
The idea to mimic the principles of 
Darwinian evolution in computing 
has been around at least since the 
1950s, so long, in fact, that it has 

grown into the field called evolutionary 
computing (EC). In this tutorial, we’ll learn 
the basic principles of EC and its offspring, 
genetic programming (GP), on a “toy 
problem” of symbolic regression. We’ll also 
learn how to use OpenBeagle, a generic 
C++ object-oriented EC framework.

The Fittest Program Survives
EC can be regarded as a very general kind 
of optimization, where the solution to a 
given problem is selected from an evolving 
population of candidate solutions, or 
individuals, represented by their genomes. 
The selection is based on certain fitness 
criteria, which can just be a function 
operating on genomes. 

The computation starts by choosing a 
random bunch of individuals—generation 
zero. Generation n+1 is the result of 
applying evolution operators to the 
individuals of generation n. The most 
used operators are mutation (random 
modification of a single individual’s 
genome) and crossover (random mixing 
of genomes of two individuals). The 
individuals that produce “offspring” are 
chosen based on their fitness. The process 
ends when a certain stopping criteria 
are met (for example, some predefined 
number of generations).

GP takes these ideas one step further 
by performing the search in the space 
of programs (algorithms). A program’s 
genome is usually represented as a tree of 
primitives, such as variables, arithmetical 
and logical operators, loops, conditionals, 
function calls, and so forth.

The very nature of EC and GP enables 
one to tackle problems without having 
the slightest idea how the solution should 
look. Indeed, this paradigm has been 
successfully applied in a broad range of 
applications, producing results that have 
even been patented as new inventions. 
On the other hand, success is never 
guaranteed.

Example
Let’s demonstrate the principles outlined 
above on the classical “toy example” of 
symbolic regression. Among the several 
genetic programming tools available, 
I have chosen to use the OpenBeagle 
framework. Written in standard C++, 
OpenBeagle supports virtually any 
kind of EC through subclassing and 
polymorphism. Combined with portability 
and speed of C++, this approach is a 
good choice for many projects. It’s also 
beautifully designed and a real pleasure 
to use. There are detailed instructions for 
downloading and installing the package at 
http://beagle.gel.ulaval.ca. The example 
below was largely taken from OpenBeagle 
documentation.

Let’s say we are given some one-
dimensional data samples  and 
we would like to find a formula  
y = f (x) which best fits the data. Suppose we 
decide to constrain the formula to consist 
only of arithmetic operations: addition, 
subtraction, multiplication, division. 
Then our genome trees will consist of 
these four primitives as intermediate 
nodes, together with the leaf node “x” 
(the function’s argument). In OpenBeagle, 
we need to define an object of the type 
!"##"$%&%'%()*)'. See Listing 1a.

The !"##*+,')& object is a kind of 
container holding the information about 
the evolutionary system. It contains 
objects of type -)./0)##12&324)4'. 
(Note that all the framework objects have 
reference counting, and so the references 
are in fact smart pointers.) We define a 
component to hold our initial data, which 
will be used later on. See Listing1b. 
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Listing 1: (a) First, we define the primitive set in OpenBeagle. (b) Next, we define a 
component to hold the initial data. 

class InitialData : public Component {

public:

    std::vector<Double> X, Y;

    InitialData (unsigned int npoints) : Component(“InitialData”)

    {

        srand((unsigned)time(0));

        for(unsigned int i=0; i<npoints; i++)

        {

            X.push_back(-1.0+2.0*(double)rand()/RAND_MAX);

            Y.push_back(-1.0-sin(2.0*X[i].getWrappedValue()));

        }

    }

};
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GP::System::Handle create_system() {

    GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;

    lSet->insert(new GP::Add);

    lSet->insert(new GP::Subtract);

    lSet->insert(new GP::Multiply);

    lSet->insert(new GP::Divide);

    lSet->insert(new GP::TokenT<Double>(“x”));

    return new GP::System(lSet);

}
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I have used the formula  
for this example. So in fact we will be 
approximating a trigonometric function by 
a rational one.

The next step is to define the fitness 
function which measures how close an 
individual I is to a perfect match. In our 
case, a good choice will be to calculate the 
deviation

and then set the fitness to be the 
normalized value (the algorithm 
maximizes the fitness, so a perfect match 
would have the maximal fitness)

In OpenBeagle, the fitness calculation 
is encapsulated by objects of type 
!"##5(.06.'%2473. Ours would be 
coded as shown in Listing 2a.

Having defined these essential 
components of a GP system, now we 
only need to combine everything. There 
are two additional objects we need to be 
familiar with. The first is !"##8%(.$%6&, 
which encapsulates all the individuals of 
all the generations throughout the whole 
evolution process, as well as statistical 
data. For example, it has a member of 
type -)./0)##9.007:;.&) that holds 
the best individual. Finally, the entire 
process is controlled by a !"##5(20()$. 
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Listing 2: Sample code is provided for (a) the evaluation operator and (b) the main program in OpenBeagle.

Figure 1: The  best individual is shown, including: (a) its complete genotype and (b) how well it approximates the initial data.

class SymbRegEvalOp : public GP::EvaluationOp
{
public:
    SymbRegEvalOp() {  }
    virtual Fitness::Handle evaluate(
        GP::Individual& inIndividual, GP::Context& ioContext)
    {
        InitialData &id = dynamic_cast<InitialData&>(
            *(ioContext.getSystem().getComponent(“InitialData”)));
        std::vector<Double> X = id.X;
        std::vector<Double> Y = id.Y;
        double lQErr = 0.; // square error
        for(unsigned int i=0; i<X.size(); i++)
        {
            setValue(“x”,X[i],ioContext);
            Double lResult;
            inIndividual.run(lResult,ioContext);
            double lError = Y[i]-lResult;
            lQErr += (lError*lError);
        }
        return new FitnessSimple(1.0/
            (std::sqrt(lQErr/X.size())+1.0));
    }
};
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#include <cmath>
#include <vector>
#include <beagle/GP.hpp>

using namespace Beagle;

int main(int argc, char *argv[]) {
    GP::System::Handle lSystem = create_system();
    InitialData::Handle id = new InitialData(20);
    lSystem->addComponent(id);

    SymbRegEvalOp::Handle lEvalOp = new SymbRegEvalOp;

    GP::Evolver::Handle lEvolver = new GP::Evolver(lEvalOp);
    GP::Vivarium::Handle lVivarium = new GP::Vivarium;

    lEvolver->initialize(lSystem,argc,argv);
    lEvolver->evolve(lVivarium);
    return 0;
}
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It is responsible for selecting the 
initial population and applying the 
evolution operators, evaluating the 
individuals at each generation, until a 
termination criteria is met. The default 
implementation contains a pre-
defined set of mutation and crossover 
operators. The main() function is shown 
in Listing 2b.

Compile and run the program. Two 
XML files will be produced: !"#$%"&
%'$ and !"#$%"&'!(&$). Exploring 
these files is highly recommended, 
as it provides many insights into the 
architecture and the inner workings of 
the framework.

Everything in OpenBeagle can be 
customized and extended. With almost 
no effort, I have added additional 
primitives to the system and extended 
the *+,-,#%.#-# component to write 
the X and Y arrays to the log. Then I used 
this information to visually explore the 
best individual of a run, as depicted in 
Figures 1a and 1b.

All the source code used in this 
example, along with instructions, can be 
downloaded from http://xrds.acm.org/
code.cfm. Again, there’s much more to 
OpenBeagle than presented here, so I 
encourage you to investigate!

Professor John Koza: 
a pioneer of modern GP 
www.genetic-programming.com/
johnkoza.html

Essentials of Metaheuristics: 
free book 
http://cs.gmu.edu/~sean/book/
metaheuristics

Genetic-Programming.org 
www.genetic-programming.org 

FRAMEWORKS 
PyEvolve
http://pyevolve.sourceforge.net

ECJ (Java)
http://cs.gmu.edu/~eclab/projects/ecj/ 

Gaul
http://gaul.sourceforge.net
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RESOURCES & FURTHER READING
Wikipedia
Evolutionary computing entry 
Genetic programming entry 

ACM Special Interest Group 
on Genetic and Evolutionary 
Computation
www.sigevo.org

ACM SIG EVO Newsletter
www.sigevolution.org

A Field Guide to Genetic Programming
http://dces.essex.ac.uk/staff/rpoli/ 
gp-field-guide
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