
1

Improving Compiler
Heuristics with

Machine Learning
Mark Stephenson
Una-May O’Reilly

Martin C. Martin
Saman Amarasinghe

Massachusetts Institute of Technology

System Complexities
 Compiler complexity

 Open Research Compiler
 ~3.5 million lines of

C/C++ code
 Trimaran’s compiler

 ~ 800,000 lines of
C code

 Architecture Complexity MMU and
improved
FPU

Speculative
execution

Branch
prediction



Pentium®
(3M)

Superscalar

Pentium 4
(55M)

Features

2

NP-Completeness

 Many compiler problems are NP-complete
 Thus, implementations can’t be optimal

 Compiler writers rely on heuristics
 In practice, heuristics perform well
 …but, require a lot of tweaking

 Heuristics often have a focal point
 Rely on a single priority function

Priority Functions

 A heuristic’s Achilles heel
 A single priority or cost function often dictates the

efficacy of a heuristic
 Priority functions rank the options available to a

compiler heuristic
 List scheduling (identifying instructions in worklist to

schedule first)
 Graph coloring register allocation (selecting nodes to

spill)
 Hyperblock formation (selecting paths to include)

 Any priority function is legal

3

Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity

 Can focus on a small portion of an
optimization algorithm
 Don’t need to worry about legality checking

 Small change can yield big payoffs
 Clear specification in terms of input/output
 Prevalent in compiler heuristics

Qualities of Priority Functions

4

An Example Optimization
Hyperblock Scheduling

 Conditional execution is potentially very
expensive on a modern architecture

 Modern processors try to dynamically predict
the outcome of the condition
 This works great for predictable branches…
 But some conditions can’t be predicted

 If they don’t predict correctly you waste a lot
of time

Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Misprediction

5

Example Optimization
Hyperblock Scheduling

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Example Optimization
Hyperblock Scheduling (using predication)

if (a[1] == 0)

else

Assume a[1] is 0
time

re
so

ur
ce

s

Processor simply discards results
of instructions that weren’t
supposed to be run

6

Example Optimization
Hyperblock Scheduling

 There are unclear tradeoffs
 In some situations, hyperblocks are faster than traditional

execution
 In others, hyperblocks impair performance

 Many factors affect this decision
 Accuracy of branch predictor
 Availability of parallel execution resources
 Effectiveness of the compiler’s scheduler
 Parallelizability and predictability of the program

 Hard to model

Example Optimization
Hyperblock Scheduling [Mahlke]

 Find predicatable regions of control flow
 Enumerate paths of control in region

 Exponential, but in practice it’s okay
 Prioritize paths based on four path

characteristics
 The priority function we want to optimize

 Add paths to hyperblock in priority order

7

Trimaran’s Priority Function

!
"
#

=
free hazard is if :1

 hazard has if :25.0

i

i

i
segment

segment
hazard

jNj

i
i

heightdep

heightdep
ratiodep

_max

_
_

1!=

=

)__1.2(_ iiiii ratioopratiodephazardratioexecpriority !!""=

jNj

i
i

heightop

heightop
ratioop

_max

_
_

1!=

=

Favor frequently
executed paths Favor short

paths

Penalize paths with hazards Favor parallel paths

Our Approach

 Trimaran uses four characteristics

 What are the important characteristics of a
hyperblock formation priority function?

 Our approach: Extract all the characteristics
you can think of and let a learning technique
find the priority function

8

Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions

num_ops 2.3 predictability 4.1

- /

*

Genetic Programming

 Searching algorithm analogous to Darwinian
evolution
 Maintain a population of expressions
 Selection

 The fittest expressions in the population are more
likely to reproduce

 Reproduction
 Crossing over subexpressions of two expressions

 Mutation

9

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

 Randomly generated initial
population seeded with the
compiler writer’s best
guess

Create Variants

done?

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Compiler is modified to use
the given expression as a
priority function

 Each expression is
evaluated by compiling and
running the benchmark(s)

 Fitness is the relative
speedup over Trimaran’s
priority function on the
benchmark(s)

10

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Just as with Natural
Selection, the fittest
individuals are more likely
to survive

General Flow

Create initial population
(initial solutions)

Evaluation

Selection

Create Variants

done?

 Use crossover and
mutation to generate new
expressions

 And thus, generate new
compilers

11

Experimental Setup

 Collect results using Trimaran
 Simulate a VLIW machine

 64 GPRs, 64 FPRs, 128 PRs
 4 fully pipelined integer FUs
 2 fully pipelined floating point FUs
 2 memory units (L1:2, L2:7, L3:35)

 Replace priority functions in IMPACT with our
GP expression parser and evaluator

Outline of Results
 High-water mark

 Create compilers specific to a given application
and a given data set

 Essentially partially evaluating the application
 Application-specific compilers

 Compiler trained for a given application and data
set, but run with an alternate data set

 General-purpose compiler
 Compiler trained on multiple applications and

tested on an unrelated set of applications

12

Training the Priority Function

Compiler

A.c B.c C.c D.c

A B C D

1 2

Training the Priority Function
Application-Specific Compilers

Compiler

A.c B.c C.c D.c

A B C D

1 2

13

Hyperblock Results
Application-Specific Compilers (High-Water Mark)

1.
54

1.
23

0

0.5

1

1.5

2

2.5

3

3.5

12
9.

co
m

pr
es

s

g7
21

en
co

de

g7
21

de
co

de

hu
ff_

de
c

hu
ff_

en
c

ra
w

ca
ud

io

ra
w

da
ud

io

to
as

t

m
pe

g2
de

c

A
ve

ra
ge

Sp
ee

du
p

Training input Novel input

(add (sub (cmul (gt (cmul $b0 0.8982 $d17)…$d7)) (cmul $b0 0.6183 $d28)))

(add (div $d20 $d5) (tern $b2 $d0 $d9))

Training the Priority Function
General-Purpose Compilers

Compiler

A.c B.c C.c D.c

A B C D

1

14

Hyperblock Results
General-Purpose Compiler

1.
44

1.
25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
de

co
dr

le
4

co
dr

le
4

g7
21

de
co

de

g7
21

en
co

de

ra
w

da
ud

io

ra
w

ca
ud

io

to
as

t

m
pe

g2
de

c

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

hu
ff_

en
c

hu
ff_

de
c

A
ve

ra
ge

Sp
ee

du
p

Train data set Novel data set

Validation of Generality
Testing General-Purpose Applicability

1.
09

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

un
ep

ic

dj
pe

g

ra
st

a

02
3.

eq
nt

ot
t

13
2.

ijp
eg

05
2.

al
vi

nn

14
7.

vo
rte

x

08
5.

cc
1 ar
t

13
0.

li

os
de

m
o

m
ip

m
ap

A
ve

ra
ge

S
pe

ed
up

15

Running Time
 Application specific compilers

 ~1 day using 15 processors
 General-purpose compilers

 Dynamic Subset Selection [Gathercole]
 Run on a subset of the training benchmarks at a time

 Memoize fitnesses
 ~1 week using 15 processors

 This is a one time process!
 Performed by the compiler vendor

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

GP Hyperblock Solutions
General Purpose

Intron that doesn’t affect
solution

16

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

GP Hyperblock Solutions
General Purpose

Favor paths that don’t
have pointer dereferences

GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

Favor highly parallel
(fat) paths

17

GP Hyperblock Solutions
General Purpose

(add
 (sub (mul exec_ratio_mean 0.8720) 0.9400)
 (mul 0.4762
 (cmul (not has_pointer_deref)

 (mul 0.6727 num_paths)
 (mul 1.1609

 (add (sub
 (mul (div num_ops dependence_height) 10.8240)
 exec_ratio)
 (sub (mul (cmul has_unsafe_jsr predict_product_mean 0.9838)

 (sub 1.1039 num_ops_max))
 (sub (mul dependence_height_mean num_branches_max)
 num_paths)))))))

If a path calls a
subroutine that may
have side effects,
penalize it

Our Proposal

 Use machine-learning techniques to
automatically search the priority function
space
 Increases compiler’s performance
 Reduces compiler design complexity

18

Eliminate the Human from the
Loop

 So far we have tried to improve existing
priority functions
 Still a lot of person-hours were spent creating the

initial priority functions
 Observation: the human-created priority

functions are often eliminated in the 1st

generation
 What if we start from a completely random

population (no human-generated seed)?

Another Example
Register Allocation

 An old, established problem
 Hundreds of papers on the subject

 Priority-Based Register Allocation
[Chow,Hennessey]
 Uses a priority function to determine the worth of

allocating a register
 Let’s throw our GP system at the problem

and see what it comes up with

19

Register Allocation Results
General-Purpose Compiler

1.
03

1.
03

0.90

0.95

1.00

1.05

1.10

1.15

1.20

ra
w

ca
ud

io

ra
w

da
ud

io

hu
ff_

en
c

hu
ff_

de
c

12
9.

co
m

pr
es

s

m
pe

g2
de

c

g7
21

en
co

de

g7
21

de
co

de

av
er

ag
e

Sp
ee

du
p

Train data set Novel data set

Validation of Generality
Testing General-Purpose Applicability

1.
02

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

de
co

dr
le

4

co
dr

le
4

13
0.

li

dj
pe

g

un
ep

ic

12
4.

m
88

ks
im

02
3.

eq
nt

ot
t

13
2.

ijp
eg

08
5.

cc
1

14
7.

vo
rte

x

av
er

ag
e

Sp
ee

du
p

20

Importance of Priority Functions
Speedup over a constant priority function

1.
32 1.

36

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

ra
w

ca
ud

io

ra
w

da
ud

io

hu
ff_

en
c

hu
ff_

de
c

12
9.

co
m

pr
es

s

m
pe

g2
de

c

g7
21

en
co

de

g7
21

de
co

de

av
er

ag
e

Sp
ee

du
p

(o
ve

r n
o

fu
nc

tio
n)

Trimaran's function GP's function

Advantages our System
Provides

 Engineers can focus their energy on more
important tasks

 Can quickly retune for architectural changes
 Can quickly retune when compiler changes
 Can provide compilers catered toward

specific application suites
 e.g., consumer may want a compiler that excels

on scientific benchmarks

21

Related Work

 Calder et al. [TOPLAS-19]
 Fine tuned static branch prediction heuristics
 Requires a priori classification by a supervisor

 Monsifrot et al. [AIMSA-02]
 Classify loops based on amenability to unrolling
 Also used a priori classification

 Cooper et al. [Journal of Supercomputing-02]
 Use GAs to solve phase ordering problems

Conclusion

 Performance talk and a complexity talk
 Take a huge compiler, optimize one priority

function with GP and get exciting speedups
 Take a well-known heuristic and create

priority functions for it from scratch
 There’s a lot left to do

22

Why Genetic Programming?
 Many learning techniques rely on having pre-

classified data (labels)
 e.g., statistical learning, neural networks, decision

trees
 Priority functions require another approach

 Reinforcement learning
 Unsupervised learning

 Several techniques that might work well
 e.g., hill climbing, active learning, simulated

annealing

23

Why Genetic Programming

 Benefits of GP
 Capable of searching high-dimensional spaces
 It is a distributed algorithm
 The solutions are human readable

 Nevertheless…there are other learning
techniques that may also perform well

Genetic Programming
Reproduction

num_ops 2.3 predictability 4.1

- /

*

branches 7.5

* 1.1

/

branches 7.5

*

predictability 4.1

/

*

1.1

/

num_ops 2.3

-

