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Abstract

We consider the problem of predicting the blood pressure of a general
patient in an intensive care unit using only information contained in his
blood pressure signal. For our dataset we build a “Beat Database” from
over 6,000 arterial-blood-pressure waveform records. To make predictions
we build both static and dynamic models. To build the static models we
design a “Multi-Algorithm, Multi-Parameter Suite” that allows us to ex-
plore hundreds of different combinations of classification algorithms and
parameter settings. Our dynamic model is a latent state-space model,
and to build it we design a sophisticated Bayes network. We train and
evaluate our models on 1000 arterial-blood-pressure waveform records and
compare their performance against a baseline. We discover that the mod-
els’ performance is not significantly better than the baseline and conclude
that, to predict blood pressure for a general patient, further research is re-
quired in the form of creating models for specific subgroups of patients and
fusing them together, as well as in the form of additional features other
than mean arterial blood pressure extracted from arterial blood-pressure
waveform records.
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1 Introduction

1.1 Motivation

Patients with serious injuries or illnesses who require constant attention from
medical staff are placed in an Intensive Care Unit (ICU). Because patients in
intensive care are often unconscious or otherwise incapable of alerting medical
staff if their condition deteriorates, they are monitored by bedside sensors that
continuously record signals such as electrocardiogram and arterial blood pres-
sure waveforms. If a patient enters a critical state while being monitored, an
alarm is sounded to alert the medical staff. Such alarms, however, only allow
doctors to react after the fact instead of helping them prevent these dangerous
conditions in the first place.

The scientific community has collected data recorded by medical monitoring
equipment attached to patients and created databases of medical information.
These databases allow them to mine historical medical records and discover pat-
terns therein that can be used to make statements about the future development
of patients. Being able to foretell a patient’s future state would allow doctors
to administer preventive treatment, thus saving lives and improving the use of
human and financial resources.

One specific goal that researchers have is to design algorithms and models
using data from such databases that predict how the blood pressure of a patient
in an ICU will change. Blood pressure prediction, and in particular the predic-
tion of hypotension, is of great interest to doctors and ICU staff as hypotension
can be caused by a wide variety of conditions and disorders. Being able to
identify the patients that are at risk of developing low blood pressure would be
beneficial in several ways:

� It would reduce ICU operation costs and increase operation efficiency.

– Medical staff could focus on monitoring patients that are particularly
at risk.

– Prevention is often less expensive than intervention. Once a patient
has entered a critical state, such as shock, an expensive life-saving
intervention is necessary.

� Doctors would have additional information available to them when making
decisions on how to treat patients.

� Knowing a patient’s state can give their relatives and loved ones peace of
mind.

We believe that it is possible to tap predictive information within medical record
databases, allowing us to predict how the blood pressure of a patient will change.
Because blood pressure is influenced by many different factors, it is necessary
to build predictive models using a large and diverse set of data so that the
model can correctly identify the condition of a new patient when predicting
that patient’s blood pressure. For example, a patient in a coma is more likely to
have a different average blood pressure than a patient not in a coma. A model
that was not created using data from patients in a coma will have difficulty
predicting the blood pressure of a new patient if that new patient is in a coma.
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2 Contributions

2.1 Novel Blood Pressure Prediction Problem

We explore the potential of predicting an ICU patient’s blood pressure using
only their blood pressure as a sensor input. The challenge here is to be able
to predict the future state of the arterial blood pressure (ABP) itself with no
clinical information or any other additional information from doctors. Whereas
previous research used the ABP signal to predict specific medical conditions or,
as is in the case of predicting an acute hypotensive episode (AHE), predict a
condition that is a derivative of the ABP signal, we predict the future state of
the ABP signal itself using only the ABP signal as an input. More specifically,
we predict future blood pressure and not a medical event.

The reason for predicting only the future blook pressure is that it is very
difficult to agree on the definition of a medical event in such a way that it can
be both measured accurately and applied to a wide spectrum of patients. For
example, the Physionet 2009 challenge defined a hypotension to be in a specific
pressure range, but when predicting an AHE one must take into consideration
that, depending on the individual, systolic and diastolic blood pressure can
vary by as much as 30 to 40 mmHg over 24 hours. This means sensitivity
to fluctuation varies by individual; for some, a small drop in blood pressure
is harmless, while for others with naturally low blood pressure, a drop by 20
mmHg has been shown to cause transient hypotension [7]. By predicting the
blood pressure signal itself, we do not make any assumptions about individuals.
Instead, we provide additional information for a doctor to use when making a
decision.

We acknowledge that there are many data sources available in addition to
the ABP waveform, both in the form of waveforms other than the ABP signal
as well as clinical data, that can be used to predict a patient’s future blood
pressure. Although incorporating these additional data sources into our models
may improve them, we made the decision to use only ABP waveform data.

By focusing on predicting the blood pressure waveform and by restricting our
data sources to the ABP signal, we contribute to the blood pressure prediction
problem in that we:

� take into account the unique characteristics of each individual patient by
making a prediction as to how his blood pressure will develop and not
interpreting the development of his blood pressure as a medical event.

� test the limits of the information contained in the ABP waveform data
with respect to predicting the future of a patient’s blood pressure.

� design a universal system that is not only applicable anywhere, but also
economic, because measuring a patient’s blood pressure is straightforward
and most ICUs around the world have this capability.

We formulate our problem mathematically in Section 4.

2.1.1 Feasibility

Although predicting blood pressure using only the ABP signal as an input is
a very challenging problem, we hypothesize that we can achieve this for the
following reasons:
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� As discussed in Section 3.2.1, several studies have been able to predict
AHEs, a medical event dependent on blood pressure, using only the ABP
signal.

� Most studies that have used ABP signals have used trend data sampled at
once a minute, the so called numerics record in the MIMIC-II waveform
dataset. We use waveform data that was acquired by sampling the ABP
signal at 125hz, and we hypothesize that this will yield better information
than the trend data used by others.

� We use data from the entire MIMIC-II waveform dataset. Many studies
have used records from far fewer patients, for example, the Physionet
2009 challenge described in Section 3.2.1 provided a training-set of only
60 patients. By using a large data set, we expect to have data from a wide
range of different kinds of patients in different conditions, allowing us to
make better predictions for new patients because our models are more
likely to contain data from a patient that is similar to the new patient.

2.2 Beat Database

To build and evaluate predictive models we use the complete set of ABP data
from the MIMIC-II waveform dataset. See Section 3.1.2 for an overview of
the literature describing the MIMIC-II database and the MIMIC-II waveform
dataset. Building and evaluating models requires us to transform the blood
pressure data by extracting features from the signal waveform. As the size of
the entire blood pressure data in the MIMIC-II database is over 3 terabytes, it
is not feasible to perform feature extraction repeatedly when building models.
For this reason we take the MIMIC-II ABP waveform dataset and transform
it into a beat database. This beat database is constructed by running a beat
onset detection algorithm on every waveform record and extracting contiguous
segments of the waveform belonging to one beat. We then analyze these beat
segments and either flag them as noisy or extract signal features from them.
From the MIMIC-II waveform data we thus create a new dataset of beat features
which we call the beat database. We describe the details of this process in
Section 6. The beat database allows researchers to quickly build and evaluate
models using data from the entire MIMIC-II ABP waveform dataset. It is our
goal to make the beat database accessible to the scientific community in the
future.

2.3 End-To-End System for Developing Models

Once the MIMIC-II ABP waveform data was transformed into the beat database,
we built an end-to-end system for building and evaluating predictive models.
The system is able to take data from the beat database, identify continu-
ous segments free of excessive noise, extract learning samples using so called
“aggregate-functions”, from the segments, and train and evaluate thousands of
different kinds of models. Every step of this end-to-end system is parameter-
ized, from the details of how to extract learning samples to the types of models
built.
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2.4 DCAP – A System to Parallelize Tasks On the Cloud

Extracting and preprocessing data, as well as building models, are computation-
ally expensive tasks. For this reason we built DCAP, a system to take advantage
of the cloud resources at our disposal. Using DCAP we were able to run large
numbers of tasks in parallel and reduce computation time from weeks to days.
This system has been made open source and is described in Section 7.

2.5 Machine Learning Systems for ABP Prediction

To solve the blood pressure prediction problem we build different kinds of ma-
chine learning models. These models can be grouped into two different cate-
gories:

1. Static models (fixed lead time predictors) – these models predict blood
pressure at a specific lead time into the future. We build these using
Neural-Network, Discrete-Bayesian-Network with self-learned and naive
structure, Naive-Bayes, Support-Vector-Machine and Decision-Tree clas-
sifiers. We train over 1000 different classifiers using DCAP to take advan-
tage of computational resources on the cloud. Each trained classifier is a
version of the above-mentioned classification algorithms with a distinct set
of configuration parameters. We describe static models in detail in Sec-
tion 9 and summarize their performance on the blood pressure prediction
problem in Section 12.1.

2. Latent state-space models (variable lead time predictors) – these models
assign a state to a patient. They do so by breaking time into “time slices”
and assigning a single state to each time slice. For each time slice the latent
state-space model then infers the most likely state. They can predict a
patient’s blood pressure at any time slice in the future by first inferring
the most likely state of the patient in that future time slice and then
inferring the value of the patient’s blood pressure in that inferred future
state. We build these models using a discrete Bayesian network with a
problem-specific structure. We describe them in detail in Section 10 and
provide an overview of their performance on the blood pressure prediction
problem in Section 12.2.
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3 Background and Related Work

3.1 Medical Record Databases

The interest in analyzing medical data has grown over the last decade. One par-
ticular focus is the analysis of data recorded in Intensive Care Units (ICU). The
reason for this focus is the increasing number and complexity of the bio-medical
sensors used in the ICU, which means there are large amounts of data being pro-
duced that must be quickly interpreted. As there is often a shortage of human
resources, the development of intelligent patient monitoring systems that fuse
data from different data streams is an active area of research [31]. In order to
develop and refine such systems, large datasets of ICU data are required. Several
projects have created databases containing recordings from ICUs, among them
being IMPROVE [18, 26, 39] / IBIS [10, 16, 22, 38, 40], MGH Waveform DB [1],
SIMON [27], Project IMPACT [15], APACHE [41], ICNARC [13], Veteran’s Ad-
ministration [30], and MIMIC-I and MIMIC-II databases [31,32]. Some of these
databases collect only clinical record data, such as medication administered;
others collect only waveform data, that is, recordings of the patient monitor-
ing systems such as ECG, others collect both. The databases differ in age, size,
type of recordings and whether they allow open or restricted access. In addition,
they differ in the type and resolution of the waveforms they collect. For a table
providing a detailed comparison of the different different databases, see [32].

3.1.1 Challenges in Mining Medical Record Databases

Learning from data collected in databases such as those listed above faces several
challenges. Research by the community has addressed several of these:

� Database size – Medical record databases often contain data from medi-
cal devices that record data at a high frequency rate. This means a large
amount of fine-grained data is available. For example, the MIMIC-II wave-
form database is over 3 Terabytes in size because the signals were sampled
at 125 hz. To address this issue Ramon et al. [29] suggest using domain
knowledge to select an appropriate granularity for the data to reduce the
size of the available data by aggregating it. For example, if a disease
develops over hours or days, one should not search for patterns evolving
within minutes or weeks.

� Noise – Noise is present in both clinical and waveform data. Depending
on the type of data, noise takes on different forms. In waveform data
the “noise” in the data is signal noise. It can arise for various reasons,
for example, it may due to moving a patient or changing his height with
respect to certain equipment, which may shift the measured values [29].
Another example for signal noise are sensor-specific artifacts. A discussion
of these artifacts can be found in Section 3.3. Another form of “noise”
can be found in clinical data. Here, the fact that different people refer
to the same product using different names [29] or that people make slight
mistakes when writing the name of a product can be considered noise.

� Individuality of patients – Different patients have different characteris-
tics, making it difficult to compare absolute values of attributes between
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patients. Depending on age, height and sex, certain patients may re-
act differently to the same medication. To address this issue Ramon et
al. [29] use a “two-level Bayesian approach to learn a model that depends
on patient-specific parameters”. To estimate these patient-specific param-
eters they use a second learner. They use this two-level Bayesian approach
when they perform several binary prediction tasks on a small set of data.
One such example of a prediction task is predicting if a patient will still
be alive N days in the future.

� Inability to link data from multiple sources – There is a large amount of
different types of data available: demographic, historical, medication, and
treatment data. Although all this data is collected, it is often collected
from different sources and the records must be matched to each other in
order to take advantage of related data. This is a difficult task. For exam-
ple, in the case of the MIMIC databases, only a subset of the records in
the MIMIC II clinical dataset have been matched to the MIMIC waveform
dataset or vice versa [3].

� Data manipulations performed to protect patient privacy – An additional
hurdle to learning from medical data and to linking data records is that
certain types of data, such as dates, are considered protected health in-
formation and have been scrambled to ensure privacy [3].

3.1.2 The MIMIC-II Database

There is a significant body of research using data from medical record databases.
In particular, the MIMIC-II database mentioned above is often cited as a source
of data and, furthermore, it is the main source of data used in the research
described in this thesis.

The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II)
research database was established by “applying automated techniques to ag-
gregate high-resolution diagnostic and therapeutic data from a large, diverse
population of adult intensive care unit patients” [32]. It is freely available and
is “intended to support epidemiologic research in critical care medicine and
serve as a resource to evaluate new clinical decision support and monitoring
algorithms” [32]. The first release of the MIMIC-II database encompasses “vir-
tually all adult patients admitted to ICUs at Boston’s Beth Israel Deaconess
Medical Center during the period 2001-2007; additional MIMIC-II data collec-
tion is ongoing”. The database is currently in it’s 3rd release and includes data
from medical, surgical, coronary, cardiac and neonatal ICUs [2, 32].

The database is made up of two different data sets, each containing different
kinds of data. The first is the clinical dataset, which includes items such as
time-stamped, nurse-verified physiological measurements, diagnostic laboratory
results, etc.; the second, the physiological or waveform dataset, includes record-
ings from monitoring systems [32]. Physiological waveforms — such as elec-
trocardiogram, blood pressure, pulse plethysmogram, and respiration — were
sampled at 125Hz, and both the raw recordings (waveform data) and trend data
(numeric data) that was updated every minute were stored.

Due to the fact that “MIMIC-II Waveform and Clinical Datasets have been
collected from different sources, it was not known initially which waveform and
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clinical records are associated with the same patient.” [3] The process of match-
ing waveform data to clinical data is an ongoing process. The MIMIC-II Wave-
form Database Matched Subset “contains all MIMIC-II Waveform Database
records that have been associated with MIMIC-II Clinical Database records.” [4]

3.2 Research Using Medical Record Database Data

Several studies have focused on improving the algorithms used by bedside mon-
itoring equipment that triggers alarms. Zong et al. [43] show that it is possible
to reduce false arterial blood pressure (ABP) alarms from 26.8% to 0.5% while
accepting 99.8% of true ABP alarms. This is because false blood pressure alarms
often stem from artifacts in the physiological ABP signal. Zong et al. designed
a fuzzy logic algorithm that fuses both ABP waveform and electrocardiogram
waveforms to take advantage of the fact that the two waveforms are correlated.

Li et al. [20] also take advantage of the correlation between these waveforms
to design a robust heart rate estimation method. The necessity for such an
algorithm is because “Physiological signals such as the electrocardiogram (ECG)
and arterial blood pressure (ABP) in the intensive care unit (ICU) are often
severely corrupted by noise, artifact and missing data, which lead to large errors
in the estimation of the heart rate (HR) and ABP.” Their heart rate estimation
algorithm fuses multiple leads by “tracking heart rate estimates” with a separate
Kalman filter for each lead and then fusing the separate estimations.

Saria et al. [33,34] focused on knowledge discovery in electrocardiogram sig-
nals. They developed a time-series topic model that relied on latent variables
to model heart rate and respiratory rate for premature infants in the neona-
tal ICU. They used supervised learning to predict the state/condition of an
infant as determined by the doctors when it is released. Syed et al. [36] devel-
oped “fully automated techniques for analyzing large amounts of cardiovascular
data”. Furthermore, Syed et al. [37] identified motifs in electrocardiogram data
by reducing the physiological waveform to finite discrete symbols and then at-
tempting to find patterns that may be associated with sudden cardiac death.

There has also been a focus on predicting specific acute events using machine
learning and statistical tools. Ennet et al. [8] designed an algorithm to predict
acute respiratory distress syndrome. Their data set included 345 ’stable’ and
279 ’unstable’ patients from the MIMIC-II clinical dataset, and they developed
a rule-based prediction algorithm with a specificity/sensitivity ratio of either
80%/60% or 90%/50%.

3.2.1 Predicting Acute Hypotensive Episodes (AHE)

Recent work has focused on predicting Acute Hypotensive Episodes (AHE) using
the MIMIC data, where an AHE is defined as a time period during which a
patient’s blood pressure drops. This focus stemmed from the challenge hosted by
Physionet in 2009. Physionet1 hosts an annual challenge2 “inviting participants
to tackle clinically interesting problems that are either unsolved or not well
solved”, and part of the 2009 challenge was to predict whether or not a patient
would suffer an AHE. The challenge defined an AHE as “an interval in which
at least 90% of the non-overlapping one-minute averages of the arterial blood

1http://www.physionet.org/
2http://www.physionet.org/challenge/
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pressure waveform were in the acute hypotensive range during any 30 minute
window within the interval”. It then defines “the acute hypotensive range to
include MAP measurements no greater than 60 mmHg, and [...] no less than 10
mmHg” [24]. Participants were challenged to develop “automated techniques
for predicting AHEs up to an hour in advance in selected ICU patient records,
using any data available before the forecast window for each record.” [24] The
data provided for the challenge came from the MIMIC-II database and included
a training set of 60 records of which half contained an AHE event and half did
not. The testing set consisted of 40 records of which 16 contained an AHE
event. We provide a brief overview of the contestants:

� Mneimneh [23] et al. explored three different approaches to solving the
problem: reconstructed phase-space neural networks, nearest neighbor,
and a rule based approach. Their previous research had shown that “MAP
itself is an excellent indicator for predicting acute hypotensive episodes”.
Mneimneh et al. achieved their best predictions with the rule based ap-
proach. The rule based approach achieved a sensitivity of 92.85% and a
specificity of 88.46%

� Fournier et al. [9] trained a KNN classifier. To determine features they first
extracted the mean and standard deviation of the Systolic, Diastolic and
Mean Arterial Blood Pressure numeric records. As mentioned in Section
3.1.2, the numeric signal contains trend data of the raw waveform signal
updated every minute. They used Information divergence (or Kullback-
Liebler divergence) to “identify the most discriminative features”. They
then trained a 1-NN classifier and achieved an accuracy of 80%.

� Jousset et al. [17] explored the numeric heart rate, respiration, diastolic,
systolic and mean arterial blood pressure signals. They extracted statisti-
cal parameters from these signals such as the standard deviation, skewness
and the kurtosis. They then trained support vector machines using a lin-
ear kernel to select the best subset of features. The best subset contained
only features from the MAP signal, and their method using only this best
subset of features yielded a “limited performance” with a classification
accuracy of 75%.

� Chen et al. [5] hypothesized that only basic ABP information is needed
to predict an AHE. They investigated the capabilities of five different
indices to detect AHE using “straightforward classification schemes” and
concluded that all indices “performed well”. The indices were:

1. The “5-min average of the MAP vital signs (ABPMean) before the
forecast window”

2. The “5-min average of the MAP vital signs (ABPMean) before the
forecast window”

3. The “optimal exponentially weighted average of the 10-hr ABPMean
before the forecast window”

4. The “predicted ABPMean at the midpoint of the forecast window via
linear regression of the 1-hr ABPMean before the forecast window”

5. The “5-min average of the diastolic ABP vital signs before the fore-
cast window”
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6. A combination of features 2, and 5

� Langely [19] et al. performed a visual inspection of the MAP data and,
from their observations, derived two indices. Using these indices they
achieved an accuracy of 70%. The two indices they used were:

1. “aMAP”, the average MAP across the recording of the patient

2. “AHE index”, the proportion of MAP in a 30 minute sliding window
falling below a threshold pressure

� Chiarugi et al. [6] derived several time series from the numerics ABP data,
including heart rate, systolic ABP, mean ABP, diastolic ABP and MAP.
To fill missing gaps in the time series they used linear interpolation, and
to remove artifacts they employed a median filter. From these derived
time series they extracted several features, including the “mean value of
the systolic, mean and diastolic ABP in the last 5 hours before T0 and the
mean value of the systolic, mean and diastolic ABP in the last hour before
T0”. Using these features they trained both decision tree and support
vector machine classifiers. The decision tree classifiers performed better
than the support vector machine classifiers and had an accuracy of 75%.

� Henriques et al. [14] built generalized regression neural network multi-
models. They trained them “using arterial blood pressure signals obtained
from MIMIC-II ‘numerics record’ dataset”. They achieved an accuracy of
92%.

Separately from the Physionet 2009 challenge, Marzyeh et al. [11] also focused
on predicting AHE an hour before it’s occurrence. Using a variety of techniques
such as Parzen models of normality, logistic regression and neural networks,
they built models that achieved an accuracy of 82%.

3.3 Preprocessing Waveform Data

Often, when preprocessing ABP waveform data, it is useful to detect beat on-
sets. Zong et al. [42] developed an open source algorithm capable of detecting
beat onsets in the ABP waveform signal. The algorithm first passes the ABP
waveform signal through a low pass filter; it then converts the signal into a slope
sum function signal and applies a decision rule to determine pulse onset. To
evaluate their algorithm they created a manually-edited, reference ABP signal
database and determined that “for 96.41% of the 39,848 beats in the reference
database, the difference between the manually-edited and algorithm-determined
ABP pulse onset was less than or equal to 20ms”.

As mentioned in Section 3.1.1, medical record databases are often afflicted
by noise. The MIMIC-II waveform database is no different, and several papers
have been published on what type of noise is inherent in the database and how
it can be filtered out.

Li et al. [21] discuss six different artifacts that occur in the arterial blood
pressure waveform:

1. Saturation to ABP maximum, an effect that is “likely due to the flushing
of the arterial line”.
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2. Saturation to ABP minimum, an effect that “may be due to a transient
constriction in the arterial line such as pinching from arm movement”.

3. Reduced pulse pressure, an effect that “can be due to damping caused by
thrombus in the arterial line”.

4. Square wave, an effect that is due to a fast flush test.

5. High frequency, an effect that may be “related to movement artifact [sic]
or disturbance of the transducer (such as dragging a cloth over the arterial
line)”.

6. Impulse artifact, an effect that “could be due to motion, or a sharp me-
chanical artifact such as crimping of the tubing”.

Two of these artifacts are depicted in Figure 1. They create mathematical mod-
els for these different artifacts and study their effect on clinical blood pressure
(systolic, mean and diastolic) estimates.

Because an ABP waveform may be used for various estimations it is im-
portant to have an estimate as to how good a signal is. In order to evaluate
the fidelity of an ABP waveform Sun et al. [35] propose a Signal Abnormality
Index (SAI) to evaluate the fidelity of an ABP waveform. The algorithm uses
the beat detection algorithm of Zong et al. to detect beat onsets. It then flags
abnormal beats. It detects these by “intelligently setting constraints on phys-
iologic, noise/artifact, and beat-to-beat variation values”. Asgari et al. build
upon Sun’s work and propose a projection method based on singular value de-
composition to validate blood pressure beats. In their evaluations, their method
“achieves a true positive rate (TPR) of 99.06%, 5.43% higher than that of the
SAI, and a false positive rate of 7.69%, 17.38% lower than that of SAI.”
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Figure 1: (a) saturation to ABP maximum and (b) impulse artifact, images
from [21]
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4 Problem Formulation

Let m[n], where n is in the range t0..te, be a discrete-time arterial blood pressure
signal derived by sampling a continuous blood pressure signal at 125 hz, and
let m[ti..tj ] be a contiguous subsequence of m[n]. We then define our problem
statement as follows. Given a lag-time γ, a lead-time τ and a prediction-window-
time α our goal is to create a model that, when provided m[t − γ..t], makes a
prediction as to what the average value will be for m[t+ τ..t+ τ + α]. See also
Figure 2. This prediction is not a continuous value in mmHG, but instead is
one of 10 different ordinal classes. The following table summarises what blood
pressure value each class stands for:

Class label mmHG values represented
1 0-55
2 55-60
3 60-65
4 65-70
5 70-75
6 75-80
7 80-85
8 85-90
9 90-95
10 95-300

Figure 2: Lag, lead and prediction window times
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5 Dataset

To create and test models that can predict blood pressure we use blood pressure
data from the MIMIC-II waveform dataset. As discussed in Section 3.1.2, the
MIMIC-II database contains two different datasets, physiological waveform data
and clinical data, both of which were obtained from hospital information sys-
tems. These two datasets were gathered from separate data sources and only a
subset of each dataset has been matched with the other. As discussed in Section
2.1, we are interested in predicting the ABP signal using only features derived
from the signal itself. For this reason we use data from the entire MIMIC-II
waveform dataset. Section 5.1 provides an overview of the MIMIC-II waveform
dataset and it’s limitations, and Section 5.2 provides an overview of how we
analyze ABP waveform data.

5.1 MIMIC-II Version 3 Waveform Dataset

As of the date of this thesis the MIMIC-II waveform dataset [12] was last up-
dated in March 2012 and has records from a total of 23,180 patients. Each
record may contain one or more of a variety of different waveform recordings,
including:

� ECG (electrocardiographic) waveforms: AVF, AVL, AVR, I, II, III, MCL,

� MCL1, V (unspecified precordial lead), V1, and V2

� BP (continous blood pressure) waveforms:

– ABP: arterial blood pressure (invasive, from one of the radial arteries)

– ART: arterial blood pressure (invasive, from the other radial artery)

– CPP: cerebral perfusion pressure

– CVP: central venous pressure

– FAP: femoral artery pressure

– ICP: intracranial pressure

– LAP: left atrial pressure

– PAP: pulmonary arterial pressure

– RAP: right atrial pressure

– UAP: uterine arterial pressure

– UVP: uterine venous pressure

� PLETH: uncalibrated raw output of fingertip plethysmograph

� RESP: uncalibrated, respiration waveform

Most records contain only a small subset of these possible waveforms, and the
waveforms that were recorded depended on choices made by the ICU staff. Most
records include one or more ECG signals and often include ABP waveforms. Our
focus is the ABP waveform specifically, and out of the 23,180 patient records,
6,232 patient records have a blood pressure waveform recording. Although this
number of patients may not seem like “big data”, two factors make the data
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available large. First, for each patient, their ABP was recorded anywhere from
several hours to several days. Second, their ABP was recorded using a sampling
rate of 125 hz. Because there is over 240,000 hours worth of ABP data in
the waveform database, over 2 Terabytes worth of uncompressed ABP data is
available.

5.1.1 Organisation and Limitations of the Database

The MIMIC-II waveform dataset is organised in the following manner3. For
each recording there is a single record directory containing both a waveform
record and a numerics record. Our research uses only the waveform record.
The waveform record is broken up into multiple segments, where each segment
contains an uninterrupted recording and the signal gains do not change at any
time during the segment.

Certain limitations must be taken into account when reading data from these
waveform records:

1. Gaps in the records: As records in the database can be very long, for ex-
ample, a single patient may be monitored for several days or even weeks,
the physiological signals often have interruptions. These gaps occur be-
cause monitors may be disconnected occasionally for a varying amount of
time.

2. Patient identification: The waveform data was extracted from raw dumps
collected from bedside monitors. A monitoring session usually starts when
a patient is admitted and ends when the patient is discharged. However,
monitors are not always reset when patients are discharged. In this case a
given record may include data from two or more patients. Usually, when
this happens there is a gap that is typically of an hour or more in duration.
For this reason all records with gaps of one or more hours have been split
into multiple records.

5.2 Exploring Arterial Blood Pressure Signals

A record’s ABP waveform can be accessed either indirectly via the PhysioBank
ATM website4 or directly from the database5 using the wfdb software package6.
Once downloaded, the waveform signals still need to be adjusted by subtracting
the base and dividing by the gain. An example ABP waveform belonging to
record 3218321 is depicted in Figures 3 and 4. Figure 3 shows the first 22 hours
of record 3218321’s ABP signal. In this figure one can see examples of the two
types of artifacts described by Li et al. [21] and mentioned in Section 3.3. Figure
4 shows the first 20 seconds of record 3218321’s ABP signal. At this level of
granularity it is possible to visually identify individual blood pressure beats. We
note two phenomena that are visible in Figure 4

1. At around 10 seconds into the recording there appears to be a disturbance
in the signal.

3http://www.physionet.org/physiobank/database/mimic2wdb/
4http://www.physionet.org/cgi-bin/atm/ATM
5http://www.physionet.org/physiobank/database/mimic2wdb/31/
6http://www.physionet.org/physiotools/wfdb.shtml
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Figure 3: ABP waveform of record 3218321

2. At the beginning of the signal and at around 17 seconds into the signal
there appears to be a blood pressure beat that is diminished in comparison
to the majority of the beats.

As neither of these phenomenon are described in the literature we surveyed, we
asked physicians David Dernoncourt and François De Forges what they thought
of them. They replied that the disturbance around 10 seconds was certainly due
to noise, and the phenomenon at the beginning of the signal and at around 17
seconds into the signal were most likely extrasystoles. Citing perez et al. [28],
“Kennedy et al. demonstrated that frequent (>60/h or 1/min) and complex
PVCs could occur in apparently healthy subjects, with an estimated prevalence
of 1-4% of the general population”, they explained that extrasystoles are a much
more common phenomena in acute inflammatory conditions, and that they can
be triggered by ICU procedures, such as intra-auricular catheterism.

5.2.1 Beat Onsets

The ABP signal is an oscillatory waveform that repeats with a period known
as the beat duration. This period varies not only from patient to patient, but
also within an individual patient’s signal. In a single beat the blood pressure
rises from a low value, called the diastolic pressure Pd, to a peak value called
the systolic pressure Ps; this phase of the signal is called the anacrotic limb.
After the anacrotic limb the signal declines and then has a bump (a small rise
and fall) called the dicrotic notch. After this bump the blood pressure drops
back down to Pd. This second phase of the the beat is called the dicrotic limb.
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Figure 4: Close up of record 3218321’s ABP waveform

Image 5 provides an overview of an individual blood pressure beat.
To detect beat onsets, we applied the algorithm developed by Zong et al. [42]

and mentioned in Section 3.2 to the MIMIC ABP blood pressure records. Their
beat detection algorithm is part of the WFDB toolbox7. Figure 6 shows the
result of applying the algorithm to the first 20 seconds of record 3218321’s ABP
waveform. The algorithm detects and marks every real beat onset correctly.
However, it marks several points that are clearly not beat onsets. This indicates
that both noise and extrasystoles increase the algorithm’s rate of false positives.

To analyze the individual beats within an ABP signal we need to detect
which parts of the signal are noisy and which beats have been corrupted. To
remove noisy and corrupt beats we apply the signal abnormality index developed
by Sun et al [35]., which determines if a beat as abnormal or not. The algorithm
that calculates the signal abnormality index is very quick to implement and run.
It flags a beat as abnormal if the beat fulfills any of the following criteria in
List:

� Systolic pulse pressure greater than 300mmHg

� Diastolic pulse pressure less than 20mmHg

� Mean arterial pressure less than 30mmHg or greater than 200 mmHg

� Heart rate less than 20 bpm or greater than 200 bpm

7http://www.physionet.org/physiotools/wag/wabp-1.htm
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Figure 5: A single ABP beat

Figure 6: Detected beat onsets, marked with red circles
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Figure 7: Onsets belonging to beats flagged as “abnormal” removed

� Pulse pressure less than 20 mmHg

� The mean negative slope is less than -40 mmHg / 100ms (noise detection)

� The difference in the systolic blood pressure between the beat and the
previous beat is greater than 20 mmHg

� The difference in the diastolic blood pressure between the beat and the
previous beat is greater than 20 mmHg

� The difference in the duration between the beat and the previous beat is
greater than 2

3 of a second.

The effect of applying the signal abnormality index to the ABP signal in Figure
6 is demonstrated in Figure 7, where the first 20 seconds of record 3218321’s
ABP waveform have been plotted along with the beat onsets that the signal
abnormality index flagged as normal. As one can see, most of the beat onsets
belonging to noisy beats have been removed.
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6 Toward Creating a Beat Feature Database

Our goal is to analyze all the ABP signals contained in the MIMIC-II waveform
dataset at the individual beat level. We understand analyzing an ABP signal
at beat level as the following. First, we identify the contiguous segments of
the signal that belong to each beat, and then we extract various signal features
from these contiguous segments. We refer to these extracted signal features as
beat features. To make these features readily accessible we use a pipeline to
extract all beat features from the MIMIC-II waveform dataset and store them
in a database. Each pipeline step is described in more detail below. The steps
are:

1. Raw ABP signal storage

2. Preprocessing ABP waveforms

3. Beat onset detection, beat validation and gap discovery

4. Beat feature extraction

6.1 Raw ABP Signal Storage

As access to the remote MIMIC-II database is slow, our first task was to set up a
mirror of the MIMIC-II database containing only the MIMIC-II ABP waveform
dataset. We downloaded all records containing an ABP waveform, adjusted the
waveform for base and gain, and then zipped and stored each record’s adjusted
ABP waveform data-files in individual folders on an ftp server. We refer to such
a file containing a record’s ABP waveform adjusted for both base and gain as a
raw ABP waveform file. Each raw ABP waveform file is a two column, comma-
separated value (CSV) file of samples, where the first column gives a sample’s
index and the second the sample’s signal value. As an example of such a file is
given in the following table, which contains the first few rows of 3218321’s raw
ABP waveform file, starting with sample 273.

Sample Signal Value
273 129.104526
274 129.104526
275 126.525562

6.2 Preprocessing ABP Waveforms

As a preparation for the next step in the pipeline, beat onset detection, we
envision using sophisticated filters to remove noise while keeping the high level
frequency information contained in a beat. By removing noise before applying
the beat onset detection algorithm it should be possible to reduce the false
positive and false negative rate of the beat onset detection algorithm. However,
developing and implementing such filters was not part of this thesis and at the
completion time of this thesis, this step has not yet been implemented. It will be
implemented in future work. The output of this pipeline step is the preprocessed
ABP waveform files, which are CSV files in the same format as the raw ABP
waveform files.
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6.3 Beat Onset Detection, Validation and Gap Discovery

In this step each ABP waveform is passed through the beat onset detection
algorithm designed by Zong et al. [42] . The output of this beat onset detection
algorithm is a list of time points specifying when each onset occurs. We define
a beat to be the from the beginning of an onset to the start of the next onset.

Once the beats within an ABP waveform have been detected, we classify
each beat using a modified version of the signal abnormality index defined by
Sun et al. [35] . Using the same criteria as Sun et al., we determine the signal
abnormality index of each beat and assign it a value between zero and two.
If the signal abnormality index declares a beat as normal we mark it as valid
(1). If the signal abnormality index declares a beat as abnormal we mark it as
invalid (0). We also introduce an additional criteria for the case when a beat’s
duration is greater than 750 samples, a duration that corresponds to 6 seconds.
In this case we mark the ’beat’ as a gap (2) . A gap indicates a disturbance
in the signal that is significant enough that the data prior and posterior to the
gap should not be considered as belonging to the same contiguous segment.

The result of this pipeline step is another CSV file called the record beat file.
This file contains three columns. The first column is the beat onset, containing
the sample when the beat starts; the second is the beat end, containing the
sample when the beat ends; the third is the validity index, an index indicating
if the beat is valid (1), invalid (0) or if the beat represents a gap (2). As an
example of such a file is shown in the table below. The table contains the first
few rows of 3218321’s record beat file.

Beat onset (in samples) Beat end (in samples) Beat end (in samples)
273 314 0
274 476 1
275 655 0

6.4 Beat Feature Extraction

The final step of the pipeline is to extract features from each beat. Let m[bo..be],
be a contiguous segment of m[n] where bo is the beat onset of any beat and be
is the end of that beat. We then refer to a function

s = f(m[bo..be]) (1)

that operates on a contiguous segment and produces a scalar value as a beat-
feature function, and the scalar result as a beat feature. One such beat-feature
function is the mean ABP of a beat, and the function that calculates it is:

bmap =
1

be − bo
∗

be∑
i=bo

(m[i]) (2)

For each beat feature we have a beat-feature file. This is a CSV file with
one column. Each value is the scalar value result of the beat feature function.
Every beat feature file belonging to a specific record has the same number of
entries as that record’s beat file. Scalar values belonging to beats flagged as
invalid or as a gap are set to not-a-number (NaN).
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There are many different kinds of beat features that can be extracted, from
time domain features such as the mean, to features that analyze the frequency
spectrum of each beat. Exploring and developing beat features for the beat
database was not part of this thesis, and at the time of completion of this thesis,
only the bmap beat feature function was implemented. The implementation of
additional beat feature functions is future work.

6.5 Database File Structure

We use a simple scheme to store raw ABP waveform files, beat files and beat
feature files. At the top level we have three directories, each corresponding to one
of the types of files. Each top-level directory has a subdirectory corresponding
to each MIMIC waveform record. Each of these subdirectories contains the files
corresponding to both the top level directory as well as the waveform record.
The following list depicts the file structure:

� rawABPwaveforms

– 3218321

* record.csv

– ...

� recordBeatFiles

– 3218321

* recordBeatFile.csv

– ...

� beatFeatures

– 3218321

* bmap.csv

* ...

– ...

Once the preprocessing step has been implemented another top-level direc-
tory will be added, and all record beat files as well as all beat features will
be recalculated. Any additional beat features implemented in future work will
be stored under their corresponding subdirectory in the beatFeatures top-level
directory.

6.6 Overview of the Dataset in the Beat Database

In the table below we provide several summary statistics of the beat database we
created. Figure 8 shows the distribution of the ordinal blood pressure classes
defined in Section 4 within the beat database, if we assign each beat to its
corresponding ordinal class using the beat’s bmap feature.

Total number of records with ABP waveforms 6.187× 103

Total number of beats 1.2885× 109

Total number of valid beats 1.0921× 109
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Figure 8: Class distribution of the entire waveform dataset
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7 DCAP – Distributing Tasks to the Cloud

In solving the blood pressure prediction problem we encountered many tasks
that are computationally very expensive, such as calculating the signal abnor-
mality index for each beat and training classifiers for our models. As we were
not able to compute these tasks in a reasonable time using a single machine we
designed a system that distributes a set of tasks to machines running on the
cloud (often referred to as nodes in the cloud). The system needed to fulfill the
following three requirements:

1. Generic tasks - We needed to be able to run different kinds of programs
on nodes in the cloud. Some of these programs were written in Matlab,
others in Python.

2. Robustness - As the cloud environment is fickle, the system must recover
from failure of any node without losing progress in the computation.

3. Elasticity - The availability of computation resources fluctuates on the
cloud and we need to add or remove nodes from the computational task
at any time.

The system we built to fulfill these requirements is called DCAP, which is an
acronym that stands for “A Distributed Computation Architecture in Python”.
DCAP is a client-server architecture. When running, the server keeps a list of
computational tasks that it will distribute to its clients.

DCAP is robust because it allows for client as well as server failure. If a
client failure occurs, DCAP will schedule any tasks assigned to that client to
other clients. If the server fails, DCAP is able to resume computation from
the time the failure occurred as long as the server was backed up. DCAP
is elastic; if computation is consuming too many resources, it is possible to
terminate running client nodes. Similarly, if additional computation resources
become available, it is possible to start up additional client nodes and have them
connect to the server.

Two examples in which we used DCAP are the calculation of the beat ab-
normality index (see Section 6.3) together with the bmap feature extraction (see
Section 6.4) and the calculation of static models (see Section 9.2.1). In the first
example we calculated the abnormality index and extracted the bmap feature
for more than one billion beats using 50 nodes, and the computation took one
and a half days. In the second example we built more than one thousand static
models using 80 nodes, and the computation took 2 days.

We deployed DCAP on the OpenStack8 based cloud environment run at the
Computer Software and Artificial Intelligence Laboratory at MIT9. We have
made DCAP’s code10 along with its documentation available online11.

8http://www.openstack.org/
9http://tig.csail.mit.edu/wiki/TIG/OpenStack

10https://github.com/byterial/dcap
11http://byterial.blogspot.com/2013/02/dcap-distributed-computation.html
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8 Overview of Building and Evaluating Models

In Section 2.5 we described how we built and evaluated two different types of
models to predict blood pressure:

1. Static models (fixed lead time predictors) — these models predict blood
pressure at a specific lead time into the future. We build these using
Neural-Network, Discrete-Bayesian-Network with self-learned and naive
structure, Naive-Bayes, Support-Vector-Machine and Decision-Tree clas-
sifiers.

2. Latent State-Space models (variable lead time predictors) — these models
predict blood pressure at different lead times into the future. They are
built using a Discrete-Bayesian-Network with a problem-specific structure.

Regardless of what types of models we build and evaluate there are several
steps that are common. To begin with, building a model requires training data
and evaluating requires testing data. The selection of training and testing data
is important for the success of a model. We discuss the criteria for selecting
training and testing data in Section 8.1, and the data we selected in Section 8.2.
Training and testing data is relatively low-level data and, by itself, is not directly
usable for building and evaluating models. This data must be transformed into
learning and testing samples. Although the exact details for transforming the
selected data depend on the specific model being used, there are certain aspects
that are common, in particular, the use of aggregate functions to calculate
aggregate features. These are described in Section 8.3.

Having described the common steps in this section we then look at the two
types of models. We first describe static models in Section 9 followed by latent
state-space models in Section 10. How we evaluate these models is described in
Section 11.

8.1 Criteria For Training and Testing Datasets

When building and evaluating models, an important decision that must be made
is what data will be used to build the model and what data will be used to
evaluate the model. The data that is used to build the model is called the
training set. A good training set allows the model to separate data belonging to
one class from data belonging to another without overfitting the model. If the
training set contains significantly more samples of one class than of another it is
likely that, in the feature domain, some samples from the more numerous class
will overlap samples from the less numerous class. This can be due to noise or
the presence of outliers in the more numerous class see Figure 9. This makes
it difficult for the model to learn the difference between the two classes, and
it is likely that the model will be biased towards the more numerous class. To
overcome this, four different approaches can be used:

1. Develop new features that allow the classes to be distinguished.

2. If the model is a classifier that is trained using an optimization function,
increase the cost of misclassifying one of the less numerous classes
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Figure 9: Unbiased and biased datasets

3. If the model is a probabilistic model that calculates a probability for each
class when it makes a prediction, multiply these probabilities by weights,
where the weights of the less numerous classes are greater than the others.

4. Subsample a different training dataset in which there is a more even rep-
resentation of each of the classes.

The data that is used to evaluate the data is called the test set. For the
evaluation to be meaningful the test set should fulfill the following criteria:

� The test set contains data that the model has not seen before, and the
data in the test set is not correlated with the data in the training set.

� The data in the test set is representative of potential new data that the
model would encounter if it were deployed.

8.2 The Subset of Data Used for Training and Testing

Looking at Figure 8 one immediately recognizes that certain blood pressure
classes are far more frequent than others. In particular, the high blood pressure
classes — eight, nine and ten — as well as the average blood pressure classes
— four, five six and seven — are more strongly represented than the low blood
pressure classes. Due to the reasons mentioned in Section 8.1, this means that
models built using a training set composed of data sampled at random from
the entire ABP waveform dataset may have difficulty in correctly classifying
low blood pressure classes. In addition, because only one beat feature has been
implemented so far, bmap, the current state of the beat database will exacerbate
this problem. However, as described in Section 1.1, it is the low blood pressure
classes that are particularly dangerous to a patient; therefore, we would like to
develop models that are good at predicting the low blood pressure classes. To
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Figure 10: Class distribution of the entire waveform dataset

address this issue we subsample the entire ABP waveform data set and select
the 1000 records that have the greatest number of beats in the low ABP classes.
We call this subset of records the 1000-record-subset. Figure 10 depicts the
distribution of the ABP classes within this record group. From this figure we see
that the low blood pressure classes make up a greater portion of the distribution.
To improve the performance of the models on the low blood pressure classes we
use only data from the 1000-record-subset to build the training set.

When creating a testing set it is arguable if we should use data from the
entire dataset or data from the subsampled data. One one hand, data from the
entire dataset is more likely to represent a random new subject; on the other
hand, it does not provide as good an evaluation of our models on the low blood
pressure classes. For this thesis we decided to put the emphasis on predicting
low blood pressure classes, and we use only data from the 1000-record-subset to
build the testing set.

8.3 Data Transformation and Aggregate Functions

Although the exact data transformation used is specific to the type of model,
static or latent state space, there is one aspect that they have in common; both
use aggregate functions to create samples.

8.3.1 Aggregate Functions and Features

The beat-feature data stored in the beat database is at a fine level of granularity
and is not directly suitable for training/testing models. A subsequence of beat
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features from the database can be considered to be a new time series that has
been sampled at uneven intervals. We call this new time series a beat-sample
time series, and we refer to the beat-sample time series of a specific beat feature
as <beat-feature-name> time series. For example, the time series of the bmap
feature is called the bmap time series. The reason the intervals are uneven is
because the beat-period varies from one beat to the next. If we move a sliding
window of time-duration ts across a beat-sample time series from the database,
we can apply a function to this window to extract “higher-level” signal features
from this time series. We call the applied function an aggregate function and
a signal feature extracted from a beat-sample time series using such a function
an aggregate feature. Let b[n] denote a beat-sample time series of length L, that
is, n is in the range 0..L− 1. Also, given a sequence s[i] for i in 0..m, let Fd(s)
denote a new sequence with Fd [j] = s[j + 1] − s[j] for j in 0..m − 1, that is,
Fd(s) is the sequence of first-order forward differences of s. We then define the
following aggregate functions:

� Aggregate-Mean: mt = 1
L

∑L−1
i=0 b[i]

� Aggregate-Standard-Deviation: sdt =
√

1
L

∑L−1
i=0 (b[i]−mt)2

� Aggregate-Skew: skt =
1
L

∑L−1

i=0
(b[i]−mt)

3

sd3t

� Aggregate-Kurtosis: kut =
1
L

∑L−1

i=0
(b[i]−mt)

4

sd4t

� Aggregate-Trend: trt = Covariance(i,b[i])
sd2t

=
1
L

∑L−1

i=0
(i−L

2 )(b[i]−mt)

sd2t

� Aggregate-Median-Velocity: vt = Median(Fd(b[n]))

� Aggregate-Median-Acceleration: at = Median(Fd(Fd(b[n])))

Note that, when applying an aggregate function, we have to omit any invalid
beat-features. These are recognized by a value of NaN, as described in Section
6.4. Note also that it may be possible to apply some, or all, of these functions
to different kinds of beat features, although for this thesis there is only one beat
feature, bmap, to which we can apply all of the above functions.

With respect to using aggregate functions, the primary difference between
the two model types is the selection of the subsequence and the choice of window
when extracting aggregate features.
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9 Static Models

The first kind of blood-pressure prediction models we describe are static models.
These models do not model the time aspect of the ABP signal but, instead,
are built by learning from a dataset of learning samples made up of feature
vectors and class labels. The components of the feature vectors are the aggregate
features. To create the dataset of learning samples for these models we must
transform the data into feature vectors; this process is described in Section 9.1.
Afterwards, in Section 9.2, we describe a framework we built that can build
many kinds of static models based on common classifier algorithms.

9.1 Transformation of Data Into Learning Samples

To transform the data we recall the blood pressure prediction problem described
in Section 4. Our goal is to extract features from a section of the signal called
the lag window, which is γ minutes long, and then use these features to predict
the blood-pressure class in the future. In particular, we wish to predict the
blood-pressure class that lies lead time τ in the future. Furthermore, the value
of this class is to be calculated for a prediction window of duration α minutes
starting at lead time τ .

To calculate the learning samples used to train a model we consider a se-
quence of beat features as a new beat-feature time series, as described in Section
8.3.1. Using the beat-feature files containing validated beats, as described in
Section 6.3, we first extract contiguous sequences, that is, sequences that do not
include a gap indicated by a 2 in the record-beat file. We then transform each
contiguous sequence into a set of aggregate features for the learning sample.
We do this by sliding a window of γ minutes across each contiguous sequence.
The sliding window moves in steps of γ minutes, so as not to overlap with the
previous position of the sliding window. At each step we extract the aggregate
features from the time series within the sliding window by applying the aggre-
gate functions as described in Section 8.3.1. These aggregate features form the
feature vector of one learning sample. We stop moving the sliding window as
soon as the end of the sliding window is τ + α minutes away from the last value
of the contiguous time series. This leaves enough samples for the lead time and
prediction window corresponding to the last feature vector in the contiguous
sequence.

To help understand this process we give an example of extracting learning
samples from a contiguous bmap time feature series. To make the example
simple we will assume a short duration of the bmap time feature series of 10
seconds. Again, to simplify the example we choose the values of γ, τ and α to
be short, namely 3, 2 and 2 seconds, respectively. Furthermore, again to keep
the example simple, we only extract the mean aggregate feature as well as the
standard deviation aggregate feature.

Let us assume the values of the bmap time series are as given in Table 1. We
detail the steps taken to extract the learning samples.

First position the sliding window at the beginning of the time series. It’s
width is the lag duration, three seconds. This means it covers beats one, two
and three. We extract the mean and standard-deviation aggregate features:

Mean 71.67 mmHg
Std 7.63 mmHg

28



Beat index Time in seconds bmap in mmHg
1 0 70
2 1 65
3 2.5 80
4 3.1 74
5 4.3 68
6 4.6 65
7 5.4 50
8 6.1 60
9 7.2 63
10 8.1 70
11 9.3 80

Table 1: An example of a bmap time series

To determine the associated class for this learning sample, we look lead time
of two seconds into the future from the end of the sliding window and place
a prediction window of two seconds. This prediction window will cover beats
eight and nine. From these beats we extract the mean aggregate feature: 61.5.
This means the associated class label for this learning sample is three because
it is in the range 60-65 mmHg.

We then move the sliding window by three seconds so that it does not overlap
its previous position. This time it covers beats four, five, six and seven, and
again we extract aggregate features:

Mean 64.25 mmHg
Std 10.21 mmHg

The corresponding prediction window covers beats ten and eleven. As the
mean bmap for these is 75 mmHg, the corresponding class label is six.

After this we move the sliding window to cover beats eight, nine and ten.
However, as the prediction window would lie beyond the boundary of the con-
tiguous bmap time series, the algorithm halts. In total we extract two learning
samples from this time series:

Aggregate Mean Aggregate Std Label
71.67 7.63 3
64.25 10.21 6

9.2 Building and Evaluating the Static Models

Because the learning samples have the form of a feature vector associated with a
class label, we can build and evaluate predictor models using common machine
learning algorithms such as neural networks or support vector machines. Many
machine learning algorithms have matured to the point where state-of-art imple-
mentations of these algorithms are readily available. However, which machine
learning algorithm yields the greatest performance is not always clear. Even
after deciding on a machine learning algorithm, many algorithms have a suite of
parameters that need to be fine tuned to improve the algorithm’s performance.
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To handle this issue, we decided to take advantage of the recent technological
advances that have made computation power available in the form of compute
on demand. Using a client-server architecture, we built a massively parallelized,
Multi-Algorithm, Multi-Parameter Suite that solves our machine learning prob-
lem with a variety of machine learning algorithms—support vector machines,
neural networks, discrete bayesian networks, naive bayes, decision trees—and
varies the algorithms’ parameters to find not only the best performing algorithm,
but also the best selection of parameters for it.

9.2.1 Multi-Algorithm Multi-Parameter Suite Architecture

The system’s software architecture consists of two parts, the server and one
or more clients, all running DCAP. As described in Section 7, DCAP is an
architecture that was designed to distribute generic tasks to clients. For our
Multi-Algorithm, Multi-Parameter Suite, these tasks consists of training a spe-
cific classifier algorithm with a specific set of parameters. We refer to such
a specific task as a classifier instance. For example, a classifier instance could
specify an SVM classifier, to be trained with a specific kernel, such as a ’polyno-
mial’ kernel, with a specific method of solving the hyperplane, such as sequential
minimal optimization, along with whether or not autoscaling should be turned
on.

The server stores a list of classifier instances to be trained including their
parameters covering the parameter space of all the different machine learning
algorithms specified at the beginning of Section 8. To train these classifier
instances the server farms the tasks out to it’s clients.

The process of farming classifier instance tasks to clients through DCAP is
as follows:

1. The server maintains a list of untrained classifier instances.

2. A client connects to the server and requests a task.

3. The server selects the next untrained classifier instance and sends it’s
parameterization through the network to the client.

4. The client has a copy of the training data set locally and uses it to train
the classifier instance it received from the server.

5. The client then transfers the completed model along with it’s evaluation
to the server and requests another task.

This process is depicted in Figure 11.

30



Figure 11: Training classifiers on the cloud using dcap
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10 Latent State-Space Models

10.1 Modeling ABP as a Latent State-Space Model

In contrast to the models described in Section 9, latent state-space models take
into account the temporal nature of an ABP signal. They do this by assuming
that, because an ABP waveform belongs to an individual patient, the observed
blood pressure is the result of his state. As time progresses his state may change,
and such a change may result in a change in his ABP. While the patient’s state
is not directly observable, his ABP waveform and any features derived from it,
are. For this reason the patient’s state is called a latent state, and the observable
properties, such as his ABP, are called observables.

One way to design such models is to model a patient’s latent state not as a
state that is continuously developing, but as a state that takes on only discrete
values in the set {1, 2, ..., h} at discrete points in time. To do this we divide time
into slices, so-called time slices. For the duration of a time slice we assume that
the patient’s state does not change. At the end of each time slice the patient
transfers to the next time slice, thereby making a state transition. For each
time slice t we model the patient’s state as a discrete random variable with a
support of h, meaning that it takes values in the range from 1 to h. This means
that if we observe a patient over T time slices, we have T random variables H1,
H2,...,HT that form a chain. When the patient makes a state transition at the
end of time slice t, the random variable H(t+1) that represents the new state
will be different from Ht. We model the probability distribution of the random
variable Ht as a probability distribution that is conditionally dependent only on
the random variable that models the previous state. That is, we assume that
the successor state of a patient depends only on that patient’s current state.
By making this assumption we have modeled the process of a patient changing
states as a Markov process, since it fulfills the Markov property, which states
that the conditional probability distribution of future states depends only upon
the present state.

We now give the conditional probability distributions for the state random
variables. For any state random variable Ht, for t > 1, it’s conditional probabil-
ity distribution is given by the following Conditional Probability Table (CPT),
which we have written out for Ht+1:

Ht+1/Ht 1 ... h
1 P (Ht+1 = 1|Ht = 1) ... P (Ht+1 = 1|Ht = h)
2 P (Ht+1 = 2|Ht = 1) ... P (Ht+1 = 2|Ht = h)
... ... ... ...
h P (Ht+1 = h|Ht = 1) ... P (Ht+1 = h|Ht = h)

The question remains as to what the probability distribution of the first
variable in the chain, H1, is. The answer is that it is just the prior distribution
of the states.

The values that the random variables representing the patient’s state take
are not observable. What is observable is the state’s effect on the patient’s blood
pressure. For each time slice at time t we model the observable effect of the
state as a set of discrete random variables: {V1,t, V2,t, ..., Vn,t}. By observing the
blood pressure we can determine the values these discrete random variables have
taken. How we extract the effect of a patient’s state on the blood pressure from
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Figure 12: Latent state space model

an ABP signal and discretize it to determine the values the random variables
have taken is described in Section 9.1. Because these observations depend only
on the current state of the patient, the probability distribution of each observable
discrete random variable with a support of p is:

Vi,t/Ht 1 ... h
1 P (Vi,t = 1|Ht = 1) ... P (Vi,t = 1|Ht = h)
2 P (Vi,t = 2|Ht = 1) ... P (Vi,t = 2|Ht = h)
... ... ... ...
p P (Vi,t = p|Ht = 1) ... P (Vi,t = p|Ht = h)

Figure 12 depicts the graph that models the relationship between the random
variables that represent the first few time slices of an ABP waveform. Each
node in the graph corresponds to a random variable, and the arrows represent
conditional probabilistic relationships. Such a graph is called a discrete bayesian
network. By using a discrete bayesian network to model our latent state-space
model we can implement it using the open source Bayes Net Toolbox12.

10.2 Latent State-Space Model Learning

10.2.1 Learning When the Number of States Is Known

If we assume we know the support of the state random variables, then it is pos-
sible to fit the values of the conditional probability tables, i.e., the parameters,
to the training data such that the likelihood of observing the data given the
parameters is maximised. The most common approach is to use an expecta-
tion maximisation algorithm. Expectation maximisation is an iterative process.
To initialize the process the conditional probability distributions of the ran-
dom variables are initialised to random values. The process then iterates the
following two steps:

1. The expectation step — calculate the log-likelihood of the data given the
model’s parameters.

2. The maximisation step — compute the new parameters for the model such
that they maximize the log likelihood calculated in the expectation step.

12http://bnt.googlecode.com/
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The process stops once it converges on a log likelihood for the data given the
model’s parameters.

10.2.2 Subselecting the Number of Observations

As we increase the number of observation random variables, so do we increase
the number of conditional probability tables whose values we need to learn using
the expectation maximisation process described in Section 10.2.1. As this is an
expensive procedure, we would like to use the minimal number of observations
needed to make good predictions. One way of selecting which observations to use
is to apply a forward selection algorithm. The application of such an algorithm
selects a subset of observations {Oi, , ..., Op} from the set of all observations
{O1, O2, ..., On} as follows. We call this subset of observations the selected
observations. The algorithm’s steps are as follows:

1. Iterate through the possible observation variables. For each observation
variable, build a latent state-space model using just the state random
variables and that observation random variable.

2. Evaluate the performance of each model and determine which one yielded
the best performance. The observation random variable that was used to
build this model is selected as the first observation in the set of selected
observations.

3. Iterate through the remaining observations. For each remaining observa-
tion random variable, build a latent state-space model using it and the
previously selected observation set.

4. Evaluate the performance of these new models and select the best one. The
random observation variables it uses become the new selected observation
set.

5. Repeat steps three and four, building models with the random observation
variables in the selected observations set in addition to one random obser-
vation variable not yet selected. Continue to grow the selected observation
set like this until performance does not improve.

10.2.3 Selecting the Number of Hidden States

We cannot directly observe the state a patient is in. For this reason we do
not know what the number of possible states can be. Yet to build the latent
state-space models we need to select the number of possible hidden states, that
is, we need to specify the support of the state random variables. To determine
the support of the state random variables we choose a range for the possible
supports and build models using support values from that range. We then select
the support based on which model was the most likely fit as determined by the
greatest log likelihood.

10.3 Transforming Data Into Learning Samples

As mentioned in Section 9.2, before we can build a model we must first transform
our data into learning samples. We transform the blood pressure problem into
learning samples in three steps:
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1. First, we model a beat-sample time series as a series of state transitions.
A discrete state corresponds to a time slice of the beat-sample time series,
and the state stays constant during this time slice.

2. Second, we apply the aggregate functions defined in Section 8.3.1 to each
time slice of the beat-sample time series. The aggregate features yielded
by the aggregate functions are the observations of the state corresponding
to that particular time slice of the beat-sample time series.

3. Third, we discretize the observations and determine the cardinalities of
the random variables Vi,t.

To demonstrate how one creates such a latent state-space model using these
steps, and to introduce how we discretize the observations, we give a simple
example. We model the example bmap time series given in Table 1 in Section
9.1 using a state duration of two seconds.

Step one of the modelling process is to model the beat-sample time series
as state transitions. As the example time series is 10 seconds long, we require
4 state transitions to model it. The grouping of bmap time-samples by state
duration is as follows, where each column indicates the time duration during
which the state stays constant, the separators between the columns indicate
when state transitions occur and the cell contents gives the sample values:

States H1 H2 H3 H4 H5

bmap time series 70,65 80,74 68,65,50 60,63 70,80

Step two of the modelling process is to apply the aggregate functions to
each state’s time slice of the beat-sample time series. To keep the example sim-
ple, we only demonstrate the application of the aggregate-mean and aggregate-
standard-deviation functions. The application of the aggregate functions to each
state duration of bmap time series yields the following observations:

States H1 H2 H3 H4 H5

mt Observation 67.5 77 61 61.5 75
sdt Observation 3.54 4.24 9.64 2.12 7.07

Step three is to discretize the observations. This is done by choosing a
number of bins and then seeing into which range the observations fall. There
are different ways to choose the boundary of these bins; we decided on the
following method:

� For the aggregate-mean observation we use the same boundaries as the
blood pressure class bins defined in Section 4. Since there are ten different
blood pressure classes, this observation will be represented by 10 values.

� For the other observations we use 10 bins as well. To determine their
boundaries we use the following method:

– From the time series belonging to the learning sample, we extract
all observations for the six observation types other than mean. This
gives us six different sets of extracted observations: SD, SK, KU, TR,
V, A.
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– For each of these sets we calculate the mean µ and standard deviation
σ. We thus have SDµ, SKµ, KUµ, TRµ, Vµ, Aµ and SDσ, SKσ,
KUσ, TRσ, Vσ, Aσ

– For each observation type we set the boundaries of its bin as follows:

* The left boundary of the leftmost bin is set to −inf
* The right boundary of the leftmost bin is set to µ− 2σ

* The left boundary of the rightmost bin is set to µ+ 2σ

* The right boundary of the rightmost bin is set to inf

* The boundaries of all the other bins are spaced evenly between
µ− 2σ and µ+ 2σ

The consequence of this step is that each type of observation will be represented
as a discrete random variable with a cardinality equal to the number of bins
used for discretization. Furthermore, each learning sample will have its own set
of bins for each non aggregate-mean feature. We name these random variables
after the observations they represent: Vm, Vsd, Vsk, Vku, Vtr, Vv, and Va. As we
use the same number of bins for discretization of each type of observation, the
cardinality for all Vi random variables is 10.

To continue our example from above, we can calculate the bin boundaries to
discretize Vsd. As SDµ and SDσ are 5.32 and 3.01, respectively, the discretiza-
tion boundaries of the ten bins are:

1 -inf -0.7030
2 -0.7030 0.8032
3 0.8032 2.3095
4 2.3095 3.8158
5 3.8158 5.3220
6 5.3220 6.8282
7 6.8282 8.3345
8 8.3345 9.8407
9 9.8407 11.3470
10 11.3470 inf

Using these boundaries, we determine the observations to be:

States H1 H2 H3 H4 H5

mt Observation 4 6 3 3 5
sdt Observation 4 5 8 3 7

10.4 Latent State-Space Model Inference

Once we’ve learned the conditional probabilities of all CPTs in the latent state-
space model we can use the model to make inferences. We demonstrate how
the model makes an inference of a future observation by means of an example.
For this example we use the latent state-space model depicted in Figure 12,
which consists of 4 time slices. Assume we are given a beat-feature time series
for the first two time slices. We wish to infer what the blood pressure will
be in the fourth time slice. We furthermore assume that we have determined
the support of the state random variables to be 5 and selected the observation
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Figure 13: Latent state space model with evidence provided

random variables to be the aggregate-mean (Vm,t) and the aggregate-standard-
deviation (Vsd,t). Inference of the blood pressure is performed in three steps.
These steps are depicted in Figures 13, 14, 15 and are as follows:

1. In a first step, the observations are extracted from the beat-feature time
series. As the beat-feature time series is of duration two time slices, we can
provide the model with the values taken by Vm,1 = 3 Vsd,1 = 4 Vm,2 = 3
Vsd,2 = 5.

2. Using the provided evidence and bayes formula, the model calculates the
conditional probability distributions of the random variables that repre-
sent the state of the patient. For example, in time slice t1, the first table
entry gives the probability 0.02 that the state random variable H1 takes
value 1 given the observations.

3. The calculated conditional probability distribution ofH2 can be used as in-
dicators when calculating the maximum likelihood of Vm,4, the aggregate-
mean blood pressure of the patient in time slice 4. The details for how
one infers a future state given indicators is not discussed in this thesis,
but can be found in [25].

10.5 Advantages of Latent State-Space Models

Latent state-space models provide several advantages over static models. First,
they allow for flexible predictions; once the the conditional probability tables
have been learned, evidence can be provided for any number of time slices, and
inferences as to the maximum likelihood of any observation random variable in
any future time slice can be made. This allows the model to make predictions for
varying lead times. Second, the states in a latent state-space model represent
unobservable conditions. Although it is unknown to us which unobservable
conditions they represent, it is still possible to use the latent state-space model
to infer the most likely state that a state random variable will take. This
probabilistic information may allow us to draw conclusions as to what the states
might represent. In future work it might be possible to cross reference these
probability distributions with clinical data in the MIMIC-II clinical data set.
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Figure 14: Latent state space model with probability distribution of H1 calcu-
lated

Figure 15: Latent state space model with probability distribution of H1, H2

calculated
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11 Experiments

Our overall goal is to be able to predict blood pressure in the most general case.
The way to show how well our models are able to predict in the most general
case would be to evaluate them on the entire MIMIC-II ABP dataset. However,
for the reasons discussed in Section 8.2, we choose to train and evaluate our
data on the 1000-record-subset.

During evaluation we will will frequently make use of the so called f1 score as
well as the class deviation. In Section 11.1 we briefly summarize these metrics as
well as make an argument as to why it makes sense to employ them to evaluate
our experiment.

As there are inherent differences between the two different model types,
the blood pressure prediction experiment cannot be set up in the same way
for both. We discuss how we set up the blood pressure prediction problem
for static models and latent state-space models in Section 11.2. One of our
goals with respect to performance is to compare the two different model types.
How one can compare them despite the difference in their experimental setup
is discussed in Section 11.3. To understand how well the models perform, it is
not enough to evaluate performance metrics or compare the two models against
each other; it is necessary to compare their performance against a baseline. Our
baseline for the blood pressure experiment is discussed in Section 11.4.

11.1 Evaluation Metrics

We use two different error metrics during evaluation. The first is the f1 score, the
second is an evaluation metric of our own definition, the average class deviation.

11.1.1 f1 Score

When the class distribution is uneven, as is the case in the blood pressure
experiment, the performance of a classifier should not be measured in terms of
accuracy. This is because a classifier that is biased towards predicting a class
that appears frequently in the class distribution will yield a high accuracy. This
high accuracy shrouds the classifiers performance on the other, less frequent
classes. For this reason, a better representation of a classifier’s performance
in the case of an uneven class distribution is given by the precision and recall
performance metrics, which are defined for each class ci as:

Precisionci =
# of class i identified correctly

total declared as class i
(3)

Recallci =
# of class i identified correctly

total number of examples of class i
(4)

As measuring two different performance metrics makes for unwieldy com-
parison, we decided to use the f1 score metric. The f1 score is a combination of
precision and recall, and is defined as:

f1Scoreci =
2 ∗ Precisionci ∗ Recallci

Precisionci + Recallci
(5)
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One issue when employing the f1 score is that if a certain class is never
declared by the classifier, then the precision, and therefore the f1 score, is un-
defined. We make the compromise that, if the f1 score is undefined, we declare
it to be 0 during our evaluation. We justify this decision in that our goal is
to evaluate the overall classifier performance on each class. We decide that if
a classifier never declares a certain class, we evaluate its performance on that
class as poor (0).

11.1.2 Average Class Deviation

It is not always convenient to use the f1 score as an evaluation metric, and, in
particular, not for evaluating the prediction accuracy of the latent-state-space-
model changes over consecutive time slices. In this case it would be necessary to
track ten different f1 scores over several time slices. Tracking so many numbers
makes it difficult to interpret the results. For this reason we define a metric
called the average class deviation. We define it as:

avg-class-dev =
1

n
∗

n∑
i=1

|ci,t − ci,p| (6)

where n is the total number of test samples, ci,t is the target, i.e., ground-
truth, class label and ci,p is the predicted class label. As this metric represents
the average distance from the correct class, a smaller average class deviation
indicates a better classifier performance.

11.2 Experimental Setup

11.2.1 Static Model Experiment Setup

We set the static model experiment up in the following manner. We define the
goal to be to predict the average blood pressure of a patient over a period of
20 minutes (prediction window) starting at 60 minutes in the future from the
current time (lead), using 20 minutes of history (lag). To create a training and
test set we extracted the maximum number of possible samples from the 1000
patient database using the procedure described in Section 9.1. From this data
set we selected 70% at random to make up our training set, regardless of which
patient the samples belonged to. The remaining 30% were set aside as the test
set. An overview of the experimental parameters is given in the following table.

γ 20 min
τ 60 min
α 20 min

Total # of learning samples 95,256
Total # of training samples 66,679 (70%)
Total # of testing samples 28,577 (30%)

We selected the range of parameters over which our Multi-parameter, Multi-
algorithm Suite would search in such a way that the complete experiment could
run in a couple of days when distributed to 80 nodes on the cloud. The number
of the classifier instances per algorithm that were created and trained is given
in the following table. Each classifier instance uses a different set of parameters.
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Classifier type # of classifier instances
Neural Networks 720

Discrete Bayesian Networks 18
Naive Bayes 64

Support Vector Machines 100
Decision Trees 324

From running this experiment we would like to be able to draw conclusions
about:

1. The possible performance of any classification algorithm on our problem
definition using the features we extracted. We will be able to do this be-
cause we cover all feasible configurations of all standard machine learning
algorithms.

2. The parameters and the performance of the ’best’ classifier. We will evalu-
ate all the classifiers on the training set using 10-fold cross validation. We
will select the classifier whose f1 score on class 1 is the greatest when the
classifier is evaluated on the training set using cross validation. We chose
class 1 because predicting low blood pressure would be useful information
for ICU staff.

11.2.2 Latent State-Space Model Experiment Setup

We set the latent state-space model experiment up as follows. We build a
12 time slice model of state and observation random variables. The set of
state random variables is therefore {H1, H2, ...,H12}, and the set of observation
random variables is {Vm,1, Vsd,1, ..., Va,1, ..., Vm,12, Vsd,12, ..., Va,12}. We set the
duration of each time slice to be 20 minutes, so the entire state space model
we build models for has a total duration of four hours. Whenever we evaluate
a model’s performance we provide evidence for the observations of the first six
time slices. We then have the model infer the aggregate-mean observations for
time slices 7-12 and compare them to the actual aggregate-mean observations.

Because we are building a model for four hours, we extract all contiguous four
hour segments from the 1000 patients. The total number of segments extracted
was 39,005. Each segment overlaps at most 11 out of the 12 time slices of any
other segment. From this data set of four hour segments, we select without
replacement 1000 at random for training and 1000 at random for testing. The
reason the training data set is so much smaller here than in the static case is that
training a latent state-space model is computationally expensive. Even when
training was parallelized and run on a single system having eight cores, model
computation took half a day. The reason for not selecting all the remaining
segments for testing was that we wanted only a small number of segments to
overlap.

We select the parameters, selected observations set and support of the state
random variables using feature forward selection and log likelihood fit in that
order, as described in Section 10.2. As we intended to make inferences on the
aggregate-mean observation random variables, we forced the feature selection
algorithm to choose the aggregate-mean random variable first, regardless of it’s
performance. Evaluation of models in the feature forward selection is performed
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by three-fold cross validation on the training set. At this point we arbitrarily
set the initial value of the support for the state random variables to 18.

The search for the support of the state random variables covers the range
[2..20]. Log Likelihood fit is calculated as the average log likelihood when per-
forming three-fold cross validation on the training data.

The table below provides an overview of the experimental setup.

Number of time slices in model 20 minutes
Duration of time slice 20 minutes

Total number of extracted 4 hour segments 95,256
Size of training set 1000 four hour segments
Size of testing set 1000 four hour segments

Number of inferences per testing time segment 6

11.3 Performance Comparison

Although there are differences in the way we set up experiments for the two
types of models, it is still possible to draw performance comparisons between
the two. Our goal is to compare the models by f1 score performance across all 10
classes. We do this by comparing the f1 score performance of the ’best’ classifier,
chosen by the criteria defined in Section 11.2.1, to the f1 score performance of the
latent state-space model when predicting the observation of time slice 10, which
corresponds to making a prediction for the prediction window 60-80 minutes in
the future.

11.4 A Baseline to Compare Against

When evaluating predictive models it is important to compare them against a
baseline. The absolute values of a model’s performance metrics are not very
meaningful without some reference to compare them against. It might be that
a similar performance can be achieved using a trivial strategy. Such a trivial
strategy provides a baseline against which we can compare our models. One
such trivial strategy is a model that makes a prediction at random. If the
distribution of class labels is uneven, as is the case in our blood pressure predic-
tion experiments, this random strategy can be adapted such that the classifier
makes predictions at random using the a-priori class distribution learned from
the training set. It is common practice to use a random strategy as a baseline.

In the case of blood pressure prediction, however, there is a trivial, intuitive
strategy that performs well. This is the persistent strategy. The idea behind
this strategy is, given a person’s blood pressure, there is a good reason to believe
his blood pressure will not change in the near future. Using this idea we define
a 20 minute lag persistence classifier to be a classifier that, when presented with
a bmap beat-feature signal, extracts the aggregate mean from it, determines
which class the extracted mean corresponds to and predicts the class label will
not change in the future. When the 20 minute lag persistence classifier is used as
a baseline against which static models are compared, the 20 minutes belonging
to the lag period are used as the input for the 20 minute lag persistence classifier.
For the latent state-space model, the 20 minutes of signal belonging to the 6th
time slice are used by the 20 minute lag persistence classifier. For example, if
the blood pressure in the sixth time slice corresponds to class three, than the
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20 minute lag persistence classifier will predict class three for time slices seven
through twelve.
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12 Results

12.1 Static Models

In Figure 16 we show the distribution of f1 scores across all static models built by
our Multi-Algorithm, Multi-Parameter Suite. From the set of all static models
trained we select the ’best’ one. As described in Section 11.2.1, our selection for
’best’ is the greatest f1 score on class label 1 when performing cross validation
on the training data. Our results yielded that the ’best’ static model was built
using a neural network with a hidden layer size of 40. A radial-basis transfer
function was selected as the transfer function for the neurons in the hidden
layer. In Figure 17 we show the distribution of f1 scores across all classes when
the ’best’ static model is evaluated on the test set. As a comparison we also
plot the baseline, that is, the results of the 20 minute lag persistence classifier.
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Figure 16: Distribution of f1 score across all classes and all classes

Figure 17: f1 scores across all classes for the ’best’ static model
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12.2 Latent State-Space Models

12.2.1 Training

In the training phase, the forward feature selection algorithm selected obser-
vations corresponding to the aggregate skew (skt) in addition to the aggregate
mean (mt). Adding additional observations did not improve the performance
of the latent state-space model.

After selecting features, the support of the state random variables was varied
and, for each value, latent state-space models were created and the log-likelihood
of the training data fitting the model was calculated using three-fold cross vali-
dation. The measurements of the log-likelihood fit scores are plotted in Figure
18. It turned out that a model with a state random-variable support of 19
yielded the best fit.
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Figure 18: Log-likelihood fit of models with varying number of states

12.2.2 Testing

After training a latent space model we used it to make inferences on the 10th
time slice. This corresponds to predicting 60 minutes into the future. We plot
the performance on the different class labels of the test set as the f1 score in
Figure 19. As a baseline, we plot the f1 score performance of the 20 min lag
persistence classifier.

Finally, we use the trained latent state-space model to infer the blood pres-
sure during time slices 7 through 12. We plot the avg. class deviation for each
of these inferences along with the average class deviation (avg-class-dev) of the
20 minute persistence classifier in Figure 20.
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Figure 19: f1 scores across all classes for the latent state space model

Figure 20: Avg class deviation at different time slices.
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13 Discussion and Conclusions

From the plots in Section 12 we see that both types of models we built never
outperform the 20 minute lag persistence classifier. The consequence of these
results means that many questions we posed in the first half of Section 11
remain unanswered. Furthermore, it is difficult to compare our static models
to our latent state-space models as both perform poorly when predicting a 20
minute prediction window 60 minutes in the future. We built and evaluated our
models with care:

� By flagging abnormal beats with the signal abnormality index we make
sure no noisy data is used when extracting both features and class labels
from arterial blood pressure data.

� By ensuring all training and testing data segments are contiguous segments
without any gaps.

� By using a large amount of data for training and for evaluation we ensure
that our models are exposed to many different types of patients during
training and testing.

� By choosing a baseline for our experiments and evaluating our models
against it using metrics that make sense when the class distribution is
uneven, we are able evaluate how good our models actually are and if
they perform better than a simple persistance strategy.

� By designing and applying our Multi-Algorithm, Multi-Parameter Suite
to model the problem with a whole set of classifiers covering all possible
parameters, we are certain that we have not missed a parameter configu-
ration that would drastically improve performance.

The end result of this thesis is a set of carefully built systems that will be
used in future work. In particular, we will use them to explore whether or not
predicting blood pressure using simple signal features is difficult. The results in
this work seem to indicate that it is indeed difficult, but before we can conclude
this with certainty, several improvements will be made to the systems (see also
Section 14):

� We will add additional simple beat features.

� We will enhance the latent state-space model with the following features:

– We will use continuous instead of discrete random variables for the
observation random variables. We will experiment with different dis-
tributions for these random variables, including Gaussian and non-
Gaussian distributions.

– We will modify the learning structure so that it fits the data better.

� Finally, we will perform more thorough testing with patients from the
entire MIMIC-II ABP waveform dataset.
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14 Future Work

The results in Section 12 show that there is still work to be done to achieve our
goal of being able to predict blood pressure. Moreover, the work we have done so
far indicates the direction in which future work should proceed. In particular, we
see four different areas that should be explored further: exploring and grouping
data, improving algorithms, adding features and refining data extraction.

To better understand why our approach did not yield the kind of results we
desire, it is necessary to get a better understanding of the kind of data we trained
and tested our models on. That is, it is necessary to explore and group the data.
Our goal is to build a model that can predict blood pressure for the general case.
For this reason, we used data from a large subset of the data in the MIMIC-II
database. This data contains a large variety of different kinds of patients. For
example, some of the patients with low blood pressure may be patients who are
in a deep coma and whose blood pressure remains low constantly. Others may
belong to patients whose blood pressure fluctuates due to an infection or the
administration of medication. Our models were trained using data from both
kinds of patients, and one reason for their poor performance may be that they
are trying to predict a middle ground between patient groups. If we train and
evaluate our performance on specific subsets of the data, we may find that they
yield a greater performance. If this is the case, it would also help to identify
which subsets of patients have a blood pressure development that is particularly
hard to predict. Possible subsets of patients are: patients whose blood pressure
is very volatile or very stable, patient’s who have a ’normal’ blood pressure
that is low, patient’s that have suffered from a previous hypotensive event and
patient’s that currently have an infection.

The step of exploring and grouping data leads into the next step, namely,
improving algorithms. If we find that the performance of our models improves
on specific subsets of patients, we could improve the performance of our models
on general data by building a model that predicts blood pressure in two steps.
In a first step, classifiers that have been trained to identify which subset of pa-
tients a generic patient belongs to provide a probability estimate as to which
subset of patients a new patient belongs to. In a second step, blood pressure
prediction models that are specialized for each subset of patients make a prob-
abilistic estimate as to what the likelihood of each blood pressure class is. The
blood pressure class that is then predicted is a function of both sets of prob-
abilities. In addition to building such two step algorithms, we should explore
the performance of machine learning algorithms that predict blood pressure as
a continuous value.

Finally, we should continue to improve our beat database in the form of
adding additional beat features and refining beat extraction. For beat features
there are many different kinds one can imagine extracting from a beat. Some of
these features are in the time domain, such as skew, kurtosis and the dynamic
time warping distance measure to the previous beat or to an ’average’ beat.
Other features are in the time-frequency domain, such as fast Fourier transforms
or wavelet transforms. As to refining beat extraction, the second step of the beat
feature database construction pipeline described in Section 6.2 has not yet been
implemented. The purpose of this step is to clean the ABP waveform before
extracting beat onsets and beat features from the waveform. Implementation of
this step will allow us to extract cleaner beats, something that is beneficial when
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extracting more sophisticated beat features. The challenge in implementing this
step stems from the fact that simple filters, such as low pass filters, may remove
high frequency information that could be captured by specific beat features.
For this reason, we aim to explore different types of filter techniques in order
to find one with the right tradeoff between removing noise and retaining high
frequency information from ABP waveforms.

51



15 References

[1] The mgh/mf waveform database. http://physionet.org/pn3/mghdb/.
Accessed: 2013-06.

[2] Mimic ii databases. http://physionet.org/mimic2/. Accessed: 2013-05.

[3] Mimic ii: Record matching and surrogate dates. http://physionet.org/
mimic2/mimic2_matching.shtml. Accessed: 2013-05.

[4] The mimic ii waveform database matched subset. http://physionet.org/
physiobank/database/mimic2wdb/matched/. Accessed: 2013-05.

[5] X Chen, D Xu, G Zhang, and R Mukkamala. Forecasting acute hypotensive
episodes in intensive care patients based on a peripheral arterial blood pres-
sure waveform. In Computers in Cardiology, 2009, pages 545–548. IEEE,
2009.

[6] F Chiarugi, I Karatzanis, V Sakkalis, I Tsamardinos, Th Dermitzaki,
M Foukarakis, and G Vrouchos. Predicting the occurrence of acute hy-
potensive episodes: The physionet challenge. In Computers in Cardiology,
2009, pages 621–624. IEEE, 2009.

[7] Aram V Chobanian, George L Bakris, Henry R Black, William C Cushman,
Lee A Green, Joseph L Izzo, Daniel W Jones, Barry J Materson, Suzanne
Oparil, Jackson T Wright, et al. Seventh report of the joint national com-
mittee on prevention, detection, evaluation, and treatment of high blood
pressure. Hypertension, 42(6):1206–1252, 2003.

[8] Colleen M Ennett, KP Lee, Larry J Eshelman, Brian Gross, Larry Nielsen,
Joseph J Frassica, and Mohammed Saeed. Predicting respiratory instability
in the icu. In Engineering in Medicine and Biology Society, 2008. EMBS
2008. 30th Annual International Conference of the IEEE, pages 2848–2851.
IEEE, 2008.

[9] PA Fournier and JF Roy. Acute hypotension episode prediction using in-
formation divergence for feature selection, and non-parametric methods
for classification. In Computers in Cardiology, 2009, pages 625–628. IEEE,
2009.

[10] John Gade, Ilkka Korhonen, Mark van Gils, Peter Weller, and Leena Pesu.
Technical description of the ibis data library. Computer methods and pro-
grams in biomedicine, 63(3):175–186, 2000.

[11] Marzyeh Ghassemi. Methods and models for acute hypotensive episode
prediction. Master’s thesis, University of Oxford, 2011.

[12] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff,
Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody,
Chung-Kang Peng, and H Eugene Stanley. Physiobank, physiotoolkit, and
physionet: Components of a new research resource for complex physiologic
signals. Circulation, 101(23):e215–e220, 2000.

52



[13] David A Harrison, Gareth J Parry, James R Carpenter, Alasdair Short,
and Kathy Rowan. A new risk prediction model for critical care: The
intensive care national audit & research centre (icnarc) model*. Critical
care medicine, 35(4):1091–1098, 2007.

[14] JH Henriques and TR Rocha. Prediction of acute hypotensive episodes
using neural network multi-models. In Computers in Cardiology, 2009,
pages 549–552. IEEE, 2009.

[15] Thomas L Higgins, Daniel Teres, and Brian Nathanson. Outcome predic-
tion in critical care: the mortality probability models. Current opinion in
critical care, 14(5):498–505, 2008.

[16] SM Jakob, K Nieminen, J Hiltunen, J Karhu, and J Takala. Ibis data
library: Clinical description of the finnish database. Computer methods
and programs in biomedicine, 63(3):161–166, 2000.

[17] F Jousset, M Lemay, and JM Vesin. Computers in cardiology/physionet
challenge 2009: Predicting acute hypotensive episodes. In Computers in
Cardiology, 2009, pages 637–640. IEEE, 2009.

[18] Ilkka Korhonen, Jyrki Ojaniemi, K Niieminen, Mark Van Gils, Arno
Heikela, and Aarno Kari. Building the improve data library. Engineer-
ing in Medicine and Biology Magazine, IEEE, 16(6):25–32, 1997.

[19] P Langley, ST King, D Zheng, EJ Bowers, K Wang, J Allen, and A Mur-
ray. Predicting acute hypotensive episodes from mean arterial pressure. In
Computers in Cardiology, 2009, pages 553–556. IEEE, 2009.

[20] Qiao Li, Roger G Mark, and Gari D Clifford. Robust heart rate estimation
from multiple asynchronous noisy sources using signal quality indices and
a kalman filter. Physiological measurement, 29(1):15, 2008.

[21] Qiao Li, Roger G Mark, Gari D Clifford, et al. Artificial arterial blood
pressure artifact models and an evaluation of a robust blood pressure and
heart rate estimator. Biomedical engineering online, 8(1):13, 2009.

[22] GF Mandersloot, RC Pottinger, PR Weller, PF Prior, C Morgan, NJ Smith,
and RM Langford. The ibis project: data collection in london. Computer
methods and programs in biomedicine, 63(3):167–174, 2000.

[23] MA Mneimneh and RJ Povinelli. A rule-based approach for the prediction
of acute hypotensive episodes. In Computers in Cardiology, 2009, pages
557–560. IEEE, 2009.

[24] GB Moody and LH Lehman. Predicting acute hypotensive episodes: The
10th annual physionet/computers in cardiology challenge. In Computers in
Cardiology, 2009, pages 541–544. IEEE, 2009.

[25] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective (Adaptive
Computation and Machine Learning series). The MIT Press, 8 2012.

[26] K Nieminen, Richard M Langford, CJ Morgan, J Takala, and Aarno Kari.
A clinical description of the improve data library. Engineering in Medicine
and Biology Magazine, IEEE, 16(6):21–24, 1997.

53



[27] PR Norris and BM Dawant. Closing the loop in icu decision support: phys-
iologic event detection, alerts, and documentation. In Proceedings of the
AMIA Symposium, page 498. American Medical Informatics Association,
2001.
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