
DeepTuner: A System for Search Technique Recommendation in

Program Autotuning

by

Kevin Wu

B.S., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Ful�llment of the Requirements for the Degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

July 2015

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and electronic

copies of this thesis document in whole and in part in any medium now known or hereafter created.

Author: ..

Department of Electrical Engineering and Computer Science

July 17, 2015

Certified by: ...

Kalyan Veeramachaneni, Thesis Supervisor

July 17, 2015

Certified by: ...

Prof. Saman Amarasinghe, Thesis Supervisor

July 17, 2015

Accepted by: ...

Prof. Albert R. Meyer, Chairman, Masters of Engineering Thesis Committee

DeepTuner: A System for Search Technique Recommendation in

Program Autotuning

by

Kevin Wu

Submitted to the Department of Electrical Engineering and Computer Science

July 17, 2015

in partial ful�lment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

OpenTuner can help users achieve better or more portable performance in their speci�c domain through

program autotuning. A key challenge for users seeking good autotuning performance in OpenTuner is

selecting a search approach appropriate for problem. However, not only are current in-situ learning search

approaches not robust enough to handle all search spaces, but there are also too many possible search

approaches for a user to examine manually after factoring in composable techniques.

In this thesis, we introduce DeepTuner, a system for search approach recommendation operating across

OpenTuner autotuning sessions to facilitate development of robust transfer learning search approaches. By

utilizing historical autotuning data via DeepTuner's technique recommendation endpoints, the new search

approaches can e�ciently explore the space of possible search approaches and the autotuning space simul-

taneously, resulting in an adaptive, self-improving search approach.

We demonstrate the robustness that recommendation brings on nine problems spread over three domains

for a variety of initial technique sets. In particular, we show that the new Database Initialized Recommen-

dation Bandit Meta-technique is highly robust, performing on par or signi�cantly better than various old

in-situ search approaches in OpenTuner. We achieve up to 3.7x performance improvement over the old

default in-situ search approach for OpenTuner in the TSP domain.

Acknowledgements

First of all, I'd like to thank my advisors, Saman Amarasinghe and Kalyan Veeramachaneni. Throughout his

many roles as an undergraduate advisor, PI, and thesis advisor to me, Saman has consistently provided great

ideas and sound advice to keep me on track. His guidance and vision have been indispensable in breaking

through (or simply walking around) the roadblocks hindering my progress. I also couldn't have asked for

more out of an advisor with Kalyan. His knowledge and experience, combined with a tireless dedication

to his projects and advisees, made working with him an absolute pleasure. His easy going personality and

willingness to share new tools with me to make my life easier were the icing on the cake. This thesis de�nitely

wouldn't have been possible without the support of these two amazing individuals and the great feedback

they've given me. I'm truly grateful for all for their time and e�orts.

Next, I'd like to thank the many talented members of the COMMIT group - past and present - for making

my CSAIL experience great. Particular a�rmations to Jason for his patience with helping me understand the

ins and outs of OpenTuner; Je�rey for many keen insights, his no-nonsense practical advice, and a uniquely

dry sense of humour; Shoaib for help working with so many di�erent languages and systems, despite being

one of the busiest people I've ever met; Charith for some fun times with Helium; and �nally my fellow

MEng-ers Giuseppe and Yoana.

Also, I want to thank MIT for being the awesome, intellectually stimulating, open-to-anything and

supportive community that enabled me to pursue so many of my di�erent interests. I don't think anywhere

else could have put up with the academic ADHD of my undergraduate years. I couldn't have asked for a

better place to learn. Along those lines, here's a shout-out to all the great friends I've made at MIT. MIT

would have been 99.9% less enjoyable without all of you brilliant people!

Last but not least, I'd like to thank my family. Without their unwavering support, I wouldn't have been

able to focus on and enjoy my experience at MIT to the extent that I did. I feel truly blessed to have been

raised by such devoted parents.

2

Contents

List of Figures 6

List of Tables 8

1 Introduction 9

1.1 Program Autotuning . 9

1.2 OpenTuner . 10

1.3 DeepTuner . 12

1.4 Contributions . 16

1.5 Organization . 17

2 Related Work 18

2.1 Autotuning Frameworks . 18

2.1.1 Linear Algebra . 18

2.1.2 Signal Processing . 19

2.1.3 Stencil Computations . 19

2.1.4 Runtime Systems . 20

2.2 Search Technique Hybridization . 20

2.3 Algorithm Recommendation . 21

3 The OpenTuner Framework 22

3.1 Problem De�nition . 22

3.2 Search Approach . 24

3.2.1 AUC Bandit Meta-Technique . 24

4 Search Technique Composition 26

4.1 Creating a Technique Base . 27

3

4.2 Choosing a Set of Operators . 28

4.2.1 Parameter Types . 30

4.2.2 Available Operators . 30

5 The Cross-session Database 36

5.1 Database Schema . 36

5.1.1 Storing Representation Parameter Structure . 37

5.2 Encoding Search Approach Data . 37

5.2.1 Tracking Hyper-parameter Information . 38

5.2.2 Operator Maps . 38

5.3 Uploading Tuning Data . 39

5.4 Historical Tuning Run Data Generation . 39

5.4.1 Using the Cross-session Database . 39

6 A Recommender System 43

6.1 The Recommendation Bandit Meta-Technique . 45

6.2 An Example of the Recommendation Process . 49

6.3 Advantages of the Recommendation Bandit Meta-Technique 51

7 Results 52

7.1 Testing Protocol . 52

7.1.1 Meta-techniques Tested . 52

7.2 Search Approach Performance Comparisons . 54

7.2.1 Halide . 55

7.2.2 Petabricks . 55

7.2.3 Travelling Salesman Problem . 62

7.3 Key Findings . 80

8 Future Work 82

8.1 Expanding Recommendation in DeepTuner . 82

8.2 Search A�nity Metrics . 82

8.3 Other Modes for Transfer Learning . 83

8.4 Addressing Privacy Concerns . 83

8.5 Developing New Parameter Types and Operators . 83

9 Conclusion 84

Bibliography 85

A Appendix A: De�nitions and Terminology 90

A.1 Basic Autotuning Terminology . 90

A.2 Autotuner Speci�cation . 91

A.3 Search Approach . 92

A.4 Search and Evaluation . 94

A.5 Recommender System . 94

List of Figures

1.1 Levels of learning in OpenTuner search approaches . 13

1.2 Autotuning performance of an in-situ learning vs. a transfer learning search approach 16

3.1 Structure of a problem de�nition . 23

4.1 Hierarchy of OpenTuner's built-in parameter types . 31

5.1 Database schema for the cross-session database . 42

6.1 Specifying a search approach in OpenTuner . 44

6.2 Search process for the the recommendation bandit meta-technique 48

7.1 Search approach performance in Halide bilateral grid by initial technique set 56

7.2 End of autotuning execution times for the Halide bilateral grid benchmark 57

7.3 Search approach performance in the Halide bilateral grid benchmark 58

7.4 Search approach performance in Petabricks matrix approximation by initial technique set . . 59

7.5 End of autotuning execution times for the Petabricks matrix approximation benchmark . . . 60

7.6 Search approach performance in the Petabricks matrix approximation benchmark 61

7.7 Search approach performance in Petabricks Strassen by initial technique set 63

7.8 Search approach performance in the Petabricks Strassen benchmark 64

7.9 Search approach performance in TSP att48 by initial technique set 65

7.10 Search approach performance in TSP dantzig42 by initial technique set 66

7.11 Search approach performance in TSP att48 . 68

7.12 End of autotuning best route lengths for the TSP att48 benchmark 69

7.13 Search approach performance in TSP dantzig42 . 70

7.14 End of autotuning best route lengths for the TSP dantzig42 benchmark 71

7.15 Search approach performance in ATSP ftv44 and ftv170 . 73

6

7.16 End of autotuning best route lengths for the ATSP ftv44 and ftv170 benchmarks 74

7.17 Database initialized search approaches in the ATSP ftv44 and ftv170 benchmarks 75

7.18 Search approach performance in the ATSP rbg323 representation 76

7.19 End of autotuning best route lengths for the ATSP rbg323 benchmark 77

7.20 Search approach performance in the ATSP p43 representation 78

7.21 End of autotuning best route lengths for the ATSP p43 benchmark 79

List of Tables

1.1 Number of operators for parameter types in the Halide domain 11

1.2 Aggregate search a�nity for technique classes on the brazil58 TSP benchmark 14

4.1 Implemented technique bases in OpenTuner . 29

4.2 Descriptions of parameter types in OpenTuner . 30

4.3 Available operators in OpenTuner by parameter type . 33

4.4 Available operators in OpenTuner by parameter type (continued) 34

4.5 Available operators in OpenTuner by parameter type (continued) 35

5.1 Tuning run data contained in the cross-session database by representation 40

6.1 Example performance data in the cross-session database . 49

6.2 Example search a�nity similarity between representations in the cross-session database and

att48 . 50

7.1 Labels for tested search approaches . 54

7.2 Benchmarks in the TSP autotuner . 67

7.3 Relative performance of bndt-A and rec-bndt-dbi on TSP benchmarks 81

8

Chapter 1

Introduction

1.1 Program Autotuning

Program autotuning has seen increased use in performance-critical domains as a supplement - or even

replacement - for traditional human-guided optimization of programs. By delegating the exploration of the

space of possible optimizations or alternate implementations to an automated search process, a programmer

can save the time and e�ort of having to manually generate and test program variants. This also allows

for the search of larger spaces. In addition, autotuning increases performance portability of programs.

An autotuner can be easily re-run to determine new optimal settings when the underlying architecture or

environment changes, unlike with hand-tuning where an experienced programmer must repeat the entire

hand-tuning process again.

Despite increased use of autotuners in speci�c projects, the development of general, project-agnostic

autotuning frameworks has been much more di�cult. This is due to the combination of several properties

of problem search spaces.

First, is the size of the search space. Autotuning search spaces are often exponentially large due to the

combinatorial nature of optimization choices, making exhaustive search intractable. It is possible to prune the

search space and arti�cially constrain its size. However, this introduces programmer bias in terms of which

con�gurations will be examined, so excessive pruning can easily result in overlooking good con�gurations

that were not intuitive to the programmer. Thus, having an intelligent machine learning search approach is

critical to discover good con�gurations in these massive search spaces within a small number of evaluations.

However, autotuning search spaces are highly diverse in topography and complexity, both of which a�ect

the way a particular technique interacts with the space. For example, for some simple search spaces that are

9

relatively smooth and monotonic, a hill climbing technique would perform reasonably well. But in practice,

search spaces can have multiple hills, discontinuities, plateaus, and other complexities like interdependencies

or coupling between parameters. As a result, there is no guarantee that the same hill-climbing technique, or

any technique for that matter, will perform well on a di�erent, arbitrarily chosen problem. To complicate

matters further though, the same problem can often be projected into multiple di�erent parameters in the

representation (see Appendix A.2), resulting in wildly di�erent search spaces. If the selected search approach

interacts too poorly with the parameters in the representation, then the autotuner will be unable to �nd

good con�gurations in a reasonable amount of time.

Thus, the key challenge for making a general autotuning framework lies in being able to select a search ap-

proach that can e�ciently search a representation that is arbitrarily de�ned by the user. And unfortunately,

taking the naive search approach of just using a single technique is highly insu�cient.

1.2 OpenTuner

OpenTuner provides a general framework for domain-speci�c autotuner creation that tackles this challenge

[5]. OpenTuner features a library of extensible parameters that allows for the support of the arbitrary data-

types are required to de�ne a representation for a problem. An extensible library of techniques in OpenTuner

helps to ensure that for any representation, there will be a technique that performs reasonably well.

Meanwhile, OpenTuner improves upon the naive search approach by utilizing in-situ learning (see Ap-

pendix A.3) to exploit knowledge gained during the scope of the autotuning session. By bundling ensembles

of individual techniques in a meta-technique and running them simultaneously to generate desired results,

techniques that discover good con�gurations can be allocated larger testing budgets, while poorly performing

techniques are given smaller budgets or disabled.

This was achieved in OpenTuner using the multi-armed bandit with sliding window, area under the curve

credit assignment (AUC Bandit) meta-technique, building on previous work using a similar technique for

operator selection rather than technique selection in [22].

In addition, techniques in a meta-technique can share information through a local results database,

resulting in a collaborative e�ect that further improves search performance. As a result, an OpenTuner

meta-technique provides an in-situ learning search approach whose search a�nity (see Appendix A.5) for

a representation exceeds that of the most e�cient technique in the bundle. This makes in-situ learning

search approaches signi�cantly more robust to variations in representation when compared to a naive search

approach.

Still, the library of techniques has been constantly growing since the creation of OpenTuner. With the

10

Parameter Type Number of Operators

PermutationParameter 12

HalideComputeAtScheduleParameter 12

ScheduleParameter 12

BooleanParameter 4

PowerOfTwoParameter 6

Total Combinations 41472

Table 1.1: Number of operators for parameter types in the Halide domain

Each parameter type may take several di�erent operators. Combining these give 41472 di�erent choices for
operator sets. The HalideComputeAtScheduleParameter is a custom parameter type extending the Sched-
uleParameter. See Chapter 4 for more about parameter types and operators.

introduction of composable techniques (see Appendix A.3) presented in this thesis, the number of potential

techniques to use for a representation has exploded even further. This is because every combination of

operator choices with a technique base results in a di�erent technique.

For instance, representations in the Halide domain contain �ve di�erent kinds of parameter types, as

seen in Table 1.1. For each parameter type, we choose one from the multiple operators available. Combining

these choices yields over 40,000 di�erent choices for picking operators per technique base, and this number

will only grow further as new operators are developed and introduced.

This far outstrips the number of techniques that can be reasonably bundled within an in-situ meta-

technique. A typical tuning run may end before even 1000 con�gurations are tested, meaning the meta-

technique will not even have time to try all of the techniques, let alone determine their relative performance.

As a result, an in-situ learning search approach may still perform poorly despite its robustness if the

meta-technique happens to lack a technique with good search a�nity with the representation. With so

many techniques, performing an exhaustive or manual search to determine which techniques to include for

every new representation is also highly impractical for a user. Trying to account for collaborative e�ects

only exacerbates the issue, as entire sets of techniques must be considered, of which there are exponentially

many in the number of techniques.

As shown in this thesis, the default in-situ learning search approach in OpenTuner is indeed no longer

su�cient for some problems, creating a need for a more robust search approach capable of e�ciently and

intelligently exploring the vast space of techniques. So, to achieve this, just as OpenTuner used the meta-

technique to take the naive search approach to the next level of in-situ learning, this thesis presents Deep-

Tuner, a recommender system, to take the in-situ learning search approach to the next level of transfer

11

learning (see Appendix A.3).

1.3 DeepTuner

The problem of choosing the right techniques to use for a given representation re�ects the "deep" nature of

general program autotuning. Just as the original problems in OpenTuner can be cast as a search space of

con�gurations and explored using various search approaches, at the next level, the choice of search approach

could in turn be cast into a search space and explored using some other search algorithm. In essence, the

autotuning process itself could be framed as an autotuning problem. Extending this notion leads to in�nitely

many layers in autotuner systems, each being tuned by the layer above.

Each successive layer neccessarily operates over a larger scale of data, as a single con�guration in the

search space of one layer is an entire tuning process consisting of the evaluation of many con�gurations in

the layer below it. As such, in-situ knowledge from a single tuning run is no longer su�cient for operating at

the next layer of autotuning to e�ciently explore the space of techniques. Rather, search approaches capable

of transfer learning are required.

As seen in Figure 1.1, a transfer learning search approach in DeepTuner takes the in-situ search approach

of OpenTuner to the next level from a machine learning aspect. A naive search approach, only performs

learning using evaluation results within the scope of a single technique. An in-situ search approach built

on this by using a meta-technique and performing learning using results within the scope of the entire local

autotuning session. In a transfer learning search approach, the meta-technique not only uses evaluation

results from within the current local autotuning session, but also uses global results from past autotuning

sessions.

In this thesis, we present DeepTuner as a proof of concept to demonstrate the power of transfer learning

over traditional in-situ learning methods in OpenTuner. DeepTuner is an open source extension to Open-

Tuner providing a global data repository and technique recommendation service hosted on a private cloud

to enable knowledge transfer across OpenTuner tuning runs.

DeepTuner leverages a cross-session database (see Appendix A.5) which stores historical search a�n-

ity (see Appendix A.5) between techniques and representations across old tuning runs. The cross-session

database not only provides quick access to aggregate statistics over historical data about particular tech-

niques or representations, but also enables DeepTuner to perform intelligent technique recommendation, even

for new representations that have not been encountered. Recommendation of techniques on new represen-

tations is achieved by comparing historical search a�nity data with ongoing evaluation results to determine

representations that may have a similar topography. DeepTuner's recommendation endpoints then facilitate

12

Search
Technique

Meta-Technique

Search
Technique

Search
Technique

Global Autotuning Search Data

Naïve Learning

In-Situ
Learning

Transfer
Learning

Local
Autotuning

Session
Data

Individual
Technique

Data

Global
Cross-session

Data

Figure 1.1: Levels of learning in OpenTuner search approaches

Deeper levels of learning exploit data from wider scopes. While naive and in-situ learning only interact
with data from the local tuning run, transfer learning makes use of global data from historical tuning runs

the creation custom meta-techniques that can take advantage of transfer learning.

Thus, the recommendation layer provided by DeepTuner essentially acts as the next autotuning layer

above OpenTuner. These recommendation algorithms �ll the role of search algorithms exploring the space of

search approaches. Recommended search approaches are "evaluated" by transmitting recommended changes

to meta-techniques in OpenTuner via DeepTuner's endpoints, followed by receiving performance feedback

from those meta-techniques. The received feedback informs future recommendation, allowing for further �ne

tuning of the transfer learning meta-technique.

The end result is a more robust search approach that can simultaneously search the space of con�g-

urations while e�ciently exploring the space of techniques for a technique with good search a�nity for

the representation. In other words, DeepTuner essentially autotunes and improves the search approach in

OpenTuner as that search approach is autotuning the user's problem.

DeepTuner greatly improves upon what OpenTuner could do. We highlight some of the di�erent questions

13

Search Technique Class Search A�nity

GreedyComposableTechnique 0.02255

PSO (particle swarm optimization) 0.01288

AUCBanditMutationTechnique 0.01288

GGA (global genetic algorithms) 0.00481

RandomThreeParentsComposableTechnique 0.004606

NormalGreedyMutation 0.00453

PatternSearch 0.00435

PseudoAnnealingSearch 0.00097

Di�erentialEvolution 0.00079

UniformGreedyMutation 0.00075

GA (genetic algorithms) 0.00075

PureRandom 0.00068

Table 1.2: Aggregate search a�nity for technique classes on the brazil58 TSP benchmark

The search a�nity is aggregated over the historical autotuning data in the cross-session database (see Section
5.4) and obtained using one of DeepTuner's auxiliary endpoints (see Section 5.4.1).

and problems that DeepTuner can now address:

1. What is the best technique base for my problem?

A developer interested in contributing to the library of techniques may often be interested in the

relative search a�nities of existing techniques. Because of how the cross-session database tracks search

a�nities for all techniques across past tuning runs, �nding out this type of information is now much

more straight forward. For instance, if the developer wants to create a technique for a particular

domain, they may wish to know which technique base currently has the greatest search a�nity.

The user can obtain a set of search a�nities for all techniques, �ltered by the particular domain

they are interested in. Thanks to the standardization of default technique names, the technique base

of a technique can be determined using the root of the default name or through a lookup of the

default library of technique names distributed with OpenTuner. Using this, the search a�nities can

be aggregated by the technique base to get relative search a�nities of the technique bases.

For example, Table 1.2 gives the list of technique classes sorted by their overall search a�nity on the

brazil58 benchmark for the travelling salesman problem autotuner. This same �ltering and aggregation

could be applied at di�erent levels, such as the domain level instead of the problem level or the operator

level rather than the technique base level, to answer a variety of similar questions.

14

2. Is my representation good?

Users implementing an autotuner in OpenTuner are often interested in whether a new representation

they have created for their problem is "good". More speci�cally, they wish to know whether there is

good search a�nity for techniques interacting with the new representation. The cross-session database

of DeepTuner allows the user to compare the best search a�nity achieved by techniques in the new

representation to that of alternative representations. This gives a way to measure how easily searched

the new representation is relative to some baseline, even if the parameters in the representation or

objective function have changed signi�cantly to the point where di�erent techniques are optimal.

3. How similar is my problem to other problems?

While problems within the same domain tend to be related, the degree to which they di�er can vary.

Using DeepTuner's cross-session database, a user can not only compare the similarity of autotuning

search spaces on the basis of their parameters in the representation, but can also compare their to-

pographies based on their interaction with various techniques. Performing statistical correlation on the

relative search a�nities of techniques between two problems gives a measure of similarity that better

accounts for the topography of the autotuning space instead of just the dimensions of the autotuning

space. Performing this for problems within a domain can sometimes reveal clustering of problems and

other insights.

4. Given a new problem, what search approach do I use?

Before, when faced a new representation, an OpenTuner user would often select or search for the best in-

situ search approach from a very small set of pre-made search approaches. Even for old representations,

this selection process was often anecdotal, with user A choosing an in-situ search approach other than

the default because user B said it "worked well" for some other representation. Exploring in-situ

search approaches outside of the pre-made sets by choosing a custom bundle of techniques was even

less common.

With DeepTuner, we introduce meta-techniques taking advantage of the recommendation endpoints.

By utilizing the data from the current tuning run and past tuning runs, these meta-techniques make

use of transfer learning and intelligently search the space of techniques to use. These new search

approaches e�ectively act as in-situ search approaches that update the techniques in their bundles to

approach a near optimum. Thus we get a more robust self-optimizing, self-updating search approach

that essentially automates the old process of manually searching for the right search approach to use.

Figure 1.2 shows the di�erence between the default in-situ learning search approach in OpenTuner and

15

0 500 1,000 1,500 2,000 2,500 3,000

60,000

80,000

1 · 105

1.2 · 105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A

rec-bndt-dbi

Figure 1.2: Autotuning performance of an in-situ learning vs. a transfer learning search approach

Best route length found as a function of con�gurations tested for the Travelling Salesman Problem att48
benchmark. Performance is shown as the median over 75 tuning runs and lower route lengths are better.
The current default in-situ learning search approach in OpenTuner (bndt-A) performs much worse than a

transfer learning search approach (rec-bndt-dbi).

the DBI recommendation bandit meta-technique introduced in Section 6.1 which can take advantage

of transfer learning.

1.4 Contributions

We consider the work in this thesis to have the following contributions:

• While there has been work on the past on creating hybrids of di�erent heuristic techniques, we make

an attempt to formalize technique composition. This enables us to easily express a variety of new

technique variants in OpenTuner.

• We introduce DeepTuner which maintains a cross-session database for historical autotuning data

to provide technique recommendation on top of OpenTuner. This facilitates the creation of new

meta-techniques - the recommendation bandit meta-technique and DBI recommendation bandit meta-

technique - used for transfer learning search approaches.

• We demonstrate the robustness of the new search approaches by comparing the recommendation bandit

meta-technique to the traditional in-situ learning AUC bandit meta-technique on nine representations

16

across three domains using a variety of initial technique sets. For almost all representations and

initial technique sets, the recommendation bandit meta-technique achieves performance on-par with

or signi�cantly greater than that of the in-situ learning search approaches.

• We present a self-initializing and self-updating search approach using the DBI recommendation ban-

dit meta-technique, essentially automating the old user-controlled process of selecting a good search

approach. The new search approach matches the performance of the old search approaches typically se-

lected by OpenTuner users in the PetaBricks and Halide domains, and achieves up to 3.7x improvement

over the old default search approach on TSP benchmarks.

1.5 Organization

This thesis introduces several new terminologies which are de�ned in Appendix A. The remainder of this

thesis is organized as follows:

Chapter 2 discusses related works.

Chapter 3 summarizes the original OpenTuner framework.

Chapter 4 introduces technique composition.

Chapter 5 details the cross-session database used by DeepTuner

Chapter 6 discusses search approach recommendation in DeepTuner and introduces the recommendation

bandit meta-technique, which takes advantage of technique recommendation in DeepTuner.

Chapter 7 presents autotuning performance results.

Chapters 8 and 9 discusses future work and conclusions.

17

Chapter 2

Related Work

To the best of our knowledge, a system for formalizing technique hybridization and for technique recommen-

dation in a general autotuning framework has not been attempted before. Instead, we discuss related work

on the major components that DeepTuner brings together: autotuning frameworks, technique hybridization,

and algorithm recommendation.

2.1 Autotuning Frameworks

While several program autotuning systems and frameworks exist outside of OpenTuner, they are often not

as general in scope and aimed towards speci�c domains.

2.1.1 Linear Algebra

ATLAS is an autotuning system aimed towards linear algebra kernels, which produces a highly optimized

matrix multiply for a given architecture [32]. This is achieved by exhaustive search where a variety of

generated alternate implementations are empirically evaluated.

In a similar vein, OSKI providing a library of several self-tuning sparse matrix kernels including sparse

matrix-vector multiply and sparse triangular solve [30]. The kernels are are tuned at runtime through a

combination of exhaustive search and heuristics to select the fastest implementation in OSKI for the given

machine and matrix.

Additional work has been done by Choi et al. on an autotuning framework speci�cally for sparse matrix-

vector multiply on GPUs using performance models to guide the autotuning process [6].

18

2.1.2 Signal Processing

The SPIRAL system provides a platform-tuned library of linear signal processing transform algorithms [24].

SPIRAL achieves this by combining formula generation of alternate high-level algorithms for a particular

signal processing transform with code generation of possible implementations for a chosen formula to obtain

a space of possible alternate implementations. This space is searched using a combination of naive search ap-

proaches including exhaustive search, dynamic programming, random search, a hill-climber, and a stochastic

evolutionary algorithm.

Within this space, the FFTW library utilizes autotuning to yield machine-optimized discrete Fourier

transform computations [13]. FFTW works by recursively decomposing a DFT problem - de�ned by the

shape of the input data - into smaller sub-problems. This continues until sub-problems are su�ciently small,

at which point FFTW selects from a variety of alternate optimized codelets that directly solve the sub-

problem. The space of possible decompositions is explored using a combination of exhaustive search and

dynamic programming.

2.1.3 Stencil Computations

Program autotuning has also seen very successful application to the domain of stencil-based computation -

kernels operating over a possibly multi-dimensional array in a �xed manner. A general autotuning framework

for transforming serial stencil expressions in Fortran 95 into tuned parallel implementations in Fortran, C,

or CUDA can show performance gains of up to 22x speedup [17].

Rather than using explicit code, the autotuning framework PATUS generates stencil computation kernels

for multicore CPU and GPU from a stencil speci�cation using a C-like syntax [7]. Alternate implementations

are generated according to a strategy template outlining how the kernel should be optimized and parallelized.

The strategy can be either chosen from a pre-de�ned set or custom-designed, and the �nal set of alternates

is explored by a user-speci�ed naive search approach such as multi-run Powell search, Nelder-Mead, or an

evolutionary algorithm.

Sepya, a domain-speci�c language for stencils embedded in Python, utilizes an autotuning compiler to

output high-performance stencil code [18]. User-de�ned stencils in Sepya are transformed using a proved

set of optimizations to target multi-core CPUs speci�cally, and the best implementation is determined via

exhaustive search.

Meanwhile, PARTANS provides an autotuning framework speci�cally for distributing a stencil computa-

tion kernel across multiple GPUs [20].

19

2.1.4 Runtime Systems

The Active Harmony framework is aimed towards autotuning of runtime applications, which is enabled by

infrastructure for exposing multiple variants of underlying libraries [28]. The space of possible combinations

of variants is searched using a Nelder-Mead simplex method. Active Harmony was combined with CHiLL, a

compiler framework for automatically generating alternate implementations of code, to achieve autotuning

of compiler-generated code [29].

2.2 Search Technique Hybridization

Our decision to attempt to formalize technique composition in OpenTuner stems from the success that hybrid

techniques have shown in various domains.

For example, a hybrid search algorithm combining a genetic algorithm (GA) with simulated annealing

has seen successful application in �ow-line scheduling, with the hybrid algorithm outperforming both of the

original algorithms [23]. A GA and simulated annealing hybrid has also been applied to �ow shop scheduling

[21].

The emerging class of memetic algorithms also exhibit technique hybridization. Memetic algorithms

extend population-based global search algorithms such as evolutionary algorithms with methods for local

optimization. For instance, memetic algorithms combining an evolutionary algorithm with a hill-climbing

crossover have been applied to a wide range of problems [19],[31].

Genetic algorithms have also been combined with particle swarm optimization (PSO) by incorporating

swarm behaviour into the genetic algorithm. Work has been done showing that a hybrid of GA and PSO

outperforms both GA and PSO in recurrent network design problems [16]. Similar success was also demon-

strated for a PSO-GA hybrid in the context of optimizing several benchmark non-linear functions [26]. The

hybrid showed faster convergence and a higher ability to �nd the global optimum over both PSO and GA, .

Hybridization of PSO and GA has also been attempted in the other direction using PSO as the base.

This was achieved by incorporating GA operators into the velocity and update rules of PSO and the resulting

hybrid was again capable of outperforming both PSO and GA on quality-of-service multiast routing problems

[3]. In addition, PSO has been hybridized using a di�erential evolution operator, which showed similar

positive results [34].

20

2.3 Algorithm Recommendation

Recommendation systems for algorithmic approaches have been successfully applied in several other domains

besides search approach recommendation in program autotuning.

One such system is Delphi, a machine learning as a service system that both automates and optimizes

the classi�er selection process [10]. Given a dataset and performance metric by the user, Delphi recommends

a fully trained and parametrized classi�er that best satis�es that performance metric. This entails selection

of a type of classi�er algorithm, such as a support vector machine using a radial basis function kernel or

a decision tree with entropy cuts, along with any parameters needed for the algorithm. This parallels our

process of recommending fully speci�ed techniques that best search a representation given by the user.

Work has also been done by Stephenson on collaborative compilation [27]. In collaborative compilation,

clients opt to insert low-overhead instrumentation code to measure the e�ectiveness of di�erent compiler

optimizations on their given application and data set. The cross-compilation instrumentation data is aggre-

gated in a global knowledge base, and is then used to perform transfer learning on what compiler heuristics

and optimizations work best. The best predicted optimizations are then recommended back to clients as a

policy for meta-optimizing the compiler algorithm.

21

Chapter 3

The OpenTuner Framework

OpenTuner treats autotuning as a search problem. Each point in the search space is a con�guration -

a concrete assignment of values to a set of parameters. See Section 4.2.1 for more on parameter types

available. We call this set of parameters that de�nes the dimensions of the search space the parameters in

the representation. A result is the evaluation of a con�guration according to a user de�ned objective function.

The combination of the parameters in the representation and the objective function specify the topography

of the search space. These are speci�ed for an autotuner implemented in OpenTuner when a user creates a

problem de�nition.

The search space is then explored by a user-speci�ed search approach, which makes requests for con-

�gurations to be evaluated. These requests are called desired results. This interaction between the search

approach and the problem de�nition makes up the search aspect of autotuning in OpenTuner.

Actual measurement of desired results is handled separately by a minimal measurement driver, which is

a thin wrapper around the user de�ned objective function. This abstraction allows for parallelism in mea-

surement. It also separates the details of obtaining measurements for con�gurations from the search process

which we focus on in the rest of the thesis. The results from the measurement process are communicated

through a results database, which tracks results collected during a tuning run along with metadata about

the problem de�nition and search approach for the tuning run.

3.1 Problem De�nition

Because of their generic nature, autotuning frameworks like OpenTuner require some speci�cation by users

to construct an autotuner for their particular application. We refer to this process of de�ning the autotuning

problem as the creation of a problem de�nition. Conceptually, a problem de�nition has a hierarchical

22

Domain

Problem

Representation

Representation
Parameters

Objective Function

= has many

= has one

Legend

Figure 3.1: Structure of a problem de�nition

An autotuner implemented in OpenTuner applies over a single domain. Within this domain, the user may
have many di�erent problems that require optimization. Each can be mapped into multiple representations
understood by OpenTuner. A representation consists of a set of parameters in the representation and an
objective function, which OpenTuner uses as the dimensions and evaluation function for the autotuning

space.

structure as seen in Figure 3.1, which consisting of a domain containing multiple problems, each of which

has one or more representations.

For example, in the Mario autotuner mentioned in [5] , the domain would be beating a level in Super

Mario. The problem would be the particular level we are trying to beat (e.g. World 1-1). As for the

representation, we could use a naive representation consisting of many booleans, each corresponding to

whether a particular input button is being pressed at a particular frame. Or, we could use a representation

encapsulating the idea of durations, with several enumeration parameters choosing movement direction paired

with integer parameters specifying the duration of the movement. This is decoupled from jumping, which

is encoded with integer parameters specifying which frames to jump on and the duration that each jump

should be held.

23

3.2 Search Approach

After creating a problem de�nition, the user can then proceed to autotune a particular problem using one of

the de�ned representations. At the start of the autotuning session or tuning run, the user speci�es the name

of a search approach from a registry of named, instantiated search approaches. The search approach decides

how the search driver explores the autotuning space by controlling which desired results the limited testing

resources of the measurement driver will be spent on. The desired results are generated by using various

techniques in OpenTuner's extendible library of techniques. Each technique can be either an implementation

of known search algorithm - such as di�erential evolution, Nelder-Mead or Torczon hillclimbers, pattern

search, or particle swarm optimization - or could be a generated composable technique. See Chapter 4 for

more detail on technique composition in OpenTuner.

An individual technique can be instantiated as a naive search approach. However, these are often unable

to handle the diverse range of search spaces. In order to provide more robust search approaches that take

advantage of in-situ learning, Opentuner uses meta-techniques - collections of individual techniques. A

meta-technique acts as an ensemble of techniques where the meta-technique decides which techniques gets

to submit the next desired result. Even the simplest meta-technique, such as a round robin meta-technique

which cycles through techniques in order, can take advantage of in-situ learning as results from all techniques

are shared through the results database. Thus, individual techniques are able to learn about and bene�t

from good con�gurations discovered by other techniques in the ensemble. This collaborative e�ect boosts

the performance of the search approach as a whole.

3.2.1 AUC Bandit Meta-Technique

The core meta-technique used for in-situ learning in OpenTuner is the multi-armed bandit with a sliding

window, area under the curve credit assignment (AUC Bandit) meta-technique. This extensible meta-

technique is based on an optimal solution to the multi-armed bandit problem presented by Fialho et al.

in the slightly di�erent context of operator selection [11]. In the multi-armed bandit problem, there are

multiple levers on a slot machine, each with an unknown probability of paying out. The goal is to pick

lever-arms in a way to maximize the expected pay out. In the context of OpenTuner, the levers correspond

to the techniques and their payouts correspond to autotuning performance of the technique. The multi-

armed bandit problem encapsulates the problem of trading o� between exploitation (using the best known

technique) and exploration (estimating the performance of each technique).

The AUC Bandit meta-technique assigns each technique, t, a score based on a sliding window of recent

history and assigns testing resources to the technique with the highest score. The score is calculated according

24

to the formula

AUCt + C

√
2 logH

Ht

where AUCt is the credit assignment term quantifying performance of t, C is the constant determining the

exploitation-exploration trade-o�, H is the length of the sliding window, and Ht is the number of times t

has been used within the sliding window of history. AUCt acts as the exploitation term that increases with

better technique performance within the history window, while the second term acts as the exploration term

and decreases as t is used more by the meta-technique. Values for C and H are hyper-parameters for the

AUC Bandit meta-technique and are �xed upon instantiation.

AUCt is calculated according to the area under the curve assignment mechanism based on Fialho et al.'s

work [12]. For each t, we draw a curve by based on the history of results for t within the sliding window

and whether or not each result was a new best. Traversing the history for t chronologically, each new best

increases the height of the curve, while results that were not new bests do not change the height. Calculating

the area under the curve, scaled to a maximum value of 1 if all results were new bests, gives AUCt. In other

words,

AUCt =
2

Ht(Ht + 1)

Ht∑
i=1

iVt,i

where Vt,i is an indicator variable with value 1 if the ith use of t in the sliding history window resulted in a

new best and with value 0 otherwise.

By weighing exploration against exploitation, the AUC Bandit meta-technique e�ectively performs an

extra layer of in-situ learning during the tuning run to dynamically favor better performing techniques,

resulting in more robust autotuning performance.

25

Chapter 4

Search Technique Composition

Ultimately, search approaches in OpenTuner rely on the e�cacy of the individual techniques. Many recent

works have shown the e�ectiveness of composite techniques - for instance insertion of a PSO enhancement

step for elites in an evolutionary algorithm, or replacement of standard crossover operator of an evolutionary

algorithm with a hill-climbing operator [16],[19]. However, we recognize that writing an entirely new tech-

nique from scratch for each potential composition is ine�cient and not scalable. In this work, we make an

attempt to formalize the process of creating composite techniques through the idea of composable techniques,

which allow for easy substitution of newly developed operators, such as a new crossover for permutations,

to generate new techniques.

We break techniques into three primary stages when generating con�gurations to test:

1. Selection of parent con�gurations

Conceptually, all con�gurations generated by a technique are derived from some original set of con-

�gurations. This set could be a single random con�guration, or a subset of a population satisfying a

some criteria (like having the highest �tness scores).

2. Generation of a child con�guration

After getting a set of parent con�gurations, a child con�guration is generated as a testing candidate

by combining the parameter values of the parents in some fashion, whether it's through crossovers or

mutations, or something else altogether.

Because combining values of di�erent types of parameters is impractical, the generation of a child can

be further partitioned into a set of independent operations over each parameter. We refer to these

operations that combine parameter values as operators.

26

3. Update of technique state

Finally, the �tness of the generated child is used to update the technique state to inform behaviour in

following iterations. This state is often tracked through some population.

For example, the technique could choose to replace a random population member with a lower �tness

than the child con�guration with the child con�guration.

In traditional techniques for search and optimization, these stages - especially the selection of parents

and the methodology for generating a child - were not considered independently. However, we note that they

are in fact completely independent. So, we choose to separate a technique into two major components: the

set of operators controlling the primary aspects of child generation and a technique base de�ning the parent

selection and update processes.

By modularizing a technique this way, the technique base becomes the base for technique composition.

On top of this, the choice of operators can be interchanged to generate a wide range of composite techniques.

This style of technique composition o�ers several advantages for developing new techniques.

First, by abstracting out operators, developers can now focus their e�orts on particular aspects of a

technique. For instance, one could choose to solely research new operators for PermutationParameters to

improve search performance over representations with permutations. Or, one could focus only on exploring

variations in population reproduction for evolutionary algorithms to develop new technique bases.

Secondly, technique composition aids in the integration of new parameter types and operators. Previ-

ously, the introduction of new parameter types or operators required overhauling existing techniques to take

advantage of them. However, this often required intimate knowledge of old techniques that the developer

of the operator lacked. With composable techniques, the new operators or parameter types can simply be

swapped into the operator map, without knowledge of how the underlying technique base operates.

Finally, composable techniques greatly reduce the amount of code needed to express a much richer set

of possible technique base - operator choice pairings, as the number of possible operator choices grows

combinatorially with number of parameter types and operators per parameter type.

4.1 Creating a Technique Base

To make the development of composable techniques capable of technique generation easier, we present the

ComposableEvolutionaryTechnique class as an extendible class for specifying new technique bases. Imple-

menting a new technique base only requires de�ning the following methods corresponding to the three

primary stages:

27

• get_parents(population)

Given the current population, this method returns a list of con�gurations to use as parents. One of

these is speci�ed as the primary parent.

• select_parameters(params)

Given the set of all parameters in a con�guration, this method returns a subset of parameters to apply

operators to when combining con�gurations. This controls the extent to which parent con�gurations

are combined.

• update_population(con�g, population)

Given a con�guration that has been evaluated and the original population, this method should update

the state of the population.

An initialized technique base generates con�gurations during a tuning run by �rst initializing a popu-

lation of con�gurations, then calling the above methods in succession to generate new con�gurations. The

con�gurations are generated from the parents by applying a set of operators speci�ed by an operator map.

If there is no operator speci�ed for a particular parameter type, then a default operator is used. This is the

"no-op" operator unless otherwise overridden by the creator of the technique base.

The population consists of instances of a PopulationMember class, which is a thin wrapper around a

con�guration. This class can be extended by a technique base developer to provide custom functionality if

needed. The size of the population is speci�ed as a hyper-parameter to the technique base which defaults to

30.

Currently, the OpenTuner's technique library contains two technique bases based on existing techniques.

Their behaviours are summarized in Table 4.1.

4.2 Choosing a Set of Operators

The set of operators to use with a technique base is speci�ed during instantiation by the operator map. An

operator map is a dictionary from OpenTuner parameter types to the name of an operator method associated

with that parameter type. The operator map also tracks any user speci�ed operator hyper-parameter - value

pairs, such as the crossover length in a permutation operator, as well as a list of any additional arguments.

This data structure is initialized or can be randomly generated when instantiating a technique base and

allows for easy creation of hybrid techniques.

28

GreedyComposableTechnique

get_parents(population) Cycles through each population member, selecting that pop-
ulation member along with the global best con�guration as
parents. The population member is speci�ed as the primary
parent.

select_parameters(params) Each parameter has a random probability to be chosen. The
probability is controlled by a crossover rate hyper-parameter
to the technique base.

update_population(con�g, population) If the child con�guration is better than the original popu-
lation member, then the original population member is re-
placed by the new con�guration

RandomThreeParentsComposableTechnique

get_parents(population) Three parents are randomly selected from the con�guration.
There is a �xed probability of including the global best con-
�guration as one of the parents. This probability is controlled
by a hyper-parameter to the technique base.

select_parameters(params) Each parameter has a random probability to be chosen. The
probability is controlled by a crossover rate hyper-parameter
to the technique base.

update_population(con�g, population) The child con�guration replaces the oldest member of the
population.

Table 4.1: Implemented technique bases in OpenTuner

The GreedyComposableTechnique is based on the many greedy search techniquesin OpenTuner. The Ran-
domThreeParentsComposableTechnique is based o� of an implementation of di�erential evolution [2].

29

4.2.1 Parameter Types

OpenTuner supports a hierarchy of built-in parameter types for representing tuning variables in problems,

as seen in Figure 4.1. This hierarchy can be extended by users as needed to make custom parameters. A

parameter inherits properties of its superclass, including any operators.

The parameters can be split into two main groups: PrimitiveParameters (also called NumericParameters)

and ComplexParameters. These and their subtypes are described in Table 4.2.

Parameter Type Description

NumericParameter a numeric value with an upper and lower bound

IntegerParameter an integer value with a legal range

FloatParameter a continuous �oat value with a legal range

ScaledNumericParameter a value searched on a separate scale than its concrete value

LogIntegerParameter an integer value searched on a log scale

LogFloatParameter a �oat value searched on a log scale

PowerOfTwoParameter takes on values that are powers of two. Searched on a log scale

ComplexParameter Domain speci�c structures that lack well de�ned gradient functions

BooleanParameter a boolean value that is either true or false

SwitchParameter an unordered collection of choices represented as integers

EnumParameter an unordered collection of choices taken from an arbitrarily typed list

Array a collection of related values of the same type

BooleanArray an array of boolean values

FloatArray an array of �oat values

PermutationParameter an ordering of items

ScheduleParameter a permutation with a set of dependencies that restrict legal orderings

SelectorParameter a permutation where each indexed location is associated with an integer.
Contains a PermutationParameter and several LogIntegerParameters as
sub-parameters

Table 4.2: Descriptions of parameter types in OpenTuner

4.2.2 Available Operators

Each parameter has a set of operators. These operators take in a set of parent con�gurations and mutate

the corresponding parameter value in the �rst con�guration according to the parent values. The operators

form the set of available transformations for generating new con�gurations.

OpenTuner standardizes naming for operator methods, which can be identi�ed by the pre�x 'op#_',

where # is the number of required input con�gurations. The pre�x 'opn_' speci�es an arbitrary number

30

Pa
ra

m
et

er

N
u

m
er

ic

Fl
o

at

In
te

ge
r

Sc
al

ed
N

u
m

er
ic

Lo
gF

lo
at

Po

w
er

o
fT

w
o

Lo

gI
n

te
ge

r

C
o

m
p

le
x

B
o

o
le

an

Sw
it

ch

En
u

m

Pe
rm

u
ta

ti
o

n

Se
le

ct
o

r
A

rr
ay

B
o

o
le

an
A

rr
ay

Sc

h
ed

u
le

Fl

o
at

A
rr

ay

Figure 4.1: Hierarchy of OpenTuner's built-in parameter types

OpenTuner comes with several parameter types commonly used in autotuners. The parameter types can be
extended to handle custom domain-speci�c data structures.

31

of inputs as a list. The �rst argument into an operator is always the con�guration that will be mutated.

This is followed by the required parent con�gurations, then any required arguments, and �nally optional

arguments.

To prevent passing insu�cient parent con�gurations into a operator, all technique bases are de�ned with

a value for the minimum number of parents guaranteed by the get_parents(population) function. A technique

base is prevented from using any operator requiring more input con�gurations than it can guarantee.

Tables 4.3, 4.4, and 4.5 list out and brie�y describe the available operators for each parameter type. Note

that operators are inherited, so we do not re-list operators for sub-classes unless the behaviour changes. In

the descriptions, the parameter value refers to the value of the parameter for the con�guration being mutated

(i.e. the child con�guration).

32

Parameter

op1_noop the null operator. Does nothing.

op1_randomize sets the parameter's value to a random value

op3_swarm stochastically moves the parameter's value towards the values in the other
two parent con�gurations. This attempts to simulates the update step in
particle swarm optimization for the general case.

op4_set_linear sets the parameter value to a linear combination of 3 other con�gurations.
Takes in weights for the parent con�gurations as additional arguments.

opn_stochastic_mix stochastically recombines the list of parent values to obtain the �nal pa-
rameter value. This is done by randomly taking the value of parent ac-
cording to a list of weights given as an additional argument.

NumericParameter

op1_scale scales the parameter's value by a constant factor given as an additional
argument.

op3_di�erence sets the parameter's value to the di�erence between two parent values.

opn_sum sets the parameter's value to the sum of the parent values.

IntegerParameter

op3_swarm performs a single update step in particle swarm optimization for integers,
returning the new velocity

c ∗ velocity + r1 ∗ c1 ∗ (cfg1 − cfg) + r2 ∗ c2 ∗ (cfg2 − cfg)

where cfg is the original parameter value; cfg1 and cfg2 are the parent
values; c, c1, and c2 are hyper-parameter weights; velocity is an additional
argument representing the old swarm velocity; and r0 and r1 are random
values between 0 and 1. The parameters's value is set to the new velocity
with gaussian noise added. The standard deviation of the gaussian is an
additional hyper-parameter

FloatParameter

op3_swarm performs a single update step in particle swarm optimization for �oats,
returning the new velocity

c ∗ velocity + r1 ∗ c1 ∗ (cfg1 − cfg) + r2 ∗ c2 ∗ (cfg2 − cfg)

where the values are as in the operator for IntegerParameters. The pa-
rameters's value is set to the new velocity.

Table 4.3: Available operators in OpenTuner by parameter type

33

ComplexParameter

op4_set_linear attempts to simulate setting the parameter's value to a linear combination
of the parents for common cases, though not possible in general.

BooleanParameter

op1_�ip �ips the parameter's value.

op3_swarm simulates a single update step in particle swarm optimization by updating
the current position and returning the new velocity

c ∗ velocity + r1 ∗ c1 ∗ (cfg1 − cfg) + r2 ∗ c2 ∗ (cfg2 − cfg)

where the values are as in the operator for IntegerParameters. The
boolean value True is taken as a value of 1, and False is taken as a 0.
The parameters's value is set probabilistically according to the new ve-
locity.

Array

op3_cross crosses two parent arrays by replacing a random subsection of the �rst
with the corresponding subsection of second.The relative size of the sub-
section is controlled by a hyper-parameter.

op3_swarm simulates the iterative step in particle swarm optimization for arrays.
Probabilistically moves towards one of the parent values by performing
a crossover with the parent value. The weights for the parent and child
con�gurations as well as the strength of the crossover are set by hyper-
parameters.

BooleanArray

op3_swarm_parallel performs the iterative step of particle swarm optimization at each indi-
vidual location in the array according to the same formula as with the
BooleanParameter

c ∗ velocity + r1 ∗ c1 ∗ (cfg1 − cfg) + r2 ∗ c2 ∗ (cfg2 − cfg)

The weightings c, c1, and c2 are again hyper-parameters. r1 and r2 are
random values from 0 to 1, however the same random values are used
across all locations.

FloatArray

op3_swarm_parallel performs the iterative step of particle swarm optimization at each indi-
vidual location in the array according to the same formula as with the
FloatParameter

c ∗ velocity + r1 ∗ c1 ∗ (cfg1 − cfg) + r2 ∗ c2 ∗ (cfg2 − cfg)

The weightings c, c1, and c2 are again hyper-parameters. r1 and r2 are
random values from 0 to 1, however the same random values are used
across all locations.

Table 4.4: Available operators in OpenTuner by parameter type (continued)

34

PermutationParameter

op1_small_random_change iterates through the parameter's list and probabilistically swaps each el-
ement with the next element. Takes the probability of swapping as a
hyper-parameter.

op2_random_swap sets the parameter's value to the parent permutation with a random pair
of elements swapped.

op2_random_invert sets the parameter's value to the parent permutation with a random sub-
section reversed. The size of the reversed subsection is controlled by a
hyper-parameter.

op3_cross applies a crossover operator to two parent permutations and sets the pa-
rameter's value to the resulting permutation. Which crossover operator
to use and the strength of the crossover is speci�ed by a hyper-parameter.

op3_cross_PX based on a partition crossover by Whitley [33]. Chooses a random cut
point and reorders elements in the �rst parent up to the cut point accord-
ing to their order in the second parent.

op3_cross_PMX based on the partially-mapped crossover by Goldberg and Lingle[14]. Re-
places a random section of the �rst parent with the corresponding section
in second. Displaced elements in the �rst parent are moved to the old
position of the elements displacing them. The size of the replaced section
is controlled by a hyper-parameter.

op3_cross_CX an implementation of a cyclic crossover. Repeatedly replaces elements of
in the �rst parent with the element at the same index in the second. This
is done until a cycle is reached and the original permutation is valid agan.
The initial replacement index is random.

op3_cross_OX1 based on an ordered crossover by Davis [8]. Exchanges a subpath from the
second parent into the �rst while maintaining the order of the remaining
elements in the �rst parent. The size of the exchanged section is controlled
by a hyper-parameter.

op3_cross_OX3 based on a variation of ordered crossover by Deep [9]. Similar to
op3_cross_OX1, except the parents have di�erent cut-points for their
subpaths. The size of the exchanged subpaths is controlled by a hyper-
parameter.

op3_swarm simulates the iterative step in particle swarm optimization for permuta-
tions. Probabilistically moves towards one of the parent values by per-
forming a crossover with the parent value. Which crossover to use, the
weights for the parent and child con�gurations, and the strength of the
crossover are set by hyper-parameters.

Table 4.5: Available operators in OpenTuner by parameter type (continued)

35

Chapter 5

The Cross-session Database

A basic prerequisite for transfer learning is having access to a wealth of knowledge outside of the current

tuning run in the �rst place. While the results database used by OpenTuner for inter-technique communi-

cation can store history for other tuning runs run locally, the amount of historical data available would be

insu�cient for the transfer learning.

In order to better support transfer learning, DeepTuner maintains a cross-session database capable of

tracking global data across all tuning runs, along with meta-information about the problem de�nition and

search approaches used in those tuning runs. The following chapter describes the cross-session database.

Chapter 6 discusses how DeepTuner uses the cross-session database for search approach recommendation.

5.1 Database Schema

Figure 5.1 shows the relationships between entities in our database.

The basic entity in the cross-session database is the TuningRun, which is identi�ed by a UUID and has

a timestamp for the start-date. A TuningRun has a one-to-many relationship with MetaTechniquePerfor-

mance and their associated TechniquePerformance entities which track performance data at various stages

of the tuning run, such as the number of new bests found by a particular technique or the total number of

con�gurations tested so far. Each of the performance entities is linked to the associated technique or meta-

technique, along with the number of seconds into the tuning run and the number of con�gurations tested

so far. Using this data, we are able to calculate search a�nity of various techniques and meta-techniques

during tuning runs.

Metadata about the search approach used for a tuning run is recorded by connecting the TuningRun

directly to a MetaTechnique entity, and to several Technique entities via an associative table. More speci�cs

36

on how search approach data is encoded is provided in Section 5.2.

Each TuningRun is associated with data about the problem de�nition via a relationship with a Repre-

sentation. The Representation is connected to a Program which has �elds for the project name, program

name and version, and objective, corresponding to the domain, problem, and objective function respectively.

The Representation corresponds to the representation and tracks the parameters in the representation, along

with a �eld for a human-readable name provided by the creator of the representation.

The cross-session database also features auxiliary entities used to store precomputed metrics aggregated

over multiple tuning runs in order to reduce the computation needed for various recommendation endpoints

in DeepTuner.

5.1.1 Storing Representation Parameter Structure

Because parameters - especially custom ones - may contain sub-parameters, the parameters in the repre-

sentation used for a problem can have a hierarchical structure. In addition, the number and types of the

parameters are not �xed due to users being able to create custom parameter types. Combining these fac-

tors, data about the parameters in the representation used in a representation does not conform well to

a traditional relational database structure. Instead, we store representation data on a Representation by

transforming the tree structure of the parameters in the representation into a canonical plain-text format

that retains all structural information. This string format is stored under the parameter_info �eld.

The text encoding is a list of tuples of parameter-info and counts. Each parameter-info is itself a list

consisting of the name of the parameter, followed by tuples of parameter-info and counts for any sub-

parameters. This recursive de�nition is able to capture the hierarchical structure of the parameters in the

representation. Because the ordering of the parameters does not matter in a given level of the parameters in

the representation' structure, we are able to save space by counting number of each type of parameter rather

than listing them out. Within each level of structure, we order parameter-info tuples lexicographically. By

imposing a canonical order, we ensure that redundant parameters in the representation end up with the

same text encoding.

From the text encoding, we can easily decode the original tree structure of the parameters in the repre-

sentation and obtain various metrics like total parameter type counts through simple tree traversal.

5.2 Encoding Search Approach Data

In order to fully describe a search approach, the cross-session database must track not only the kind of

technique or meta-technique is used, but also the details of the particular technique instance.This includes

37

hyper-parameter values, or the operators used in the case of a composable technique.

However, the number of hyper-parameters in a technique is not �xed across techniques, nor is the datatype

of the hyper-parameter. In addition, the extensible nature of OpenTuner means that the cross-session

database must be able to handle completely new operators or techniques. As before, this kind of unstruc-

tured data is di�cult to place into a traditional relational database format. Instead, we encode all of this

information into a string as the name of the instantiated technique.

To support this, we implement default name generation for techniques. This default name is assigned to

a technique when it is instantiated locally or on registration to the library of techniques. Each Technique

entity then has a root-name - usually the class name for the technique or technique base - along with the

full default name containing the root-name along with hyper-parameter and operator data.

5.2.1 Tracking Hyper-parameter Information

Each technique contains a list of hyper-parameter names corresponding to the keyword arguments used to

set the hyper-parameters. The hyper-parameter data is used to generate a base-name for the technique

composed of the root-name followed by hyper-parameter name, hyper-parameter value pairs delimited by

commas and semicolons. The format for the base-name is as follows:

root;hparam1, v1;hparam2, v2; . . . ;hparamn, vn

where root is the root-name, hparami is the name of the ith hyper-parameter for the technique, and vi is

the value of the ith hyper-parameter.

5.2.2 Operator Maps

For composable techniques, the generated name must also encode the operator map, which must capture

information about which operator to use for various parameter types, along with any additional arguments

or hyper-parameter values needed by the operators.

Each entry for a parameter type in the operator map is encoded in the form:

ptype; op; [arg1, . . . , argn, [[kwarg1, v1], . . . , [kwargm, vm]]]

where ptype is the class name of the parameter type, op is the name of the operator to apply for this

parameter type, and the rest is an ordered list of additional arguments, where the last element is a list of

keyword-argument pairs corresponding to the operator hyper-parameters.

38

The �nal generated name consists of the technique base base-name followed by the encoded entries in

the operator map separated by spaces.

5.3 Uploading Tuning Data

Tuning run data can be uploaded by a user to the cross-session database. The upload process processes a

results database to extract tuning run data at various stages by "replaying" the order in which techniques

submit desired results or discover new bests using local timestamps. Duplicate tuning runs in the cross-

session database are prevented by reusing locally generated UUIDs as the UUIDs for TuningRun entities.

5.4 Historical Tuning Run Data Generation

The historical tuning data we use in subsequent chapters for transfer learning in DeepTuner was generated on

Lanka, a 24-node Intel Xeon E5-2695 v2 @ 2.40GHz In�niband cluster with 12 cores and 128GB of memory

per machine. Autotuning data was collected over benchmarks for the default autotuners distributed with

OpenTuner. The data covered a total of 34 di�erent representations over 6 autotuner domain consisting of: 2

di�erent representations for a problem in Mario, 1 GCC/G++ �ags autotuner benchmark, 2 representations

for Rosenbrock function optimization, 8 benchmark problems in Petabricks, 6 Halide benchmarks, and 14

benchmarks in the Traveling Salesman Problem (TSP - 8 of which were symmetric and 6 of which were asym-

metric (ATSP). The number of tuning runs uploaded to the cross-session database for each representation

is shown in Table 5.1

Each tuning run was performed using a randomly generated search approach consisting of an AUC bandit

meta-technique with randomized hyper-parameters and a random set of 5 techniques. The history window

size of the AUC bandit meta-technique was chosen from the set of values 500, 200, 100, while the exploitation-

exploration term value, c, was chosen from 0.05, 0.15, 0.45 where higher values of c favor exploration.

The techniques have a random chance of either being chosen from the default library of techniques

in OpenTuner randomly, or being generated from a registry of technique bases randomly. Generation of a

random composable technique occurs by selecting a technique base followed by randomly selecting a operator

to use for each parameter type in the representation.

5.4.1 Using the Cross-session Database

In addition to using the cross-session database for technique recommendation, DeepTuner provides auxiliary

endpoints for extracting information in the cross-session database about a particular representation. For

39

Domain Representation Name # of Tuning Runs

Mario naive representation 99

Mario duration representation 299

GCC matrix multiply 84

Rosenbrock 2D Rosenbrock function 389

Rosenbrock 4D Rosenbrock function 51

Petabricks convolution 811

Petabricks sort 817

Petabricks Strassen 992

Petabricks kmeans 899

Petabricks tridiagonal 896

Petabricks Poisson 797

Petabricks matrix approximation 578

Petabricks Helmholtz 771

Halide wavelet 492

Halide interpolate-simple 346

Halide blur 482

Halide bilateral grid 468

Halide interpolate 517

Halide interpolate-simplest 96

TSP att48 432

TSP brazil58 432

TSP brg180 432

TSP dantzig42 432

TSP gr120 432

TSP gr48 432

TSP si175 432

TSP swiss75 432

ATSP br17 437

ATSP ftv170 437

ATSP ftv44 437

ATSP p43 436

ATSP rgb323 436

ATSP ry48p 339

Table 5.1: Tuning run data contained in the cross-session database by representation

40

example, given a particular representation we can determine which techniques have the best known search

a�nity. Or we can query the particular representation's similarity to other representations according to the

metrics mentioned in Section 6.1.

41

Legend
Tu

n
in

gR
u

n

M
etaTech

n
iq

u
e

-
Perfo

rm
an

ce

Tech
n

iq
u

e
-

Perfo
rm

an
ce

M
etaTech

n
iq

u
e

Tech
n

iq
u

e

R
ep

resen
tatio

n

P
ro

gram

U
U

ID

start_d
ate

p
aram

eter_in
fo

n
am

e

#_su
b

tech
n

iq
u

es

n
am

e

p
ro

ject

n
am

e

versio
n

o
b

jective

d
efau

lt_n
am

e

b
ase_n

am
e

o
p

erato
r_in

fo

n
u

m
_cfgs

n
u

m
_b

ests

tim
e_elap

sed

to
tal_n

u
m

_cfgs

to
tal_n

u
m

_b
ests

 m
an

y to
 m

an
y

m
an

y to
 o

n
e

o

n
e to

 m
an

y
o

n
e to

 o
n

e

En
tity

field

R
elatio

n
sh

ip
 Typ

e
s

Search
 A

p
p

ro
ach

Tu

n
in

g R
u

n

P
ro

b
lem

 D
efin

itio
n

Figure 5.1: Database schema for the cross-session database

Entities can be split into 3 groups based on what they store data about: the search approach, the tuning
run data, and the problem de�nition.

42

Chapter 6

A Recommender System

At a high level, the goal of DeepTuner is to provide a service for transferring knowledge from previous

autotuning sessions to search approaches in OpenTuner.1 Currently, this knowledge transfer is anecdotal,

with users manually altering their search approaches based on what other users claim to have worked well

on their problems. DeepTuner automates this process, resulting in transfer learning search approaches

with more robust search performance on new problems. This is achieved by having DeepTuner provide

recommendations for improving these search approaches based on historical data in the cross-session database

for representations that have been seen before.

A key challenge in recommendation is �nding the right representations to recommend from. Ideally, these

representation would have the same exact parameters in the representation which are evaluated in the same

way. In practice, however, even just the parameters in the representation themselves can vary wildly across

problems. At best, problems within the same domain, such as Petabricks, may use the same set of parameter

types. However, while one representation might contain 3 BooleanParameters, another might contain 300.

And across domains, the parameters used often won't even have the same type!

Thus �nding a perfect representation is unlikely. Instead, we must settle for �nding the most "simi-

lar" representation. However, de�ning similarity itself is a di�cult problem with no single correct answer.

DeepTuner uses two di�erent metrics for measuring similarity. The �rst is based on parameters in the

representation themselves, while the second is based on technique performance for the representation.

After determining a similar representation, the next challenge is choosing an improvement to the search

approach to recommend. We note that the speci�cation of a search approach in OpenTuner is hierarchical

in nature as seen in Figure 6.1. Because of this, we need not recommend an entire search approach at once,

but could instead propose modi�cations to subcomponents of a search approach.

1In machine learning, this knowledge transfer process is often referred to as transfer learning.

43

Meta-Technique

Technique

Operator Choice Technique Base
= has many

= has one

Legend

Hyper-parameters Hyper-parameters

Hyper-parameters

Hyper-parameters

If composable
technique

Figure 6.1: Specifying a search approach in OpenTuner

A search approach in OpenTuner consists of a meta-technique bundled with several techniques. Each of
these may have several hyper-parameters to de�ne. If the technique is a composable technique, the

technique base and which operator to use for each parameter must also be speci�ed. These may also have
hyper-parameters.

The di�erent levels of recommendation possible roughly correspond to levels of the search approach

hierarchy, where Level 1 is the highest and most comprehensive level of recommendation:

Level 1. Meta-technique

At the highest level is recommendation of a fully speci�ed meta-technique, complete with the fully

speci�ed technique bundle to be used and all hyper-parameters for the meta-technique and techniques.

Recommendation at this level is equivalent to search approach recommendation.

Level 2. Technique

Next is recommendation of a fully speci�ed technique to use. This includes choosing not only the

technique base, but also which operators to use for each parameter type. In addition, any hyper-

parameter values for the technique, technique base or operators are all speci�ed.

While this alters the technique bundle within the meta-technique, the behaviour of the meta-technique

44

itself is not changed.

Level 3a. Technique base

Here, given a set of operators that will be used, we recommend a technique base along with hyper-

parameter values for that technique base. Essentially, given how parent con�gurations will be combined,

we recommend an algorithm for selecting the parent con�gurations.

Level 3b. Operator

Here, given a particular parameter type, such as a PermutationParamater, we recommend an operator

complete with hyper-parameter values to use. Note that operator recommendation occurs for a single

parameter type.

Level 4. Hyper-parameter

At the lowest level is recommendation of only the hyper-parameter values. This can be performed for

any component of the search approach, such as a particular operator or the meta-technique

Recommendation at higher levels in the hierarchy tends to have a larger potential for impacting autotun-

ing performance as more aspects of the search approach are a�ected. However, this increase in performance

impact potential comes with an increase in the amount of historical data needed to e�ectively perform

the recommendation. This comes from the fact that the number of recommendation alternatives increases.

For instance, for a given representation, it takes far less data to cover the space of PermutationParameter

operators than it does to cover the space of possible search approaches.

In DeepTuner, we choose to focus on recommendation at the technique level - i.e. recommending fully

speci�ed techniques to the search approach - since we hypothesized that this would yield large performance

impact without requiring an unreasonable amount of historical data generation.

6.1 The Recommendation Bandit Meta-Technique

In order to demonstrate technique recommendation using DeepTuner, we present a new class of meta-

technique augmenting the original AUC bandit meta-technique in OpenTuner - the AUC bandit meta-

technique utilizing technique recommendation or recommendation bandit meta-technique.

Given a representation, the general behaviour of the recommendation bandit meta-technique in Deep-

Tuner during a tuning run is as follows. Note that actions in italics are performed by DeepTuner rather

than the recommendation bandit meta-technique:

45

Step 0. Determine technique set

If the user speci�es an initial technique set for the recommendation bandit meta-technique, skip to

Step 3. Otherwise, start at Step 1 to obtain an initial technique set. We refer to a version starting at

Step 1 as a database initialized or DBI recommendation bandit meta-technique.

Step 1. Submission of parameters in the representation

Send information to DeepTuner about the current representation and parameters in the representation.

Check the cross-session database to see if there is historical tuning run data for representations with

similar parameters in the representation.

The similarity of parameters in the representation is quanti�ed using a distance function. For the

distance from parameter set A to parameter set B, we use the asymmetric function

∑
i∈PA

⋂
PB

(ni,A − ni,B)
2 +

∑
i∈PA

⋂
PB

n2i,A +
∑

i∈PA

⋂
PB

1

where PX is the set of parameter types in the set X, PX is the set of parameter types not in X, and

ni,X = log10 (number of parameter of type i in X)

is the order of magnitude count of the number of parameters of type i in X.

The �rst term accounts for distance between the number of parameters for parameter types common

to both parameter sets. The second term applies a penalty for parameter types found in A but not B

that grows with the number of parameters in the representation, while the �nal term applies a constant

penalty for parameter types in B but not in A.

We choose to asymmetrically penalize parameter types in B but not in A less to re�ect the facts

that these parameters only make B more of a superset of A, and that a superset of parameters is more

similar than a subset. This is because a superset is able to express the same range of parameter spaces

as the original only with an extra dimension, whereas a subset can only express a fraction of the possible

parameter spaces.

Step 2. Initial technique set recommendation

Select the most similar representation found and recommend techniques that worked well for it.

46

Take the top recommendations as the initial technique set. The number of techniques included in the

initial set is controlled by a hyper-parameter, n whose default value is 5.

Step 3. Initialize techniques set

Instantiate the techniques in the initial technique set and initialize any populations needed by the

techniques.

We note that instantiation of a recommended technique is possible given just the name as all necessary

data about a technique is encoded in its name, as described in Section 5.2.

Step 4. Search space exploration

Explore the search space by using the techniques in the technique set to generate desired results to

test. Like in the AUC bandit meta-technique, the selection of the next technique is performed using

optimal solution to the multi-armed bandit problem outlined in Section 3.2.1.

After a set number of desired results have been submitted, pause exploration and start the recommen-

dation phase in Step 5. The interval between recommendations is controlled by the interval hyper-

parameter, whose default value is 50.

Step 5. Submission of technique performance

Pass the performance of the techniques that have been used on the current representation to DeepTuner.

Check the cross-session database for historical data about representations with similar performance.

We quantify technique performance for a technique as the search a�nity using the metric

number of new bests yielded
number of desired results requested

.

Similarity of the relative search a�nity of techniques is measured by taking the the Pearson product-

moment correlation coe�cient, or PPMCC, on the search a�nities for techniques that are mutually

known between two representations. The PPMCC measures the linear correlation between two variables

X and Y as a number between 1 and -1 inclusive, where 1 is total positive correlation, 0 is no correlation,

and -1 is total negative correlation. For our purposes, each event is the act of using a particular technique,

and the variables X and Y are the search a�nity values in the two representations.

The PPMCC between X and Y is calculated by

ρX,Y =
cov(X,Y)

δXδY
=
E[(X − µX)(Y − µY)]

δXδY

47

where ρ is the PPMCC, cov is the covariance, δX is the standard deviation of X, µX is the mean of X,

and E is the expected value.

Step 6. Technique recommendation

Select the most similar representation found and recommend techniques that worked well for it.

Select one of the top recommendations as a candidate technique

Step 7. Update technique set

If the candidate technique is not already initialized, initialize the candidate technique. Replace the

technique in the current technique set with the worst search a�nity. Go back to Step 4.

These steps are also shown in Figure 6.2.

Search Approach
Initialization

Search Space
Exploration

Recommendation
Phase

Termination

= repeated transition

Legend

DeepTuner

 = stage of search process

3

4

= one-time transition

1

2

5

6

7

x

1. Send representation parameters
2. Get recommended search techniques
3. Initialize search techniques
4. Pause exploration after set # of tests

5. Send search technique performance
6. Get recommended search techniques
7. Swap out worst technique. Repeat from 4.
x. End autotuning run on reaching conditions
 (time elapsed, # tests, etc.)

Figure 6.2: Search process for the the recommendation bandit meta-technique

Steps 1-3 deal with the initialization of the initial technique set. Step 4 occurs during search space
exploration. Steps 5-7 involve the recommendation phase. The recommendation bandit meta-technique
only performs steps 3-7, while the DBI recommendation bandit meta-technique performs all steps.

48

search a�nity

Search Technique dg42 br17 PBsort

PSO-OX3 0.35 0.10 0.02

GA-OX3 0.25 0.15 0.10

GA-inv 0.05 0.40 0.11

DE 0.10 0.16 0.50

PSO-inv 0.10 0.35 0.01

Table 6.1: Example performance data in the cross-session database

In this simulation, the cross-session database contains data for 3 representations across 4 techniques.

6.2 An Example of the Recommendation Process

To illustrate the recommendation process, we provide a mock simulation of a DBI recommendation bandit

meta-technique that selects the top 3 initial techniques executing for a "new" representation, the TSP bench-

mark att48. Table 6.1 shows the data in the cross-session database for this example, which contains search

a�nities for 5 techniques across 3 representations - TSP benchmark dantzig42 (dg42), ATSP benchmark br17

(br17), and Petabricks benchmark sort (PBsort). Note that both TSP and ATSP benchmark representations

consist of a single permutation parameter. The hyper-parameter controlling the recommendation interval is

set to every 50 con�gurations

The DBI recommendation bandit meta-technique, referred to as "we", would proceed as follows:

Step 0. The user does not de�ne an initial technique set when using the DBI recommendation bandit

meta-technique. Thus we continue to Step 1.

Step 1. We submit the parameters in the representation of att48 (a single permutation parameter) to

DeepTuner.

DeepTuner �nds that it has data for dg42 and br17 in the cross-session database, both of which also

have a single permutation parameter as the parameters in the representation

Step 2. DeepTuner determines that dg42 and br17 are the closest representations with a distance of 0. It

recommends the top techniques from br17 after breaking the tie arbitrarily.

We select top 3 techniques: GA-inv, PSO-inv and DE.

Step 3. We instantiate these 3 techniques and initialize the populations for all 3 techniques.

49

search a�nity

representation GA-inv DE PSO-inv PSO-OX3 GA-OX3 PPMC

att48 (current) 0.09 0.10 0.30 ? ? 1

dg42 0.05 0.10 0.10 0.35 0.25 0.54

br17 0.40 0.16 0.35 0.10 0.15 0.28

sort 0.11 0.50 0.01 0.02 0.10 -0.63

Table 6.2: Example search a�nity similarity between representations in the cross-session database and att48

Technique search a�nity similarity between representations in the example cross-session database and
"known" results from the att48 representation is given by the PPMC. The PPMC is calculated using only
the techniques with known results in att48 .

Step 4-1. We begin generating con�gurations while tracking performance of techniques. After 50 tests, we

enter the recommendation phase.

Step 5-1. We submit the past performance of the techniques to DeepTuner: GA-inv tested 10 times with

1 best, PSO-inv tested 30 times with 9 bests, and DE tested 10 times with 1 best. This corresponds

to search a�nities of 0.1, 0.3, and 0.1 respectively.

DeepTuner examines the cross-session database for representations with similar search a�nities.

Step 6-1. As seen in Table 6.2, the search a�nities we know about in att48 don't match up with what's

expected in br17, which we thought att48 was similar to initially in Step 2. Instead, according to

the values of the PPMC, dg42 has the most similar search a�nity with att48. Thus, DeepTuner

recommends the best techniques from dg42. This happens to be PSO-OX3.

Step 7-1. Because PSO-OX3 is not in the current technique set, we instantiate it and initializing the

population it uses. We remove GA-inv from the current technique set since it has the worst search

a�nity and replace it with PSO-OX3

Step 4-2. We return to generating con�gurations with the new technique set. This continues for 50 tests

before we enter the recommendation phase again.

The DBI recommendation bandit meta-technique will then continue to execute steps 4-7 in this fashion

until the termination of the tuning run.

50

6.3 Advantages of the Recommendation Bandit Meta-Technique

By utilizing recommendation from DeepTuner, the recommendation bandit meta-technique incorporates past

tuning run knowledge to dynamically improve the initial bundle of techniques. This leads to a more robust

search approach compared to those using the old AUC bandit meta-technique.

The DBI recommendation bandit meta-technique improves upon the recommendation bandit meta-

technique even further. Originally, selecting an initial set of techniques was both troublesome, and non-trivial

for the user. However, this step could not be neglected due to the strong impact of the initial techniques

on autotuning performance for the old AUC bandit meta-technique. And, although this is mitigated in the

recommendation bandit meta-technique, a poor choice of initial techniques would still adversely a�ect initial

autotuning performance. Thus, by essentially bootstrapping the initial technique set through recommenda-

tion, the DBI recommendation bandit meta-technique removes the need for selection while providing further

potential gains in autotuning performance as shown in the next chapter.

We note that the bene�ts of recommendation we mention are predicated on the belief that "similar"

representations should interact with techniques in a similar fashion. Thus, we reiterate that the most

problematic challenge in recommendation is both having "similar" representations to recommend from and

having a good metric for de�ning what "similar" means.

51

Chapter 7

Results

In order to demonstrate the advantages of recommendation, we compare various default in-situ learning

approaches in OpenTuner using a standard AUC bandit meta-technique to corresponding recommendation

bandit meta-technique approaches with the same initial technique set .

7.1 Testing Protocol

To demonstrate the increased robustness of transfer learning search approaches using recommendation on

new representations, we measure the autotuning performance of various search approaches on a several of

representations over 3 domains - Halide, Petabricks, and TSP. Testing was performed on Lanka, a 24-node

Intel Xeon E5-2695 v2 @ 2.40GHz In�niband cluster with 12 cores and 128GB of memory per machine.

When performing autotuning on a particular representation, we arti�cially remove historical data about the

representation from the cross-session database in order to simulate the representation being new.

Each search approach is speci�ed by a meta-technique and a set of initial techniques.

7.1.1 Meta-techniques Tested

We compare the autotuning performance for 3 di�erent types of meta-techniques:

1. AUC bandit meta-technique (bndt)

The AUC bandit meta-technique is the core meta-technique for

search approaches in OpenTuner (see Section 3.2.1). So, we use the AUC bandit meta-technique as a

performance baseline representing the default in-situ learning search approach. We use default hyper-

parameter values of 500 for the bandit window size and 0.05 for the exploration-exploitation trade-o�

52

hyper-parameter c.

2. Recommendation bandit meta-technique (rec-bndt)

This type of meta-technique is based directly on the recommendation bandit meta-technique. As

described in Section 6.1, this meta-technique behaves like a bndt that is augmented to periodically

update its technique set using technique recommendations from DeepTuner. We use the same hyper-

parameter values as in the bndt for the window size and c. The interval between recommendations is

set to every 25 desired results

3. Recommendation meta-technique (rec)

This type of meta-technique is a variation of the rec-bndt where the hyper-parameter c has been set to

always favour exploration. As a result, testing resources end up allocated evenly across the technique

set , e�ectively eliminating the bandit. These act as a control to disentangle the e�ects of the bandit

from the recommendation. The interval between recommendations is also set to every 25 desired

results.

We will refer to these three meta-technique types as the bndt, rec-bndt, and rec, respectively.

Initial Technique Sets

We compare the di�erent meta-techniques over 4 di�erent kinds of initial technique sets. The �rst 3 kinds

are static technique sets that are chosen to re�ect typically used search approaches in OpenTuner. The last

kind uses DeepTuner's technique recommendation to dynamically select an initial technique set for the given

representation.

1. Technique Set "A" (A)

The initial technique set of the default search approach in OpenTuner used when no search approach

is speci�ed. This uses a Nelder-Mead search hill climber, di�erential evolution, and two variants of

greedy mutation.

2. Technique Set "pso-ga-de" (pgd)

The technique set of a search approach in OpenTuner that is often anecdotally recommended for use.

As the name suggests, this set consists of three variants of particle swarm optimization, three genetic

algorithms, and di�erential evolution.

3. Technique Set "D" (D)

53

The technique set for a custom search approach in OpenTuner. This consists of a Nelder-Mead search

hill climber, di�erential evolution, a pattern search hill-climber, and one instance of particle swarm

optimization.

4. Database Initialized (dbi)

The initial technique set is chosen through recommendation from DeepTuner based on the parameters in

the representation being tuned. This uses the DBI recommendation bandit meta-technique mentioned

in Section 6.1. The value of the hyper-parameter n controlling how many techniques to choose is set

to 5.

Search Approaches Tested

Combining the 3 types of meta-technique with the 4 initial technique sets gives the 12 �nal search approaches.

These labels are summarized in Table 7.1.

We note that bndt-A is the default in-situ learning search approach in OpenTuner.

Search Approach Label Meta-technique Initial Technique Set Learning Type

bndt-A bndt A in-situ learning

bndt-pgd bndt pgd in-situ learning

bndt-D bndt D in-situ learning

bndt-dbi bndt dbi transfer learning

rec-bndt-A rec-bndt A transfer learning

rec-bndt-pgd rec-bndt pgd transfer learning

rec-bndt-D rec-bndt D transfer learning

rec-bndt-dbi rec-bndt dbi transfer learning

rec-A rec A transfer learning

rec-pgd rec pgd transfer learning

rec-D rec D transfer learning

rec-dbi rec dbi transfer learning

Table 7.1: Labels for tested search approaches

7.2 Search Approach Performance Comparisons

We compare autotuning performance for the 12 search approaches on nine di�erent representations spread

over three domains. The autotuning performance results were averaged by taking median values over at

54

least 75 autotuning runs. The error bars show the 20th and 80th percentiles.

7.2.1 Halide

Halide is a domain speci�c language and compiler speci�cally designed for high-performance image processing

pipelines [25]. Halide separates the algorithmic intent of the image processing kernels from the schedule by

which the algorithm is executed on the machine. Using the right schedule for the underlying architecture

balances the trade-o�s between parallelism and locality in the execution, resulting in faster execution of up

to an order of magnitude from a naive implementation. Thus, the autotuning problem in Halide is to search

the con�guration space of potential schedules for a given pipeline to yield high performance schedules on the

given architecture.

Figure 7.1 shows the performance of the various search approaches for the bilateral grid benchmark in

Halide grouped by initial technique set and Figure 7.2 shows �nal execution times at the end of autotuning.

For each initial technique set , the rec and rec-bndt perform on-par with their in-situ learning bndt coun-

terpart. For technique set D in Figure 7.3c , the rec and rec-bndt seem to perform slightly better than the

bndt, although this di�erence is small relative to the variance.

We hypothesize that the search approaches using recommendation fail to show a signi�cant advantage

over the traditional in-situ learning search approaches due to "simplicity" of the bilateral grid representation.

As seen in Figure 7.3, almost all of the search approaches converge very quickly towards a near optimum and

level out within a relatively small number of tested con�gurations. The speed of convergence results in very

little time for recommendation of techniques to make a large impact. Furthermore, the lack of signi�cant

performance di�erences across initial technique sets suggest that the choice of technique has a small impact

on autotuning performance. This may be because the majority of techniques are good enough.

7.2.2 Petabricks

Petabricks is a language and compiler that incorporates algorithmic choices as a �rst class construct in the

language[4]. Petabricks allows the programmer to de�ne multiple implementations of di�erent algorithms

to solve the same problem. These can be stitched together into poly-algorithms using di�erent individual

algorithms on each level or part of the data. These are synthesized from algorithmic selectors that map

input sizes to an algorithmic choice to use for the input size.

For a given Petabricks program, there may be several such choices, along with lower level optimization

choices like block sizes or thread counts. The autotuning problem in Petabricks is to search the space of

poly-algorithms and low level optimizations for a program in order to minimize execution time of the �nal

55

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A

rec-A

rec-bndt-A

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-pgd

rec-pgd

rec-bndt-pgd

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-D

rec-D

rec-bndt-D

0 50 100 150 200 250 300

0

0.2

0.4

0.6

0.8

1

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-dbi

rec-dbi

rec-bndt-dbi

(a) technique set "A" (b) technique set "pso-ga-de"

(c) technique set "D" (d) database initialized technique set

Figure 7.1: Search approach performance in Halide bilateral grid by initial technique set

Best execution time achieved as a function of number of con�gurations tested by the search approach,
aggregated over 75 tuning runs. Lower execution time is better.

56

A pgd D dbi

3 · 10−2

4 · 10−2

5 · 10−2

6 · 10−2

7 · 10−2

8 · 10−2

9 · 10−2

0.1

0.11

0.12

F
in
al
E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt
rec

rec-bndt

Figure 7.2: End of autotuning execution times for the Halide bilateral grid benchmark

Best execution times found by search approaches after 300 con�gurations tested. The search approaches
are grouped by initial technique set . Values shown are medians over 75 tuning runs.

57

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.3: Search approach performance in the Halide bilateral grid benchmark

The lines represent the median values over 75 tuning runs.

58

speci�ed program.

0 100 200 300 400 500

0.5

1

1.5

2

2.5
·10−2

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A

rec-A

rec-bndt-A

0 100 200 300 400 500

0.5

1

1.5

2

2.5
·10−2

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-pgd

rec-pgd

rec-bndt-pgd

0 100 200 300 400 500

0.5

1

1.5

2

2.5
·10−2

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-D

rec-D

rec-bndt-D

0 100 200 300 400 500

0.5

1

1.5

2

2.5
·10−2

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-dbi

rec-dbi

rec-bndt-dbi

(a) technique set "A" (b) technique set "pso-ga-de"

(c) technique set "D" (d) database initialized technique set

Figure 7.4: Search approach performance in Petabricks matrix approximation by initial technique set

Best execution time achieved as a function of number of con�gurations tested by the search approach,
aggregated over 150 tuning runs. Lower execution time is better.

Figures 7.4, 7.4, and 7.6 show search approach autotuning performances for the matrix approximation

problem in Petabricks. As before, di�erences in performance between search approaches using the same initial

technique set are often small relative to the variation seen across tuning runs. More signi�cant performance

di�erences are shown in Figure 7.6a between bndt-A and rec-A and in Figure 7.6c between bndt-D and both

rec-bndt-D and rec-D.

The default bndt-A appears to yield better performance than rec-A. The majority of this di�erence is

likely due to the lack of the bandit in rec-A rather than negative e�ects from recommendation, as the rec-

59

A pgd D dbi

5.5 · 10−3

6 · 10−3

6.5 · 10−3

7 · 10−3

7.5 · 10−3

8 · 10−3

8.5 · 10−3

9 · 10−3

9.5 · 10−3

1 · 10−2

F
in
al
E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt
rec

rec-bndt

Figure 7.5: End of autotuning execution times for the Petabricks matrix approximation benchmark

Best execution times found by search approaches after 500 con�gurations tested. The search approaches
are grouped by initial technique set . Values shown are medians over 150 tuning runs.

60

0 50 100 150 200 250 300 350 400 450 500
6 · 10−3

7 · 10−3

8 · 10−3

9 · 10−3

1 · 10−2

1.1 · 10−2

1.2 · 10−2

1.3 · 10−2

1.4 · 10−2

1.5 · 10−2

1.6 · 10−2

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.6: Search approach performance in the Petabricks matrix approximation benchmark

The lines represent the median values over 150 tuning runs.

61

bndt-A shows similar performance to bndt-A. Furthermore, the default bndt-A is one of the top performing

search approaches, suggesting the initial technique set is already near optimal, which leaves little room for

improvement by recommendation.

On the other hand, technique set D seems to be much less optimal for matrix approximation. As a result,

both rec-D and rec-bndt-D show relatively signi�cant performance gains over bndt-D within the �rst 100

con�gurations tested and at the end of autotuning.

Overall, the search approaches using the dbi technique set resulted in the best autotuning performance.

These also tended to achieve the best �nal execution times.

In contrast, the bndt-dbi yielded the slowest convergence for Strassen, as seen in Figure 7.8. This suggests

that the initial technique recommendation based on the parameters in the representation, while often fairly

accurate, may not always be accurate. However, these variations between search approaches in performance

may just be due to the high variation in performance across tuning runs in Strassen, as seen in Figure 7.7.

For all initial technique sets, we see that incorporating recommendation does not harm the performance

of any of the bndt based search approaches. In fact, for bndt-D and bndt-pgd, utilizing recommendations

even improves �nal autotuning perfomance and the convergence speed slightly.

7.2.3 Travelling Salesman Problem

In the travelling salesman problem (TSP), the goal is to �nd the shortest route visiting all cities given the

distances between the cities. This translates nicely to an autotuning problem of �nding the ordering of cities

that gives the shortest route for a speci�ed distance matrix, where the ordering is represented as a single

permutation parameter. The benchmarks in the TSP autotuner are taken from various TSP and asymmetric

TSP (ATSP) problems in the TSPLIB library [1]. General information about the benchmarks is summarized

in Table 7.2. We compare search approach performance over a subset of these benchmarks.

Symmetric TSP

Figures 7.9 and 7.10 show results for two symmetric TSP benchmarks att48 and dantzig42, respectively.

Both benchmarks show similar results.

For initial technique sets A, D, and pgd, the autotuning performance between the three types of meta-

techniques is initially similar. However, the bndt is consistently outperformed by both the rec-bndt and

the rec later by a signi�cant margin. The performance of the rec and rec-bndt search approaches begin to

diverge from those of the bndt at about 500 tested con�gurations, or 20 iterations of recommendation. At

this point, it appears there is su�cient technique performance data for DeepTuner to successfully match

62

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A

rec-A

rec-bndt-A

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-pgd

rec-pgd

rec-bndt-pgd

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-D

rec-D

rec-bndt-D

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-dbi

rec-dbi

rec-bndt-dbi

(a) technique set "A" (b) technique set "pso-ga-de"

(c) technique set "D" (d) database initialized technique set

Figure 7.7: Search approach performance in Petabricks Strassen by initial technique set

Best execution time achieved as a function of number of con�gurations tested by the search approach,
aggregated over 150 tuning runs. Lower execution time is better.

63

0 50 100 150 200 250 300 350 400 450 500

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Number of Con�gurations Requested

E
xe
cu
ti
on

T
im
e
(s
ec
on
ds
)

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.8: Search approach performance in the Petabricks Strassen benchmark

The lines represent the median values over 150 tuning runs.

64

0 500 1,000 1,500 2,000 2,500 3,000

0.4

0.6

0.8

1

1.2

1.4
·105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A

rec-A

rec-bndt-A

0 500 1,000 1,500 2,000 2,500 3,000

0.4

0.6

0.8

1

1.2

1.4
·105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-pgd

rec-pgd

rec-bndt-pgd

0 500 1,000 1,500 2,000 2,500 3,000

0.4

0.6

0.8

1

1.2

1.4
·105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-D

rec-D

rec-bndt-D

0 500 1,000 1,500 2,000 2,500 3,000

0.4

0.6

0.8

1

1.2

1.4
·105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-dbi

rec-dbi

rec-bndt-dbi

(a) technique set "A" (b) technique set "pso-ga-de"

(c) technique set "D" (d) database initialized technique set

Figure 7.9: Search approach performance in TSP att48 by initial technique set

Shortest route length found as a function of number of con�gurations tested by the search approach,
aggregated over 75 tuning runs.

65

0 500 1,000 1,500 2,000 2,500 3,000

1,000

1,500

2,000

2,500

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A

rec-A

rec-bndt-A

0 500 1,000 1,500 2,000 2,500 3,000

1,000

1,500

2,000

2,500

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-pgd

rec-pgd

rec-bndt-pgd

0 500 1,000 1,500 2,000 2,500 3,000

1,000

1,500

2,000

2,500

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-D

rec-D

rec-bndt-D

0 500 1,000 1,500 2,000 2,500 3,000

1,000

1,500

2,000

2,500

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-dbi

rec-dbi

rec-bndt-dbi

(a) technique set "A" (b) technique set "pso-ga-de"

(c) technique set "D" (d) database initialized technique set

Figure 7.10: Search approach performance in TSP dantzig42 by initial technique set

Shortest route length found as a function of number of con�gurations tested by the search approach,
aggregated over 75 tuning runs.

66

Benchmark Name Symmetric? Number of Cities Best Known Route Length

att48 yes 48 10628

brazil58 yes 158 25395

brg180 yes 180 1950

dantzig42 yes 42 699

gr120 yes 120 6942

gr48 yes 48 5046

si175 yes 175 21407

swiss75 yes 75 1273

br17 no 17 39

ftv170 no 171 2755

ftv44 no 45 1613

p43 no 43 639

rgb323 no 323 1326

ry48p no 48 14422

Table 7.2: Benchmarks in the TSP autotuner

The benchmarks and best known solutions are taken from [1]. Route lengths for symmetric TSP problems
are optimal.

the current representation to a similar representation in the cross-session database. Because there is little

di�erence between the performance of the rec-bndt and rec in these cases, we conclude that the increase in

autotuning performance is almost entirely due to the e�ects recommendation.

The large period of time before the e�ects of recommendation kick in could be caused by skewing of

performance data. The bias would be introduced in the early stages of autotuning due to the use of new

bests in the performance metric. Because there are very few tested con�gurations initially, it is much easier

for techniques to discover new bests during the early stages of autotuning. As a result, techniques in the

initial set end up with an in�ated search a�nity, resulting in faulty recommendations. As the autotuning

session continues, the in�ated search a�nity values normalize leading to more accurate recommendations.

With the dbi technique set , the bndt performs slightly better than both the rec and rec-bndt. This

suggests that the initially recommended set of technique based on the parameters in the representation was

already highly optimal for the current representation, which is likely as the most similar representation would

be a di�erent TSP instance. As a result, further recommendation could hurt autotuning performance by

swapping in a less optimal technique or by destroying the state of the technique that is swapped out.

For both att48 and dantzig42, we see in Figures 7.11, 7.12, 7.13, and 7.14 that the three in-situ learning

search approaches - bndt-A, bndt-D, and bndt-pgd - yield the poorest autotuning performance. In fact,

67

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

40,000

50,000

60,000

70,000

80,000

90,000

1 · 105

1.1 · 105

1.2 · 105

1.3 · 105

1.4 · 105

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.11: Search approach performance in TSP att48

The lines represent the median values over 75 tuning runs.

68

A pgd D dbi

40,000

50,000

60,000

70,000

80,000

90,000

1 · 105

1.1 · 105

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

Figure 7.12: End of autotuning best route lengths for the TSP att48 benchmark

Best route lengths found by search approaches after 3000 con�gurations tested. The search approaches are
grouped by initial technique set . Values shown are medians over 75 tuning runs.

69

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

2,600

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.13: Search approach performance in TSP dantzig42

The lines represent the median values over 75 tuning runs.

70

A pgd D dbi

1,000

1,200

1,400

1,600

1,800

2,000

2,200

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

Figure 7.14: End of autotuning best route lengths for the TSP dantzig42 benchmark

Best route lengths found by search approaches after 3000 con�gurations tested. The search approaches are
grouped by initial technique set . Values shown are medians over 75 tuning runs.

71

bndt-A, which is the default search approach in OpenTuner, is the worst of all twelve search approaches

tested by a signi�cant margin. While the anectodally suggested bndt-pgd fares slightly better than the

other two in-situ learning search approaches, it is still outperformed by every single transfer learning search

approach.

We see that for �xed initial technique sets, the rec and rec-bndt search approaches achieve much better

�nal route lengths than their bndt counterparts. Overall though, the search approaches using a dbi technique

set show the best performance.

Asymmetric TSP

Figure 7.15 shows performance results for the ATSP benchmarks ftv44 and ftv170, while �gure 7.16 shows the

best route lengths discovered at the end of autotuning. The results are consistent with results for symmetric

TSP benchmarks, with the transfer learning search approaches outperforming the three in-situ learning

search approaches and bndt-A showing the worst performance. As before, while the autotuning performance

of the bndt for the �xed initial technique sets is initially similar to the other two meta-technique types,

the performance of the recommendation meta-techniques begins to diverge after around 500 con�gurations

tested.

The search approaches with a dbi technique set again show the best overall and �nal performance.

However, unlike with the TSP benchmarks, the bndt is eventually outperformed by both the rec-bndt and

rec, despite showing better performance initially. This can seen more clearly in Figure 7.17, where the length

of the tuning runs have been doubled to 6000 requested con�gurations.

This suggests that despite being very similar, there are still di�erences across TSP representations in

terms of which techniques yield the best search performance. The initial technique recommendation by

parameters in the representation, though relatively good, failed to yield the very best possible technique set

as the various TSP representations all consist of a single permutation parameter and are indistinguishable

in the dimension of parameters in the representation. As a result, the rec-bndt and rec are eventually

able to obtain better performance than the bndt by recommending techniques for the most similar TSP

representation in the technique search a�nity dimension. The divergence in performance appears to occur

around 2000 con�gurations.

We note that the number of tested con�gurations required to see this �ne-tuning of the technique set

is larger than the number needed to see the e�ects of recommendation starting with, say, technique set A.

This is due to the fact that distinguishing between TSP representations, which are relatively similar in terms

of technique search a�nity, inherently requires more data than distinguishing between representations in

di�erent domains.

72

0 500 1,000 1,500 2,000 2,500 3,000

3,000

4,000

5,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

0 500 1,000 1,500 2,000 2,500 3,000

14,000

16,000

18,000

20,000

22,000

24,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

(a) ftv44

(b) ftv170

Figure 7.15: Search approach performance in ATSP ftv44 and ftv170

Shortest route length found as a function of number of con�gurations tested by the search approach. The
lines represent the median values aggregated over 75 tuning runs.

73

A pgd D dbi

2,500

3,000

3,500

4,000

4,500

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

A pgd D dbi

14,000

16,000

18,000

20,000

22,000

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

(a) ftv44

(b) ftv170

Figure 7.16: End of autotuning best route lengths for the ATSP ftv44 and ftv170 benchmarks

Best route lengths found by search approaches after 3000 con�gurations tested. The search approaches are
grouped by initial technique set . Values shown are medians over 75 tuning runs.

74

0 1,000 2,000 3,000 4,000 5,000 6,000

2,000

3,000

4,000

5,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-dbi rec-dbi rec-bndt-dbi

0 1,000 2,000 3,000 4,000 5,000 6,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

(a) ftv44

(b) ftv170

Figure 7.17: Database initialized search approaches in the ATSP ftv44 and ftv170 benchmarks

Shortest route length found as a function of number of con�gurations tested by the search approach. The
lines represent the median values aggregated over 75 tuning runs.

75

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000

3,600

3,800

4,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

6,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.18: Search approach performance in the ATSP rbg323 representation

Shortest route length found as a function of number of con�gurations tested. The lines represent the
median values aggregated over 75 tuning runs.

76

A pgd D dbi

3,400

3,600

3,800

4,000

4,200

4,400

4,600

4,800

5,000

5,200

5,400

5,600

5,800

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

Figure 7.19: End of autotuning best route lengths for the ATSP rbg323 benchmark

Best route lengths found by search approaches after 6000 con�gurations tested. The search approaches are
grouped by initial technique set . Values shown are medians over 75 tuning runs.

77

Performance results on the rbg323 ATSP benchmark in Figures 7.18 and 7.19 again show how technique

recommendation allows for �ne tuning of the technique set and better autotuning performance over the course

of the tuning run. Regardless of the initial technique set , all of the rec and rec-bndt search approaches even-

tually exhibit similar autotuning performance to bndt-dbi, with rec-A, rec-bndt-dbi, and rec-dbi exceeding

bndt-dbi's performance within the scope of the autotuning sessions. The consistently strong performance of

the rec and rec-bandit relative to the corresponding bndt across all initial technique sets demonstrates the

robustness that recommendation brings.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600 2,800 3,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

Number of Con�gurations Requested

L
en
gt
h
of

R
ou
te

bndt-A rec-A rec-bndt-A

bndt-pgd rec-pgd rec-bndt-pgd

bndt-D rec-D rec-bndt-D

bndt-dbi rec-dbi rec-bndt-dbi

Figure 7.20: Search approach performance in the ATSP p43 representation

Shortest route length found as a function of number of con�gurations tested. The lines represent the
median values aggregated over 75 tuning runs.

Finally, Figure 7.20 shows search approach performances on the p43 ATSP benchmark. In the p43

benchmark, certain problem cities have prohibitively high distances to all but a few of the other cities.

This results in the step-like autotuning pro�le with large, sharp drops in route length when a particular

78

A pgd D dbi

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

F
in
al
R
ou
te

L
en
gt
h

bndt
rec

rec-bndt

Figure 7.21: End of autotuning best route lengths for the ATSP p43 benchmark

Best route lengths found by search approaches after 3000 con�gurations tested. The search approaches are
grouped by initial technique set . Values shown are medians over 75 tuning runs.

79

sub-permutation yielding a good path through a problem city is found.

As seen in Figure 7.21, the rec-bndt search approaches �nd better �nal routes than their bndt counter-

parts. Again, search approaches with the dbi initial technique set yield the best autotuning performance,

while bndt-A yields the worst performance. Among the database initialized search approaches, the rec and

rec-bndt outperform the bndt, showing the advantages of recommendation.

However, for initial technique set D, the bndt out-performs both the rec and rec-bndt in terms of con-

vergence. While this initially appears to be a �aw in the recommendation process itself, this behaviour may

actually stem from our use of new bests per desired result as a metric for search a�nity.

The heightened convergence speed of the bndt is largely due to obtaining large decreases in route length

from discovering the good path through a problem city faster. On the other hand, the rec and rec-bndt see

a steadier decrease in route length �rst, which results in more new bests discovered. Thus, the recommender

system has in fact succeeded in it's goal of recommending techniques with better search a�nity as de�ned

by our heuristic.

Unfortunately, these techniques showed poorer real autotuning performance than those in initial technique

set D. While those techniques discovered fewer new bests, they ones they did �nd resulted in gains of a

larger magnitude. This discrepancy between search a�nity and true autotuning search performance could

be resolved by altering the metric for calculating search a�nity to better account not only the number of

new bests, but also their magnitude of improvement.

Overall though, rec-bndt-dbi, the transfer learning search approach utilizing the DBI recommendation

bandit meta-technique, completely outperforms bndt-A, which is OpenTuner's default in-situ learning search

approach. The best route lengths found, relative to the best known route length, for the two search ap-

proaches are summarized in Table 7.3 for each of the TSP benchmarks we tested.

7.3 Key Findings

We summarize some of the key conclusions from our experiments:

Search approaches using recommendation are more robust w.r.t. the initial technique set

The performance of the standard bndt search approaches was highly dependent on the initial technique

set . The pgd technique set showed the overall best performance, however we noticed that choosing the

wrong technique set resulted in poor asymptotic autotuning performance. In fact, the worst search

approach for all benchmarks was a bndt. In contrast, the search approaches using recommendation

with the same initial technique set either performed signi�cantly better than, or on par with, their

bndt counterpart.

80

Benchmark Cfgs Tested bndt-A rec-bndt-dbi Improvement

att48 3000 88536 40348 2.2x

dantzig42 3000 1264 338 3.7x

ftv44 3000 2685 783 3.4x

ftv170 3000 19296 9621 2.0x

p43 3000 5942 4769 1.2x

rbg323 6000 4234 2205 1.9x

average - - - 2.4x

Table 7.3: Relative performance of bndt-A and rec-bndt-dbi on TSP benchmarks

For each benchmark, we give the total number of con�gurations evaluated in the tuning runs. This is
followed by distance from the best known route length to the best route lengths found by the default

OpenTuner search approach (bndt-A) and the DBI recommendation bandit meta-technique (rec-bndt-dbi)
at the end of autotuning. Best known route lengths are given in Table 7.2. We use the median value

aggregated over 75 tuning runs.

The new rec-bndt-dbi outperforms the old OpenTuner default bndt-A

The rec-bndt-dbi using the new DBI recommendation bandit meta-technique was highly robust, con-

sistently showing some of the strongest autotuning performance in all benchmarks. On the other

hand, although the bndt-A performed well in the Petabricks and Halide domains, it showed the worst

performance out of all tested search approaches in the TSP domain. Within the TSP domain, the

rec-bndt-dbi achieved up to a 3.7x performance improvement over the bndt-A.

Our metric for measuring the search a�nity of a technique may need reconsideration

The current method of taking the new bests per desired result as a metric for search a�nity ignores

the quality of those new bests. This could be creating a gap between true autotuning performance and

values given by our metric, resulting in poor recommendation performance for initial technique set D

in the p43 ATSP benchmark.

81

Chapter 8

Future Work

8.1 Expanding Recommendation in DeepTuner

The work in this thesis represents a �rst step into search approach recommendation for general autotuning

frameworks. After our demonstration of recommendation at the technique level, the logical next step is to

explore recommendation at other points in the search approach hierarchy, such as at the meta-technique or

operator level.

An additional direction may be to investigate search approach recommendation that takes into account

the "stage" of autotuning. Doing so may better account for di�erences in search a�nity for techniques across

the earlier, middle, and later stages of autotuning. For example, techniques can more easily discover new

bests in early stages of autotuning, while later stages of autotuning may require more variable techniques

that are normally suboptimal to discover new bests.

8.2 Search A�nity Metrics

While taking new bests per desired result gives a quick and simple metric for search a�nity, our results

showed that this naive approach may not be su�cient. Because only quantity of new bests is considered

and their quality is ignored, the current metric does not necessarily translate into true search a�nity.

Developing robust, problem de�nition agnostic metrics for search a�nity that are more accurate can lead

to better metrics for similarity between representations. This would help improve the �nal performance of

recommendation.

82

8.3 Other Modes for Transfer Learning

Although we choose to utilize search approach recommendation in this work to enable transfer learning

in search approaches, there are many alternate methods for transfer learning that could be explored. For

instance, just as in-situ learning in OpenTuner allowed techniques to share knowledge about good con�gu-

rations, we could apply transfer learning directly to the con�guration space and allow for recommendation

of potentially good con�gurations across tuning runs.

8.4 Addressing Privacy Concerns

While the cross-session database is a powerful tool containing a wealth of historical tuning run data, main-

taining a globally shared database can often raise privacy issues. Currently, the cross-session database records

many speci�cs about each tuning run. By intelligently aggregating this information across many users and

tuning runs, we can reduce the exposure of information about speci�c individuals.

8.5 Developing New Parameter Types and Operators

We believe that one reason for search approach recommendation's larger performance gains on TSP is due

to the wide array of operators available for the permutation parameter and the fact that the TSP problem

is nicely represented as a permutation. In other words, there are many good techniques to recommend.

Having more operators results in a larger variety of techniques, a subset of which are potentially much

better at searching a given representation - conditions that call for recommendation. On the other hand,

well-structured parameter types for a problem mean more opportunities to exploit that structure. This leads

to better operators, which again increases potential number of good techniques to recommend.

Thus, development of new parameters (such as a tree-like parameter) better suited for various problems

or creation of new operators can greatly impact autotuning performance.

83

Chapter 9

Conclusion

By introducing technique composition in OpenTuner, we greatly increased the variety of di�erent techniques

that can be expressed in OpenTuner. However, this increase in the number of potentially good techniques

also led to an explosion in the number of suboptimal search approaches, making the previous method of

�nding a good in-situ learning search approach manually or through anecdotal evidence even less feasible.

To remedy the situation, we introduce transfer learning search approaches created from the recommen-

dation bandit meta-technique and the DBI recommendation bandit meta-technique that take advantage of

DeepTuner's cross-session database. We demonstrate the robustness of these search approaches on nine

representations over three domains where the new search approaches using recommendation achieve perfor-

mance on-par with or greater than that of their corresponding traditional in-situ learning search approaches

in OpenTuner.

In particular, the DBI recommendation bandit meta-technique performs on par with both the default

and an anecdotally good in-situ learning search approach for the Halide and Petabricks domains. Within the

TSP domain, the DBI recommendation bandit meta-technique vastly outperforms the other two, achieving

a 2.4x average performance gain over the OpenTuner's default search approach for tested benchmarks.

In addition to its robustness, a search approach using the DBI recommendation bandit meta-technique

does not require speci�cation of an initial set of techniques before autotuning begins, unlike with a traditional

AUC bandit meta-technique based in-situ learning search approach. Thus, our new DBI recommendation

bandit meta-technique not only provides better, more robust autotuning performance, but it also streamlines

the autotuning process for the user by removing the need for manually selecting a good search approach, as

automatically performed dynamically during the autotuning session.

The current DeepTuner and DBI recommendation bandit meta-technique represent a proof of concept for

84

the new ideas of transfer learning search approaches and search approach recommendation in OpenTuner.

It is our hope that future work exploring these concepts will continue to yield advances in the performance

of program autotuner frameworks, allowing users of OpenTuner to experience even greater bene�ts.

85

Bibliography

[1] Tsplib. Available at http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Accessed: 2015-

04-16.

[2] Di�erential evolution implementation, 2015. available at http://cci.lbl.gov/cctbx_sources/

scitbx/differential_evolution.py, accessed: 2015-06-16.

[3] Rehab F Abdel-Kader. Hybrid discrete pso with ga operators for e�cient qos-multicast routing. Ain

Shams Engineering Journal, 2(1):21�31, 2011.

[4] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Ama-

rasinghe. PetaBricks: a language and compiler for algorithmic choice, volume 44. ACM, 2009.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Je�rey Bosboom, Una-

May O'Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program autotuning.

In International Conference on Parallel Architectures and Compilation Techniques, Edmonton, Canada,

August 2014.

[6] Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven autotuning of sparse matrix-vector

multiply on gpus. In ACM Sigplan Notices, volume 45, pages 115�126. ACM, 2010.

[7] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and autotuning

framework for parallel iterative stencil computations on modern microarchitectures. In Parallel &

Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 676�687. IEEE, 2011.

[8] Lawrence Davis. Applying adaptive algorithms to epistatic domains. In IJCAI, volume 85, pages

162�164, 1985.

[9] Kusum Deep and Hadush Mebrahtu Adane. New variations of order crossover for travelling salesman

problem. IJCOPI, 2(1):2�13, 2011.

86

[10] Will Drevo. Delphi: A distributed multi-algorithm, multi-user, self optimizing machine learning system.

Master's thesis, Massachusetts Institute of Technology, 2014.

[11] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. Analyzing bandit-based adap-

tive operator selection mechanisms. Annals of Mathematics and Arti�cial Intelligence, 60(1-2):25�64,

October 2010.

[12] Álvaro Fialho, Raymond Ros, Marc Schoenauer, and Michèle Sebag. Comparison-based adaptive strat-

egy selection with bandits in di�erential evolution. In Proceedings of the 11th International Conference

on Parallel Problem Solving from Nature: Part I, PPSN'10, pages 194�203, Berlin, Heidelberg, 2010.

Springer-Verlag.

[13] Matteo Frigo and Steven G Johnson. The design and implementation of �tw3. Proceedings of the IEEE,

93(2):216�231, 2005.

[14] David E Goldberg and Robert Lingle. Alleles, loci, and the traveling salesman problem. In Proceedings of

the �rst international conference on genetic algorithms and their applications, pages 154�159. Lawrence

Erlbaum Associates, Publishers, 1985.

[15] Herbert Jordan, Peter Thoman, Juan J Durillo, Sara Pellegrini, Philipp Gschwandtner, Thomas

Fahringer, and Hans Moritsch. A multi-objective auto-tuning framework for parallel codes. In High

Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for,

pages 1�12. IEEE, 2012.

[16] Chia-Feng Juang. A hybrid of genetic algorithm and particle swarm optimization for recurrent network

design. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34(2):997�1006,

2004.

[17] Shoaib Kamil, Cy Chan, Leonid Oliker, John Shalf, and Samuel Williams. An auto-tuning framework

for parallel multicore stencil computations. In Parallel & Distributed Processing (IPDPS), 2010 IEEE

International Symposium on, pages 1�12. IEEE, 2010.

[18] Shoaib A Kamil. Productive high performance parallel programming with auto-tuned domain-speci�c

embedded languages. PhD thesis, January 2013.

[19] Manuel Lozano, Francisco Herrera, Natalio Krasnogor, and Daniel Molina. Real-coded memetic algo-

rithms with crossover hill-climbing. Evolutionary computation, 12(3):273�302, 2004.

87

[20] Thibaut Lutz, Christian Fensch, and Murray Cole. Partans: An autotuning framework for stencil

computation on multi-gpu systems. ACM Transactions on Architecture and Code Optimization (TACO),

9(4):59, 2013.

[21] Tadahiko Murata, Hisao Ishibuchi, and Hideo Tanaka. Genetic algorithms for �owshop scheduling

problems. Computers & Industrial Engineering, 30(4):1061�1071, 1996.

[22] Maciej Pacula, Jason Ansel, Saman Amarasinghe, and Una-May O'Reilly. Hyperparameter tuning in

bandit-based adaptive operator selection. In Applications of Evolutionary Computation, pages 73�82.

Springer, 2012.

[23] SG Ponnambalam and Mohan Reddy. A ga-sa multiobjective hybrid search algorithm for integrating

lot sizing and sequencing in �ow-line scheduling. The International Journal of Advanced Manufacturing

Technology, 21(2):126�137, 2003.

[24] Markus Püschel, José MF Moura, Bryan Singer, Jianxin Xiong, Jeremy Johnson, David Padua, Manuela

Veloso, and Robert W Johnson. Spiral: A generator for platform-adapted libraries of signal processing

alogorithms. International Journal of High Performance Computing Applications, 18(1):21�45, 2004.

[25] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman

Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality, and recomputation

in image processing pipelines. ACM SIGPLAN Notices, 48(6):519�530, 2013.

[26] XH Shi, YC Liang, HP Lee, C Lu, and LM Wang. An improved ga and a novel pso-ga-based hybrid

algorithm. Information Processing Letters, 93(5):255�261, 2005.

[27] Mark W Stephenson. Automating the Construction of Compiler Heuristics Using Machine Learning.

PhD thesis, Massachusetts Institute of Technology, 2006.

[28] Cristian � pu³, I-Hsin Chung, Je�rey K Hollingsworth, et al. Active harmony: Towards automated

performance tuning. In Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pages 1�11.

IEEE Computer Society Press, 2002.

[29] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Je�rey K Hollingsworth. A scalable

auto-tuning framework for compiler optimization. In Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pages 1�12. IEEE, 2009.

[30] Richard Vuduc, James W Demmel, and Katherine A Yelick. Oski: A library of automatically tuned

sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, page 521. IOP Publishing,

2005.

88

[31] Hongfeng Wang, Dingwei Wang, and Shengxiang Yang. A memetic algorithm with adaptive hill climbing

strategy for dynamic optimization problems. Soft Computing, 13(8-9):763�780, 2009.

[32] R Clint Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In Proceedings of

the 1998 ACM/IEEE conference on Supercomputing, pages 1�27. IEEE Computer Society, 1998.

[33] Darrell Whitley, Doug Hains, and Adele Howe. Tunneling between optima: partition crossover for the

traveling salesman problem. In Proceedings of the 11th Annual conference on Genetic and evolutionary

computation, pages 915�922. ACM, 2009.

[34] Wen-Jun Zhang, Xiao-Feng Xie, et al. Depso: hybrid particle swarm with di�erential evolution operator.

In IEEE International Conference on Systems Man and Cybernetics, volume 4, pages 3816�3821, 2003.

89

Appendix A

Appendix A: De�nitions and

Terminology

We note that the terminology used in this thesis may di�er from the terminology used in previous works.

This is partially due to an e�ort to disambiguate the old terminology.

A.1 Basic Autotuning Terminology

We frame the autotuning problem as a search problem over the space of the variables being tuned. This is

re�ected in the terminology used for discussing autotuning in OpenTuner.

parameter

the dimensions, or variables, of the autotuning search space. In OpenTuner, this is any instance of

Parameter class representing a variable in the autotuning space (e.g. permutation parameter, boolean

parameter, ...).

parameters in the representation

the set of parameters the user chooses to de�ne the dimensions of the autotuning search space as.

con�guration

a concrete assignment of values to a set of parameters. These make up the "points" in autotuning

search space.

objective function

the method used to evaluate the �tness of a con�guration. Note that this encapsulates the process of

90

interpreting the "meaning" of parameters in the representation.

tuning run

a single autotuning session

A.2 Autotuner Speci�cation

We equate the process of implementing an autotuner in OpenTuner to the process of de�ning the autotuning

problem in a hierarchical way. See Section 3.1 for more detail about the hierarchical structure of a problem

de�nition.

representation

the autotuning search space in a tuning run. A representation consists of the choice of parameters in

the representation to use as the search space and the objective function used to interpret and score a

con�guration.

For example, if we wished to autotune the GCC compilation �ags that can be turned on or o� to

minimize the execution time of a program, we could use a simple representation consisting of a boolean

parameter for each compiler �ag. The parameters in the representation would be the set of boolean

parameters. The objective function would consist of

1. compiling the program with all �ags whose corresponding boolean parameters are true turned on

2. evaluating the execution time of the compiled program.

problem

the speci�c program or use case that a representation maps to. The problem is essentially the actual

thing being tuned by the autotuner during a tuning run.

For instance, in the above example about a representation for autotuning GCC compilation �ags, the

problem would be the speci�c programs or application being compiled, such as a program performing

a matrix multiply, whose execution time we are trying to minimize.

domain

the overarching project or application that an implemented autotuner operates over. A domain consists

of a set of related problems which often have similar representations using the same objective function.

In the above examples, the domain would be selecting GCC compilation �ags to minimize overall

execution time of a C program.

91

problem de�nition

the complete speci�cation of an autotuner and autotuning problem in the OpenTuner framework, from

a domain down to the representation.

A.3 Search Approach

We consider the autotuning process during a single session as the execution of some user-speci�ed search

approach that sequentially selects con�gurations to evaluate.

technique

a standalone search algorithm for exploring the autotuning search space of con�gurations. A technique

selects the next con�guration to evaluate based only on the �tness of previously evaluated con�gura-

tions. A technique is standalone in the sense that it can operate without knowledge of other techniques.

Techniques can be decomposed into a technique base and a set of operators.

technique base

the algorithmic component of a technique that determines which con�guration/con�gurations the next

con�guration to be evaluated is/are generated from. In other words, the technique base is how a

technique maintains and selects from a population of candidate con�gurations that will be combined

or mutated to generate the next con�guration. This is equivalent to parent selection in a genetic

algorithm based technique.

For instance, consider a normal greedy mutation technique that always selects the global best con-

�guration and mutates a subset of its parameters according to a normal distribution. The technique

base would only capture the fact that the technique of selects the global best con�guration. The fact

that this con�guration then undergoes a random mutation according to a normal distribution is is

unrelated.

operator

an algorithm used to generate a new parameter value from a set of parameter values. Every operator

is associated with a speci�c parameter type. We note that picking a set of operators for a technique,

one for each parameter type in a con�guration, de�nes how a set of candidate con�gurations will be

combined into a �nal con�guration to be tested.

composable technique

a technique where the set of operators can be changed arbitrarily while keeping the same technique base

92

to generate a new, coherent technique. Most techniques can be thought of as composable techniques,

except the case where speci�c operators are deeply entrenched in the technique base's process for

generating candidate con�gurations.

meta-technique

an algorithm that explores the autotuning search space by repeatedly choosing other techniques to

generate the next con�guration with. A meta-technique can be thought of as a selection algorithm

over some set of underlying techniques that are used to actually conduct the exploration.

hyper-parameter

an input key-word argument whose value modi�es the behaviour of any algorithmic component of a

search approach. For example, we could have a meta-technique hyper-parameter, a technique hyper-

parameter, or a operator hyper-parameter. A hyper-parameter must be a literal such as a boolean,

integer, �oat, or string.

The value of a hyper-parameter is set when the technique or meta-technique is initialized.

search approach

the overarching search process used to search an autotuning search space. In OpenTuner, this is the

fully speci�ed algorithm that can immediately be used to explore the autotuning search space de�ned

by the representation. A search approach interacts with the search space of con�gurations during

the autotuning process by making requests for con�gurations to be evaluated (desired results). The

resulting evaluations are used to inform future requests. A search approach consists of a meta-technique

bundled with techniques where all hyper-parameters or operator choices have been �xed. We note that

we can have the "null" meta-technique, i.e. an individual technique is also a search approach. The

search approach used for a tuning run is speci�ed by the user at the start of tuning through the

"�technique" command line argument.

A naive search approach has no learning aspect outside of the individual technique. In other words,

this is the individual technique.

An in-situ learning search approach performs learning on top of the individual techniques using data

gained during its current tuning run.

A transfer learning search approach performs learning on top of the individual techniques using data

gained from external tuning runs.

93

A.4 Search and Evaluation

OpenTuner abstracts the process of searching the space of con�gurations from the process of evaluating

con�gurations.

desired result

a con�guration that is requested to be evaluated by a particular search approach or technique.

result

the evaluation of a desired result according to the objective function.

new best

a resultthat is the global best found during a tuning run at the time of its evaluation.

measurement driver

the module of OpenTuner that handles measuring desired results to produce results. This is a thin

wrapper around the user de�ned objective function.

search driver

the module of OpenTuner that handles generating desired results to explore the search space. Encap-

sulates the problem de�nition and search approach.

results database

a database used by the measurement driver and the search driver to communicate during a single

tuning run. It tracks desired results requested and results collected during a tuning run, along with

metadata about the problem de�nition and search approach for the tuning run.

A.5 Recommender System

In this work, we introduce DeepTuner which sits above all individual OpenTuner tuning runs to provide

insight cross-tuning runs.

search a�nity

a measure of how well a search approach, or any individual subcomponent of a search approach such

as a technique interacts with a speci�c problem de�nition. In this thesis, we use the metric :

number of new bests yielded
number of desired results requested

94

For example, if a technique requested 10 desired results and 5 of these con�gurations turned out to

be new bests at the time of evaluation, then the search a�nity of the technique would be 0.5. This is

essentially a measure of how e�cient the technique is at choosing new globally optimal con�gurations

to evaluate.

cross-session database

a database used by DeepTuner containing uploaded data about past tuning runs. It stores values of the

search a�nity at regular intervals of techniques and the meta-technique for a tuning run, along with

meta data about the problem de�nition. The cross-session databasecan also tracks aggregate values of

search a�nityover multiple tuning runs.

95

