GENETIC PROGRAMMING
THEORY AND PRACTICE

GENETIC PROGRAMMING
THEORY AND PRACTICE

Edited by

RICK RIOLO

Center for the Study of Complex Systems
University of Michigan

BILL WORZEL

Genetics Squared, Inc.

Kluwer Academic Publishers
Boston/Dordrecht/London

iv

Genetic Programming Theory and Practice 111

Contents

1

Prototyping FlexGP for the Cloud
James McDermott, Kalyan Veeramachaneni and Una-May O’Reilly

Chapter 1

FLEXGP.PY: PROTOTYPING FLEXIBLY-
SCALED, FLEXIBLY-FACTORED GENETIC
PROGRAMMING FOR THE CLOUD

James McDermott!, Kalyan Veeramachaneni' and Una-May O’Reilly!
1Evoluti0nary Design and Optimization Group, CSAIL, MIT

Abstract

Running genetic programming on the cloud presents researchers with
great opportunities and challenges. We argue that standard island algo-
rithms do not have the properties of elasticity and robustness required
to run well on the cloud. We present a prototyped design for a decentral-
ized, heterogeneous, robust, self-scaling, self-factoring, self-aggregating
genetic programming algorithm. We investigate its properties using a
software “sandbox”.

Keywords: cloud, island model, FlexGP, distributed

2 Genetic Programming Theory and Practice 111

1. Introduction

Computing on the cloud offers elasticity and massive concurrent com-
pute resources. For genetic programming (GP) researchers this repre-
sents both a challenge and an opportunity. Parallel and distributed
evolutionary algorithms (PDEAs) can take advantage of cloud resources
through massive, scalable computation, with built-in protection against
premature convergence. With this opportunity comes a requirement for
well-designed, decentralized, robust and flexible algorithms. To avoid
single points of failure and unbalanced compute or network loads, decen-
tralized algorithms are needed. Given many nodes, failures are certain,
so robust algorithms are needed. Given the opportunity and requirement
to scale resource usage up or down during computation, self-scaling al-
gorithms are needed. To encourage exploration of different areas of the
search space, one possible model has heterogeneous islands, e.g. differ-
ing in their objectives, their training data, and their GP representation.
Self-factoring algorithms are needed in this case. In order to re-integrate
good results and ensure that the computation converges in the long term,
self-aggregating algorithms are also needed.

The aim of the FlexGP.py project presented in this paper is to provide
a test-bed for such algorithms in which ideas, logic and protocols can
be implemented and tested without requiring the rather arduous build-
deploy cycle typical of cloud computing. It is hoped that problems can
be identified and necessary design decisions made.

The remainder of this paper is laid out as follows. Section 2 presents
related work and leads to a description of the properties we require in
our system. Section 3 describes our proposed new system, and Section 4
presents a theoretical and empirical investigation into the system’s prop-
erties. Section 5 briefly concludes.

2. Related Work

The two most common models for PDEAs are the fized-topology coarse-
grained island model and the fixed-topology fine-grained cellular grid
model (Canti-Paz, 1998; Tomassini, 2005; Crainic and Toulouse, 2010).
The fized-topology hybrid model, also common, features coarse-grained
islands with fine-grained internal structure (Canti-Paz, 1998; Tomassini,
2005; Crainic and Toulouse, 2010). All of these are often visualized using
networks of nodes (representing individuals or populations) and edges
(representing migration). They can deliver performance benefits chiefly
because a structured population can avoid premature convergence on
just one area of the search space, in contrast to a panmictic population.

Prototyping FlexGP for the Cloud 3

These models typically depend on some sort of centralized algorithm
to impose the desired, static neighbourhood structure between nodes,
and possibly to deal with node or communication failures. This means
that the algorithms may suffer from a single point of failure and from
possible high compute or communication loads on the “master” machine.

Dynamic decentralized models offer an interesting alternative. A sin-
gle point of failure, and imbalanced compute or communication loads,
are avoided because the algorithm is decentralized. This necessitates
a random graph model: when nodes are expected to leave or join the
computation often, it is not possible to maintain a neat, fixed-topology
toroidal graph in a decentralized way, for example. However, desired
properties such as connectivity and takeover time can emerge in a natu-
ral way, as will be described later. Random graph models can be imple-
mented using peer-to-peer algorithms in which nodes exchange not only
migrants’ genomes but also meta-data describing (for example) known
nodes available as migration destinations.

Such ideas motivated the design of the Distributed Resource Machine
(DRM) system. Here, a large number of compute nodes form a volunteer
network, the DRM. Applications of many different types can be hosted
on DRM: DREAM is the combination of DRM with an evolutionary
algorithm framework (Arenas et al., 2002). Although DRM is capable
of a dynamic, peer-to-peer network model, DREAM uses a fixed-topology
coarse-grained island model.

Later authors questioned DREAM’s scalability and robustness. Ac-
cording to Laredo et al. (Laredo et al., 2010), “the island-based par-
allelization of DREAM was shown [...]| to be insufficient for tackling
large-scale decentralized scenarios.” That is, Laredo et al. (Laredo et al.,
2007) showed that DREAM’s speedup is super-linear from 1 to 4 nodes,
but sub-linear or even negative after that. Analysis showed that this fail-
ure to scale is the result of communication costs: migration between is-
lands required a number of network hops per individual which scaled lin-
early with the number of nodes. The authors concluded that DREAM’s
network functions more as a broadcast network (approximating a fully-
connected network) than a small-world peer-to-peer one.

In the Ewvolvable Agent line of research, a main aim is to address
some of the weaknesses of the DRM system. It uses a fine-grained
random-graph cellular model in which each node in the topology is asso-
ciated with just one individual: crossover happens only between nodes
which are connected by edges. Evolvable Agent was demonstrated to
be scalable and to improve performance in a series of simulation exper-
iments (Jiménez Laredo et al., 2011). One caveat must be mentioned:
in these simulations the effects of the network were neglected, that is

4 Genetic Programming Theory and Practice 111

traversal of an edge was assumed to be of negligible cost. This assump-
tion is not realistic if the pair of nodes are on different physical machines,
as they often will if the system is to take advantage of distributed pro-
cessing. In such circumstances the fine-grained model, with hundreds or
thousands of nodes per physical machine, will cause a very high commu-
nication cost.

A natural alternative is a system which (like Evolvable Agent) uses
a peer-to-peer dynamic random graph model, but also (like DREAM)
uses a coarse-grained island model. This is the model FlexGP.py will
investigate. It avoids high communication costs because each physical
machine runs a single node composed of hundreds or thousands of in-
dividuals, with infrequent migration between nodes. However it retains
the decentralized, robust aspects of the random graph topology.

Using a coarse-grained dynamic random graph model addresses some
of the key issues for cloud-scale computing mentioned above, in par-
ticular robustness to failure, using a decentralized algorithm, and
having the ability to flexibly scale resource usage up or down. The
implementation and behaviour of the algorithm in these respects will be
described in the next section.

Several other properties are also of interest. To ensure that the par-
allel computation does not split into multiple independent runs cut off
from each other, another necessary property is connectivity. A related
emergent graph property is takeover time (Tomassini, 2005). It is desir-
able to keep the network well-connected so that good genetic material
can propagate to all nodes, but avoid overloading the network through
heavy communication, and avoid reducing the model (by over-use of
communication) to the equivalent of a standard pan-mictic algorithm.
Connectivity properties have previously been investigated in the context
of DRM (Jelasity et al., 2002).

Decentralization in particular introduces a need for the algorithm to
be in some sense self-scaling, or elastic: it must be capable of changing
its behaviour in response to changes in the network structure or the
compute resources. The most important aspect of this, for our purposes,
is that the system must be capable of adding or removing compute nodes,
while retaining sane network behaviour.

Previous research including that mentioned above rarely deals with
heterogeneous GP algorithms. This is an opportunity for new re-
search with cloud-scale PDEAs. In the current contribution the focus is
on GP, and heterogeneity is taken to mean that islands may differ from
each other in their objectives, their training data, their GP language
(i.e. internal nodes), and their input or explanatory variables. This “fac-
toring” has been somewhat explored in the field of GAs (Crainic and

Prototyping FlexGP for the Cloud)

Toulouse, 2010), but relatively under-explored by the GP community.
Some exceptions include the coevolutionary work of Heywood and col-
leagues, e.g. (Lichodzijewski and Heywood, 2008) and the speciating
island model of Gustafson and Burke (Gustafson and Burke, 2006).

We hypothesize that any advantages of heterogeneous algorithms are
not evident in algorithms with small populations and few generations,
because such algorithms are dominated by “edge effects” and do not al-
low strong meta-evolutionary effects to occur. Heterogeneous algorithms
are therefore a good fit for PDEAs in which very large populations are
split up in a natural way. Again, however, there is a requirement for
careful algorithm design. Heterogeneous algorithms in a decentralized
context must be capable of deciding just how each island should differ
from the next, and how these differences should vary over time. The
current contribution uses a very simple type of heterogeneity between
islands (to be explained in the next section), but aims to provide a test-
bed for future investigations.

Decentralized algorithms have to include methods of aggregating final
results. In some contexts a separate aggregation phase is appropriate.
In the context of PDEAs it is also possible to make the algorithm self-
aggregating. The multiple heterogeneous islands can be programmed
to gradually become more and more homogeneous over time through
communication both of genetic material and of the differences in their
heterogeneous settings (i.e. the objectives, training data, etc. mentioned
above). This avoids the need for a centralized aggregation phase at the
end of the algorithm. Again, in the current contribution we present only
a simple aggregation system, leaving full investigation and refinement
for future work.

Our previous work on this project has investigated necessary soft-
ware components and cloud infrastructure, such as the MapReduce algo-
rithm and Amazon EC2 cloud computing resources, see (Fazenda et al.,
2012; Sherry et al., 2011). In the next section we present the FlexGP.py
prototype.

3. The FlexGP.py System

We begin with a re-statement of the system’s goals.

m Decentralized: no master, no single point of failure.

m Robust: node or communication failure should not bring down the
system.

» Connectivity and desirable values for diameter and/or takeover
time.

6 Genetic Programming Theory and Practice 111

m Flexible scaling: can increase or decrease number of nodes during
computation.

s Lightweight: avoid network overload and keep tasks CPU-bound
to ensure maximum use of compute resources.

m Heterogeneous: islands differ by objectives, by training data, by
language, and by explanatory variables.

m Aggregation: islands should become more homogeneous over time.

FlexGP.py attempts to achieve a subset of the above goals in a single-
machine simulation in a minimal and elegant way. It simulates each
cloud node using one compute process and one listener thread. Commu-
nication between islands is via sockets. FlexGP.py is easy to read and
understand, being composed of less than 1000 lines of Python. Fitness
evaluation, by far the most CPU-heavy aspect of most evolutionary al-
gorithms, is farmed out from Python to Numpy, which allows it to run
as a compiled C loop. FlexGP.py performance is respectable, but still
considerably slower than an implementation in a language like C or Java.

FlexGP.py is fundamentally a peer-to-peer algorithm in which each
node performs computation and periodically communicates messages of
various types to its neighbours. The messages are of three types, as
illustrated in Fig. 1-1: individuals (i.e. migration between islands with
semantics similar to a typical PDEA), node tables (maintaining the dy-
namic neighbourhood graph), and island descriptors (determining the
characteristics of the heterogeneous islands). Each message type may
be sent at a different frequency. The aim in sending messages is to
spread information on new nodes and failures; to maintain a desired
level of heterogeneity between islands, perhaps with a schedule for grad-
ual homogenisation; and to avoid network overload. Node tables and
island descriptors are described next.

Each node maintains its own node table (see example in Table 1-2).
Each entry in the node table consists of an ID number, a binary status
value, and a time-stamp associated with the status. The order of the
node table is randomized. A node regards as its neighbours the first d
nodes whose status is “good”. When communication with a node suc-
ceeds, that node is marked “good” and its time-stamp is updated. When
communication fails, the destination node is marked “bad” and its time-
stamp is updated. Each node periodically sends out its node table to
a neighbour. The receiving node merges this information into its own
node table: unknown nodes are added to the list (outside the top d) and
status values are updated, if their time-stamps are newer than those of
the existing status values. The effect is that information on new nodes

Prototyping FlexGP for the Cloud 7

Island Descriptor

Figure 1-1. Message types: a node sends messages of three types as shown, at dif-
ferent rates.

4 good 8.0

6 good 9.0
15 good 10.0

Figure 1-2. Sample node table: the top d = 4 “good” nodes are deemed neighbours
and highlighted.

8 Genetic Programming Theory and Practice 111

(a) Before Failure (b) After Failure

Figure 1-3. The digraph, ¢ model consists of a directed graph on n nodes each of
out-degree d = f(n). The in-degree varies. When one node fails to communicate
with another, it marks the destination node bad (shown as a dashed arrow to the bad
node), and now regards the next highest good node in its node table as a neighbour
(shown as a dotted, highlighted arrow to the new neighbour), maintaining d.

and on node or communication failures propagates through the network
in a decentralized way. When node or communication failures lead to
neighbours being marked bad, they are implicitly replaced since the first
d “good” nodes will now reach further down into the table. The table
includes, in a sense, many “back-up” destinations, avoiding problems
where a node is ready to send but has no viable destinations. Therefore
the system is inherently robust to node failures. See Fig. 1-3. Because
each node manages its own node table, the system is decentralized. Be-
cause the node order is randomized, there is no systematic overload of
particular nodes. With an appropriate choice of d, connectivity of the
entire graph can be achieved (see Sect. 4).

The node table also contains a target node count, i.e. the number of
nodes which the computation should contain. This target count can
passed-in at startup or set by an external process, mimicking the possi-
bility of sending commands to a node in a true cloud system. The target
is sent as part of the node table. In this way, the user or a sub-system
with knowledge of changes to resource availability or pricing can send
a message to any node and expect it to be propagated throughout the
nodes over time.

Each node also maintains an island descriptor which parameterises the
nodes’ heterogeneous computation. A descriptor consists of four pieces
of information. Two island-level pieces identify the island’s characteris-
tic subset of objectives and subset of training data. Two genotype-level
pieces identify the island’s characteristic subset of non-terminals and
subset of explanatory variables. In all cases, a universal superset exists

Prototyping FlexGP for the Cloud 9

5] 5] o 5]
% ug) [Soown > (Smy) (",)DL) 3
EID EID D.D EID

(a) Spawn (b) Die

Figure 1-4. Nodes spawning and dying. At cloud scale, some existing nodes are
expected to fail unintentialy during computation. Nodes can also choose to spawn
or die as a method of scaling compute resource usage up or down. New nodes get
randomly-created populations and island descriptors but inherit the parent’s node
table. Dying nodes send out many migrants—half their population.

and each island uses only a subset. This achieves heterogeneous com-
puting. The island descriptor characterises the island’s representation,
taken to include its fitness function and encoding.

Each node gets a randomly-generated island descriptor at startup.
Nodes send out their descriptors periodically in order to allow the grad-
ual homogenisation of the computation. There is also the possibility of
meta-evolution, i.e. evolution of island descriptors. This concept could
work by making successful islands more likely to send out their descrip-
tors. However this concept is not pursued in the current work.

In order to achieve flexible scaling of resources, the ability to start
and stop nodes is needed. As illustrated in Figure 1-4, new nodes can
be spawned when an existing node chooses to spawn a new node. Ex-
isting nodes can also fail for various reasons, and can also choose to
die. In both the spawning and dying cases, the choice is random but
biased according to the number of existing known nodes and the target
number of nodes. That is, if the number of known nodes is less than
the target node count, a node may spawn (with a certain probability)
If the number of known nodes is greater than the target node count, a
node may die (with a certain probability). Spawned nodes are created de
novo, with randomly-created populations and island descriptors, though
they inherit the node table of their parent. Dying nodes send out many
migrants—half their population—in order to preserve whatever genetic
learning they have achieved.

In the one-machine FlexGP.py simulation, nodes are allowed to spawn
if they choose to do so, subject to there being space for new processes
in the system. In a real-world scenario, a node wishing to spawn would
need access to the cloud API in order to gain access to newly-available
compute resources. This is the only area in which the one-machine
simulation abstracts away a significant detail which would need to be
addressed if implementing a true distributed version of the system.

These features confer several advantages, to be demonstrated in the
next section:

10 Genetic Programming Theory and Practice I11

s Startup can happen in a decentralized way, because one can start a
single node, setting its target node count, and it and its descendant
nodes will gradually create new nodes until the target is reached.
decentralized startup is useful because in real-world scenarios, for
example on Amazon EC2, starting up hundreds of nodes at once
is a time-consuming and fragile task.

m The entire computation can be scaled up or down (i.e. decentral-
ized expansion or shrinking). This is again useful in real-world
scenarios, where for example compute prices vary over time. The
ability to use the “target node count” to gradually and gracefully
expand or shrink the number of nodes in the computation is suited
for this scenario.

m Because there is no single master node, no node or communica-
tion link is overloaded with systematically high computation or
communication overhead.

Migration is the key mechanism in any island system. In FlexGP.py,
migration follows the “neighbour” model described above. Each node
has d neighbours. At each generation, with probability p,,, it sends
a message containing its best n,, individuals to either one neighbour,
randomly-drawn from the d, or to all d. In relation to previous island-
model work (Tomassini, 2005) this is most similar to a random topology
model.

In the context of heterogeneous islands, one extra migration feature is
required. It is possible that newly-arrived migrants will have come from
islands on which the population is evolving under different standards.
They may not have access to the same variables or the same fitness cases.
In such scenarios, the newly-arrived individuals may well have useful
genetic material, but may not have fitness values sufficient to compete
with the existing population. Therefore we implement a form of migrant
protection. With this parameter switched on, every migrant is assured
of one crossover event in the generation when it arrives. Afterward, the
migrants are added to the population for normal selection.

In addition to implementing inter-island communication, migration
serves as a method of aggregation. Over time, heterogeneous islands
become more and more homogeneous by mixing of the populations. The
best individuals are aggregated by migration.

Islands also become more homogeneous through the exchange of island
descriptors. The receiving island merges the island descriptor into its
own, potentially gaining the ability to use new variables and test cases.

These policies allow the researcher to be confident, during a long-
running evolution, that sampling good individuals from any island will

Prototyping FlexGP for the Cloud 11

give reasonably representative results. These policies have the benefits
of being decentralized, with no single point of failure, and requiring no
separate finalisation phase of the algorithm.

4. Results

In this section we investigate the system’s behaviour through the fol-
lowing studies: performance of the dynamic island topology compared
with a more standard static island model; performance of differing num-
bers of islands; performance of heterogeneous versus homogeneous is-
lands; performance with differing numbers of migrants, and with and
without migrant protection; connectivity of the island topology; robust-
ness to failures; and the dynamics of self-scaling elastic compute.

When performance is reported, it is generally the system’s best fit-
ness across islands, averaged over 30 runs. The problem is a symbolic
regression of the function

a four-dimensional version of the test function used by Pagie and Hogeweg (Pagie
and Hogeweg, 1997). It has been reported to be a difficult problem in
previous work (Harper, 2010). The GP system itself is not a focus

of the current work: it is a linear-GP reverse polish notation system,

with two-point crossover (crossover rate 1.0) and per-individual muta-

tion (mutation rate 0.1). Individuals have an initial size of 8 genes. The
non-terminal genes are {+, -, *, /}. The divide operator is protected:

a zero-division exception results in the individual getting a poor fitness.

The terminal genes are the variables z; and the constants 0.1 and 0.5.

Migration is probabilistic, happening every generation with probabil-
ity 0.2. The number of migrants is 1 except where stated. The spawning
and dying probabilities are 0 for most experiments: the exception is the
set of experiments on elastic computation (Sect. 4.0). The node table is
emitted every generation with probability 0.333.

In some of the experiments to be reported, the result of interest is
network connectivity: best-fitness performance is not of interest and is
not reported. In these cases we reduce the algorithm’s CPU usage by
setting fitness to a random-number generator, setting crossover to have
null behaviour, and setting a trivial population size. These settings do
not affect migration behaviour insofar as it affects connectivity.

12 Genetic Programming Theory and Practice I11

— n=16
--n =64
n = 256
- n=1024

025

Mean Strong Connectivity

L P S SR
0 2.5 5 7.5 10 12.5 15
Out-degree (d)

(a) Probability of strong connectivity

5 — 77—

— n=16
. --n =64
g4r n=26¢ T 1
B - n = 1024
Z
€3t e e
M .\‘x
=1 S
3
= 2 r ﬁ E

1 1 1 1 1 1
0 2.5 5 7.5 10 12.5 15
Out-degree (d)

(b) Mean eccentricity

Figure 1-5. Graph-theoretic properties of the random digraph, ¢ model.

Connectivity

A key requirement is connectivity of the graph. A well-known result
in graph theory states that a broad class of a graph-theoretic properties
which depend on the mean degree of nodes will be almost never fulfilled
for random graphs of low mean node degree, and almost always fulfilled
for high degree, with a sharp threshold in between (Bollobés, 2001). The
best-known example is connectivity of an undirected random graph: in
order to “almost” guarantee connectivity, it is sufficient to choose the
degree d to exceed a threshold which depends only on n. The authors
are unaware of a corresponding theorem for strong connectivity (i.e. con-
nectivity taking edge direction into account) of random directed graphs
of fixed out-degree d, but a simple numerical simulation suggests the
same result: for n = 1024, for example, a fixed out-degree of d = 12 is
enough to almost guarantee connectivity. See Fig. 1-5.

However, the results in Fig. 1-5 are concerned with the theoretical
connectivity of the network topology: a path of any length between two
nodes is sufficient to regard them as connected. In practice, when a com-
putation runs for a limited number of generations, network behaviour

Prototyping FlexGP for the Cloud 13

may be quite different. Therefore we investigate the effect of the pa-
rameter d for several types of topology, several different network sizes
(i.e. numbers of islands), when running simulations over 100 or 400 gen-
erations. Fig. 1-6 again shows that the d parameter is not too important,
so long as the computation is relatively long-running: any value of d > 3
is sufficient for high connectivity. However for shorter runs, no plausible
value of d will achieve high connectivity (the results suggest an upward
trend: extrapolating suggests that high connectivity will not be achieved
until d > 50, requiring an unrealistic amount of migration and network
usage). Meanwhile sending to all neighbours, versus to just one cho-
sen randomly from neighbours, has little effect. Note that experiments
are not required to compare the connectivity of static topologies in this
regard. An intact topology of 4x4 or 8x8 nodes will achieve a perfect
“infection rate”; the broken static 4x4 example topology shown later in
Fig. 1-10 will achieve an “infection rate” of close to 0.39 (calculation not
shown).

Numbers of Islands

Our first test investigates the effect of varying the number of islands.
We assume a fixed budget for the total population size of 4000 indi-
viduals. This is allocated in three different ways: to a single island, to
4 islands of 1000 individuals, or to 16 islands of 250 individuals. The
performance of these three setups is shown in Fig. 1-7. There are no
significant differences among these setups. However the 1x4000 setup’s
performance is beginning to level off after 100 generations, while the
16x250 setup appears to be still increasing.

Aspects of Migration

Next we study two aspects of migration: the number of migrants (1,
5, or 25 migrants per batch) and whether migrant protection is on or off.
When using 1 migrant with and without migrant protection, as in Fig. 1-
8 (a) and (b), there is no significant difference; 1 migrant is slightly, but
significantly, better than 5 (Fig. 1-8 (¢)), but not significantly better than
25 (Fig. 1-8 (d)). There is no clear overall trend: the system’s behaviour
is rather robust to a wide variation in the numbers of migrants and their
treatment at the destination island.

Static versus Dynamic Topology

Next we compare the performance of static and dynamic topologies.
In each case we use 16 islands: a 4x4 one-way toroidal grid for the
static topology, and 16 islands with out-degree 4, for the dynamic topol-

14

Genetic Programming Theory and Practice 111

o 1.0 1@ 1.0 = 1
— —
So0s8 {508 |
e el
@ @
£ 0.6 1% 0.6 |
L 2
1< ® c
c 04 ® np O~ g Se |z 0.4 .
o e
£ £
6 0.2 10 0.2 1
a a
4 <
& 0.0 19 0.0 1
0 2 4 6 10 12 0 2 4 6 8 10 12
d d
5 1.0 {15 1.0 1
© ©
Y Y
L2038 1L 0.8 1
e el
@ @
5 0.6 1% 0.6 1
L 2
£ £
c 04 {17c 0.4]
i) he
£ £ ,
g 0.2 1802 =—a dynamic, send to all|]
o o .
s 0.0 .,‘—-I—I—‘w 1 £ 0.0 e -e dynamic, send to 1
0 2 4 6 10 12 0 4 6 8 10 12
d d
Figure 1-6. Inter-island connectivity: the effect of the d parameter and the length of

the run. Above, 16-island runs of 100 and 400 generations; below, 64-island runs of
100 and 400 generations. The vertical axis shows the “proportion infected”, i.e. the
number of island-to-island pairs between which migration has taken place (directly or
indirectly). 100 generations are insufficient to ensure high connectivity in this sense,
but 400 are sufficient. From first principles, an intact static topology will achieve
connectivity of 1.0, while a broken static topology will achieve poor connectivity.
Sending to all neighbours, versus to just one chosen randomly from neighbours, has
little effect.

Prototyping FlexGP for the Cloud 15

1.0

: | | | 1x4000
o2f oo e " | Bl 4x1000] |

| | I+1 16x250
0.0 >0 20 60 80 100

Generation

Figure 1-7. Best-fitness results with dynamic topology.

1.0

i i i i
0.0 0 20 40 60 80 100
Generation

Figure 1-8. Best-fitness results with a 16-island dynamic topology, comparing differ-
ent numbers of migrants. “No” and “Yes” indicate whether migration protection is
turned on.

ogy. Results are shown in Fig. 1-9. The static topology marginally out-
performs the dynamic after 100 generations (two-sided t-test, p < 0.05).
However the effect is small.

Robustness to Link Failure

A key motivation for the dynamic island model is that node and link
failures are expected to be inevitable at large scale. When a node or link
fails in a static topology, an explicit repair is required. However our de-
sign specifications have ruled out the use of a master node, which would
represent a single point of failure. In most previous work, the impact
of node and link failures in static topologies has not been considered.
Here, we present a rather extreme case of link failure in a 4x4 toroidal

16 Genetic Programming Theory and Practice I11

020 S S [static
j j j . | -l Dynamic
i i i i N n
0.0 0 20 40 60 80 100
Generation

Figure 1-9. Best-fitness results with static and dynamic topologies. 16 islands each
of population 250.

grid topology. The topology is presented intact in Fig. 1-10 (a). Note
that the arrows represent one-way links: each island sends to “north”
and “east” neighbours only, and receives from “south” and “west”. Al-
though this one-way scenario is not the most common for toroidal grids
in previous work, it is common in one-dimensional “ring” topologies.
Here, we choose this one-way scenario in order to demonstrate more
clearly the impact of extreme link failure, as in Fig. 1-10 (b). Here all
the “wraparound” or toroidal links have failed. Nodes to the “west” and
“south” of the grid are now receiving fewer inward migrants than before
(and none at all in the case of the “south-westernmost” node). As in
most previous work, islands do not block when they fail to receive in-
ward migrants: they simply continue computing. However performance
is affected, as shown in Fig. 1-11. The intact topology performs signif-
icantly better than the broken one (two-sided t-test of the best fitness
per run (across islands) achieved after 100 generations: p < 0.01).

In contrast, a key feature of the dynamic island topology is that node
failures and link failures, which are expected to be inevitable at large
scale, do not greatly damage the topology. It is not vulnerable to link
failures, as argued in Section 3, Fig. 1-3.

Heterogeneous Islands

The system’s ability to use heterogeneous islands is intended to be
useful in problems characterised by many input variables, large amounts
of training data, or other complexities. In this prototype system, with
its 4-dimensional test problem, it is difficult to test whether the het-
erogeneity feature is useful. Nevertheless we present preliminary re-

Prototyping FlexGP for the Cloud 17

e e

(a) Intact (b) Broken

Figure 1-10. A static grid topology, both intact and with broken links.

1.0
0.8 oo R
0 0.6F
w0
[
=
0.4l ‘ ‘
‘ - Dynamic
02p S Bl static
: : : |+ Static-Broken
0.0 ; ; ‘ ‘ ‘
0 20 40 60 80 100
Generation

Figure 1-11. Best-fitness results with the static grid topology (dimensions 4x4). The
intact version performs better.

sults. In this experiment, the homogeneous setup used all four input
variables (zg,x1,z2,23). In the heterogeneous setup, even-numbered
islands started the run with just (zg,z1) while odd-numbered islands
started with just (2, x3). Migration led to the gradual homogenisation
of the islands. Fig. 1-12 shows that there is no significant difference
between these heterogeneous and homogenous setups.

Elastic Computation

The system is capable of automatically adding islands to a computa-
tion which appears to have stagnated. As a pilot experiment, we have
tested this feature by starting a single island and allowing it to scale up.
Each island spawns a new island whenever the best fitness on that is-
land has not changed in 10 generations. After an island is spawned, this

18 Genetic Programming Theory and Practice I11

1.0

0.2 pre | =l Homogeneous []
‘ ‘ ‘ F: -] Heterogeneous

i i i N N n
0.0 0 20 40 60 80 100
Generation

Figure 1-12. Best-fitness results with the 16-island dynamic topology, comparing
homogeneous and heterogeneous islands.

stagnation counter is reset. Also, each island is limited to spawn at most
2 islands during the run. With these parameters, different runs result in
a variety of behaviours. Some runs never stagnate, and thus finish with
just the original island. In some runs a few new islands are spawned.
In others, up to about 15 or 20 islands can be spawned during the 100
generations. In the ideal scenario, some of the new islands introduce
diversity and their outward migrants then contributes to bringing other
islands out of stagnation. A typical run in which this effect appears
successful is visualized in Fig. 1-13.

We also briefly demonstrate elasticity in the opposite direction, that
is the ability of the computation to automatically scale-down the re-
sources it uses. In this case, the run begins with 10 islands, and after
20 generations a signal is received setting a new target node count of 2
nodes. This causes the computation to begin scaling down. The process
is visualized in Fig. 1-13 (b).

In both auto-scale-up and auto-scale-down cases, however, further
tests would be needed to demonstrate that the elastic compute feature
is reliable.

5. Conclusions

In this paper we have motivated, presented and investigated FlexGP.py,
a novel prototype system for decentralized, heterogeneous, robust, self-
scaling, self-factoring, self-aggregating GP on the cloud. Results show
that performance with the novel features is comparable to standard
island-based GP, with a noticeable advantage in terms of robustness.
It is not sensitive to changing parameters such as numbers of migrants

Prototyping FlexGP for the Cloud 19

1.0

0.0

0 20 40 60 80 100
Generations

(a) Automatic scale-up

1.0

02

i H ;
O'OO 20 40 60 80 100

Generations

(b) Automatic scale-down

Figure 1-13. Visualisations of elastic computation. In (a), auto scale-up. The run
begins with a single island. New islands are spawned in response to stagnation and are
indicated by fitness values ascending from 0. They seem to help move the computation
out of its local optimum. In (b), auto scale-down. The run begins with 10 islands.
After 20 generations a signal is received indicating that computation should scale
down. Dying nodes are indicated by fitness values descending to 0.

or topology issues. Our next step is to implement a cloud-based version
of the system for real deployment.

Acknowledgment

We would like to GE Global Research for the generous funding of this
work. Dr. McDermott acknowledges the support of the Irish Research
Council for Science, Engineering and Technology and a Marie Curie
Fellowship.

20 Genetic Programming Theory and Practice I11

References

Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo, J., Paechter, B.,
PreuB, M., and Schoenauer, M. (2002). A framework for distributed
evolutionary algorithms. In Parallel Problem Solving from Nature VII,
pages 665—675. Springer.

Bollobés, Béla (2001). Random Graphs. Cambridge University Press, 2
edition.

Canti-Paz, Erick (1998). A survey of parallel genetic algorithms. Cal-
culateurs Paralleles, 10(2).

Crainic, Teodor Gabriel and Toulouse, Michel (2010). Parallel meta-
heuristics. In Handbook of Metaheuristics, pages 497-541. Springer.
Fazenda, Pedro, McDermott, James, and O’Reilly, Una-May (2012). A

library to run evolutionary algorithms in the cloud using MapReduce.
In Di Chio, Cecilia et al., editors, Applications of Evolutionary Com-
puting, EvoApplications2012: EvoCOMNET, EvoCOMPLEX, EvoFIN,
EvoGAMES, EvoHOT, EvolASP, EvoNUM, EvoPAR, EvoRISK, FvoS-
TIM, EvoSTOC, volume 7248 of LNCS, pages 416-425, Malaga, Spain.
Springer Verlag.

Gustafson, Steven and Burke, Edmund K. (2006). The speciating is-
land model: An alternative parallel evolutionary algorithm. Journal of
Parallel and Distributed Computing, 66(8):1025-1036. Parallel Bioin-
spired Algorithms.

Harper, R. (2010). Spatial co-evolution in age layered planes (SCALP).
In CEC. IEEE.

Jelasity, M., Preu8, M., Van Steen, M., and Paechter, B. (2002). Main-
taining connectivity in a scalable and robust distributed environment.
In 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid, pages 389-394. IEEE.

Jiménez Laredo, J., Lombrana Gonzalez, D., Ferndndez de Vega, F.,
Garcia Arenas, M., and Merelo Guervés, J. (2011). A peer-to-peer ap-
proach to genetic programming. In FuroGP, pages 108-117. Springer.

Laredo, J., Castillo, P., Paechter, B., Mora, A., Alfaro-Cid, E., Esparcia-
Alcézar, A., and Merelo, J. (2007). Empirical validation of a gossiping
communication mechanism for parallel EAs. In Applications of Evo-
lutionary Computing, pages 129-136. Springer.

Laredo, J.L.J., Eiben, A.E., van Steen, M., and Merelo, J.J. (2010).
EvAg: a scalable peer-to-peer evolutionary algorithm. Genetic Pro-
gramming and Evolvable Machines, 11(2):227-246.

Lichodzijewski, P. and Heywood, M.I. (2008). Coevolutionary bid-based
genetic programming for problem decomposition in classification. Ge-
netic Programming and Evolvable Machines, 9(4):331-365.

Prototyping FlexGP for the Cloud 21

Pagie, L. and Hogeweg, P. (1997). Evolutionary Consequences of Coe-
volving Targets. Fvolutionary Computation, 5:401-418.

Sherry, Dylan, Veeramachaneni, Kalyan, McDermott, James, and O’Reilly,
Una-May (2011). Flex-GP: Genetic programming on the cloud. In Di
Chio, Cecilia et al., editors, Applications of Fvolutionary Comput-
ing, FvoApplications 2012: EvoCOMNET, FvoCOMPLEX, FEvoFIN,
EvoGAMES, EvoHOT, EvolASP, EvoNUM, EvoPAR, EvoRISK, EvoS-
TIM, EvoSTOC, volume 7248 of LNCS, pages 477-486, Malaga, Spain.
Springer Verlag.

Tomassini, Marco (2005). Spatially structured evolutionary algorithms.
Springer.

