Hello World

HELLO WORLD

Hands-0n Introduction to Genetic

Programming

he idea to mimic the principles of

Darwinian evolution in computing

has been around at least since the

1950s, so long, in fact, that it has
grown into the field called evolutionary
computing (EC). In this tutorial, we'll learn
the basic principles of EC and its offspring,
genetic programming (GP), on a “toy
problem” of symboalic regression. We'll also
learn how to use OpenBeagle, a generic
C++ object-oriented EC framework.

The Fittest Program Survives

EC can be regarded as a very general kind
of optimization, where the solution to a
given problem is selected from an evolving
population of candidate solutions, or
individuals, represented by their genomes.
The selection is based on certain fitness
criteria, which can just be a function
operating on genomes.

The computation starts by choosing a
random bunch of individuals—generation
zero. Generation n+1 is the result of
applying evolution operatorsto the
individuals of generation n. The most
used operators are mutation (random
modification of a single individual’s
genome) and crassover [random mixing
of genomes of two individuals]. The
individuals that produce “offspring” are
chosen based on their fitness. The process
ends when a certain stopping criteria
are met (for example, some predefined
number of generations).

GP takes these ideas one step further
by performing the search in the space
of programs (algorithms). A program'’s
genome is usually represented as a tree of
primitives, such as variables, arithmetical
and logical operators, loops, conditionals,
function calls, and so forth.

1
Listing 1: (a] First, we define the primitive set in OpenBeagle. (b] Next, we define a

component to hold the initial data.

GP::System::Handle create_system() {

ISet->insert(new GP::Add);

ISet->insert(new GP::Subtract);
ISet->insert(new GP::Divide);

1

2

3

4

5| ISet->insert(new GP:Multiply);
6

7

8 return new GP::System(ISet);
9

}

GP::PrimitiveSet::Handle ISet = new GP::PrimitiveSet;

ISet->insert(new GP::TokenT<Double>(“x"));

b 1| class InitialData : public Component {
2 | public:
3 std::vector<Double> X, Y;
4
5 InitialData (unsigned int npoints) : Component(“InitialData”)
6| {
7 srand((unsigned)time(0));
8 for(unsigned int i=0; i<npoints; i++)
9 {
10 X.push_back(-1.0+2.0*(double)rand()/RAND_MAX);
11 Y.push_back(-1.0-sin(2.0*X[i].getWrappedValue()));
12 }
13|)
14| b

46

The very nature of EC and GP enables
one to tackle problems without having
the slightest idea how the solution should
look. Indeed, this paradigm has been
successfully applied in a broad range of
applications, producing results that have
even been patented as new inventions.
On the other hand, success is never
guaranteed.

Example

Let’s demonstrate the principles outlined
above on the classical “toy example” of
symbolic regression. Amaong the several
genetic programming tools available,

I have chosen to use the OpenBeagle
framework. Written in standard C++,
OpenBeagle supports virtually any

kind of EC through subclassing and
polymorphism. Combined with portahility
and speed of C++, this approach is a

good choice for many projects. It’s also
beautifully designed and a real pleasure
to use. There are detailed instructions for
downloading and installing the package at
http://beagle.gel.ulaval.ca. The example
below was largely taken from OpenBeagle
documentation.

Let’s say we are given some one-
dimensional data samples {{z w12, and
we would like to find a formula
y=feo Which best fits the data. Suppose we
decide to constrain the formula to consist
only of arithmetic operations: addition,
subtraction, multiplication, division.

Then our genome trees will consist of
these four primitives as intermediate
nodes, together with the leaf node “x”
(the function’s argument). In OpenBeagle,
we need to define an ohject of the type
GP::PrimitiveSet. See Listing 1a.

The GP::Systemohjectis a kind of
container holding the information about
the evolutionary system. It contains
objects of type Beagle::Component.
(Note that all the framework objects have
reference counting, and so the references
are in fact smart pointers.) We define a
component to hold our initial data, which
will be used later on. See Listinglh.

XRDS « FALL 2010 - VOL.17 -+ NO.1

Listing 2: Sample code is provided for (a) the evaluation operator and (b) the main program in OpenBeagle.

b

O 0 N O U R W N =

I e S
S LV ® N DU AR W N RO

#include <cmath>
#include <vector>
#include <beagle/GP.hpp>

using namespace Beagle;

int main(int argce, char *argv[]) {
GP:System::Handle I1System = create_system();
InitialData::Handle id = new InitialData(20);
ISystem->addComponent(id);

SymbRegEvalOp::Handle IEvalOp = new SymbRegEvalOp;

GP:Evolver::Handle 1Evolver = new GP::Evolver(IEvalOp);
GP::Vivarium::Handle 1Vivarium = new GP::Vivarium;

IEvolver->initialize(ISystem,argc,argv);
IEvolver->evolve(IVivarium);
return 0;

a 1 | class SymbRegEvalOp : public GP::EvaluationOp

2| A
3 | public:
4 SymbRegEvalOp() { }
5 virtual Fitness::Handle evaluate(
6 GP::Individual& inIndividual, GP::Context& ioContext)
7] A
8 InitialData &id = dynamic_cast<InitialData&>(
9 *(ioContext.getSystem().getComponent(“InitialData”)));

10 std::vector<Double> X = id.X;

11 std::vector<Double> Y =id.Y;

12 double IQErr = 0.; // square error

13 for(unsigned int i=0; i<X.size(); i++)

14 {

15 setValue(“x”,X[i],ioContext);

16 Double IResult;

17 inIndividual.run(IResult,ioContext);

18 double IError = Y[i]-IResult;

19 IQErr += (IError*lError);

20 }

21 return new FitnessSimple(1.0/

22 (std::sqrt(IQErr/X.size())+1.0));

23 }

24 | }

| have used the formula w = —1—sin (2]

for this example. Soin fact we will be
approximating a trigonometric function by
arational one.

The next step is to define the fitness
function which measures how close an
individual /is to a perfect match. In our
case, a good choice will be to calculate the

deviation
N

D(D) =Y (yi — I (2:))?

i=1

and then set the fitness to be the
normalized value (the algorithm
maximizes the fitness, so a perfect match
would have the maximal fitness)

F(l) = :

e

In OpenBeagle, the fitness calculation
is encapsulated by objects of type
GP::EvaluationOp. Ours would be
coded as shown in Listing 2a.

Having defined these essential
components of a GP system, now we
only need to combine everything. There
are two additional objects we need to be
familiar with. The firstis GP::Vivarium,
which encapsulates all the individuals of
all the generations throughout the whole
evolution process, as well as statistical
data. For example, it has a member of
type Beagle::HallOfFame that holds
the best individual. Finally, the entire
process is controlled by a GP: :Evolver.
{CONTINUED ON P.51}

Figure 1: The bestindividual is shown, including: (a) its complete genotype and (b) how well it approximates the initial data.

XRDS : FALL 2010 + VOL.17 - NO.1

Fliness = 0534562
25 T
|f¢llﬁWHtu¥)-|'¢l'[*"-‘i]+ﬂl =
InEial data E
it S~ F R
e
"’."X
15 F 4 - 4
d
K
1k 4
e
//
ast L 4
w f-
(N _q-—":-’j -
45 o - e
-1 45 0.5 1
47

Hello World

{CONTINUED FROM P.47}

Itis responsible for selecting the
initial population and applying the
evolution operators, evaluating the
individuals at each generation, until a
termination criteria is met. The default
implementation contains a pre-
defined set of mutation and crossover
operators. The main(] function is shown
in Listing 2b.

Compile and run the program. Two
XML files will be produced: beagle.
log and beagle.obm.gz. Exploring
these files is highly recommended,
as it provides many insights into the
architecture and the inner workings of
the framework.

Everything in OpenBeagle can be
customized and extended. With almost
no effort, | have added additional
primitives to the system and extended
the InitialData component to write
the X and Y arrays to the log. Then | used
this information to visually explore the
bestindividual of a run, as depicted in
Figures 1a and 1b.

All the source code used in this
example, along with instructions, can be
downloaded from http://xrds.acm.org/
code.cfm. Again, there’s much more to
OpenBeagle than presented here, so |
encourage you to investigate!

|
RESOURCES & FURTHER READING
Wikipedia

Evolutionary computing entry

Genetic programming entry

ACM Special Interest Group
on Genetic and Evolutionary
Computation
WWW.sigevo.org

ACM SIG EVO Newsletter
www.sigevolution.org

AField Guide to Genetic Programming
http://dces.essex.ac.uk/staff/rpoli/
gp-field-guide

Professor John Koza:

a pioneer of modern GP
www.genetic-programming.com/
johnkoza.html

Essentials of Metaheuristics:
free book
http://cs.gmu.edu/“sean/book/
metaheuristics

Genetic-Programming.org
www.genetic-programming.org

1
FRAMEWORKS

PyEvolve
http://pyevolve.sourceforge.net

EC]J (Java)
http://cs.gmu.edu/ eclab/projects/ecj/

Gaul
http://gaul.sourceforge.net

Imagine
your career
here.

@ Sandia National Laboratories

Operated By
LOCKHEED MARTI”Z$

Sandia is an equal opportunity employer. We maintain a drug-free workplace.

XRDS : FALL 2010 - VOL.17 - NO.1

Sandia is a top science and engineering laboratory for national security and technology innovation.
Here you'll find rewarding career opportunities for the Bachelor's, Master’s, and Ph.D. levels in:

= Mathematics, Information Systems
= Chemistry

= Physics

= Materials Science

= Business Applications

= Electrical Engineering

= Mechanical Engineering
= Computer Science

= Computer Engineering
= Systems Engineering

We also offer exciting internship, co-op, post-doctoral and
graduate fellowship programs.

Tl By
(P

/ Dty Cavers. |

Learn more >

51

	p48-49
	p53

