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Suppose… 
Given learners interactions up until a time point, we want 
to predict if s/he will dropout/stopout in the future? 
- We must use click stream, forums as well assessments  
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Note: By varying lead and lag we get 91 prediction problems  
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What can we do with that matrix ? 

Cluster/segment  

Predict an outcome  

Analytics  

Lurkers,  
high achievers, 
interactive  

Who is likely to dropout? 

Did this video help? 
Correlation with  
performance  



What can we do with that matrix ? 

Cluster/segment  

Predict an outcome  

Analytics  

Lurkers,  
high achievers, 
interactive  

Who is likely to dropout? 

Did this video help? 
Correlation with  
performance  Supervised learning machinery  

Neural networks, SVMs, Random Forests  
Unsupervised learning machinery  
Gaussian mixture models, Bayesian clustering 
Probabilistic modeling  
Graphical models, HMMs 
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How do we shrink this? 
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How did the matrix come about? 
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Variable engineering  Curation 
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The Overarching theme of my research   
•  How can we reduce time to process, analyze, and 

derive insights from the data? 



How to shrink this time? 

•  Build fundamental building blocks for reuse   
•  Understand how folks in a certain domain 

interact with the data 
–   make this interaction more efficient  

•  Increase the pool of folks who can work with the 
data  



So what are MLBlocks?  
Size of the arc corresponds to time spent  

A typical ML process  
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•  Who, When, What Where ?  Organize  
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What we would like to capture and store? 
•  Who, When, What, Where ?  
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Organize: Constructing deeper hierarchies 
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Organize: Contextualizing an event 



Organize: Inheritance 
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Organize: Inheritance 

  Event 1 Event 2

t1 t2

URL ?

URL

inherit

URL A



Organize: preprocess  
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Feature engineering  
Primitive constructs  

•  Students activity falls into either of three  
–  Spending time on resources  
–  Submitting solutions to problems  
–  Interacting with each other  
–  Other (peer grading, content creation etc)  

•  Basic constructs 
–  Number of events  
–  Amount of time spent  
–  Number of submissions, attempts  



Feature engineering  
Primitive constructs  



Feature engineering  
Aggregates  
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•  Aggregate by resource hierarchy 
•  Aggregate by resource type  

•  Book, lecture, forums  
 



Feature Engineering: Primitive aggregates  
  

Total time spent on the course                                                  
number of forum posts                                       
number of wiki edits                                        
number of distinct problems attempted                        
number of submissions (includes all attempts)               
number of collaborations 
number of correct submissions 
total time spent on lecture                                      
total time spent on book                                       
total time spent on wiki            
Number of forum responses 
                             
                              
 



Feature Engineering : Primitive constructs  

Learner

Primitive  Statistical 
time series based 
(including hmm)

Feature 1 Feature 2 Feature 3 Feature n-1 Feature nFeature 4 ... ... ... ... ... ...… … 



Feature Engineering - Statistical interpretations  
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Feature Engineering : Statistical interpretations  
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More complex 
Learner’s topic distribution on a weekly basis  

Only available for forum participants  



Modeling the Learners time series using HMM 
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HMM state probabilities as features  
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More specifically 

Week 1 Week 2 t=3 Week 14 

3 4 4 5 
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Feature Engineering 
Digital learner quantified!   

Learner

Primitive  Statistical 
time series based 
(including hmm)

Feature 1 Feature 2 Feature 3 Feature n-1 Feature nFeature 4 ... ... ... ... ... ...



Fully automated 



What we can’t automate ? 
•  Constructs that are based on our intuition 

–  average time to solve problem                              
–  observed event variance (regularity)                  
–  predeadline submission time (average)  
–  Time spent on the course during weekend 

•  Constructs that are contextual  
–  pset grade (approximate)                                   
–  lab grade   
–  Number of times the student goes to forums while attempting 

problems                                                 
•  Ratios 

–  time spent on the course per-correct-problem                        
–  attempts per correct problems  

•  Constructs that are course related 
–  Performance on a specific problem/quiz 
–  Time spent on a specific resource  



Feature Factory 
Crowd source variable discovery  

Featurefactory.csail.mit.edu 

Data model 



Feature Factory  

Featurefactory.csail.mit.edu 



How does one participate? 

featurefactory.csail.mit.edu 

Think and propose  

1 2 

Comment Help us extract  
by writing scripts   

3 



User
defined

Extract 
Supplying us a script   

 



Pause and exercise  
•  Based on your experience  
•  Propose a variable or a feature that we can form for 

a student on a weekly or per module basis  

•  Current list of extracted variables and proposals 
made by others are at: 
–  http://featurefactory.csail.mit.edu 

•  You can add your idea there 
•  http://featurefactory.csail.mit.edu 

•  Or you can add your idea and more detail with this 
google form 
– http://shoutkey.com/attractive  



That URL again is 

http://shoutkey.com/
attractive  



What did we assemble as variables so far? 
  

Simple 
Total time spent on the course                                                  
number of forum posts                                       
number of wiki edits                                        
average length of forum posts (words)                       
number of distinct problems attempted                        
number of submissions (includes all attempts)               
number of distinct problems correct 
average number of attempts 
number of collaborations 
max observed event duration  
number of correct submissions                              
 

Complex 
average time to solve problem                              
observed event variance (regularity)                  
total time spent on lecture                                      
total time spent on book                                       
total time spent on wiki                                        
Number of forum responses 
predeadline submission time (average)  

Derived 
attempts percentile                                                                          
pset grade (approximate)                                   
pset grade over time 
lab grade                                                  
lab grade over time   
time spent on the course per-correct-problem                        
attempts per correct problems  
percent submissions correct                   
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Total time spent on the course                                                  
number of forum posts                                       
number of wiki edits                                        
average length of forum posts (words)                       
number of distinct problems attempted                        
number of submissions (includes all attempts)               
number of distinct problems correct 
average number of attempts 
number of collaborations 
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Complex 
average time to solve problem                              
observed event variance (regularity)                  
total time spent on lecture                                      
total time spent on book                                       
total time spent on wiki                                        
Number of forum responses 
predeadline submission time (average)  

Derived 
attempts percentile                                                                          
pset grade (approximate)                                   
pset grade over time 
lab grade                                                  
lab grade over time   
time spent on the course per-correct-problem                        
attempts per correct problems  
percent submissions correct                   
                              
 

Note:  
•  Red were proposed by crowd  
•  For definitions of simple, complex and derived 

 Please check out http://arxiv.org/abs/1407.5238 
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Dropout prediction problem  
 

Given current student behavior if s/he will dropout in the 
future? 
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during these  
weeks  

Weeks à  

Note: By varying lead and lag we get 91 prediction problems  



The Numbers 
•  154,763 students registered in 6.002x Spring 2012  
•  200+ Million events  

–  60 GB of raw click stream data  
•  52000+ students in our study 

–  130 Million events 
•  44,526 never used forum or wiki 
•  Models use 27 predictors with weekly values 

–  351 dimensions at max 
•  Predictors reference clickstream to consider 

–  Time, performance on assessment components 
»  homeworks, quizzes, lecture exercises 

–  Time, use of resources  
»  videos, tutorials, labs, etexts, … 

•  5000+ models learned and tested 
–  91 prediction problems for each of 4 cohorts 
–  10 fold cross validation and once on entire training -> 11 models per problem 
–  Extra modeling to examine influential features 
–  Multi-algorithm modeling on problems with less accurate models 
–  HMM modeling and 2-level HMM-LR modeling 



Splitting into cohorts  



Models 
•  Logistic regression  
•  Hidden markov models  
•  Hidden markov models + LR  
•  Randomized logistic regression  

–  For variable importance 



Learner per-week variable matrix  
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Data Representation 
Flattening it out for Discriminatory Models  

Lag 2 – Lead 11 prediction problem  
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Logistic Regression  

AUC values 



Hidden Markov Model as a Prediction Engine 

Week 1 data, predict 2 weeks ahead  
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Hidden Markov Model as a Prediction Engine 

Week 1 data, predict 3 weeks ahead 
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HMM performance  



Hidden state probabilities as variables  

Use 2 weeks data, predict 3 weeks ahead  

Week 1 Week 2 Week 3 Week 4 

3 4 4 5 

H H 

Week 5 

5 Class label 

0.23, 0.001, 0.112, 0.12, 0.5370  
Variables 

Lag=2 weeks Lead=2 weeks 



Hidden state probabilities  
à Logistic Regression  

Number of hidden states - 27 
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Randomized Logisitic Regression  

Crowd proposed  

Counts  Complex  



Q. What predicts a student successfully staying in the course 
through the final week? 

Answer: A student’s average number of  weekly 
“submissions” (attempts on all problems include self-tests and 
homeworks for grade)  *relative* to other students',  e.g. a 
percentile variable,  is highly predictive. 
Relative and trending predictors drive accurate predictions. E.G. 
a student's lab grade in current week relative to average in prior 
weeks is more predictive than the grade alone. 

Influential Predictors 



Influential Predictors 
Q. Across different cohorts of students what is the single most 
important predictor of dropout?

Answer: A predictor that appears among the most influential 5 
in all 4 cohorts  is the average “pre-deadline submission time”. 
It is the average duration between when the student submits a 
homework solution and its deadline. 



Interesting Predictors 
Human: how regularly the student studies  
•  X13  “observed event variance” 

–  Variance of a students observed event timestamp 

Human: Getting started early on pset 
•  X210: average time between problem submission and pset deadline 

Human: how rewarding the student’s progress feels 
•  “I’m spending all this time, how many concepts am I acquiring?” 
•  X10: Observed events duration / correct problems 

Student: it’s a lot of work to master the concepts 
•  Number of problems attempted vs number of correct answers 
•  X11: submissions per correct problem 

Instructor: how is this student faring vs others? 
•  tally the average number of submission of each student,  
•  student variable is his/her percentile (x202) or percentage of maximum of all 

students (X203) 

Instructor: how is the student faring this week? 
•  X204: pset grade 
•  X205: pset grade trend:  difference in pset grade in curent week to student’s 

average pset grade in past weeks 



Top 10 features/variables that mattered  

•  For an extremely hard prediction problem  
•  Week 1  

–  Number of distinct problems correct  
–  Predeadline submission time  
–   number of submissions correct  

•  Week 2  
–  Lab grade  
–  Attempts per correct problem  
–  Predeadline submission time  
–  Attempts percentile 
–  Number of distinct problems correct  
–  Number of submissions correct  
–  Total time spent on lectures  

 



Parameters throughout this process 

•  Choices we make during the calculations of 
primitive constructs 
–  Cut-offs for duration calculation  

•  Aggregation parameters  

•  Parameters for models 
–  Number of hidden states  
–  Number of topics  

•  We would next like tune these parameters 
against a prediction goal  



What else can we predict? 

Learner

Primitive  Statistical 
time series based 
(including hmm)

Feature 1 Feature 2 Feature 3 Feature n-1 Feature nFeature 4 ... ... ... ... ... ...

L  

We can reuse  

We can change this  



What else should we predict?  
•  We want your thoughts/ideas as to what we should 

next predict using the same matrix  

•  The prediction problem has to be something in 
future: 
–  Like whether the student will stopout (we already did that) 
–  Whether the student will return after stopping out 
–  Success in next homework   

 
•  We created a google form and is available at: 

– http://shoutkey.com/dissociate  

 
 



That URL is  

http://shoutkey.com/
dissociate  
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