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Abstract 
 

 In the past, knowledge processing (anomaly 
detection, target identification, social network analysis) of 
sensor data did not require real-time processing speeds.  
However, the rapid growth in the size of the data and the 
shortening time scale of the required data analysis are 
driving the need for applications that provide real-time 
signal and knowledge processing at the sensor front end.  
Many knowledge processing techniques, such as Bayesian 
networks, social networks, and neural networks, have a 
graph abstraction.  Graph algorithms are difficult to 
parallelize and thus cannot take advantage of multi-core 
architectures.  Many graph operations can be cast as 
sparse linear algebra operations.  While this increases 
the ease of programming, parallel sparse algorithms are 
still inefficient.  This paper presents a search-based 
mapping and routing approach for sparse operations.  
Since finding well-performing maps and routes for sparse 
operations is a computationally intensive task, the 
mapping and routing algorithms have been parallelized to 
take advantage of the Lincoln Laboratory cluster 
computing capability, LLGrid.  Our parallelization of the 
approach yielded near linear speed up and the mapping 
and routing results demonstrate over an order of 
magnitude performance improvement over traditional 
mapping techniques.  
 
1.  Introduction and Motivation 
 
 MIT Lincoln Laboratory has been developing 
techniques for automatic mapping of signal processing 
applications.  The pMapper[1,2] automatic mapping 
approach has been demonstrated to be both feasible and 
effective.  However, modeling, program analysis, and 
mapping techniques have been limited to dense matrix 
computations.  The dense matrix algorithms of traditional 
signal processing are highly amenable to performance 
optimization.  However, as sensors collect increasingly 
large quantities of data, moving post-processing 
algorithms to the sensor front-end allows the application 

to run with greater immediacy and significantly diminish 
the communication required to a back-end processing 
station. 
 Post-processing algorithms frequently have a 
graphical abstraction.  In some cases, such as activity 
detection, the key data structure that is being analyzed is a 
graph, or collection of vertices and edges, such as in 
activity detection.  Here, typical algorithms performed on 
the graph include breadth-first search, depth-first search, 
betweenness centrality calculation, spanning tree 
calculation, graph isomorphism, etc.  In other cases, the 
problem does not naturally translate into a graph 
structure, but graphical models are used, such as Bayesian 
networks, neural networks, partially observable Markov 
decision processes, factor graphs, and decision trees. 
Tasks like inference and planning are often performed on 
graphical models. 
 The efficiency of algorithms that operate on graphs is 
often only a small fraction (<0.01) of the peak throughput 
of a conventional architecture, and the efficiency 
deteriorates as the graph size increases.  This is due to 
poor spatial and temporal locality of the data.  
Specifically, when operating on dense data, usually a 
contiguous block of data can be brought into cache, 
operated on and written out.  On the other hand, graph 
algorithms have irregular data access patterns and often, 
computation will occur on a just one element of data, 
followed by a costly read across the memory hierarchy.  
In addition to having poor serial performance, graph 
algorithms are not well suited for parallelization.  The 
problem of irregular access is compounded by its 
combination with data distribution across remote 
memories.  Thus, the implementation efficiency is likely 
to diminish even further.  As multi-core processors 
become increasingly prevalent, a solution to this 
challenge is required.  
 Our approach to resolving this challenge is based 
upon a key observation: there exists a duality between 
graphs and matrices.[3]  Figure 1 illustrates a sample graph 
G and a corresponding adjacency matrix A.  An adjacency 
matrix A has Nv rows and Nv columns, where Nv is the 
number of vertices in the graph.  A non-zero entry in row 
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i column j indicates that there is an edge connecting 
vertex i and j. 

 
Figure 1. Graph/sparse matrix duality.  (a) is a simple 

directed graph G with 7 vertices.  (b) is the corresponding 
adjacency matrix, A.  Non-zero entries in A represent edges 

in graph G. 
 
 A common operation performed on graphs, 
regardless of whether the problem is formulated as a 
graph or graphical model, is graph traversal.  This 
operation can be cast as a sparse matrix-matrix 
multiplication.  For many algorithms, the multiplication 
has to be performed multiple times, and thus the 
efficiency of an algorithm can be tied to the performance 
of the sparse matrix-matrix multiplication kernel.  For this 
reason, we have chosen to focus on improving the 
efficiency of this kernel. While the results presented in 
this paper focus on matrix-matrix multiplication, our 
approach is general and could be extended to other sparse 
array computations.  
 While sparse matrix formulations expose intrinsic 
algorithm structure and thus are better suited for 
parallelization than traditional graph algorithms, the 
efficiency of sparse matrix computations is still orders of 
magnitude worse than that of dense.  This point is 
illustrated in Figure 2. The figure compares the 
performance of a serial dense matrix multiplication with a 
serial sparse matrix multiplication and shows large 
discrepancy between the two. 

 
Figure 2. Dense vs. Sparse Matrix Multiplication 

Performance.  Observe that for the same number of non-
zeros, the performance of the sparse matrix multiplication is 

approximately 10−3 that of the dense. 

 The efficiency is expected to deteriorate even further 
for the parallel implementation, as parallelization 
introduces the complexity of operating with another layer 
of memory hierarchy.  At this level, not only is the 
efficient distribution, or mapping, of the sparse matrix 
multiply kernel necessary, but routing must also be 
optimized.  
 The rest of the paper is organized as follows: 
Section 2 describes our general approach to optimizing 
sparse matrix multiplication, introduces the map 
construct, and highlights challenges that make the sparse 
matrix optimization problem distinct from dense.  
Section 3 describes the mapping approach—a nested 
genetic algorithm (GA).  Section 4 presents the 
parallelization of the GA and parallel speedup results on 
the LLGrid cluster.  Section 5 presents performance 
results for the mappings found using the GA as compared 
with tradition mapping techniques.  Section 6 presents a 
brief overview of related work.  Finally, Section 7 
concludes with the discussion and current research 
directions. 
 
2.  Optimizing Sparse Computations 
 
 Our general approach to optimizing the sparse matrix 
multiplication kernel and other sparse computations is 
finding a set of maps for an array-based computation as 
was done in the MIT Lincoln Laboratory pMapper 
project.  While this approach restricts the set of programs 
or sub-programs that can be parallelized, large numbers of 
graph algorithms can be written in array-based form.  The 
topic of array-based graph algorithms is outside the scope 
of this paper, however an example of array-based vertex 
betweenness centrality can be found in Reference 4.  
 
2.1. Maps 
 
 A map for an array describes how and where the 
array is distributed on a parallel hardware architecture.  
Maps and map-like constructs have a history in High-
Performance Fortran[5], MIT Lincoln Laboratory Space-
Time Adaptive Processing Library (STAPL)[6], 
||VSIPL++, and Parallel Vector Library (PVL)[7].  
Additionally, a map is a key construct in pMatlab[8] and 
Parallel Vector Tile Optimizing Library (PVTOL)[9].  
Figure 3 is an example of a simple two-processor column 
block map applied to an 8×6 matrix. 
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Figure 3. 1D Block map applied to a matrix.  Different colors 

represent different processors—the first 3 columns are 
mapped onto Processor 0, while the other 3 columns are 

mapped onto Processor 1. 
 
 A basic map has three components: grid description, 
distribution description, and processor list. A map used in 
Figure 3 can be described as having: 
 1×2 grid 
 block distribution 
 {0,1} processor list 
 The grid description together with the processor list, 
specify where blocks of data are distributed on processing 
elements.  Distribution description specifies how the data 
is distributed.  For many applications block, cyclic, and 
block-cyclic distributions are sufficiently expressive to 
achieve good parallel performance.  Table 1 illustrates 
common maps used for a number of dense computation 
kernels.  
 Block-cyclic distributions are limiting for sparse 
computations due to the finer granularity of the sparse 
mapping problem.  It is desirable to be able to support 
arbitrary mappings, without significant increase in index 
computation cost. 
 
Table 1. Common mappings for dense computations 

 
 

 pMatlab, PVL, and PVTOL maps all use a common 
underlying index representation: Processor Indexed 
Tagged FAmiLy of Line Segments (PITFALLS).[10]  The 
advantage of using PITFALLS is that efficient 
redistribution algorithms exist, thus yielding fast 
computation of indices local to each processor and, if the 
data has to be re-organized, calculation of messages that 
have to be sent between processors.  
 To extend the regular block-cyclic map construct and 
PITFALLS indexing to arbitrary distributions, we allowed 
the repetition of processors in the processor list.  Figure 4 
illustrates this with an example.  In the worst cast 
scenario, the common block size is equal to a single 
element and a processor for each array element must be 
stored in the processor list.  However, if the minimum 
block size is controlled, index calculations can be 
performed efficiently. 
 

 
Figure 4. Irregular maps.  Support for arbitrary data 

distributions can be implemented by allowing processor 
repetition in the processor list. 

 
2.2. Sparse Mapping Challenges 
 
 In the previous section, we touched on mapping 
challenges associated with sparse computations.  The first 
key challenge is the granularity of the computation.  
Specifically, when mapping dense data, it is often 
sufficient to distribute large blocks of data between 
processors according to a regular distribution.  On the 
other hand, when mapping sparse computations, much 
smaller blocks of data must be considered and the 
regularity of distribution is likely to be detrimental to 
performance.  
 The second key challenge is the granularity of 
communication. Consider a dense parallel matrix 
multiplication.  When communication occurs, a large 
block of data is sent between processors.  On the other 
hand, in a sparse matrix multiplication, a single element 
often must be communicated between remote processors.  
Even when the data is not being communicated between 
two distinct processors but within the memory hierarchy 
of a single processor, the communication of individual 
elements incurs a significant overhead. 
 The third key challenge is that in order to optimize a 
sparse matrix multiplication or another sparse operation, 
the communication and computation, which are both fine-
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grained, must be co-optimized.  The cost of 
communication cannot be minimized until the 
computation is mapped.  That is, the options for 
communication depend on each specific mapping.  Thus, 
neither computation optimization alone nor 
communication optimization alone will yield sufficient 
improvement in performance. 
 
2.3. Approach 
 
 Our general approach focuses on addressing the three 
challenges listed in Section 2.2.  Specifically, in order to 
find the best mapping for a sparse matrix multiplication 
operation, we focus on co-optimizing the efficiency of 
computation and communication at fine-grain levels. 
 In Section 2.1, a map construct was presented.  
Observe, that the map provides distribution information 
for matrices, however it does not provide routing 
information.  Once the maps for the arrays are defined, 
the set of communication operations that must occur can 
be enumerated.  However, in order to evaluate the 
performance of a given mapping, a route for each 
communication operation must be chosen.  Yet, routes 
cannot be enumerated until a map is defined. Figure 5 
illustrates a simplified example with a distributed 
addition.  In the dependency graph, communication 
operations are highlighted.  For each highlighted 
operation, a number of routing options exists.  The 
number of possible routes is dependent on the topology of 
the underlying hardware architecture. 
 Since the best map depends on chosen routes and 
routes cannot be enumerated until a map is chosen, the 
problem is combinatorial and no closed form solution 
exists.  This type of problem is well solved by a stochastic 
search method. Since evaluation of the quality of a 
solution requires creation and simulation of fine-grained 
dependency graphs (Figure 5b) on a machine or hardware 
model, we chose a stochastic search technique well suited 
for parallelization—genetic algorithm.[11]  The next 
section describes the problem formulation in greater 
detail. 
 

 

 
Figure 5. Parallel addition with redistribution.  (a) illustrates 

how arrays A, B, and C are mapped.  Note that no 
communication is required during the addition operation, 

however communication is required when the result is 
assigned to A.  (b) presents the dependency graph and lists 

all the memory, communication, and computation operations 
that must occur.  The remote communication operations are 
highlighted—or each communication operation, a number of 

possible routes exist. 
 
3.  Co-optimization of Mapping and Routing 
 
 Figure 6 presents an overview of the nested genetic 
algorithm (GA) for mapping and routing. 
 

 
Figure 6. Nested genetic algorithm (GA).  The outer GA 
searches over maps, while the inner GA searches over 

routes for all communication operations given a map set. 
 
 The outer genetic algorithm searches over maps, 
while the inner GA searches over route options for a 
given set of maps. 
 One input to the GA is a coarse-grained dependency 
graph.  The outer GA generates a population of maps for 
the arrays in the coarse-grain dependency graph.  For the 
matrix-multiply operation C=A*B, there are two arrays 
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for which maps must be generated as C is assumed to 
have the same map as A.  This is a heuristic simplification 
that does not restrict the generality of solutions found.  
 For each <maps, dependency graph> pair, a fine-
grained dependency graph is generated.  While the 
original dependency graph contained operations such as 
matrix multiplication and assignment, the fine-grained 
dependency graph contains only computation, 
communication and memory operations, as illustrated in 
Figure 5b. 
 Once the fine-grain dependency graph is constructed, 
the communication operations and corresponding route 
choices can be enumerated.  At this point, the inner GA 
assigns route choices to communication operations and 
evaluates the performance of the given <maps, routes> 
pairing against a hardware model.  Fitness evaluation is 
performed using opportunistic scheduling and operations 
in the dependency graph are overlapped whenever 
possible. 
 
3.1. Representation and Search Space 
Characterization 
 
3.1.1. Outer GA 
 
 The outer GA iterates over sets of maps for arrays in 
the computation.  The minimum block size for a matrix is 
chosen based on the size of the matrix being mapped.  An 
individual in the outer GA is represented as a set of 
matrices blocked according to minimum block size.  Each 
block additionally contains information on the sparsity of 
that block.  Processors are assigned to each block and 
mutation and crossover operators manipulate the 
processor assignments for each block.  Figure 7 illustrates 
a typical individual for a matrix multiplication operation. 
 

 
Figure 7. Outer GA individual.  Here, the block size yields 36 
blocks per matrix.  Different shades of gray indicate different 
processors assigned to blocks.  Each block also contains the 

sparsity information associated with the block.  This 
individual contains two arrays since matrix multiplication 

requires mapping of two arrays. 
 
3.1.2. Inner GA 
 
 The inner GA iterates over routes.  The 
representation for the inner GA is simply the listing of 
communication operations.  The length of the listing is 
equal to the number of the communication operations for 
a given set of maps.  Each entry in the list represents the 

index of a route chosen for a particular communication 
operation.  Figure 8 illustrates an individual for the inner 
GA. 
 

 
Figure 8. Inner GA individual.  The set of communication 

operations is represented as a linear array, with each entry in 
the array containing index of a route chosen for the given 

communication operation. 
 
3.1.3. Search Space 
 
 When performing a stochastic search, it is helpful to 
characterize the size of the search space.  Equation 1 
characterizes the search space, S, for the nested genetic 
algorithm formulation of the mapping and routing 
problem: 
 S = PBrC  (1) 
where 
 P=number of processors 
 B=number of blocks 
 C=number of communication operations 
 r=average number of route options per 

communication operations. 
 
4.  Parallelization of the Nested Genetic 
Algorithm 
 
 Fitness evaluation of a <maps, routes> pairing 
requires building a dependency graph consisting of all 
communication, memory, and computation operations, 
performing opportunistic scheduling of operations, and 
simulating the operations on a machine model.  This 
evaluation is computationally expensive as illustrated by 
Table 2. 
 

Table 2. Individual fitness evaluation times.  Sparsity 
patterns are described in Section 5.  The time shown is 

average over 30,000 evaluations. 

 
 

 Since the sparse mapping and routing framework is 
written in MATLAB, we used pMatlab to parallelize the 
nested genetic algorithm and run it on LLGrid: Lincoln 
Laboratory cluster computing capability.[12]  Figure 9 
illustrates the parallelization process.  
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Figure 9. Parallelization process.  Fitness evaluation is 

performed in parallel on np processors, while selection and 
recombination are performed on the leader processor 

(processor 0). 
 
 As indicated by Figure 9, parallelization required 
minimal changes to the code (Table 3).  A GA is well 
suited to parallelization, since each fitness evaluation can 
be performed independently of all other fitness 
evaluations.  
 
Table 3. Lines of code.  Parallelization with pMatlab requires 

minimal changes to the code. 

 
 
4.1. Parallelization Speed-up Results 
 
 The parallel code was executed on the TX-2500 
cluster of the LLGrid system.[12]  Figure 10 shows the 
speedup results averaged over a number of different runs 
of the mapping framework.  The selection step occurring 
each generation of the GA (when parents are chosen for 
reproduction with likelihood relative to their fitness and 
fitness of other potential parents) requires global 
communication.  By making sure that each processor had 
sufficient number of individuals to evaluate, we were able 
to achieve linear speedup.  
 LLGrid truly enabled this research by allowing 
exploration of an optimization space that would be 
impossible on a single machine. 
 An important note is that the focus of this iteration of 
this research was a feasibility study.  We wanted to 
investigate our hypothesis that the fine-grained analysis 
and co-optimization of communication and computation 

via stochastic search over maps and routes was beneficial 
for parallelization of sparse computations.  Currently, we 
are working on techniques to reduce the computational 
complexity of the analysis.  

 
Figure 10. Speedup results.  Linear speed up was achieved 

executing the mapping and routing framework on the LLGrid. 
 
5.  Mapping Performance Results 
 
 This section discusses the performance results of the 
maps found using our mapping and routing framework 
and whether the maps found meet the goals of the 
research: to find efficient ways of distributing sparse 
computations onto parallel architectures and gain insight 
into the type of mappings that perform well. 
 
5.1. Experiment Overview 
 
5.1.1. Machine Model 
 
 The results presented here are simulated results on a 
hardware or machine model.  Our framework allows us to 
alter the machine model freely, thus ultimately we would 
like to focus on various architecture properties that affect 
the performance of sparse computations.  Table 4 
describes the parameters of the model used for the results 
presented. 
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Table 4. Machine model parameters 

 
 
5.1.2. Matrix Multiplication Algorithm 
 
 The mapping and routing framework was applied to 
an outer product matrix multiplication algorithm.[13]  
Figure 11 illustrates the algorithm and the corresponding 
pseudocode.  This algorithm was chosen due to the 
independent computation of slices of matrix C.  This 
property makes the algorithm well suited for 
parallelization. 
 

 
Figure 11. Outer product matrix multiplication 

 
5.1.3. Sparsity Patterns 
 
 We wanted our solutions to apply to general sparse 
matrices and thus we tested the mapping framework on a 
number of different sparsity patterns.  Figure 12 illustrates 
the sparsity patterns mapped in increasing order of load 
balancing complexity, from random sparse to scrambled 
powerlaw. 
 

 
Figure 12. Sparsity patterns 

5.1.4. Benchmarks 
 
 Figure 13 illustrates a number of standard mappings 
that the results obtained with the sparse mapping and 
routing framework were compared against.  
 

 
Figure 13. Benchmark maps.  We compared our results with 

the results using standard mappings. 
 
5.2. Results 
 
 Figure 14 presents performance results achieved by 
the mapping framework.  Our maps outperform standard 
maps by more than an order of magnitude.  The results are 
normalized with regards to the performance achieved 
using a two-dimensional (2D) block-cyclic map, as that is 
the most commonly used map for sparse computations. 
 We wanted to make sure that the results achieved 
were repeatable and statistically significant over a number 
of runs of the GA.  Figure 15 shows statistics for 30 runs 
of the GA on a powerlaw matrix.  Observe that there is 
good consistency in terms of solution found between 
multiple runs of the mapping framework. 
 

 
Figure 14. Mapping performance results 
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Figure 15. Run statistics.  The top plot shows best overall 
fitness found for each generation.  The middle plot shows 

average fitness for each generation.  Finally, the bottom plot 
shows the behavior of the best of the 30 runs over 30 

generations. 
 
 Note that while we did consider a large number of 
possible solutions, we have only explored a small fraction 
of the search space.  For the statistics runs in Figure 15, 
the outer GA was run for 30 generations with 1,000 
individuals.  The inner GA used a greedy heuristic to pick 
the shortest route between two nodes whenever possible.  
Thus, the total number of solutions considered was: 

30×1,000=30,000 
The size of the search space per Eq. 1 is 

S = PBrC ~ 8128*2100 
where 
 8 is the number of processors in the machine model; 
 128 is the number of blocks used for 256×256 

matrices; 
 O(100) is the number of communication operations; 
 2 is the number of possible routes for each 

communication operation given a ring topology. 
 Thus, the GA performs well in this optimization 
space, as it is able to find good solutions while exploring 
rather insignificant fraction of the search space. 
 
6.  Related Work 
 
 In the domain of sparse matrix-vector multiplication, 
a lot of work has been done on optimizing these 
operations using register blocking and cache blocking 
techniques (e.g., References 14–16).  Cache blocking 
techniques reorder memory accesses to increase temporal 
locality, and register-blocking techniques compress the 
data structure to reduce memory traffic.  These techniques 
are well suited for optimizing memory hierarchy access in 
sequential code.  Other work has addressed the issue of 

avoiding communication[17] in sparse matrix computations 
in both sequential and parallel code.  
 Our approach is fundamentally different. It is general 
enough to be applied to any sparse matrix computation, 
and is not limited to matrix-vector or matrix-matrix 
multiplication.  We decompose the problem of finding 
optimal spatial and temporal locality, and of optimizing 
communication from the algorithm itself by use of maps.  
We parameterize the algorithm using maps and then use 
our framework to derive the optimal mapping from the 
structure of the matrix and the needs of the algorithm.  
We co-optimize the location of data and the routing of 
communication using nested genetic algorithm to perform 
the search.  This, coupled with our rich machine model, 
makes our framework well suited for optimizing any 
sparse matrix computation on any machine or network 
topology. 
 
7.  Conclusions and Discussion 
 
 In this paper, we presented an approach for mapping 
and routing sparse matrix calculations.  As this effort 
started out as a feasibility study, we focused on not 
constraining the computation costs of our solution.  
Specifically, we wanted to explore whether fine-grained 
analysis, irregular distributions, map/route co-
optimization, and sparsity-influenced mapping were 
beneficial to improved performance of sparse 
computations.  LLGrid allowed us to explore optimization 
spaces that would not be possible otherwise.  The results 
obtained provided over an order of magnitude 
performance improvement over traditional mapping 
techniques.  Clearly, invoking our current system at 
runtime would not be beneficial; however, mappings 
found can be saved for later use.  Additionally, we can 
readily evolve well performing set of maps for various 
matrix families. 
 Moving forward, we are focusing on reducing the 
computation costs of the mapping framework.  These 
include dependency graph re-use and considering other 
matrix multiply algorithms. 
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