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Abstract

In this paper we demonstrate an accurate, efficient,
and parallelizable optimization algorithm for the layout
of hundreds, then 1000, turbines. It is modular and
therefore allows different wake effect models to be in-
corporated. Its computational cost is a relation which
depends upon how many candidate layouts it investi-
gates and the complexity of its wake loss calculation.
We demonstrate how well it maximizes energy capture
and show how it allows one to examine how wake loss
scales with energy capture and number of turbines.
Keywords: Wind farm design, output maximization,
wake consideration, Covariance Matrix Adaptation,
Evolutionary strategy

1 Introduction

Layout tools attempt to identify the best layout of wind
turbines on a land or offshore area according to energy
capture. They model free stream wind flowing through
an area with sited turbines and calculate the energy
output of successive turbines while taking wake effects
and turbulence intensities into account. A key compo-
nent of such tools is the “optimizer” algorithm used to
efficiently search through a modest proportion of can-
didate layouts to identify the best one. With increas-
ing frequency, wind farms are getting larger. For ex-
ample, the Horse Hollow Wind Energy Center in Texas,
USA operates with 735.5 megawatt (MW) capacity and
consists of more than 300 turbines spread over nearly

47,000 acres (190 km2). The layout of turbines in such
large wind farms is challenged by large numbers of tur-
bines, large farm areas, constraints on feasible sitings
and expensive wake models because the number of sit-
ing combinations of turbines on a large area is huge
(exponential!), constraints must be respected and the
cost of calculating wake loss scales non-linearly with
each additional turbine.

In this paper we demonstrate an accurate and effi-
cient optimization algorithm for the layout of hundreds
of turbines, in fact, up to one thousand. Such an algo-
rithm could be incorporated as an “optimizer” compo-
nent choice in a layout tool such as the publicly avail-
able OpenWind offering by AWS Truepower. Our al-
gorithm is easily parallelized which makes it faster to
use. It is modular which allows different wake effect
models to be incorporated. Its cost can be stated as
a relation depending on how many layouts it searches
through and how expensive it is to calculate wake loss.
We demonstrate how well it maximizes energy capture
and minimizes the ratio of fixed cost to energy capture.
We also calculate its value in calculating how wake loss
scales with energy capture as additional turbines are
sited.

2 Motivation

This work is primarily motivated by the complexities of
placing a few hundreds or even a thousand turbines us-
ing a layout optimizer. Some of the complexities are:
Many infeasible solutions: Due to a constraint that
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two turbines cannot be closer than 4 times their blade
diameter within a specified area, a large number of in-
feasible layouts exist within the farm area. Traditionally
this has been dealt with by dividing the area into cells
and deciding whether or not to place a turbine at the
center of a cell. However, cells reduce placement flexi-
bility. The challenge is to search through candidate lay-
outs without generating too many infeasible ones, while
being able to place many turbines in a flexible manner.
Costly wake modeling: The computational expense
of evaluating a candidate layout is high because, as
the number of turbines increases, the cost of model-
ing wake effects for a given layout increases quadrati-
cally. While this cost can be somewhat addressed by
parallelization, it implies that it is important to intelli-
gently sample layouts so that increasingly better ones
are found.
Multiple, Unavailable Optimization Criteria: Layout
optimization frequently depends on multiple subjective
assessments or criteria that are not provided to an au-
tomatic optimizer. To address this, it is useful for the
optimizer to produce as many candidate layouts as pos-
sible that are of approximately equal value in terms of
energy capture. Later, a human designer can review
these choices, and use subjective and other reasons
not disclosed to the optimizer to choose the best lay-
out.

3 Related Work

Due to its inherent complexity, bio-inspired algorithms
such as evolutionary strategies [11] (ES), genetic al-
gorithms [2] (GAs) and particle swarm optimization [4]
(PSO) have been used for layout optimization. Recent
examples are [5, 8, 9, 10] which are included in [7].
Evolutionary algorithms, which form a sub-class of bio-
inspired algorithms, mimic some fundamental aspects
of the neo-Darwinian evolutionary process. They si-
multaneously search with a “population” of candidate
solutions and associate an objective score as a fitness
value for each one. They then select among the popu-
lation to favor those solutions that are more fit. The next
generation (i.e. a new population) consists of replicates
of the fitter solutions which have been “genetically mu-
tated and or crossed over” in a biological metaphor: the

decision variables were perturbed such that they inherit
some characters of their “parents” as well as change in
random ways.

Wan et al, [8, 9, 10], use a cell based approach and
compare three different bio-inspired algorithms, each
applied to the same set of wind farm models and pa-
rameters. They use successively more expressive lay-
out representations (and algorithms)1 to relax where in
a cell a turbine can be located: strictly in the middle,
anywhere, or anywhere subject to proximity constraints
with neighbouring turbines.

This contribution and Kusiak et al, [5], exploit an al-
ternative to cell placement: each turbine’s location is a
decision variable pair of real-valued, spatial (x,y) coor-
dinates. With this representation, many more layouts
are possible. In [5], a multi-objective evolutionary strat-
egy is used. The secondary objective is to minimize
turbine proximity constraint violations. In contrast, our
contribution dispenses with the second objective and
merely discards infeasible solutions. Kusiak et al do not
demonstrate the layout of more than 6 turbines. They
confine the model farm area to a 500m radius and can-
not identify even one feasible solution in it for a larger
number of turbines.

Like Kusiak et al, we employ an evolutionary strategy
(ES), albeit a more powerful and competent variant. In
general, an ES is effective because it is easily paral-
lelized and it “self-adapts” the extent to which it per-
turbs decision variables when generating a new candi-
date layout from an existing one. In the algorithm that
Kusiak et al employ, each decision variable is perturbed
by adding a normally distributed random value. There,
the univariate normal distribution N(µ = 0, σ) is de-
fined by an evolved standard deviation σ that has sur-
vived selection and been adapted during the course of
the optimization. This implies a strong, but invalid, as-
sumption by the self-adaptation: each decision variable
is independent of the others, with respect to the objec-
tive, i.e. energy capture of the entire layout. This clearly
is not accurate because turbines experience wake inter-
actions and modifying one turbine’s location has impact
on others.

1from a binary to a real-coded GA, to PSO
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Table 1: Symbol Definitions

Number of turbines N
Wind velocity v
Wind direction 00 < θ < 3600

Farm radius r
Rotor diameter R

Weibull distribution for wind speed pv(v, k, c) = k/c(v/c)k−1e−(v/c)k

Weibull shape parameter k
Weibull scale parameter c
Wind direction distribution P (θ)

Expected power of a single turbine Ei[η]

Piecewise power curve of turbine β(v) =


0 v < vcut_in

λv + γ vcut_in ≤ v ≤ vrated
Prated vrated < v < vcut_out

4 Problem Description

To demonstrate breaking the 1000 turbine barrier with
Covariance matrix adaptation based evolutionary strat-
egy (CMA-ES), we formulate the layout problem as fol-
lows. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be
the x and y coordinates of the n turbines.

Our goal is to identify a layout that maximizes the
energy capture from a given farm

argmax
(X,Y )

η(X,Y, v, β(v)) (1)

where v is the wind speed, and the function β(v),
known as a power curve, gives the power generated
by a specific turbine for a given wind speed. Wind
speed v however is a random variable with a Weibull
distribution, pv(v, c, k), which is estimated from wind
resource data. This distribution also changes as a func-
tion of direction, θ which varies from 00 − 3600, yield-
ing a probability density function for different θ given by
pθv(v, c, k). Additionally, wind flows from a certain direc-
tion with some probability P (θ). These different pieces
of information are inputs to the algorithm and are sum-
marized in Table 1. Due to the random nature of wind
velocity, the objective function in eq. (1) is transformed
to evaluate the expected value of the energy capture
for a given wind resource and turbine positions. For a

single turbine, this value can be calculated using

Ei[η] =

∫
θ

P (θ)

∫
v

pv(v(θ), c(θ), k(θ))β
i(v). (2)

Eq. (2) evaluates the overall average energy over all
wind speeds for a given wind direction, and then aver-
ages this energy over all the wind directions. However,
during the resource assessment, the wind speed distri-
butions are estimated for discrete wind direction bins.
Hence the above integral is discretized along the wind
direction. Furthermore, the wind speed is discretized in
order to proceed with numerical integration. For more
details, refer to [5].

4.1 Wake Modeling

The above formulation of expected energy capture, as-
sumes identical wind resources, i.e., pθv(v, c, k) and
P (θ) at each turbine. However, a significant factor
that diminishes efficient energy capture is the wake ef-
fect: the so-called “down wind exhaust” from one tur-
bine alters the free stream inflow into a turbine behind
it. When optimizing a layout, the wake affect is calcu-
lated as a modification of the estimated wind resource
that is available for a turbine i due to its location and
the location of other turbines. Like others [5], we make
some simplifying assumptions for illustrative purposes
in this paper. We use the modified Park wake model
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[6]. We are aware that, for a large number of turbines,
it is not as appropriate as the deep array wake model
[1]. The latter could be additionally imposed without
modifications to our algorithm. The procedure for the
evaluation of the wake effects due to the Park model is
shown below in Algorithm 1.

As can be seen from Algorithm 1, the wake effects
on a turbine i change the wind resource available to it
along different directions by reducing the scale param-
eter of the Weibull distribution estimated for the entire
farm, which is also called the freestream wind resource.
This is dependent on its location and the location of the
rest of the turbines. Hence, eq.( 2) is modified to reflect
this to

Efarm[η] =

(∑
i

∫
θ

P (θ)∫
v

pθv(v, ci(θ), ki(θ), xi, yi, X, Y )βi(v).

)
(3)

The goal of the optimization problem is to maximize
eq. (3). In the following subsection, we present the con-
straints and assumptions we made for the optimization
problem.

4.2 Constraints and Assumptions

We have the following constraints placed on our opti-
mization function.
Upper bound on the area of the farm: This con-
straint dictates that we can only place a turbine within
a certain area, which is a realistic constraint for most
layout problems. For a circular farm with radius r
and the origin as the center, this constraint is satis-
fied iff sqrt(x2i + y2i ) ≤ r, ∀i. For a rectangular farm
with length l and width w this constraint is satisfied iff
0 ≤ xi ≤ l & 0 ≤ yi ≤ w,∀i.
Proximity constraint: This dictates the minimal dis-
tance within which two turbines can be set up. The
constraint is satisfied iff

√
(xi − xj)2 + (yi − yj)2 ≥

4M2R2,∀i∀j where R is the rotor radius and M is a
proximity factor usually decided ahead of the optimiza-
tion based on the make and model of the turbines that is
used. The equation expresses the proximity constraint

as a function of the rotor radius, which is standard in
wind industry. In addition to the above constraints, we
assume that all turbines have the same power curves
(approximated as piecewise linear functions) and that
the same wind resource spans the entire farm. 2 The
assumptions can be very straight forwardly revised to
generate more realistic scenarios.

Algorithm 1 Procedure for evaluation of wake effects
due to park model

Given {X,Y } as turbine locations CT ⇐ thrust coefficient, κ ⇐
spreading factor;
a = 1 −

√
1− CT , b = κ/R, u ⇐ unit step function, o =

(xi − xj)cosθ + (yi − yj)sinθ;
di,j = ‖o‖, α = tan−1κ
for i = 1 to number of turbines do

for θ = 00 to 3600 do
for j = 1 to n-1 and j 6= i do

δi,j = cos−1{ o+R/κ√
(xi−xj+(R/κ)cosθ)2+(yi−yj+(R/κ)sinθ)2

}

V def(i,j) = u(δi,j − α) a
(1+bdi,j)2

end for
V defθi =

√∑
j(V def(i,j))

2

ci(θ) = ci(θ)× (1− V defi)
end for

end for

5 CMA-Evolutionary Strategy

The Covariance Matrix Adaptation based evolution-
ary strategy (CMA-ES), summarized in Algorithm 2 in-
cluding Equations (6) and (8), self-adapts the covari-
ance matrix of a multivariate normal distribution.This
normal distribution is then used to sample from the
multidimensional search space where each variate is
a search variable. The co-variance matrix allows the
algorithm to respect the correlations between the vari-
ables making it a powerful evolutionary search algo-
rithm. Consider a representation xk for the kth solution
to the optimization problem that attempts to minimize
the objective function f(x). In each iteration, t, the al-
gorithm samples λ number of solutions from a multi-
variate normal distribution given by

x
(t+1)
k = N (m(t), (σ(t))2C(t))∀k.

2For additional accuracy, these resources can be estimated for
different parts in the farm.
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Algorithm 2 Covariance Matrix Adaptation Based Evolutionary Strategy
for t = 1 to maxiter do

Sample x
(t)
i using Equation 5, evaluate energy capture for xi,∀i, Select µ members of the population

Update the mean using

m(t+1) =

µ∑
i=1

ωix
(t+1)
i , suchthat

µ∑
i=1

wi = 1andwi > 0 (4)

Update standard deviation σ(t+1) using

p
(t+1)
σ = (1− cσ)p(g)

σ +
√

(cσ(2− cσ)µeffC(t)−1
2

m(t+1) −m(t)

σ(t)
and (5)

σ(t+1) = σ(t)exp(
cσ

dσ
(
||p(t+1)

σ ||
E||N (0, I)||

− 1)) (6)

Update covariance matrix using:

p
(t+1)
c = (1− cc)p(t)

c + h
(t+1)
σ

√
cc(2− cc)µeff

m(t+1) −m(t)

σ(t)
(7)

C(t+1) = (1− ccov)C(t) +
ccov

µcov
(p

(t+1)
c p

(t+1)T

c ) + ccov(1−
1

µcov
)C

(t+1)
µ (8)

t← t+ 1

end for

where m(t) is the mean, σ(t) is the standard deviation
and C(t) is the covariance matrix for a multivariate nor-
mal distribution represented by N . t represents the it-
eration index. The goal of the algorithm is to then adapt
m, σ2 and C as optimization progresses. The sim-
plest type of adaptation can be achieved by selecting
a subset of µ solutions that perform the best in terms of
the objective function, and estimating the parameters
of the multivariate normal distribution based on these
solutions. This can be simply done using

C(t+1)
µ =

µ∑
i=1

wi
(x

(t+1)
i −m(t))

σ(t)
(
x
(t+1)
i −m(t)

σ(t)
)T

(9)
More sophistication to this adaptation can be added as
shown in eq. (8), such as using weighted sums of the
matrices, and the adaptation of the step-size.
Rank µ update: This is summation of two terms , i.e.,
eq. (9) weighted by ccov(1− 1

µcov
) and (1− ccov)(C)(t).

Thus this generates a weighted sum of covariance ma-
trix from previous iteration, and the estimate of the co-
variance from µ best performing samples in the current
iteration.
Cumulation:This captures the direction of the move-
ment of mean as iterations progress. This is calculated

using eq. (7) and setting p
(1)
c = 0 intially. Note that the

contribution of the previous iterations is controlled us-
ing a weight 1 − cc. h(t+1)

σ is a Heavside function that
stalls the update of p(t)

c if ||p(t+1)
σ || is large [3].

Step size control: This provides a mechanism to con-
trol the variation in σ(t). To achieve this an evolu-
tion path pσ is evaluated using eigen decomposition
of C(t), which is C(t)−1

2 , and the change in the means.
This value is then used to determine the new value of
σ(t+1) as shown in eq. (6). E||N (0, I)|| is the expecta-
tion of euclidean norm of a N (0, I).
Table 3 summarizes the CMA-ES parameters we se-
lected. Initial values are set as follows: p

(0)
σ =

0, p
(0)
c = 0, C(0) = I. Values for parameters

wi, cσ, dσ, cc, µcov, ccov are set to their default values
as described in [3]. For a more detailed intuition about
these parameters the reader is referred to [3].
Constraint handling: Our algorithm takes care of the
constraints in the following ways. Initially, it places the
N turbines on a regular n × m grid. There, the grid
is constructed in such a way that the distance between
the rows and columns is maximal, including the place-
ment of turbines on the borders of the wind farm area.3

3If n ·m > N , then the last column is not filled completely.
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This is a straightforward approach of placing a number
of turbines within an area, which can be observed to be
frequently used in practice. Additionally, this approach
proved to serve as a very good starting point, as the
initial distance between the turbines is maximized in a
naive way. Thus, the wake effect is already reduced to
some extent (when compared to tighter layouts), even
without considering the directional distribution of the
wind.

Furthermore, when turbines violate the wind farm
border constraint, we fix such placements by setting
these right back onto the borders. This repair signifi-
cantly reduces the time that is spent on the creation of
a new layout, as the high likelihood of violating this con-
straint would otherwise require a significant number of
repeated trials of creation.

Finally, when a layout has a turbine which violates
the proximity constraint, we replace the layout entirely
with a new, randomly generated feasible layout which
allows the optimization to continue. During our experi-
ments, this circumstance was rare, as the turbines tend
to be moved primarily by small distances per iteration.

6 Results and Discussion

We use the wind resources provided in [5]. The wind
direction is binned in 150 intervals. Scenario 1 has the
same scale and shape parameters for the Weibull dis-
tribution for all bins. Scenario 2 has the same shape
parameter for the bins, but different scale parame-
ters. The shape parameter k increases the spread of
the Weibull distribution as it gets larger. In Scenario
1, the dominant wind directions are 750 - 900 (with
P (θ) = 0.2) and 900- 1050 (with P (θ) = 0.6). There
is no wind coming from 00- 150, and 3450- 3600. For
the rest of the bins the P (θ) = 0.01.

Scenario 2 is more complex and realistic. The shape
parameter is the same for all bins, however, the scale
parameter is different for different bins and ranges from
4 - 10. Similarly, P (θ) also varies over the range 0.001
to 0.1839. It is more difficult to nominally identify com-
petent layouts as there is no prominent wind direction.
In Scenario 1 one can optimize for the prominent direc-
tions and not lose significant efficiency. In Scenario 2,
one has to optimize the layout to work with minimum

Table 4: Metrics used to evaluate multiple layouts.

Metric Definition
Ewlf Wake loss free power
E power achieved by layout optimizer
Eloss Power loss due to wakes
GN Power gain achieved by layout

optimizer via adding N turbines
Gwlf
N Wake loss free power

capture of adding N turbines

GlossN GwlfN − GN

wake loss along all the wind directions.
Different metrics to evaluate multiple layouts are pre-

sented in Table 4

6.1 Results

Case A: 2-6 turbines: In this case, we validate the
accuracy of CMA-ES by showing how it is comparable
to small scale results of [5]. Each optimization “run”
of CMA-ES evaluated the same number of candidate
layouts as [5] for fairness. Due to the stochastic prop-
erty of ES, we run the ES multiple times and report
’best of runs’ meaning the energy loss of the best layout
found when all runs are compared and ’average best’
which is the average energy loss of the best layout in
each run. Using [5]’s scenarios, the plots of Figure 1
show that the Kusiak et al algorithm, called “SPEA-2”
[5, 11], and CMA-ES are equivalently effective. We plot
the maximum energy capture (before wake loss is sub-
tracted), and the net energy capture (after subtracting
wake loss). With 6 turbines, using scenario 2, the en-
ergy capture without wake effects would be 43894 kW .
SPEA-2’s layout loses 698 kW to wake effects and
CMA-EA’s layout loses, on average 440 kW (approx-
imately 36% improvement).
Case B: 10-100 turbines: We choose Scenario 2 be-
cause it is a more complex wind resource. Then we
attempt to place 10 to 100 turbines at 10 turbine in-
crements in a 9 km2 rectangular area. Figure 2(left)
shows the energy capture under wake loss. Wake loss
is indicated by the gap between max energy and en-
ergy capture. Figure 2(right) and Figure 4(left) show
that the value of adding each additional set of 10 tur-
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Table 2: Wind Scenario 1 and Scenario 2

l θl θl+1 Scenario 1 Scenario 2
l θl θl+1 Scenario 1 Scenario 2

k c P (θ) k c P (θ) k c P (θ) k c P (θ)
0 0 15 2 13 0 2 7 0.0002 12 180 195 2 13 0.01 2 10 0.1839
1 15 30 2 13 0.01 2 5 0.008 13 195 210 2 13 0.01 2 8.5 0.1115
2 30 45 2 13 0.01 2 5 0.0227 14 210 225 2 13 0.01 2 8.5 0.0765
3 45 60 2 13 0.01 2 5 0.0242 15 225 240 2 13 0.01 2 6.5 0.008
4 60 75 2 13 0.01 2 5 0.0225 16 240 255 2 13 0.01 2 4.6 0.0051
5 75 90 2 13 0.2 2 4 0.0339 17 255 270 2 13 0.01 2 2.6 0.0019
6 90 105 2 13 0.6 2 5 0.0423 18 270 285 2 13 0.01 2 8 0.0012
7 105 120 2 13 0.01 2 6 0.029 19 285 300 2 13 0.01 2 5 0.001
8 120 135 2 13 0.01 2 7 0.0617 20 300 315 2 13 0.01 2 6.4 0.0017
9 135 150 2 13 0.01 2 7 0.0813 21 315 330 2 13 0.01 2 5.2 0.0031

10 150 165 2 13 0.01 2 7 0.0994 22 330 345 2 13 0.01 2 4.5 0.0097
11 165 180 2 13 0.01 2 9.5 0.1394 23 345 360 2 13 0 2 3.9 0.0317

Table 3: CMA-ES and Experiment Parameters. Population is expressed with two variables, µ defines the parent
population size and λ the number of offsprings generated from the parent population each generation.

N=2. . . 9 N=10. . . 100 N=200. . . 500 N=1000
(µ, λ) (20, 120) (10,20) (10,20) (10,20)

(generations, runs) (100,30) (10000, 30) (10000, 5) (20000,1)
farm size (km) r=0.5 l=w=3 l=10 w=20 l=10 w=20

bines slowly declines while the total wake loss rises
considerably. The decline may be explained by addi-
tional interference due to squeezing more turbines into
the farm. The net energy capture and wake loss rise
from 73154 kW and zero respectively with 10 turbines
to 619133 kW and 112405 kW respectively with 100
turbines. As in the validation case, packing turbines
more tightly into the same area creates higher wake
loss. Figure 5(left) shows the displacement of 50 tur-
bines from their initial positions at the end of a CMA-
ES run. The turbines were placed in a grid initially.At
the end of the run the turbines were displaced by a few
meters. Figure 5(right) summarizes the displacements
of turbines from their initial positions for 30 indepen-
dent runs of CMA-ES. The turbines moved 15-20 me-
ters from their initial placements.
Case C: Breaking the 1000 turbine barrier: What
happens when 200 to 1000 turbines are located in a
rectangle of 200 km2? Figures 3 and Figure 4(right)
show, for this turbine range, information similar to that

of Figures 2 and 4(left). The net energy capture as-
cends in sequence (1440, 2130, 2813, 3465)MW when
turbine number grows from 200 to 500 by 100 turbine
increments. The corresponding wake loss sequence is
(23, 64, 113, 193)MW . At 1000 turbines, the net en-
ergy capture is just less than double that of 500 tur-
bines: 6554 MW because the wake loss rises from
193 MW to 761 MW . The non-linear trend in wake
loss, again, arises from packing more turbines into the
same area.

6.2 Cost of the algorithm

One metric of evaluation is elapsed time. We ran a par-
allelized version of CMA-ES on 20 processors when
running large layouts (for 1000 turbine problem). This
is crucial because just one wake loss calculation for a
1000 turbine layout takes about 30 seconds (on an Intel
Xeon E7530, 1.87GHz). A realistic version of this opti-
mizer would account for many additional details, such
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Figure 1: Comparison of Kuisak et al’s SPEA-2 algorithm [5] and CMA-ES, left: Scenario 1, right: Scenario 2 .
Results are not significantly different and are comparable.
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Figure 2: Performance of CMA-ES for 10 to 100 turbines under Scenario 2. Left plot shows energy capture climbs
up as we add turbines. Right plot shows how adding each new set of 10 turbines helps despite the increase in
wake losses.

as cabling costs, but the dominating factor in expense
would still be calculating wake loss when evaluating the
net energy capture of a layout as other become asymp-
totically insignificant. The wake loss calculation scales
quadratically with the number of turbines. The cost of
one layout evaluation must be multiplied by the total lay-
out evaluations run by the optimizer. For CMA-ES this
latter factor is the product of offspring pool size, µ, and
the number of generations. For example, each layout
of 1000 turbines, on average requires 30 seconds to
evaluate net energy capture. If we run CMA-ES with an
offspring pool of 20 for 20000 generations so the run
requires, serially, roughly 12,000,000 CPU seconds or
about 140 days. With parallelization, the elapsed time

of the optimization was approximately 12 days implying
the speedup is sub-linear. To optimize 200 and 500 tur-
bines serially, it would have taken about 3 and 19 days
respectively but, with parallelization on 2 processors,
this averaged to 1.3 and 13 days.

7 Conclusions and Future Work

In this contribution, we have presented an advanced
evolutionary algorithmic approach that learns the statis-
tical properties of the better layouts and makes use of
them to generate even better layouts. This property is
advantageous for layout optimization because the opti-
mal position of a turbine depends upon its neighbours’
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Figure 3: Performance of CMA-ES for 200 to 1000 turbines under Scenario 2. Left plot shows energy capture
climbs up as more turbines are added. Right plot shows how adding each new set of 100 (500 between N=500
and N=1000) turbines helps despite the increase in the wake losses.
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Figure 4: (a)The plot shows how the ratio of energy loss due to wake to total capture increases with each
additional set of 10 turbines. As well as the gain achieved by adding each additional turbines starts to decrease.
This is characteristic of the layout problem when more turbines are squeezed in the same area. (b) This plot
shows the same metric evaluated for layouts consisting of 200 -1000 turbines.

positions. We demonstrated the algorithm on layout
problems involving 100’s and even 1000 turbines. The
stochastic nature of the algorithm demands perform-
ing multiple independent trials. One fortuitous feature
of this requirement is that the multiple trials provided
different layouts that were equally competent in their
energy capture. TThey cannot be confirmed as theo-
retically globally optimal but are competent and useful
for practical purposes. The algorithm was parallelized
on multiple cores to achieve significant speed-ups. As
future work we will focus on the following:
Multiple objectives So far, our focus was on the op-

timization of a single objective (energy output). A nat-
ural next step is to incorporating additional objectives,
such as minimizing the required amount of land and
minimizing the connecting cables’ lengths. These ob-
jectives are often in conflict with each other so the goal
of solving a such a multi-objective optimization problem
is usually to find a set of compromise solutions.
Realistic models More realistic wake models, such as
the deep array wake model, will be incorporated. As
such models are computationally costly, the value of
their precision in accurate energy production prediction
will be analyzed.

9



0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

X axis 

Y
 a

x
is

 

0

5

10

15

20

25

30

35

40
123456

7
8

9
10

11
12
13
14
15
16
17

18
19

20
2122232425 26 2728293031

32
33

34
35
36
37
38
39
40

41
42

43
44

45
4647484950

Euclidean distance (in meters) moved by each turbine 
(data based on 30 runs)

mean euclid

stdev

Figure 5: (left) Displacement of the turbines from the initial positions at the end of a CMA-ES run. Mean and
standard deviation of displacement of turbines for 30 independent runs of CMA-ES (right)
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