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Abstract

We introduce the use of multivariate Gaussian Copula modeling to improve the
accuracy of wind resource assessment. The technique also serves to lower assess-
ment costs because it requires less sensing data than conventional methods.

1 Introduction

This paper addresses wind resource assessment: the problem of determining if there will be enough
wind in the ideal speed range that will endure at a potential wind farm or “site”, over a 20+ year
timespan. [8] generally outlines the process and challenges involved in assessment. Herein we focus
on the single critical factor in assessment: achieving the most accurate forecast while incurring min-
imal financial expense. This implies integrating geographically proximal public wind data sources
for better accuracy (accuracy) while concurrently reducing the duration of anemometer sensing dur-
ing the assessment period (expense).

Our first means of achieving improvement is an end-to-end “Automated Wind Resource Assess-
ment as a Service” that could be deployed to the web or cloud. Figure 1 shows how this service
spans from automatic site-neighbor data extraction from public, online sources (see ASOS database),
through site-neighbor data synchronization in preparation for generative modeling, modeling, back-
cast (where historical data at neighboring sites is passed through a model to obtain predictions at the
site) to industry standard Weibull distribution formulation of the assessment. The service’s automa-
tion eliminates work currently being done manually on a per-assessment basis.
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Figure 1: An Automated Wind Resource Assessment Service.

Our second means of improvement is the primary contribution of this paper. We use multivariate
Gaussian copulas for modeling multiple joint distributions of wind speeds at the site and a publicly
available neighboring wind source. This generative modeling step is embedded within a widespread
methodology called Measure-Correlate-Predict (MCP) [1–3,5]. In contrast, state of art for modeling
in the wind industry is linear regression. For demonstration we use speed and direction data from
three actual wind farms in Indiana, Nebraska, and Maine where the available sensor data ranges
from 3 to 6 months. We compare our probabilistic model with linear regression, where it achieves
higher accuracy with less sensing data in all three cases. Thus we achieve better accuracy at a lower
cost.
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We proceed by describing MCP while introducing notation in Section 2. Section 3 describes the
copula modeling. Section 4 is the demonstration.

2 Measure-Corelate-Predict (MCP )

In terms of notation, the wind at a particular location is characterized by speed denoted by x and
direction θ. The 360o direction is split into multiple bins with a lower limit (θl) and upper limit
(θu). We give an index value of J = 1 . . . j for the directional bin. We represent the wind speed
measurement at the test site (where wind resource needs to be estimated) with y and the other
sites (for whom the long term wind resource is available) as x and index these other sites with
M = 1 . . .m. The three steps of MCP are:

MEASURE: Short term sensing measurements at the site plus ones at neighboring wind recording
stations are collected and synchronized. Neighbor data for the past 10-20 years is reserved for back-
cast in the PREDICT step. Sensing measurements are denoted by Y = {ytk . . . ytn}. Neighboring
sites, also called historical are denoted by X = {x1...m

tk...tn} where each xi
tk...tn corresponds to data

from one historical site and m denotes the total number of historical sites.

CORRELATE: For each bin a directional model is built correlating the wind directions observed at
the site with simultaneous neighboring site wind directions. Using likelihood parameter estimation
we build a multivariate distribution with the probability density function fX,Y (x, y), where x =
{x1 . . . xm} are the wind speeds at the historic sites and y is the wind speed at the site.

Next, for each directional bin, a model is trained, in our case using a multivariate Gaussian copula
described in Section 3, correlating the wind speeds at the site with simultaneous speeds at the his-
torical sites, i.e. Yti = fθj (x

1...m
ti ) where k ≤ i ≤ n. Notationally, we refer to a model training

point as l ∈ {1 . . . L} and a point for which we have to make prediction as k ∈ {1 . . .K}. We drop
the notation for time after having time synchronized all the measurements across locations and the
subscript for directional bin. Now when we refer to a model, it is the model for a particular bin j.
fZ(z) refers to a probability density function of the variable (or set of variables) z. FZ(z) refers
to cumulative distribution function for the variable z such that FZ(z = α) =

� α
− inf fZ(z) for a

continuous density function.

Given the directional model, we predict the probability density of y that corresponds to a given test
sample xk = {x1k . . . xmk} by estimating the conditional density fY (y|xk). The conditional can
be estimated by:

fY |X=xk
(y|xk) =

fX,Y (xk, y)�
y fX,Y (xk, y)dy

. (1)

PREDICT: To obtain an accurate estimation of long term wind conditions at the site, we first divide
the data from the historic sites (which is not simultaneous in time to the site observations used in
modeling) into subsets that correspond to a directional bin. We use the model we developed for
that direction fθj and the data from the historic sites corresponding to this direction x1...m

t1...tk−1|θj to
predict what the wind speed Yp = yt1...tk−1 at the site would be. A point prediction of ŷk is made
finding the value for y that maximizes the conditional.

ŷ = argmax
y∈Y

f(y|X = xk). (2)

Then, with the predictions Yp, we estimate parameters for a Weibull distribution expressing the
mean and variance in speed. This is critical for assessment of long term wind resource and the long
term energy estimate. The bins’ distributions are the assessment. The assessment, i.e. the statistical
distribution in each bin, is then used to estimate the energy which can be expected from a wind
turbine, given the power curve supplied by its manufacturer. This calculation can be extended over
an entire farm if wake interactions among the turbines are taken into account. See [9] for more
details.

We are able to measure assessment accuracy in our demonstrations because we have sequestered
future wind statistics from the site. We measure a symmetric Kullback-Leibler distance. This is
intentionally different from mean-squared error or mean-absolute error because these errors would
not necessarily accurately express how close the approximation is to the true distribution.
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3 Copula Modeling

The crux of the methodology is the joint density function of the model. A simple and straightforward
choice would be the multivariate Gaussian with Gaussian marginals. However conventionally the
univariate densities fXi(xi) are described with Weibull distributions. Copula theory neatly solves
this problem, see [6] for more details. A copula function extracts the underlying joint behavior,
which can be assumed to be multivariate Gaussian and allows individual behavior (parametric dis-
tributions) to be coupled with it as marginals. We first construct the individual parametric distribu-
tions, then we couple them to form a multivariate density function. Finally we predict the value of y
given x1...m. In detail:

A copula function C(u1, . . . um+1; θ) with parameter θ represents a joint distribution function for
multiple uniform random variables U1 . . . Um+1 such that

C(u1, . . . um+1; θ) = F (U1 ≤ u1, . . . , Um+1 ≤ um+1). (3)

Let U1 . . . Um represent the cumulative distribution functions (CDF) for variables x1, . . . xm and
Um+1 represent the CDF for y. Hence the copula represents the joint distribution function of
C(F (x1) . . . F (xm), F (y)), where Ui = F (xi). According to Sklar’s theorem, any copula function
taking marginal distributions F (xi) as its arguments defines a valid joint distribution with marginals
F (xi). Thus we are able to construct the joint distribution function for x1 . . . xm, y given by

F (x1 . . . xm, y) = C(F (x1) . . . F (xm), F (y); θ) (4)

The joint probability density function (PDF) is obtained by taking the m+ 1th order derivative of
the eq. (4); leading to the Sklar’s theorem formulation for densities:

f(x1 . . . xm, y) = Πm
i=1f(xi)f(y)c(F (x1) . . . F (xm), F (y)). (5)

where c(.) is the copula density. Thus the joint density function is a weighted version of independent
density functions, where the weight is derived via copula density. In order to satify the assumption
of an underlying multivariate gaussian dependence structure, we employ the Gaussian copula given
by

CG(Σ) = FG(F
−1(u1) . . . F

−1(um), F−1(uy),Σ) (6)
where FG is the CDF of multivariate normal with zero mean vector and Σ as covariance and F−1 is
the inverse of the standard normal.

There are two sets of parameters to estimate. The first set of parameters for the multivariate Gaussian
copula is Σ. The second set, denoted by Ψ = {ψ,ψy} are the parameters for the marginals of x, y.
Given N i.i.d observations of the variables x, y, the log-likelihood function is: L(x, y;Σ,Ψ) =�N

l=1 logf(xl, yl|Σ,Ψ) =
�N

l=1 log {(
�m

i=1 f(xil;ψi)f(yl;ψy)) c(F (x1) . . . F (xm), F (y);Σ)}
Parameters Ψ are estimated, per [4], via:

Ψ̂ = argmax
Ψ∈ψ

�
N�

l=1

log

��
m�

i=1

f(xil;ψi)f(yl;ψy)

�
c(F (x1) . . . F (xm), F (y);Σ)

��
(7)

A variety of algorithms are available in literature to estimate the MLE in eq. (7), see [4] for a
thorough discussion. To obtain predictions from a copula, for a new observation x we form the
conditional first by

P (y|x) = P (x, y)�
y P (x, y)dy

. (8)

Our predicted ŷ maximizes this conditional probability ŷ = argmaxy∈Y P (y|x). Note that the term
in the denominator of eq.( 8) remains constant, hence for the purposes of finding the optimum we
can ignore its evaluation. We simply evaluate this conditional for the entire range of Y in discrete
steps and pick the value of y ∈ Y that maximizes the conditional.

4 Demonstrations and Results

We demonstrate our approach with datasets from 3 actual wind farms we call “Indiana”, “Nebraska”
and “Maine”. The topography of the sites varied from simple flat terrain in Indiana to more rough
and complex terrain in Maine to rough, complex terrain with high seasonal variability in Nebraska.
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We received sensing data collected at each the site from AWS Truepower and automatically, using
ASOS, retrieved wind data from neighboring airports, see Figure 2. Data is collected at a frequency
of 1 sample/second with 10 minute averages. For Indiana we had three months of site sensing, i.e.
training data, for Nebraska and Maine we had six months. We received additional, later observed,
sensing data (constituting the prediction period) from AWS Truepower which we used as the ”ground
truth”. As a measure of predictive accuracy we compare the final estimated Weibull distribution to
the ground truth distribution using Kullback-Leibler (KL) divergence. The lower this value, the
more accurate the prediction. For baseline comparison, we also developed a linear regression model
which is used quite extensively in wind resource assessment [2, 7].

IN

 88° W  87° W  86° W  85° W 

 38° N 

 39° N 

 40° N 

 41° N 

 42° N ME

 71° W  70° W  69° W  68° W  67° W 

 43° N 

 44° N 

 45° N 

 46° N 

 47° N 

 48° N 

NE

 104° W  102° W  100° W   98° W   96° W 

 40° N 

 42° N 

 44° N 

Figure 2: Airports employed in Indiana(IN), Maine(ME) and Nebraska(NE).

Figure 4 compares all methods’ KL divergence with ground truth when the models are trained with
3 or 6 months of sensing data. With the exception of one directional bin, for one farm (NE, bin 8),
the copula modeling generates consistently more accurate assessments. Linear regression frequently
struggles to come close to ground truth with 3 months data. It improves with 6 months of data but
still is always inferior to a copula. Figure 4 indicates that a copula’s accuracy improves with more
sensing data (3 to 6 months). At 3 months it is better than a linear model trained with 6 months data.
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Figure 3: All farms, assessment accuracy using 3 (L) and 6 (R) months of sensing data.
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Figure 4: Maine (left) and Nebraska (right) assessment accuracy, comparing linear regression and
copula with 3 and 6 months of sensing data.

5 Conclusions

Even with 6 months of sensing data a linear regression cannot match the accuracy of a copula trained
on 3 months of sensing data. This relative gap accomplishes our goal: using a copula it is possible
to lower the cost of assessment by trimming the sensing time and concurrently a more accurate
assessment is obtainable.
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