
The idea to mimic the principles of
Darwinian evolution in computing
has been around at least since the
1950s, so long, in fact, that it has

grown into the field called evolutionary
computing (EC). In this tutorial, we’ll learn
the basic principles of EC and its offspring,
genetic programming (GP), on a “toy
problem” of symbolic regression. We’ll also
learn how to use OpenBeagle, a generic
C++ object-oriented EC framework.

The Fittest Program Survives
EC can be regarded as a very general kind
of optimization, where the solution to a
given problem is selected from an evolving
population of candidate solutions, or
individuals, represented by their genomes.
The selection is based on certain fitness
criteria, which can just be a function
operating on genomes.

The computation starts by choosing a
random bunch of individuals—generation
zero. Generation n+1 is the result of
applying evolution operators to the
individuals of generation n. The most
used operators are mutation (random
modification of a single individual’s
genome) and crossover (random mixing
of genomes of two individuals). The
individuals that produce “offspring” are
chosen based on their fitness. The process
ends when a certain stopping criteria
are met (for example, some predefined
number of generations).

GP takes these ideas one step further
by performing the search in the space
of programs (algorithms). A program’s
genome is usually represented as a tree of
primitives, such as variables, arithmetical
and logical operators, loops, conditionals,
function calls, and so forth.

The very nature of EC and GP enables
one to tackle problems without having
the slightest idea how the solution should
look. Indeed, this paradigm has been
successfully applied in a broad range of
applications, producing results that have
even been patented as new inventions.
On the other hand, success is never
guaranteed.

Example
Let’s demonstrate the principles outlined
above on the classical “toy example” of
symbolic regression. Among the several
genetic programming tools available,
I have chosen to use the OpenBeagle
framework. Written in standard C++,
OpenBeagle supports virtually any
kind of EC through subclassing and
polymorphism. Combined with portability
and speed of C++, this approach is a
good choice for many projects. It’s also
beautifully designed and a real pleasure
to use. There are detailed instructions for
downloading and installing the package at
http://beagle.gel.ulaval.ca. The example
below was largely taken from OpenBeagle
documentation.

Let’s say we are given some one-
dimensional data samples and
we would like to find a formula
y = f (x) which best fits the data. Suppose we
decide to constrain the formula to consist
only of arithmetic operations: addition,
subtraction, multiplication, division.
Then our genome trees will consist of
these four primitives as intermediate
nodes, together with the leaf node “x”
(the function’s argument). In OpenBeagle,
we need to define an object of the type
!"##"$%&%'%()*)'. See Listing 1a.

The !"##*+,')& object is a kind of
container holding the information about
the evolutionary system. It contains
objects of type -)./0)##12&324)4'.
(Note that all the framework objects have
reference counting, and so the references
are in fact smart pointers.) We define a
component to hold our initial data, which
will be used later on. See Listing1b.

XRDS46

Hello World

Hands-On Introduction to Genetic
Programming by Dmitry Batenkov

HELLO WORLD

Listing 1: (a) First, we define the primitive set in OpenBeagle. (b) Next, we define a
component to hold the initial data.

class InitialData : public Component {

public:

 std::vector<Double> X, Y;

 InitialData (unsigned int npoints) : Component(“InitialData”)

 {

 srand((unsigned)time(0));

 for(unsigned int i=0; i<npoints; i++)

 {

 X.push_back(-1.0+2.0*(double)rand()/RAND_MAX);

 Y.push_back(-1.0-sin(2.0*X[i].getWrappedValue()));

 }

 }

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

GP::System::Handle create_system() {

 GP::PrimitiveSet::Handle lSet = new GP::PrimitiveSet;

 lSet->insert(new GP::Add);

 lSet->insert(new GP::Subtract);

 lSet->insert(new GP::Multiply);

 lSet->insert(new GP::Divide);

 lSet->insert(new GP::TokenT<Double>(“x”));

 return new GP::System(lSet);

}

b

a 1

2

3

4

5

6

7

8

9

I have used the formula
for this example. So in fact we will be
approximating a trigonometric function by
a rational one.

The next step is to define the fitness
function which measures how close an
individual I is to a perfect match. In our
case, a good choice will be to calculate the
deviation

and then set the fitness to be the
normalized value (the algorithm
maximizes the fitness, so a perfect match
would have the maximal fitness)

In OpenBeagle, the fitness calculation
is encapsulated by objects of type
!"##5(.06.'%2473. Ours would be
coded as shown in Listing 2a.

Having defined these essential
components of a GP system, now we
only need to combine everything. There
are two additional objects we need to be
familiar with. The first is !"##8%(.$%6&,
which encapsulates all the individuals of
all the generations throughout the whole
evolution process, as well as statistical
data. For example, it has a member of
type -)./0)##9.007:;.&) that holds
the best individual. Finally, the entire
process is controlled by a !"##5(20()$.

XRDS 47

Listing 2: Sample code is provided for (a) the evaluation operator and (b) the main program in OpenBeagle.

Figure 1: The best individual is shown, including: (a) its complete genotype and (b) how well it approximates the initial data.

class SymbRegEvalOp : public GP::EvaluationOp
{
public:
 SymbRegEvalOp() { }
 virtual Fitness::Handle evaluate(
 GP::Individual& inIndividual, GP::Context& ioContext)
 {
 InitialData &id = dynamic_cast<InitialData&>(
 *(ioContext.getSystem().getComponent(“InitialData”)));
 std::vector<Double> X = id.X;
 std::vector<Double> Y = id.Y;
 double lQErr = 0.; // square error
 for(unsigned int i=0; i<X.size(); i++)
 {
 setValue(“x”,X[i],ioContext);
 Double lResult;
 inIndividual.run(lResult,ioContext);
 double lError = Y[i]-lResult;
 lQErr += (lError*lError);
 }
 return new FitnessSimple(1.0/
 (std::sqrt(lQErr/X.size())+1.0));
 }
};

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

#include <cmath>
#include <vector>
#include <beagle/GP.hpp>

using namespace Beagle;

int main(int argc, char *argv[]) {
 GP::System::Handle lSystem = create_system();
 InitialData::Handle id = new InitialData(20);
 lSystem->addComponent(id);

 SymbRegEvalOp::Handle lEvalOp = new SymbRegEvalOp;

 GP::Evolver::Handle lEvolver = new GP::Evolver(lEvalOp);
 GP::Vivarium::Handle lVivarium = new GP::Vivarium;

 lEvolver->initialize(lSystem,argc,argv);
 lEvolver->evolve(lVivarium);
 return 0;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

ba

{CONTINUED ON P.51}

It is responsible for selecting the
initial population and applying the
evolution operators, evaluating the
individuals at each generation, until a
termination criteria is met. The default
implementation contains a pre-
defined set of mutation and crossover
operators. The main() function is shown
in Listing 2b.

Compile and run the program. Two
XML files will be produced: !"#$%"&
%'$ and !"#$%"&'!(&$). Exploring
these files is highly recommended,
as it provides many insights into the
architecture and the inner workings of
the framework.

Everything in OpenBeagle can be
customized and extended. With almost
no effort, I have added additional
primitives to the system and extended
the *+,-,#%.#-# component to write
the X and Y arrays to the log. Then I used
this information to visually explore the
best individual of a run, as depicted in
Figures 1a and 1b.

All the source code used in this
example, along with instructions, can be
downloaded from http://xrds.acm.org/
code.cfm. Again, there’s much more to
OpenBeagle than presented here, so I
encourage you to investigate!

Professor John Koza:
a pioneer of modern GP
www.genetic-programming.com/
johnkoza.html

Essentials of Metaheuristics:
free book
http://cs.gmu.edu/~sean/book/
metaheuristics

Genetic-Programming.org
www.genetic-programming.org

FRAMEWORKS
PyEvolve
http://pyevolve.sourceforge.net

ECJ (Java)
http://cs.gmu.edu/~eclab/projects/ecj/

Gaul
http://gaul.sourceforge.net

Hello World

{CONTINUED FROM P.47}

RESOURCES & FURTHER READING
Wikipedia
Evolutionary computing entry
Genetic programming entry

ACM Special Interest Group
on Genetic and Evolutionary
Computation
www.sigevo.org

ACM SIG EVO Newsletter
www.sigevolution.org

A Field Guide to Genetic Programming
http://dces.essex.ac.uk/staff/rpoli/
gp-field-guide

XRDS 51

Sandia is an equal opportunity employer. We maintain a drug-free workplace.

Learn more >> www.sandia.gov

Sandia is a top science and engineering laboratory for national security and technology innovation.
Here you’ll ! nd rewarding career opportunities for the Bachelor’s, Master’s, and Ph.D. levels in:
! Electrical Engineering
! Mechanical Engineering
! Computer Science
! Computer Engineering
! Systems Engineering

! Mathematics, Information Systems
! Chemistry
! Physics
! Materials Science
! Business Applications

Imagine
your career

here.

We also offer exciting internship, co-op, post-doctoral and
graduate fellowship programs.

	p48-49
	p53

