Cloud Scale, Machine Learning with FlexGP

Una-May O'Reilly Evolutionary Design and Optimization Group Computer Science and Artificial Intelligence Lab MIT

Lots of Data Everywhere

Lots of Data Everywhere

+Elasticity +Infinite resources on demand +Budget and time choice space

voDesignOp

-robustness
-Time to scale up
-Need interim solutions
-algorithms need to exploit the positives

Agenda

- Strategies for cloud-scale machine learning with massive data
- FlexGP
 - Flexibly factored, flexibly scaled machine learning with Genetic Programming (GP)
 - Deeper Dives
 - » Launch
 - » Genetic programming learning engines for ML
- Beyond FlexGP

Strategies for Machine Learning

Scaled up, existing algorithms are not completely sufficient

People who are really serious about software should make their own hardware. (Allan Kay)

The hardware is the cloud

ML algorithms should be designed with the assumption of infinite resources

Ensembles of Diverse Learners

Ensembles

- factoring
 - » Heterogeneous learning engines
 - Training data D
 - Within Algorithm (PI)
 - Model structure
 - Objective
 - Indicators/Explanatory vars
 - Across algorithms
- filtering
 - » Diverse models or classifiers or clusters
- Fusion
 - » A robust result

Ensembles of Diverse Learners

Distributed sampling approaches

Random Samples

Agenda

- Strategies for cloud-scale machine learning
- FlexGP
 - Flexibly factored, flexibly scaled machine learning with Genetic Programming (GP)
 - Deeper Dives
 - » Launch
 - » Genetic programming learning engines for ML
- Beyond FlexGP

Signals, State, Ratings, Associations, Rankings, Relations, Categories

SAII

Cloud with Learners

Cloud with Networked Learners

FlexGP Learning Engines

EvoDesignOpt

Model

 $\pi_1 = \{ + - * / sin cos tan sqrt \}$ operators

 π_2 = L3 Objective function

 $\pi_3 = (x2 x3 x4)$ Explanatory vars

			PMZ for $w =$				Ave. comp. time	Ave. no. of Pareto
Ν	Т	t	0.2	0.4	0.6	0.8	(sec.)	optimal schedules
50	10	2	11.30	13.25	11.92	9.54	0.06	11
		4	10.30	12.16	10.58	9.26	0.06	12
	14	2	12.78	14.36	13.06	11.24	0.04	8
		4	11.44	13.32	12.50	10.10	0.05	8 9 6 7
	18	2	15.81	16.96	15.68	13.82	0.03	6
		4	14.88	15.61	15.14	12.26	0.03	7
00	10	2	10.46	11.48	10.35	9.22	0.08	14
		4	10.00	10.86	9.89	8.60	0.08	16
	14	2	10.18	11.75	10.54	9.30	0.06	12
		4	9.80	11.06	10.10	9.01	0.07	14
	18	2 4	11.66	13.59	12.44	10.30	0.05	9
		4	11.32	12.76	11.10	9.62	0.05	10
50	10	2 4	8.88	9.06	8.20	7.62	0.09	15
		4	8.22	8.60	7.96	6.99	0.10	17
	14	2 4	8.50	9.75	8.86	7.52	0.08	13
		4	7.88	9.03	8.38	7.10	0.09	15
	18	2	9.76	10.96	10.19	8.60	0.07	11
		4	9.85	10.20	9.64	7.82	0.08	13
200	10	2 4 2 4	6.96	8.19	7.10	5.66	0.13	20
		4	6.25	7.80	6.76	5.28	0.14	22
	14	2 4	7.12	8.62	7.28	6.32	0.12	18
		4	6.55	8.26	6.98	5.69	0.13	20
	18	24	8.19	9.49	8.63	7.08	0.10	17
		4	8.39	9.67	8.58	6.35	0.11	18

$$rac{\cos(\mathbf{x_4})}{\tan(\mathbf{x_2})+\mathbf{x_2}} + \mathbf{sqrt}(\mathbf{x_3})$$

Model or classifier

FlexGP Learning Engines

 $\pi_1 = \{ + - * / \}$

 π_2 = mean squared error (L2)

1	Π	, :	= (x1	. X	2.	x3, x	5)
<u>a</u>	5	. 1		⊢		പ		$-\frac{x_{3}^{2}}{4}$
Ν	Т	t	0.2	PMZ f 0.4	or $w = 0.6$	0.8	Ave. comp. time (sec.)	Ave. no. of Pareto optimal schedules
50	10	2	11.30	13.25	11.92	9.54	0.06	11
	14	$\frac{4}{2}$	10.30 12.78	12.16 14.36	10.58 13.06	9.26 11.24	0.06 0.04	12 8
		4	11.44	13.32	12.50	10.10	0.05	8 9 6 7
	18	2 4	15.81 14.88	16.96 15.61	15.68 15.14	13.82 12.26	0.03	6
100	10	2	10.46	11.48	10.35	9.22	0.08	14
		4	10.00	10.86	9.89	8.60	0.08	16
	14	2	10.18	11.75	10.54	9.30	0.06	12
		4	9.80	11.06	10.10	9.01	0.07	14
	18	2	11.66 11.32	13.59 12.76	12.44 11.10	10.30 9.62	0.05	9 10
150	10	2	8.88	9.06	8.20	9.62 7.62	0.05	10
100	10	4	8.22	8.60	7.96	6.99	0.10	15
	14		8.50	9.75	8.86	7.52	0.08	13
	1.1	2 4	7.88	9.03	8.38	7.10	0.09	15
	18	24	9.76	10.96	10.19	8.60	0.07	11
		4	9.85	10.20	9.64	7.82	0.08	13
200	10	2	6.96	8.19	7.10	5.66	0.13	20
		4	6.25	7.80	6.76	5.28	0.14	22
	14	2	7.12	8.62	7.28	6.32	0.12	18
		4	6.55	8.26	6.98	5.69	0.13	20
	18	2	8.19	9.49	8.63	7.08	0.10	17
		4	8.39	9.67	8.58	6.35	0.11	18

FlexGP Learning Engines

$\pi_1 = \{ + - * / sin cos tan sqrt \}$ $\pi_2 = L3$												
$\pi_3 = (x2 \ x3 \ x4)$												
$f_{sos(x_4)} + sart(x_2)$												
	\mathbf{t}_N	Т	t	0.2	PMZ fo 0.4	or w = 0.6	0.8	Ave. comp. time (sec.)	Ave. no. of Pareto optimal schedules)		
	50	10	$^{2}_{4}$	11.30 10.30	13.25 12.16	11.92 10.58	9.54 9.26	0.06 0.06	11 12			
		14	24	12.78 11.44	14.36 13.32	13.06 12.50	11.24 10.10	0.04 0.05	8 9 6			
		18	$\frac{2}{4}$	15.81 14.88	16.96 15.61	15.68 15.14	13.82 12.26	0.03 0.03	7			
	100	10	2 4	10.46 10.00	11.48 10.86	10.35 9.89	9.22 8.60	0.08 0.08	14 16			
		14	2 4	10.18 9.80	11.75 11.06	10.54 10.10	9.30 9.01	0.06 0.07	12 14			
		18	2	11.66 11.32	13.59 12.76	12.44	10.30	0.05	9 10			
	150	10	4 2	8.88	9.06	8.20	7.62	0.09	15			
		14	$\frac{4}{2}$	8.22 8.50	8.60 9.75	7.96 8.86	6.99 7.52	0.10 0.08	17 13			
		10	4	7.88	9.03	8.38	7.10	0.09	15			
		18	$\frac{2}{4}$	9.76 9.85	10.96 10.20	10.19 9.64	8.60 7.82	0.07 0.08	11 13			
	200	10	24	6.96	8.19	7.10	5.66	0.13	20			
		14	4 2	6.25 7.12	7.80 8.62	6.76 7.28	5.28 6.32	0.14 0.12	22 18			
			4	6.55	8.26	6.98	5.69	0.13	20			
		18	2 4	8.19 8.39	9.49 9.67	8.63 8.58	7.08 6.35	0.10 0.11	17 18			
			-									

FlexGP Ensemble Fusion

FlexGP Overview

FlexGP Demonstrated

Agenda

- Strategies for cloud-scale machine learning
- FlexGP
 - Flexibly factored, flexibly scaled machine learning with Genetic Programming (GP)
 - Deeper Dives
 - » Launch
 - » Genetic programming learning engines for ML
- Beyond FlexGP

Cascading, Asynchronous Launch

"Start" node initiates recursive local launches

– Inputs are distributions of π , \mathcal{D} and cascading values: \mathcal{N} , $k \rightarrow cl$

Each node

- Phase 1: launch k other nodes if cl >0
 - Each child is sent distributions π , \mathcal{D} and k, cl=cl-1
 - Each child is sent ancestors' IPs: IP-list
- Phase 2:
 - Thread 1: global IP discovery through gossip
 - » Select an IP, dispatch IP-list
 - » Return IP-list to any sender
 - Thread 2: $\mathcal{L}(\pi, \mathcal{D})$ after sampling from distributions

Launch complete!

Genetic Programming

GP Learning Engine

Learning a regression model

GP Algorithm Development

FlexGP Regression Model Diversity

Correlation of 1477 Individuals with MSE <= 0.0505

FlexGP...

ls:

Flexibly factored, aggregating ML system

- Cascading launch
- Distributed scalable
 network protocol
- Cloud scale ensemble learning method

Delivers:

- Elasticity
- Scalability in computation size
- Large data strategy
- Innovation in machine learning with evolutionary computation

Automation

• "In the end, the biggest bottleneck is not data or CPU cycles, but human cycles."

Beyond FlexGP

Mass Customized Query Serving

Waveform database

Beyond FlexGP

Personalized Query Serving

Parameterizations :

m-hours of past data used to forecast

- f forecast window, lag
- **p** period of forecast

Fundamental Learning

11e MI

- When the data overwhelms us...
 - We bundle it up
 - » nb, this is not sampling!
 - We assume linearity and Gaussian distributions
- What are the intrinsic aggregations?
- What are the non-linearities and true distributions?
- Fundamental learning starts from the bottom up
 - Use unsupervised learning to propose features
 - Use features in a task
 - Passperformance feedback to feature learning

Beyond FlexGP

A time trajectory of GP-based machine learning

A time trajectory of GP-based machine learning

A time trajectory of GP-based machine learning

Acknowledgements

- Members of the Evolutionary Design and Optimization Group
 - Past and present
 - Dr. Kalyan Veeramachaneni: Research Scientist

GE Global Research

Industrial Machine Learning Lab, GEGR, Niskayuna

