Train data set @ Novel data set

X8HOA L 17|
2pooaplz.6

199°G80
apooualz/b

Badlizel

oapzbadw
nojpuba'ezo

ssaidwoo'gzl
wisiggw 'y L

29p Ny oidaun
Badlp
ous” yny
roetr
olpnepmel
1. e
olpneomes
$o1Ipodap

.20
15

1

Register Allocation Results

General-Purpose Compiler

10
1.05
1.00
0.95 1
0.90

1

dnpoeadg

Validation of Generality

Testing General-Purpose Applicability

Importance of Priority Functions
Speedup over a constant priority function

220

2.00

Speedup (over no function)
8 2 3 &
o o o o

o
S

o
©
)

LCS

%

‘ B Trimaran's function B GP's function

rawcaudio

rawdaudio

huff_enc

huff_dec

129.compress

mpeg2dec

g721encode

g721decode

average

Advantages our System

Provides

LCS

%

e Engineers can focus their energy on more

important tasks

e Can quickly retune for architectural changes
e Can quickly retune when compiler changes

e Can provide compilers catered toward
specific application suites

e e.g., consumer may want a compiler that excels
on scientific benchmarks

20

LCS
Related Work 4\

e Calder et al. [TOPLAS-19]
e Fine tuned static branch prediction heuristics
e Requires a priori classification by a supervisor
e Monsifrot et al. [AIMSA-02]
e Classify loops based on amenability to unrolling
e Also used a priori classification
e Cooper et al. [Journal of Supercomputing-02]
e Use GAs to solve phase ordering problems

LCS
Conclusion 4\

e Performance talk and a complexity talk

e Take a huge compiler, optimize one priority
function with GP and get exciting speedups

e Take a well-known heuristic and create
priority functions for it from scratch

e There’s a lot left to do

21

LCS

LCS
Why Genetic Programming? 4\

e Many learning techniques rely on having pre-
classified data (labels)

® e.g., statistical learning, neural networks, decision
trees

e Priority functions require another approach
e Reinforcement learning
e Unsupervised learning

e Several techniques that might work well

e e.g., hill climbing, active learning, simulated
annealing

22

LCS
Why Genetic Programming 4\

e Benefits of GP
e Capable of searching high-dimensional spaces
e ltis a distributed algorithm
e The solutions are human readable

e Nevertheless...there are other learning
techniques that may also perform well

Genetic Programming "‘2?

Reproduction

branches 7.5

23

