An Investigation of Local Patterns For Estimation of
Distribution Genetic Programming

Erik Hemberg
School of Computer Science & Informatics
University College Dublin

erik.nemberg@ucd.ie
Constantin Berzan

Department of Computer Science

Tufts University
cberzan@gmail.com

ABSTRACT

We present an improved estimation of distribution (EDA)
genetic programming (GP) algorithm which does not rely
upon a prototype tree. Instead of using a prototype tree,
Operator-Free Genetic Programming learns the distribution
of ancestor node chains, “n-grams”; in a fit fraction of each
generation’s population. It then uses this information, via
sampling, to create trees for the next generation. Ancestral
n-grams are used because an analysis of a GP run conducted
by learning graphical models for each generation indicated
their emergence as substructures of conditional dependence.
We are able to show that our algorithm, without an opera-
tor and a prototype tree, achieves, on average, performance
close to conventional tree based crossover GP on the problem
we study. Our approach sets a direction for pattern-based
EDA GP which offers better tractability and improvements
over GP with operators or EDAs using prototype trees.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms
Algorithms

Keywords

genetic programming, estimation of distribution, represen-
tation

1. INTRODUCTION

In genetic programming (GP), the crossover and muta-
tion operators tend to be highly destructive. Not only are

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCQ' 12 Companion, July 7-11, 2012, Philadelphia, PA, USA.
Copyright 2012 ACM 978-1-4503-1178-6/12/07 ...$10.00.

Kalyan Veeramachaneni

kalyan@csail.mit.edu

James McDermott
MIT CSAIL

jmmcd@csail.mit.edu

MIT CSAIL

Una-May O’'Reilly
MIT CSAIL
unamay@csail.mit.edu

newly-produced individuals often worse than their predeces-
sors, as in many other forms of evolutionary computation
(EC); they are also often semantically dissimilar to their
predecessors to a high degree [7]. This is not surprising.
Tree shape correlates with semantics at least weakly. Likely,
more influentially, our intuition formed when programming
“by hand” suggests that executable structures are highly con-
text dependent. Part of a program pasted into a different
context will, even if syntactically correct, result in very dif-
ferent behaviour, e.g. it makes a great difference whether
a subtree is executed as the first or the second child of a
non-commutative operator like division. GP crossover and
mutation operators ensure syntactic correctness but make
no attempt at semantic compatibility. (There are a few ex-
ceptions, such as [8]).

A very different approach to passing on useful content and
structure is the estimation of distribution algorithm (EDA).
Crossover and mutation are done away with, and replaced
with statistical distributions which are estimated and then
sampled from, from one generation to the next, from a high-
fitness fraction of the population. An EDA’s learning is ex-
plicit, in the distribution, as opposed to implicit in the pop-
ulation. EDAs have enjoyed significant success in numerical
problems [10] and have also been used in GP (see Sect. 2).

In the case of optimization problems with binary or dis-
crete search spaces, the decision variables {dhdz..dn} are
mapped to random variables {Y1,Y2,...Y,} to estimate a
multivariate distribution P(Y1,Y2,...Y,} with the discrete
range of each decision variable mapping to support for its
random variable. A Bayesian network with binomial or
multinomial distributions at each node can be learned from
a fit fraction of a population. A Bayesian network has
both structure and parameters. A correlation or dependency
structure can be imposed on the network or learned every
generation. With adoption of a variety of estimation tech-
niques from statistical machine learning EDAs such as the
Bayesian Optimization Algorithm (BOA) have enjoyed sig-
nificant success in numerical problems [10].

Exploiting this framework for genetic programming (GP)
is less straightforward than with continuous or discrete opti-
mization. This is because the representation or the number
of nodes is not fixed. Additionally, GP’s representation has
no decision variables, per se. In some sense GP is looking
for the “right” place to put a function or terminal and it
can use a function or terminal multiple times in almost any

O. ©

©O0 O0OOO OO ©O ©0

GP Trees
P(Y1)

(Y, Y¥s,Yy)

P(Y5]|Y,)

Graphical
Model

N

@ 1lala[2]3]5]9
@lj‘> 6l9(al7]9]6

IS
o
w
©
IS
o
|

Discrete Data

V

Bayesian Network
Structure+Parameter
Learning

Figure 1: Converting a GP population into a statistical distribution. The nodes of the trees are the multiple
random variables. The tree is parsed to extract the discrete choices made for each random variable. This
multivariate dataset is then passed through structure and parameter learning routines to achieve a graphical

model representation of the trees

place (subject to syntax restrictions). Therefore, in order to
exploit the same techniques developed for EDA and BOA,
EDA-GP references a so-called prototype tree.

A prototype tree is a single complete n-ary tree (where n
is the maximum arity of the non-terminals). Each node in
the tree is mapped to a random wvariable with its support
corresponding to the discrete values for the choice set it
can take. The choice set of the root is all functions, and
the choice set of the leaves is only terminals. The choice
set of all the nodes except the root and its two children
(for binary tree) includes the value null. This enables an
actual GP tree which could vary in size and structure to
be generated by sampling from a multivariate distribution
P(Y1,Y2,...Y,} defined on the prototype tree. However, it
imposes the constraint that a program tree cannot exceed
the height of the prototype tree. The process of transforming
a population of GP trees into a multivariate distribution is
shown in Figure 1.

A prototype tree large enough to “cover” all the possi-
ble tree sizes for candidate solutions must be used. This
quickly makes the approach intractable, because increasing
the depth of the prototype tree by one level doubles the
number of nodes and hence the number of random variables
whose joint distribution needs to be estimated. With the
increased number of random variables estimating the struc-
ture and parameters for the multivariate distribution be-
comes computationally expensive. Additionally, the support
of each random variable is large due to the typical number of
functions and terminal sets in a GP problem. Thus the num-
ber of samples required for estimation also increases. The in-
tractability has been circumvented by imposing constraints
on the correlation structure of the multivariate distribution.
We provide more background on different methods devel-
oped for EDA-GP in Section 2.

In this paper we are interested in overcoming the con-
straints and the computational expense induced by the pro-
totype tree based EDA-GP by developing an alternative
probabilistic model. It will reduce the computational ex-
pense since it does not rely upon estimating a (high di-
mensional, large support) distribution related to a proto-
type tree. Like conventional EDA-GP, OFGP iteratively es-

timates a distribution from a fit fraction of a generation then
samples from it. However OFGP differs from convention by:

1. estimating the distribution related to a pattern that
can occur throughout a tree, rather than a distribution
where the random variables are related to the nodes of
a (positionally static) prototype tree, and

2. referencing the pattern distribution with a tree cre-
ation algorithm/iterative sampling algorithm which gen-
erates trees which are biased by the distribution

We discuss how we determined the pattern OFGP uses in
Section 3. Rather than relying upon intuition, we took a
statistical approach to determine it. We learn the bayesian
network for the population of trees from a standard GP run.
We impose minimal constraints on the structure learning
algorithm and are able to generate more insightful structure.
What we learn from the analyses of these structures derived
for population of a GP run, guides us in our definition of
the local patterns whose distribution we will estimate and
recursively sample from to generate trees.

We provide a detailed description of OFGP in Section 4
where we present an example of a pattern, explain how its
distribution is learned and how it is used to generate the
next iteration’s trees.

In Sect. 5 we present the results achieved using our ap-
proach and evaluate OFGP in comparison to GP. We con-
clude and discuss future work in Sect. 6.

2. BACKGROUND

EDA-GP can be categorized based on whether or not an
algorithm uses a prototype tree [14]. There are few ap-
proaches that do not use prototype tree. First is a Grammar-
based method. A probability is attached to each production
in each rule in a context-free grammar, so that the likeli-
hood of achieving any given derivation is controlled. This
area has been explored by Shan [15]. Additionally, Genera-
tive approaches have also been explored, e.g. [5, 16]. These
approaches are based on different representations than the
tree based representation we are interested in.

\ \

P(Y23| Y5, Y10,Y 11, Y20, Y21, Y22)

Nodes ordered in breadth first search manner

- s
—————
~~~~~
aaaaa
e S

'@’ | : @/ I .a

7N AN ;N 7N
NN ;N 2NN ’

\
\ -\ / \ 7 \ 7 \ ’ \
( ) ‘ @ \. ‘I \. @ @ @ \.

P(Y16| Y1, Y2, Y3, Ya, Y5, Y6, Y7, Y& Yo, Y10, Y11, Y12, Y13, Y14, Yis)

Depth first search based full dependence model

Figure 2: Dependencies modeled in different prototype tree based EDA-GP. The dependency structure for
the last node is presented. On the right hand side the possible dependencies are shown as incoming arrows
into the last node. This is model used in POLE. On the right hand side a dependency model is shown if a
depth first search dependency model is used, i.e., the node depends on all the nodes preceding it.

Finally, a Linear GP program consists of a list of instruc-
tions for a register-based virtual machine. It does not use
a tree representation however it has similarity with OFGP
because it shares the use of n-grams. In Poli and McPhee
[11] an n-gram approach is used where the length of pro-
grams was modeled separately, and updated according to the
lengths of highly fit programs, alongside the n-gram model.

Prototype tree based methods have to estimate the joint
multinomial multivariate distribution P(Y1...Yx~). Two de-
cisions guide the estimation of this distribution. First is the
choice of its dependency structure: for a given random vari-
able Y;, what other random variable ’s could it depend upon.
This decision often written as P(Y;...Yn) = I, (Yi|[Ys])
where [YS] is a set of random variables on which Y; depends.
Second is the approach used for estimating the parameters
of the multinomial distribution for each i, 8; +— P(Y;|[Y5]).

Multiple techniques designed can be distinguished based
upon the dependencies incorporated in their probabilistic
model, i.e. their model structure. The simplest of all is

Probabilistic Incremental Program Evolution (PIPE) by Salus-

towicz and Schmidhuber [12]. Every random variable is as-
sumed to be independent, hence the model simply decom-
poses into: P(Y1,Ys,..Yn) = HZI\LI P(Y;). To assure a tree
created by sampling the PIPE distribution is not too big,
the probabilities of functions at a random variable deeper
in the prototype tree are intentionally lowered.

The Extended Compact Genetic Programming (eCGP)
[13] differs from PIPE in that it allows the probabilistic
model to have dependencies between multiple random vari-
ables, i.e. multivariate interactions between GP nodes. The
algorithm casts, finding optimal structure, as an optimiza-
tion problem and uses minimum description length (MDL)
as a cost function. This probabilistic model is called Marginal
Product Model.

Estimation of Distribution Programming (EDP) by Yanai
and Iba [17] learns the parameters for the Bayesian network
that represents the multivariate distribution. The structure
of the Bayesian network however, is fixed with parent node

dependence, i.e., P(Y1,Ya..Yn) = P(Y1) [T, P(Yi|Y;*7™).

Frequencies of samples are reweighted according to fitness
and the conditional probability tables at each node are learnt
using these weighted counts. Samples from the network are
drawn to generate new individuals.

In Program Optimization with Linkage Estimation (POLE)(3,

4], again a Bayesian network is used to represent the multi-
variate distribution. However, in this approach the bayesian
network structure is learnt every generation from the promis-
ing individuals. A heuristic structure learning algorithm
called K2 is used in which an additional constraint is placed
such that each node can only depend on one another node
among a set of choices available. These choices are de-
termined for every node as follows. For any node i, let
U(Yi, Rp) be the node positioned at Rp levels above Y;. Di-
rected dependencies are allowed between Y; and nodes that
belong to the subtree rooted at U(Y;, Rp) and nodes whose
indices are smaller than i. Nodes are ordered in breadth-
first traversal. Figure 2(left) shows the choices of parents for
the node Y23 as per the POLE algorithm.This allows condi-
tional dependence among left-hand uncles, siblings, parents
and grandparents only. POLE’s assumptions of dependency
may seem obvious and intuitive, but there is no confirmation
that they are appropriate.

3. GRAPHICAL MODELS FOR GP POPU-
LATION

The population in standard GP forms an implicit proba-
bility distribution over trees. We want to explicitly model
this distribution, and examine the dependency structure that
emerges between nodes in the prototype tree. Our modeling
tool of choice is the Bayesian network. A Bayesian network
B = (G,0) is a probabilistic graphical model that represents
a joint probability distribution over a set of random vari-
ables Y1,...,Y,. The Bayesian network representation has
two components. A directed acyclic graph (DAG) G encodes
independence relations between variables. Each variable is
a node in this graph. A set of local probability models 6
defines the conditional probability distribution of each node
given its parents in the graph. Let Pay denote the parents
of node Y in G. Then the network B encodes the following
probability distribution:

P(Y1,...,Y,) = [[P(Yi|Pay,).

i=1

Consult Koller and Friedman [6] for an introduction to Bayesian

networks. In the rest of this section, we describe how we col-



(c) Gen. 25

(d) Gen. 40

Figure 3: The full graphical models for a GP population at generation 0, 13, 25 and 40

Table 1: Parameters for the GP in ECJ.
Parameter Values
Language Symbolic Regression
Population size | 10,000
Generations 40
Crossover 0.9
Mutation 0.1
Selection Tournament size 7
Initialization Ramped Half-Half
Max Depth 5

lect data from GP, learn Bayesian networks from this data,
and analyze the resulting network structures.

We first run GP on a symbolic-regression problem called
Pagie-2D [9], which is to find an expression matching the
target function 1/(1 +2~*) + 1/(1 4+ y~*) over 676 fitness
cases in [—5,5]%. This seems to be a difficult problem [2],
regardless of the available alphabet or functions. We use
functions F = {+, -, *, %} (where % is protected division)
and terminals 7 ={z, y, 0.1, 1.0}. We use a prototype tree
of depth 5, which has 63 nodes. We run standard GP for
40 generations, using ECJ, with a population size of 10,000.
The GP parameters are summarized in Table 1. After each
generation, we store the entire population to disk. We repeat
the process in 30 independent runs, thus obtaining 1,200
populations to analyze, the average best performance is in
Fig. 7(a).

‘We convert each population into a data set D with one row
for every tree. We represent each tree as a vector of 63 val-
ues, by traversing the prototype tree in depth-first order, and
using null for any missing node. The root can take any value
from the set of functions: Sioot = {+, —, *, %}. The leaves
can take any value from the set of terminals, as well as null:
Sleat = {x,y,0.1,1.0,null}. Intermediary nodes can take
any value from the set of functions and terminals, as well
as nil: Sintermediary = {+, —, *, %, ,y,0.1, 1.0, null}. Thus,
our data set D has 63 random variables Y = {Y1,Y5, ... Ys3}.
Each variable is discrete, and its support is either Sroot, Sleaf,
or Sintermediary- We then learn a Bayesian network for the
distribution P(Y1,Y2...Yss|D), as detailed in the next sec-
tion.

3.1 Learningthe graphical model

Learning Bayesian networks from data has received much

attention in the machine-learning community. The space of
all possible DAGs for n nodes is super-exponential in n, and
finding the optimal network for a given data set is in gen-
eral NP-hard [6]. Learning algorithms for Bayesian networks
loosely fit in two categories: constraint-based approaches,
which use statistical tests to determine whether an edge is
present or not, and search-and-score techniques, which de-
fine a scoring function and then search for a high-scoring
network. The scoring function prefers network structures
that model the data set well, while penalizing structures
that are too complex.

Some search-and-score techniques, such as the K2 algo-
rithm, require that we provide an order for the nodes. An
edge can appear between nodes A and B only if A precedes
B in the order. If we also limit the maximum number of
parents a node can have to a constant k, finding the optimal
network consistent with the given order becomes polynomial
in n, and thus tractable if k is small. Note that providing
a node order means that we are unable to find potentially
better-scoring networks that are inconsistent with that or-
der. In our case, specifying a good node order is not obvious.
For example, if we impose a left-to-right depth-first-search
order, then a node in the tree cannot have an edge from its
right sibling or its right uncle. If we impose a left-to-right
breadth-first-search order, a node in the tree cannot have
an edge from any node to its right (at the same height) or
below it.

We wanted to discover the dependency structure in our
distributions, so we aimed to impose as few restrictions as
possible on the types of networks we could learn. Thus, we
opted for a search-and-score algorithm that did not require
a node order as input [1]. This algorithm uses an evolution-
ary approach to search for good node orders. To evaluate a
given order, the algorithm uses advanced caching techniques
to compute the optimal network consistent with that order.
The only restriction we impose is that a node can have at
most 3 parents. This is reasonable, because data fragmenta-
tion prevents us from learning Bayesian networks with large
parent sets anyway [6].

The complexity of structure learning increases with the
number of nodes (63 in our case) and the size of their sup-
port (at most 9 in our case). This is a fundamental limitation
in applying graphical-model-based estimation techniques in
an EDA-GP with a prototype tree, because a new structure
has to be learned in every iteration. For this reason, ex-
isting EDA-GP algorithms such as POLE place additional



o
o

e
@

o
o

Average number of connections from node (normalized)

“Level 0
Level 1
[xLevel 2
Level 3
Level 4

[[eLevel 5

e
a
T

o
o
T

=3

=)

&
T

Normalized Number of Connections
g o
3 =
T T
4
|

=

o

&
T

:|7 L Raal | Al

=3

=3

™
——

=)

\ L .
20 30 40

Node ID:Depth-First Left-Right

=Y
=3
o
=3

(a) Connection ratios

Ratio

Ratio of classified connections

09r

0.7

<parent

[tsibling (LR}
el WWW g-parent

Figg-parent
ggg-parent

agog-parent
“nephew

Funclassified

e

=+
b R e .

=

o 5 10 15 20 25 30 35 40
Iteration

(b) Connection ratios

Figure 4: Plot 4(a) with error bars of the average number of connections per node. The nodes are ordered in
depth-first left-right. The color shows which level the node is on. Plot of the ratios of connections in different

types in 4(b)

constraints on the types of structures that can be learned,
thus radically reducing the search space.

3.2 Analysesof the graphical models

We ran the standard GP for 40 generations and ran 30
trials of this run. We built Bayesian network for the popu-
lation from each generation and each run. In this section
we present different summaries of the Bayesian networks
achieved from a standard GP run for a Pagie-2D problem.
This is possibly the first attempt to explain evolution statis-
tically. Our hope is to uncover the correlation of statistical
variations with fitness of the population and isolate the sta-
tistical patterns that are being caused by evolution.

In Fig. 3 we show the graphical models for a GP popula-
tion at iteration 0, 13, 25 and 40 (Go, G13,G25,Ga0). The
GMs all have different layouts, but as the iterations progress
the variations in connections between the iterations are de-
creasing. The initial Go does find many connections, and
none from the root. In contrast, G13 has more connections,
especially from the root. The Gas has fewer connections and
not as “long”, i.e. spanning multiple levels. Finally, the Gao
has stabilized in the number of connections, and connection
type.

We also observed that the total number of connections are
changing over the generations. Initially there are around 70
connections, while there is a peak of roughly 180 connections
around iteration six. Then the number of connections tails
of and stabilizes to around 130, which is roughly the same
iteration when the fitness stops improving. Thus, implying
that the population has started to converge.

In Fig. 4(b) the connections are classified according to a
number of types: parent, sibling (a sibling is the rightmost
child of a parent), grand-parent, grand-grand-parent, grand-
grand-grand-parent, grand-grand-grand-grand-parent, uncle,
and unclassified. The plot shows that after iteration 20 al-
most all nodes have a connection with their ancestor and
half has to their left sibling. The ratio is calculated as the

number of connections in the graph of the type and the pos-
sible number of connections of the type, e.g. for parent there
are 62 possible connections, a ratio of 0.5 means that there
are 31 connections in the Bayesian network. After 25 it-
erations the ratios of the other connections have somewhat
stabilized. The figures show that ancestor and sibling rela-
tions are captured by the Bayesian network, as well as some
grand-parent. This is an observation that could be taken
into account when designing operators in GP, or reduced
Bayesian network for EDA-style GP.

From Fig. 4(a) the average number of connections per
node over the generations are shown. The number of con-
nections are normalized according to the possible number
of connections, 62. The nodes are in depth-first left-right
order. It is possible to see a pattern over the number of
connections given the position of the node in the tree. As
expected the nodes at the lower level have fewer connections.
The classifications of connections, Fig. 4(b), explains what
type many of these connections are, e.g. parent and sibling
dependencies.

In Fig. 5 a tree with the total connections from all runs
and all iterations. We only present the connections that
appeared at least 10% of the times in the 30 runs where each
run was for 40 generations. The size and color of the edge
denotes strength, red is strongest. The connections show the
position of the connection types ratios displayed in Fig. 4(b)
and reiterates the strong parent connections found.

4. SCALABLE OPERATORFREE GENETIC
PROGRAMMING

Having observed different dependence patterns that emerged
during the graphical model analyses from 30 independent
runs of GP we now focus on developing an EDA-GP that
does not require a prototype-tree. We clearly observe that
parent and grand-parent relations are the most important.
We remind the reader that our goal is to use a smaller and



Figure 5: Tree with the total connections from all runs and all iterations (cut-off at 0.1). The size and color

of the edge denotes strength, red is strongest.

@D O G @/@fq%@ L

1 2 30 4@
bl D[ 4 [12
e P EJD\G) b D 1
&) | 1| * |14

Dictionary and counts

b )(23

Figure 6: Extracting n-grams for n=3 from a GP tree.

scalable probabilistic model defined over a very small pat-
tern and recursively sample from this model.

Hence we propose an n-gram model over ancestor chains
since they represent the link between a node and an impor-
tant aspect of its context i.e. parent/ancestors. n-grams
are usually used in linear contexts and are touted for their
relative simplicity. To be able to use an n-gram model in a
tree-structured context and to be able to sample trees from
them we need two components whose design we will describe
in the following subsections, leading up to the pseudo code
for our OFGP algorithm shown in Algorithm 2. These two
components are:

1. Generation of n-gram counts from the GP trees (Sect. 4.1)

2. Tree creation via recursive sampling from the n-gram
distribution (Sect. 4.2)

4.1 n-gramsmodel over ancestor chains

n-grams model the probability distribution for the random
variable Y; for a node ¢ (numbered in the depth first search
manner) in the tree given the values for its parent Y;_1,
grandparent Y;_2, and so on up to the (n — 1)th ancestor:

P(Yi...Yn) =11 PYi|Yiir... Y )P(Yi1...Yin 1)
(1)

For every node in a tree, the node and its (n—1) ancestors
constitute one n-gram observation. For example consider
the GP tree shown in Figure 6. For n = 3, we extract 7
different trigrams as shown in the figure. Near the root,
grandparent and/or parent nodes do not exist: in this case
they are represented by the null node ¢.

We enumerate the possible trigrams as a dictionary, A,
in which each entry is a 3-tuple (grandparent (Yj_2), par-
ent (Yix—1), node (Y%)) and the final colum represents the
observed counts of the tuple across the population of trees
(see Figure 6 for an example dictionary. In the example we
increment the counts for the 7 trigrams in our dictionary.
We convert these counts into frequencies and rely on them
when generating a trigram.

We use this model to fill up the content in an empty tree
T of a prespecified size N, where N represents the number

of nodes in the tree (for simplicity let us consider a binary
tree).

Algorithm 1 Recursive sampling algorithm

1: function GENERATE(A, T, N)

2: Evaluate the frequencies for different n-grams

3 k=1

4: Choose root Yy ~ P(Yi|Yec1 = ¢, ... Yeeno1 = @)
5: k< k+1
6.
7
8

while k£ < N do
if Y, = LEAF then
Choose a T Y ~ P(Yi|Yi—1,... Ye—n—1)
9: else

10: Choose a F Yy, ~ P(Yi|Yi-1,...Yo—n—1)
11: end if
12: k< k+1

13: end while
14: return T
15: end function

4.2 Operator FreeGP

The Operator Free GP algorithm is described in Algo-
rithm 2. The algorithm takes the n-gram counts table A,
initial preferred tree size, [, size of the population, Se, trun-
cation ratio a as inputs. A population of trees are generated
of sizes, | € [21/3,41/3] using a standard algorithm that gen-
erates randomly-shaped unlabelled binary trees of precise
size, based on the idea of binary search trees'. It begins
with an empty tree. At each step, a new node is created and
associated with a random number r (e.g. chosen uniformly
from [0, 1]). This node is “bubbled down” through the exist-
ing tree, moving left of those nodes which have ' > r and
moving right otherwise, eventually reaching a leaf position.
This process is repeated until the tree has the desired size.
The algorithm can also be adapted to produce trees with
labeled nodes of variable arity in two steps.

"http://en.wikipedia.org/wiki/Random_binary_tree#
Binary_trees_from_random_permutations



Algorithm 2 OFGP algorithm
1: A < uniform_initialisation()

2: a4 0.2 > truncation ratio
3: for i < iter do

4 O« 0

5: while |©] < Se do

6: T <+ BUBBLE-DOWN (1)

7 © < OU GENERATE (AT, 1)
8: end while

9: EVALUATE (©)

10: SORT (©)

11: O, < TRUNCATE (a, ©)

12: A,l < UPDATE (©s)

13: end for

An unlabeled tree is then passed to the GENERATE func-
tion presented in Algorithm 1. Each nodes label in this tree
is determined according to its ancestors and the observed
frequency of n-gram ancestor chains (available in A). The
mean size s of high-fitness trees can also be observed, and
new trees can be generated in a distribution centered around
s.

The population is then evaluated and the best 20% are
retained (truncation selection). Their n-grams are extracted
as shown in Figure 6 and A is updated by updating the
counts. Their sizes are also calculated. A new preferred size
[ is now set to the mean of this best 20%. A new population
is generated using the same algorithm as before, with the
only differences being the new value of [ and the fact that the
n-grams are used to fill-in the terminals’ and non-terminals’
labels after the tree-structure is determined.

5. EXPERIMENTS & RESULTS

We now compare the performance of the OFGP algorithm
with standard GP. In both standard GP and OFGP algo-
rithms, the population size was 2000 and the number of
generations 40. Fitness was calculated as the root mean
square error against the target function. In standard GP
the maximum depth was 17 (no such parameter is needed
for OFGP). In OFGP, three sets of runs using n-gram size
n = 3,4,5 were performed.

Results are shown in Fig. 7, best of run values for OFGP
are shown in the comparison with GP. It is clear that stan-
dard GP achieves more reliable results, getting a fitness of
below 0.40 in the majority of the 30 runs. Standard GP
almost always retains its best results from one generation to
the next, even in the absence of elitism. By contrast, OFGP
often finds a good result but then abandons it, leading to
erratic-seeming behaviour over the generations. Neverthe-
less it is clear that OFGP achieves fitness better than 0.40
in relatively few of the 30 runs, for all values of n. The
main advantage of OFGP is that what results it achieves
are achieved with exceptionally small and readable trees, of-
ten of just 20-30 nodes (result not shown but data available).
In contrast standard GP tends to produce best individuals
of over 100 nodes. OFGP with n-gram size n = 4,5 produce
better results than n = 3. Between n = 4 and n = 5 the
performance is similar.

Though this represents the feasibility of a scalable ap-
proach to EDA-GP. However, we hypothesize that the dis-
tribution used in OFGP (simple n-grams) fails to capture

the most important aspects of the highly-fit trees, regard-
less of the n-gram size. We note that sibling relations also
are important to form highly fit trees.

6. CONCLUSIONS & FUTURE WORK

Our goal through this paper was to develop a methodol-
ogy in which an estimation of distribution of patterns (rather
than a prototype tree) could be used to generate a GP tree.
We wanted to use this to sample, select and re-sample form-
ing an EDA-GP. The methodology is key to reducing com-
plexity and intractability that a traditional EDA-GP en-
counters. The distribution of patterns have only few ran-
dom variables, i.e. for n-grams it is only limited to either 4
or 5. These are easy to learn during a GP run and are easy
to sample from. Although we are modestly successful, much
of the work remains to identify patterns that OFGP should
track.

We can add patterns like subtree expression which will
capture parent-child-sibling relationships. If we choose to
track and estimate distributions for multiple patterns we
then have to design a tree sampling algorithm that uses these
distributions in some probabilistic fashion. We can bias the
choice via the choices that had lead to higher fitness trees in
the previous generations. From a probabilistic standpoint
this could be a mixture model for multiple pattern distribu-
tions.

We would also like to investigate our intuition that pat-
terns are spatially dependent (i.e. dependent on the level
of the tree in which they appear). If they are spatially
dependent, we will develop a tree creation algorithm that
takes pattern depth into account. This would imply that
we would estimate a different distribution for patterns at
different levels. Much needs to be investigated in the statis-
tical machine learning area to find equivalent probabilistic
models that could be used. Foundationally we are driven
by making the learning part within the GP generation as
simple and tractable as possible.

To motivate our quest for which patterns to choose we
analyzed a traditional GP run and learnt a graphical model
for the population that it generates. We gained many in-
teresting insights. However, we have thus far only focused
on analyzing, via a bayesian network the conditional depen-
dence that arises for Pagie-2D. We intend to next consider
other GP problems while using the same set of functions and
terminals to see if the patterns differ. We will also try dif-
ferent operators with GP to see if other patterns emerge for
the same problem. It may be that the patterns have a strong
relation to the semantics of the functions and terminals in
which case they’ll be robust across problems. During these
exercises, we intend to be mindful that running GP with
variation operators to discover patterns out is nonetheless
imperfect because GP’s operators may induce inappropriate
patterns.

Acknowl edgment

Erik thanks the support by the Science Foundation Ire-
land under Grant No. 08/IN.1/11868. James is funded by
IRCSET, co-funded by Marie Curie. Kalyan and Una-May
thank the support received from General Electric Global Re-
search Center and Li Ka Shing Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessar-



0.4855 T

0.4845

Fitness

0.4835|- gl |

04851 ¥ A

0484 EEEERE ! R

0483 L . - L 1 1 L L

Best fitness of pagie 2d

o 5 10 15 20 25 30 35 40 45
Iteration

(a) GP best fitness, depth=5

Fitness of GP and OFGP with different n
06

- aP
+ OFGPn=3
< OFGPn=4
- OFGPn=5

Iteration

(b) GP vs OFGP

Figure 7: The Fig. 7(a) shows the best fitness over the generations for GP with depth=5. In Fig. 7(b) the
performance of standard GP and OFGP on the Pagie 2D problem is shown. Values of n refer to n-gram size,
i.e. the number of ancestors taken into account when generating a node. Best of run values for OFGP are
shown in the comparison with GP

ily reflect the views of General Electric Company or Science
Foundation Ireland or Li Ka Shing Foundation.

References

[1] Berzan, C.: An Exploration of Structure Learning in

[2

3

4

5

[6

7

8

[0

10

]

]

]

Bayesian Networks.
Thesis (2012)

Tufts University Senior Honors

Harper, R.: Spatial co-evolution in age layered planes
(SCALP). In: CEC. IEEE (2010)

Hasegawa, Y., Iba, H.: Estimation of Bayesian network
for program generation. In: Proc. 3rd Asian-Pacific
Workshop on Genetic Programming. p. 35 (2006)

Hasegawa, Y., Iba, H.: A Bayesian network approach to
program generation. Evolutionary Computation, IEEE
Transactions on 12(6), 750-764 (2008)

Keller, R.E., Banzhaf, W.: The evolution of genetic
code in genetic programming. In: Banzhaf, W., et al.
(eds.) GECCO. pp. 1077-1082. Morgan Kaufmann, San
Francisco, CA (1999)

Koller, D., Friedman, N.: Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press (2009)

McDermott, J., Galvan-Lopéz, E., O’Neill, M.: A fine-
grained view of phenotypes and locality in genetic pro-
gramming. In: Riolo, R., Vladislavleva, K., Moore, J.
(eds.) Genetic Programming Theory and Practice IX.
Kluwer (2011)

Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic
aware crossover for genetic programming: The case for
real-valued function regression. In: EuroGP. pp. 292—
302. Springer (2009)

Pagie, L., Hogeweg, P.: Evolutionary Consequences of
Coevolving Targets. Evolutionary Computation 5, 401
418 (1997)

Pelikan, M.: Hierarchical Bayesian optimization algo-
rithm: Toward a new generation of evolutionary algo-
rithms. Springer (2005)

(11]

(12]

(13]

Poli, R., McPhee, N.F.: A linear estimation-of-
distribution GP system. In: EuroGP. pp. 206-217
(2008)

Salustowicz, R., Schmidhuber, J.: Probabilistic incre-
mental program evolution. Evolutionary Computation
5(2), 123-141 (1997)

Sastry, K., Goldberg, D.: Probabilistic model build-
ing and competent genetic programming. Genetic Pro-
gramming Series 6, 205-220 (2003)

Shan, Y., McKay, R., Essam, D., Abbass, H.: A survey
of probabilistic model building genetic programming.
Scalable Optimization via Probabilistic Modeling pp.
121-160 (2006)

Shan, Y.:
Grammar Models.
South Wales (2005)

Wilson, G., Heywood, M.: Introducing probabilistic
adaptive mapping developmental genetic programming
with redundant mappings. Genetic Programming and
Evolvable Machines 8(2), 187-220 (2007)

Program Distribution Estimation with
Ph.D. thesis, University of New

Yanai, K., Iba, H.: Estimation of distribution program-
ming based on Bayesian network. In: CEC 2003. vol. 3,
pp. 1618-1625. IEEE (2003)



