

Performance Modeling and Mapping of Sparse Computations

Nadya T. Bliss and Sanjeev Mohindra
MIT Lincoln Laboratory, Lexington, MA

{nt, smohindra}@ll.mit.edu

Una-May O’Reilly
MIT Computer Science and Artificial Intelligence

Laboratory, Cambridge, MA
unamay@csail.mit.edu

Abstract

 In the past, knowledge processing (anomaly
detection, target identification, social network analysis) of
sensor data did not require real-time processing speeds.
However, the rapid growth in the size of the data and the
shortening time scale of the required data analysis are
driving the need for applications that provide real-time
signal and knowledge processing at the sensor front end.
Many knowledge processing techniques, such as Bayesian
networks, social networks, and neural networks, have a
graph abstraction. Graph algorithms are difficult to
parallelize and thus cannot take advantage of multi-core
architectures. Many graph operations can be cast as
sparse linear algebra operations. While this increases
the ease of programming, parallel sparse algorithms are
still inefficient. This paper presents a search-based
mapping and routing approach for sparse operations.
Since finding well-performing maps and routes for sparse
operations is a computationally intensive task, the
mapping and routing algorithms have been parallelized to
take advantage of the Lincoln Laboratory cluster
computing capability, LLGrid. Our parallelization of the
approach yielded near linear speed up and the mapping
and routing results demonstrate over an order of
magnitude performance improvement over traditional
mapping techniques.

1. Introduction and Motivation

 MIT Lincoln Laboratory has been developing
techniques for automatic mapping of signal processing
applications. The pMapper[1,2] automatic mapping
approach has been demonstrated to be both feasible and
effective. However, modeling, program analysis, and
mapping techniques have been limited to dense matrix
computations. The dense matrix algorithms of traditional
signal processing are highly amenable to performance
optimization. However, as sensors collect increasingly
large quantities of data, moving post-processing
algorithms to the sensor front-end allows the application

to run with greater immediacy and significantly diminish
the communication required to a back-end processing
station.
 Post-processing algorithms frequently have a
graphical abstraction. In some cases, such as activity
detection, the key data structure that is being analyzed is a
graph, or collection of vertices and edges, such as in
activity detection. Here, typical algorithms performed on
the graph include breadth-first search, depth-first search,
betweenness centrality calculation, spanning tree
calculation, graph isomorphism, etc. In other cases, the
problem does not naturally translate into a graph
structure, but graphical models are used, such as Bayesian
networks, neural networks, partially observable Markov
decision processes, factor graphs, and decision trees.
Tasks like inference and planning are often performed on
graphical models.
 The efficiency of algorithms that operate on graphs is
often only a small fraction (<0.01) of the peak throughput
of a conventional architecture, and the efficiency
deteriorates as the graph size increases. This is due to
poor spatial and temporal locality of the data.
Specifically, when operating on dense data, usually a
contiguous block of data can be brought into cache,
operated on and written out. On the other hand, graph
algorithms have irregular data access patterns and often,
computation will occur on a just one element of data,
followed by a costly read across the memory hierarchy.
In addition to having poor serial performance, graph
algorithms are not well suited for parallelization. The
problem of irregular access is compounded by its
combination with data distribution across remote
memories. Thus, the implementation efficiency is likely
to diminish even further. As multi-core processors
become increasingly prevalent, a solution to this
challenge is required.
 Our approach to resolving this challenge is based
upon a key observation: there exists a duality between
graphs and matrices.[3] Figure 1 illustrates a sample graph
G and a corresponding adjacency matrix A. An adjacency
matrix A has Nv rows and Nv columns, where Nv is the
number of vertices in the graph. A non-zero entry in row

DoD HPCMP Users Group Conference 2008

978-0-7695-3515-9/08 $25.00 © 2008 IEEE

DOI 10.1109/DoD.HPCMP.UGC.2008.66

448

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

i column j indicates that there is an edge connecting
vertex i and j.

Figure 1. Graph/sparse matrix duality. (a) is a simple

directed graph G with 7 vertices. (b) is the corresponding
adjacency matrix, A. Non-zero entries in A represent edges

in graph G.

 A common operation performed on graphs,
regardless of whether the problem is formulated as a
graph or graphical model, is graph traversal. This
operation can be cast as a sparse matrix-matrix
multiplication. For many algorithms, the multiplication
has to be performed multiple times, and thus the
efficiency of an algorithm can be tied to the performance
of the sparse matrix-matrix multiplication kernel. For this
reason, we have chosen to focus on improving the
efficiency of this kernel. While the results presented in
this paper focus on matrix-matrix multiplication, our
approach is general and could be extended to other sparse
array computations.
 While sparse matrix formulations expose intrinsic
algorithm structure and thus are better suited for
parallelization than traditional graph algorithms, the
efficiency of sparse matrix computations is still orders of
magnitude worse than that of dense. This point is
illustrated in Figure 2. The figure compares the
performance of a serial dense matrix multiplication with a
serial sparse matrix multiplication and shows large
discrepancy between the two.

Figure 2. Dense vs. Sparse Matrix Multiplication

Performance. Observe that for the same number of non-
zeros, the performance of the sparse matrix multiplication is

approximately 10−3 that of the dense.

 The efficiency is expected to deteriorate even further
for the parallel implementation, as parallelization
introduces the complexity of operating with another layer
of memory hierarchy. At this level, not only is the
efficient distribution, or mapping, of the sparse matrix
multiply kernel necessary, but routing must also be
optimized.
 The rest of the paper is organized as follows:
Section 2 describes our general approach to optimizing
sparse matrix multiplication, introduces the map
construct, and highlights challenges that make the sparse
matrix optimization problem distinct from dense.
Section 3 describes the mapping approach—a nested
genetic algorithm (GA). Section 4 presents the
parallelization of the GA and parallel speedup results on
the LLGrid cluster. Section 5 presents performance
results for the mappings found using the GA as compared
with tradition mapping techniques. Section 6 presents a
brief overview of related work. Finally, Section 7
concludes with the discussion and current research
directions.

2. Optimizing Sparse Computations

 Our general approach to optimizing the sparse matrix
multiplication kernel and other sparse computations is
finding a set of maps for an array-based computation as
was done in the MIT Lincoln Laboratory pMapper
project. While this approach restricts the set of programs
or sub-programs that can be parallelized, large numbers of
graph algorithms can be written in array-based form. The
topic of array-based graph algorithms is outside the scope
of this paper, however an example of array-based vertex
betweenness centrality can be found in Reference 4.

2.1. Maps

 A map for an array describes how and where the
array is distributed on a parallel hardware architecture.
Maps and map-like constructs have a history in High-
Performance Fortran[5], MIT Lincoln Laboratory Space-
Time Adaptive Processing Library (STAPL)[6],
||VSIPL++, and Parallel Vector Library (PVL)[7].
Additionally, a map is a key construct in pMatlab[8] and
Parallel Vector Tile Optimizing Library (PVTOL)[9].
Figure 3 is an example of a simple two-processor column
block map applied to an 8×6 matrix.

449

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

Figure 3. 1D Block map applied to a matrix. Different colors

represent different processors—the first 3 columns are
mapped onto Processor 0, while the other 3 columns are

mapped onto Processor 1.

 A basic map has three components: grid description,
distribution description, and processor list. A map used in
Figure 3 can be described as having:
 1×2 grid
 block distribution
 {0,1} processor list
 The grid description together with the processor list,
specify where blocks of data are distributed on processing
elements. Distribution description specifies how the data
is distributed. For many applications block, cyclic, and
block-cyclic distributions are sufficiently expressive to
achieve good parallel performance. Table 1 illustrates
common maps used for a number of dense computation
kernels.
 Block-cyclic distributions are limiting for sparse
computations due to the finer granularity of the sparse
mapping problem. It is desirable to be able to support
arbitrary mappings, without significant increase in index
computation cost.

Table 1. Common mappings for dense computations

 pMatlab, PVL, and PVTOL maps all use a common
underlying index representation: Processor Indexed
Tagged FAmiLy of Line Segments (PITFALLS).[10] The
advantage of using PITFALLS is that efficient
redistribution algorithms exist, thus yielding fast
computation of indices local to each processor and, if the
data has to be re-organized, calculation of messages that
have to be sent between processors.
 To extend the regular block-cyclic map construct and
PITFALLS indexing to arbitrary distributions, we allowed
the repetition of processors in the processor list. Figure 4
illustrates this with an example. In the worst cast
scenario, the common block size is equal to a single
element and a processor for each array element must be
stored in the processor list. However, if the minimum
block size is controlled, index calculations can be
performed efficiently.

Figure 4. Irregular maps. Support for arbitrary data

distributions can be implemented by allowing processor
repetition in the processor list.

2.2. Sparse Mapping Challenges

 In the previous section, we touched on mapping
challenges associated with sparse computations. The first
key challenge is the granularity of the computation.
Specifically, when mapping dense data, it is often
sufficient to distribute large blocks of data between
processors according to a regular distribution. On the
other hand, when mapping sparse computations, much
smaller blocks of data must be considered and the
regularity of distribution is likely to be detrimental to
performance.
 The second key challenge is the granularity of
communication. Consider a dense parallel matrix
multiplication. When communication occurs, a large
block of data is sent between processors. On the other
hand, in a sparse matrix multiplication, a single element
often must be communicated between remote processors.
Even when the data is not being communicated between
two distinct processors but within the memory hierarchy
of a single processor, the communication of individual
elements incurs a significant overhead.
 The third key challenge is that in order to optimize a
sparse matrix multiplication or another sparse operation,
the communication and computation, which are both fine-

450

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

grained, must be co-optimized. The cost of
communication cannot be minimized until the
computation is mapped. That is, the options for
communication depend on each specific mapping. Thus,
neither computation optimization alone nor
communication optimization alone will yield sufficient
improvement in performance.

2.3. Approach

 Our general approach focuses on addressing the three
challenges listed in Section 2.2. Specifically, in order to
find the best mapping for a sparse matrix multiplication
operation, we focus on co-optimizing the efficiency of
computation and communication at fine-grain levels.
 In Section 2.1, a map construct was presented.
Observe, that the map provides distribution information
for matrices, however it does not provide routing
information. Once the maps for the arrays are defined,
the set of communication operations that must occur can
be enumerated. However, in order to evaluate the
performance of a given mapping, a route for each
communication operation must be chosen. Yet, routes
cannot be enumerated until a map is defined. Figure 5
illustrates a simplified example with a distributed
addition. In the dependency graph, communication
operations are highlighted. For each highlighted
operation, a number of routing options exists. The
number of possible routes is dependent on the topology of
the underlying hardware architecture.
 Since the best map depends on chosen routes and
routes cannot be enumerated until a map is chosen, the
problem is combinatorial and no closed form solution
exists. This type of problem is well solved by a stochastic
search method. Since evaluation of the quality of a
solution requires creation and simulation of fine-grained
dependency graphs (Figure 5b) on a machine or hardware
model, we chose a stochastic search technique well suited
for parallelization—genetic algorithm.[11] The next
section describes the problem formulation in greater
detail.

Figure 5. Parallel addition with redistribution. (a) illustrates

how arrays A, B, and C are mapped. Note that no
communication is required during the addition operation,

however communication is required when the result is
assigned to A. (b) presents the dependency graph and lists

all the memory, communication, and computation operations
that must occur. The remote communication operations are
highlighted—or each communication operation, a number of

possible routes exist.

3. Co-optimization of Mapping and Routing

 Figure 6 presents an overview of the nested genetic
algorithm (GA) for mapping and routing.

Figure 6. Nested genetic algorithm (GA). The outer GA
searches over maps, while the inner GA searches over

routes for all communication operations given a map set.

 The outer genetic algorithm searches over maps,
while the inner GA searches over route options for a
given set of maps.
 One input to the GA is a coarse-grained dependency
graph. The outer GA generates a population of maps for
the arrays in the coarse-grain dependency graph. For the
matrix-multiply operation C=A*B, there are two arrays

451

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

for which maps must be generated as C is assumed to
have the same map as A. This is a heuristic simplification
that does not restrict the generality of solutions found.
 For each <maps, dependency graph> pair, a fine-
grained dependency graph is generated. While the
original dependency graph contained operations such as
matrix multiplication and assignment, the fine-grained
dependency graph contains only computation,
communication and memory operations, as illustrated in
Figure 5b.
 Once the fine-grain dependency graph is constructed,
the communication operations and corresponding route
choices can be enumerated. At this point, the inner GA
assigns route choices to communication operations and
evaluates the performance of the given <maps, routes>
pairing against a hardware model. Fitness evaluation is
performed using opportunistic scheduling and operations
in the dependency graph are overlapped whenever
possible.

3.1. Representation and Search Space
Characterization

3.1.1. Outer GA

 The outer GA iterates over sets of maps for arrays in
the computation. The minimum block size for a matrix is
chosen based on the size of the matrix being mapped. An
individual in the outer GA is represented as a set of
matrices blocked according to minimum block size. Each
block additionally contains information on the sparsity of
that block. Processors are assigned to each block and
mutation and crossover operators manipulate the
processor assignments for each block. Figure 7 illustrates
a typical individual for a matrix multiplication operation.

Figure 7. Outer GA individual. Here, the block size yields 36
blocks per matrix. Different shades of gray indicate different
processors assigned to blocks. Each block also contains the

sparsity information associated with the block. This
individual contains two arrays since matrix multiplication

requires mapping of two arrays.

3.1.2. Inner GA

 The inner GA iterates over routes. The
representation for the inner GA is simply the listing of
communication operations. The length of the listing is
equal to the number of the communication operations for
a given set of maps. Each entry in the list represents the

index of a route chosen for a particular communication
operation. Figure 8 illustrates an individual for the inner
GA.

Figure 8. Inner GA individual. The set of communication

operations is represented as a linear array, with each entry in
the array containing index of a route chosen for the given

communication operation.

3.1.3. Search Space

 When performing a stochastic search, it is helpful to
characterize the size of the search space. Equation 1
characterizes the search space, S, for the nested genetic
algorithm formulation of the mapping and routing
problem:
 S = PBrC (1)
where
 P=number of processors
 B=number of blocks
 C=number of communication operations
 r=average number of route options per

communication operations.

4. Parallelization of the Nested Genetic
Algorithm

 Fitness evaluation of a <maps, routes> pairing
requires building a dependency graph consisting of all
communication, memory, and computation operations,
performing opportunistic scheduling of operations, and
simulating the operations on a machine model. This
evaluation is computationally expensive as illustrated by
Table 2.

Table 2. Individual fitness evaluation times. Sparsity
patterns are described in Section 5. The time shown is

average over 30,000 evaluations.

 Since the sparse mapping and routing framework is
written in MATLAB, we used pMatlab to parallelize the
nested genetic algorithm and run it on LLGrid: Lincoln
Laboratory cluster computing capability.[12] Figure 9
illustrates the parallelization process.

452

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

Figure 9. Parallelization process. Fitness evaluation is

performed in parallel on np processors, while selection and
recombination are performed on the leader processor

(processor 0).

 As indicated by Figure 9, parallelization required
minimal changes to the code (Table 3). A GA is well
suited to parallelization, since each fitness evaluation can
be performed independently of all other fitness
evaluations.

Table 3. Lines of code. Parallelization with pMatlab requires

minimal changes to the code.

4.1. Parallelization Speed-up Results

 The parallel code was executed on the TX-2500
cluster of the LLGrid system.[12] Figure 10 shows the
speedup results averaged over a number of different runs
of the mapping framework. The selection step occurring
each generation of the GA (when parents are chosen for
reproduction with likelihood relative to their fitness and
fitness of other potential parents) requires global
communication. By making sure that each processor had
sufficient number of individuals to evaluate, we were able
to achieve linear speedup.
 LLGrid truly enabled this research by allowing
exploration of an optimization space that would be
impossible on a single machine.
 An important note is that the focus of this iteration of
this research was a feasibility study. We wanted to
investigate our hypothesis that the fine-grained analysis
and co-optimization of communication and computation

via stochastic search over maps and routes was beneficial
for parallelization of sparse computations. Currently, we
are working on techniques to reduce the computational
complexity of the analysis.

Figure 10. Speedup results. Linear speed up was achieved

executing the mapping and routing framework on the LLGrid.

5. Mapping Performance Results

 This section discusses the performance results of the
maps found using our mapping and routing framework
and whether the maps found meet the goals of the
research: to find efficient ways of distributing sparse
computations onto parallel architectures and gain insight
into the type of mappings that perform well.

5.1. Experiment Overview

5.1.1. Machine Model

 The results presented here are simulated results on a
hardware or machine model. Our framework allows us to
alter the machine model freely, thus ultimately we would
like to focus on various architecture properties that affect
the performance of sparse computations. Table 4
describes the parameters of the model used for the results
presented.

453

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

Table 4. Machine model parameters

5.1.2. Matrix Multiplication Algorithm

 The mapping and routing framework was applied to
an outer product matrix multiplication algorithm.[13]
Figure 11 illustrates the algorithm and the corresponding
pseudocode. This algorithm was chosen due to the
independent computation of slices of matrix C. This
property makes the algorithm well suited for
parallelization.

Figure 11. Outer product matrix multiplication

5.1.3. Sparsity Patterns

 We wanted our solutions to apply to general sparse
matrices and thus we tested the mapping framework on a
number of different sparsity patterns. Figure 12 illustrates
the sparsity patterns mapped in increasing order of load
balancing complexity, from random sparse to scrambled
powerlaw.

Figure 12. Sparsity patterns

5.1.4. Benchmarks

 Figure 13 illustrates a number of standard mappings
that the results obtained with the sparse mapping and
routing framework were compared against.

Figure 13. Benchmark maps. We compared our results with

the results using standard mappings.

5.2. Results

 Figure 14 presents performance results achieved by
the mapping framework. Our maps outperform standard
maps by more than an order of magnitude. The results are
normalized with regards to the performance achieved
using a two-dimensional (2D) block-cyclic map, as that is
the most commonly used map for sparse computations.
 We wanted to make sure that the results achieved
were repeatable and statistically significant over a number
of runs of the GA. Figure 15 shows statistics for 30 runs
of the GA on a powerlaw matrix. Observe that there is
good consistency in terms of solution found between
multiple runs of the mapping framework.

Figure 14. Mapping performance results

454

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

Figure 15. Run statistics. The top plot shows best overall
fitness found for each generation. The middle plot shows

average fitness for each generation. Finally, the bottom plot
shows the behavior of the best of the 30 runs over 30

generations.

 Note that while we did consider a large number of
possible solutions, we have only explored a small fraction
of the search space. For the statistics runs in Figure 15,
the outer GA was run for 30 generations with 1,000
individuals. The inner GA used a greedy heuristic to pick
the shortest route between two nodes whenever possible.
Thus, the total number of solutions considered was:

30×1,000=30,000
The size of the search space per Eq. 1 is

S = PBrC ~ 8128*2100
where
 8 is the number of processors in the machine model;
 128 is the number of blocks used for 256×256

matrices;
 O(100) is the number of communication operations;
 2 is the number of possible routes for each

communication operation given a ring topology.
 Thus, the GA performs well in this optimization
space, as it is able to find good solutions while exploring
rather insignificant fraction of the search space.

6. Related Work

 In the domain of sparse matrix-vector multiplication,
a lot of work has been done on optimizing these
operations using register blocking and cache blocking
techniques (e.g., References 14–16). Cache blocking
techniques reorder memory accesses to increase temporal
locality, and register-blocking techniques compress the
data structure to reduce memory traffic. These techniques
are well suited for optimizing memory hierarchy access in
sequential code. Other work has addressed the issue of

avoiding communication[17] in sparse matrix computations
in both sequential and parallel code.
 Our approach is fundamentally different. It is general
enough to be applied to any sparse matrix computation,
and is not limited to matrix-vector or matrix-matrix
multiplication. We decompose the problem of finding
optimal spatial and temporal locality, and of optimizing
communication from the algorithm itself by use of maps.
We parameterize the algorithm using maps and then use
our framework to derive the optimal mapping from the
structure of the matrix and the needs of the algorithm.
We co-optimize the location of data and the routing of
communication using nested genetic algorithm to perform
the search. This, coupled with our rich machine model,
makes our framework well suited for optimizing any
sparse matrix computation on any machine or network
topology.

7. Conclusions and Discussion

 In this paper, we presented an approach for mapping
and routing sparse matrix calculations. As this effort
started out as a feasibility study, we focused on not
constraining the computation costs of our solution.
Specifically, we wanted to explore whether fine-grained
analysis, irregular distributions, map/route co-
optimization, and sparsity-influenced mapping were
beneficial to improved performance of sparse
computations. LLGrid allowed us to explore optimization
spaces that would not be possible otherwise. The results
obtained provided over an order of magnitude
performance improvement over traditional mapping
techniques. Clearly, invoking our current system at
runtime would not be beneficial; however, mappings
found can be saved for later use. Additionally, we can
readily evolve well performing set of maps for various
matrix families.
 Moving forward, we are focusing on reducing the
computation costs of the mapping framework. These
include dependency graph re-use and considering other
matrix multiply algorithms.

Acknowledgements

 The authors would like to extend their thanks to the
following for their assistance in supporting this research:
William Arcand, William Bergeron, Robert Bond, Tim
Currie, Matthew Hubbell, Jeremy Kepner, Andy McCabe,
Peter Michaleas, Julie Mullen, Daniel Rabideau, Albert
Reuther, and Ken Senne. This work is sponsored by the
Department of the Air Force under Air Force contract
FA8721-05-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the author

455

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

and are not necessarily endorsed by the United States
Government.

References

1. Travinin, N., H. Hoffmann, R. Bond, H. Chan, J. Kepner, and
E. Wong, “pMapper: Automatic Mapping of Parallel Matlab
Programs.” HPCMP UGC 2005.
2. Bliss, N., J. Dahlstrom, D. Jennings, and S. Mohindra,
“Automatic Mapping of the HPEC Challenge Benchmarks.”
High Performance Embedded Computing (HPEC) Workshop
2006.
3. Cormen, T.H., C.E. Leiserson, R.L. Rivest, and S. Stein,
Introduction to Algorithms, Second Edition, McGraw-Hill Book
Company, Boston, MA, 2001.
4. Robinson, E., “Array Based Betweenness Centrality.” 13th
SIAM Conference on Parallel Processing for Scientific
Computing, Atlanta, Georgia, March 2008.
5. Loveman, D.B., “High Performance Fortran.” Parallel and
Distributed Technology: Systems and Applications, IEEE 1(1).
6. DeLuca, C.M., C.W. Heisey, R.A. Bond, and J.M. Daly, “A
Portable Object-Based Parallel Library and Layered Framework
for Real-Time Radar Signal Processing.” Proc. 1st Conf.
International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE ’97), pp. 241–248.
7. Lebak, J., J. Kepner, H. Hoffmann, and E. Rutledge. “Parallel
VSIPL++: An Open Standard Software Library for High-
Performance Parallel Signal Processing.” Proceedings of the
IEEE 93.
8. Bliss, N.T., and J. Kepner, “pMatlab Parallel MATLAB
Library.” International Journal of High Performance

Computing Applications (IJHPCA), Special Issue on High-
Productivity Programming Languages and Models, Vol. 21, No.
3, SAGE 2007.
9. Kim, H., et al., “PVTOL: Providing Productivity,
Performance and Portability to DoD Signal Processing
Applications on Multicore Processors.” HPCMP UGC 2008.
10. Ramaswamy, S. and P. Banerjee. “Automatic Generation of
Efficient Array Redistribution Routines for Distributed Memory
Multicomputers.” Proceedings of the Fifth Symposium on the
Frontiers of Massively Parallel Computation (Frontiers ’95),
McClean, VA, February 6–9.
11. Mitchell, M., An Introduction to Genetic Algorithms, MIT
Press, Cambridge, MA, 1998.
12. Reuther, A., J. Kepner, A. McCabe, J. Mullen, N. Bliss, and
H. Kim, “Technical Challenges of Supporting Interactive HPC.”
HPCMP UGC 2007.
13. Golub, G.H. and C.F. Van Loan, Matrix Computations, 3rd
Edition, John Hopkins University Press, Baltimore, MD, 1996.
14. Sparsity, http://www.cs.berkeley.edu/~yelick/sparsity/.
15. Nishtala, R., R. Vuduc, J. Demmel, and K. Yelick, “When
Cache Blocking of Sparse Matrix Vector Multiply Works and
Why.” Applicable Algebra in Engineering, Communication, and
Computing, Vol 18, Issue 3, 2007.
16. Vuduc, R., “Automatic Performance Tuning of Sparse
Matrix Kernels.” Ph. D. Thesis, University of California,
Berkeley, 2003.
17. Demmel, J., M. Hoemmen, M. Mahiyuddin, and K. Yelick,
“Avoiding Communication in Sparse Matrix Computations.”
Proceedings of IEEE International Parallel and Disitrbuted
Processing Symposium (IPDPS), April 2008.

456

Authorized licensed use limited to: MIT Libraries. Downloaded on March 08,2010 at 19:08:19 EST from IEEE Xplore. Restrictions apply.

