
1

Improving Compiler
Heuristics with

Machine Learning
Mark Stephenson
Una-May O’Reilly

Martin C. Martin
Saman Amarasinghe

Massachusetts Institute of Technology

System Complexities
 Compiler complexity

 Open Research Compiler
 ~3.5 million lines of

C/C++ code
 Trimaran’s compiler

 ~ 800,000 lines of
C code

 Architecture Complexity MMU and
improved
FPU

Speculative
execution

Branch
prediction

Pentium®
(3M)

Superscalar

Pentium 4
(55M)

Features

2

NP-Completeness

 Many compiler problems are NP-complete
 Thus, implementations can’t be optimal

 Compiler writers rely on heuristics
 In practice, heuristics perform well
 …but, require a lot of tweaking

 Heuristics often have a focal point
 Rely on a single priority function

Priority Functions

 A heuristic’s Achilles heel
 A single priority or cost function often dictates the

efficacy of a heuristic
 Priority functions rank the options available to a

compiler heuristic
 List scheduling (identifying instructions in worklist to

schedule first)
 Graph coloring register allocation (selecting nodes to

spill)
 Hyperblock formation (selecting paths to include)

 Any priority function is legal

3

Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity

 Can focus on a small portion of an
optimization algorithm
 Don’t need to worry about legality checking

 Small change can yield big payoffs
 Clear specification in terms of input/output
 Prevalent in compiler heuristics

Qualities of Priority Functions

4

An Example Optimization
Hyperblock Scheduling

 Conditional execution is potentially very
expensive on a modern architecture

 Modern processors try to dynamically predict
the outcome of the condition
 This works great for predictable branches…
 But some conditions can’t be predicted

 If they don’t predict correctly you waste a lot
of time

Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Misprediction

5

Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Example Optimization
Hyperblock Scheduling (using predication)

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Processor simply discards results
of instructions that weren’t
supposed to be run

6

Example Optimization
Hyperblock Scheduling

 There are unclear tradeoffs
 In some situations, hyperblocks are faster than traditional

execution
 In others, hyperblocks impair performance

 Many factors affect this decision
 Accuracy of branch predictor
 Availability of parallel execution resources
 Effectiveness of the compiler’s scheduler
 Parallelizability and predictability of the program

 Hard to model

Example Optimization
Hyperblock Scheduling [Mahlke]

 Find predicatable regions of control flow
 Enumerate paths of control in region

 Exponential, but in practice it’s okay
 Prioritize paths based on four path

characteristics
 The priority function we want to optimize

 Add paths to hyperblock in priority order

7

Trimaran’s Priority Function

!
"
#

=
free hazard is if :1

 hazard has if :25.0

i

i

i
segment

segment
hazard

jNj

i
i

heightdep

heightdep
ratiodep

_max

_
_

1!=

=

)__1.2(_ iiiii ratioopratiodephazardratioexecpriority !!""=

jNj

i
i

heightop

heightop
ratioop

_max

_
_

1!=

=

Favor frequently
executed paths Favor short

paths

Penalize paths with hazards Favor parallel paths

Our Approach

 Trimaran uses four characteristics

 What are the important characteristics of a
hyperblock formation priority function?

 Our approach: Extract all the characteristics
you can think of and let a learning technique
find the priority function

8

Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions

num_ops 2.3 predictability 4.1

- /

*

Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions
 Selection

 The fittest expressions in the population are more
likely to reproduce

 Reproduction
 Crossing over subexpressions of two expressions

 Mutation

9

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

 Randomly generated initial
population seeded with the
compiler writer’s best
guess

Create Variants

done?

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Compiler is modified to use
the given expression as a
priority function

 Each expression is
evaluated by compiling and
running the benchmark(s)

 Fitness is the relative
speedup over Trimaran’s
priority function on the
benchmark(s)

10

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Just as with Natural
Selection, the fittest
individuals are more likely
to survive

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Use crossover and
mutation to generate new
expressions

 And thus, generate new
compilers

11

Experimental Setup

 Collect results using Trimaran
 Simulate a VLIW machine

 64 GPRs, 64 FPRs, 128 PRs
 4 fully pipelined integer FUs
 2 fully pipelined floating point FUs
 2 memory units (L1:2, L2:7, L3:35)

 Replace priority functions in IMPACT with our
GP expression parser and evaluator

Outline of Results
 High-water mark

 Create compilers specific to a given application
and a given data set

 Essentially partially evaluating the application
 Application-specific compilers

 Compiler trained for a given application and data
set, but run with an alternate data set

 General-purpose compiler
 Compiler trained on multiple applications and

tested on an unrelated set of applications

12

Training the Priority Function

Compiler

A.c B.c C.c D.c

A B C D

1 2

Training the Priority Function
Application-Specific Compilers

Compiler

A.c B.c C.c D.c

A B C D

1 2

13

Hyperblock Results
Application-Specific Compilers (High-Water Mark)

1.
54

1.
23

0

0.5

1

1.5

2

2.5

3

3.5

12
9.

co
m

pr
es

s

g7
21

en
co

de

g7
21

de
co

de

hu
ff_

de
c

hu
ff_

en
c

ra
w

ca
ud

io

ra
w

da
ud

io

to
as

t

m
pe

g2
de

c

A
ve

ra
ge

Sp
ee

du
p

Training input Novel input

(add (sub (cmul (gt (cmul $b0 0.8982 $d17)…$d7)) (cmul $b0 0.6183 $d28)))

(add (div $d20 $d5) (tern $b2 $d0 $d9))

Training the Priority Function
General-Purpose Compilers

Compiler

A.c B.c C.c D.c

A B C D

1

14

Hyperblock Results
General-Purpose Compiler

1.
44

1.
25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
de

co
dr

le
4

co
dr

le
4

g7
21

de
co

de

g7
21

en
co

de

ra
w

da
ud

io

ra
w

ca
ud

io

to
as

t

m
pe

g2
de

c

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

hu
ff_

en
c

hu
ff_

de
c

A
ve

ra
ge

Sp
ee

du
p

Train data set Novel data set

Validation of Generality
Testing General-Purpose Applicability

1.
09

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

un
ep

ic

dj
pe

g

ra
st

a

02
3.

eq
nt

ot
t

13
2.

ijp
eg

05
2.

al
vi

nn

14
7.

vo
rte

x

08
5.

cc
1 ar
t

13
0.

li

os
de

m
o

m
ip

m
ap

A
ve

ra
ge

S
pe

ed
up

15

Running Time
 Application specific compilers

 ~1 day using 15 processors
 General-purpose compilers

 Dynamic Subset Selection [Gathercole]
 Run on a subset of the training benchmarks at a time

 Memoize fitnesses
 ~1 week using 15 processors

 This is a one time process!
 Performed by the compiler vendor

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

GP Hyperblock Solutions
General Purpose

Intron that doesn’t affect
solution

16

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

GP Hyperblock Solutions
General Purpose

Favor paths that don’t
have pointer dereferences

GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

Favor highly parallel
(fat) paths

17

GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

If a path calls a
subroutine that may
have side effects,
penalize it

Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity

18

Eliminate the Human from the
Loop

 So far we have tried to improve existing
priority functions
 Still a lot of person-hours were spent creating the

initial priority functions
 Observation: the human-created priority

functions are often eliminated in the 1st

generation
 What if we start from a completely random

population (no human-generated seed)?

Another Example
Register Allocation

 An old, established problem
 Hundreds of papers on the subject

 Priority-Based Register Allocation
[Chow,Hennessey]
 Uses a priority function to determine the worth of

allocating a register
 Let’s throw our GP system at the problem

and see what it comes up with

19

Register Allocation Results
General-Purpose Compiler

1.
03

1.
03

0.90

0.95

1.00

1.05

1.10

1.15

1.20

ra
w

ca
ud

io

ra
w

da
ud

io

hu
ff_

en
c

hu
ff_

de
c

12
9.

co
m

pr
es

s

m
pe

g2
de

c

g7
21

en
co

de

g7
21

de
co

de

av
er

ag
e

Sp
ee

du
p

Train data set Novel data set

Validation of Generality
Testing General-Purpose Applicability

1.
02

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

de
co

dr
le

4

co
dr

le
4

13
0.

li

dj
pe

g

un
ep

ic

12
4.

m
88

ks
im

02
3.

eq
nt

ot
t

13
2.

ijp
eg

08
5.

cc
1

14
7.

vo
rte

x

av
er

ag
e

Sp
ee

du
p

20

Importance of Priority Functions
Speedup over a constant priority function

1.
32 1.

36

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

ra
w

ca
ud

io

ra
w

da
ud

io

hu
ff_

en
c

hu
ff_

de
c

12
9.

co
m

pr
es

s

m
pe

g2
de

c

g7
21

en
co

de

g7
21

de
co

de

av
er

ag
e

Sp
ee

du
p

(o
ve

r n
o

fu
nc

tio
n)

Trimaran's function GP's function

Advantages our System
Provides

 Engineers can focus their energy on more
important tasks

 Can quickly retune for architectural changes
 Can quickly retune when compiler changes
 Can provide compilers catered toward

specific application suites
 e.g., consumer may want a compiler that excels

on scientific benchmarks

21

Related Work

 Calder et al. [TOPLAS-19]
 Fine tuned static branch prediction heuristics
 Requires a priori classification by a supervisor

 Monsifrot et al. [AIMSA-02]
 Classify loops based on amenability to unrolling
 Also used a priori classification

 Cooper et al. [Journal of Supercomputing-02]
 Use GAs to solve phase ordering problems

Conclusion

 Performance talk and a complexity talk
 Take a huge compiler, optimize one priority

function with GP and get exciting speedups
 Take a well-known heuristic and create

priority functions for it from scratch
 There’s a lot left to do

22

Why Genetic Programming?
 Many learning techniques rely on having pre-

classified data (labels)
 e.g., statistical learning, neural networks, decision

trees
 Priority functions require another approach

 Reinforcement learning
 Unsupervised learning

 Several techniques that might work well
 e.g., hill climbing, active learning, simulated

annealing

23

Why Genetic Programming

 Benefits of GP
 Capable of searching high-dimensional spaces
 It is a distributed algorithm
 The solutions are human readable

 Nevertheless…there are other learning
techniques that may also perform well

Genetic Programming
Reproduction

num_ops 2.3 predictability 4.1

- /

*

branches 7.5

* 1.1

/

branches 7.5

*

predictability 4.1

/

*

1.1

/

num_ops 2.3

-

