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Abstract
We develop multivariate copulas for modeling
multiple joint distributions of wind speeds at a
wind farm site and neighboring wind source. A n-
dimensional Gaussian copula and multiple copula
graphical models enhance the quality of the predic-
tion site distribution. The models, in comparison
to multiple regression, achieve higher accuracy and
lower cost because they require less sensing data.

1 Introduction
This paper addresses wind resource assessment: the problem
of determining if there will be enough wind in the ideal speed
range that will endure at a potential wind farm or “site”, over
a 20+ year timespan. The end-to-end pipeline of a resource
assessment service spans from automatic site-neighbor data
extraction from public, online sources (ASOS database),
through site-neighbor data synchronization in preparation for
generative modeling, modeling, backcast (where historical
data at neighboring sites is passed through a model to obtain
predictions at the site) to estimation of the industry standard
Weibull distribution from the derived predictions. Our focus
in this paper is on the single most critical factor in assessment:
achieving the most accurate backcast while incurring mini-
mal financial expense. This implies integrating geographi-
cally proximal public wind data sources and building models
that better represent the data (accuracy) while concurrently
reducing the duration of anemometer sensing during the as-
sessment period (expense).

The primary contribution of this paper is the use of multi-
variate copulas for modeling multiple joint distributions of
wind speeds at the site and a publicly available neighbor-
ing wind source. We construct a n-dimensional Gaussian
copula and multiple copula graphical models to enhance the
quality of the prediction site distribution. This modeling
step is embedded within a widespread methodology called
Measure-Corelate-Predict (MCP) [Gross and Phelan, 2006;
Bass et al., 2000; Bailey et al., 1997; Lackner et al., 2008].

For demonstration we use speed and direction data from
an actual site in the state of Massachusetts where we have
assembled data from anemometer sensing carried over for a
period of two years. We compare our models with multiple
regression methods, where it achieves higher accuracy with

less sensing data – sometimes with only 3 months. The in-
dustry standard method, multiple regression, achieves a rea-
sonable accuracy with 8 months of data, an industry standard
period. Thus we achieve better accuracy at a lower cost.

We proceed by describing MCP while introducing notation
in Section 2. Section 3 describes the real wind resource es-
timation scenario and the dataset we utilized throughout this
paper to demonstrate our methods. Section 4 describes the
copula modeling. Section 5 is the demonstration. We inten-
tionally reference related work throughout the paper, in con-
text of discussion.

2 Measure-Corelate-Predict (MCP )
We consider wind resource estimation derived by a method-
ology known as Measure-Correlate-Predict or MCP. In terms
of notation, the wind at a particular location is characterized
by speed denoted by x and direction θ. Wind speed is mea-
sured by anemometers and wind direction is measured by
wind vanes. The 360o direction is split into multiple bins
with a lower limit (θl) and upper limit (θu). We give an index
value of J = 1 . . . j for the directional bin. We represent the
wind speed measurement at the test site (where wind resource
needs to be estimated) with y and the other sites (for whom
the long term wind resource is available) as x and index these
other sites with M = 1 . . .m.

The three steps of MCP are:

MEASURE Short term sensing measurements on the site are
collected. This is denoted by Y = {ytk . . . ytn}. Mea-
surements can be collected using anemometers on the
site, a newly-constructed meteorological tower, or even
remote sensing technologies such as sonar or lidar. Dif-
ferent measurement techniques incur different costs that
dictate their feasibility for different projects. Measure-
ments from nearby sites for the same period are gath-
ered. These sites, called historical sites, have additional
data for the past 10–20 years. These are denoted by
X = {x1...m

tk...tn
} where each xitk...tn corresponds to data

from one historical site and m denotes the total number
of historical sites. Historical data that is not simultane-
ous in time to the site observations used in modeling will
be used in the PREDICT step.

CORRELATE A single directional model is first built cor-
relating the wind directions observed at the site with



simultaneous historical site wind directions. Next, for
each directional interval, called a (directional) bin, of a
360◦ radius, a model is built correlating the wind speeds
at the site with simultaneous speeds at the historical
sites, i.e. Yti = fθj (x

1...m
ti ) where k ≤ i ≤ n. The

data available from the site at this stage is expected to be
sparse and noisy.

PREDICT To obtain an accurate estimation of long term
wind conditions at the site, we first divide the data from
the historic sites (which is not simultaneous in time to
the site observations used in modeling) into subsets that
correspond to a directional bin. Prediction of the long
term site conditions follows two steps:

A : We use the model we developed for that direction
fθj and the data from the historic sites correspond-
ing to this direction x1...m

t1...tk−1|θj to predict what the
wind speed Yp = yt1...tk−1 at the site would be.
For a new observation x we have to predict y. For
this we form the conditional first by

P (y|x) =
P (x, y)∫

y
P (x, y)dy

. (1)

Our predicted ŷ maximizes this conditional proba-
bility

ŷ = arg max
y∈Y

P (y|x). (2)

Note that the term in the denominator of eq.( 1) re-
mains constant, hence for the purposes of finding
the optimum we can ignore its evaluation. We sim-
ply evaluate this conditional for the entire range of
Y in discrete steps and pick the value of y ∈ Y that
maximizes the conditional.

B : With the predictions Yp, from A above, we esti-
mate parameters for a Weibull distribution. This
distribution is our answer to the wind resource as-
sessment problem. We generate a distribution for
each directional bin.

The goal is to generate a predicted long term wind speed
distribution in each direction which will be as close as possi-
ble to the real (as yet unexperienced) distribution. The result
from MCP, i.e. the statistical distribution in each bin, is then
used to estimate the energy which can be expected from a
wind turbine, given the power curve supplied by its manufac-
turer. This calculation can be extended over an entire farm if
wake interactions among the turbines are taken into account.
See [Wagner et al., 2011] for more details. Note that distri-
bution not only captures the mean, but also variance in this
speed. This is critical for assessment of long term wind re-
source and the long term energy estimate.

A variety of methods are developed in [Rogers et al., 2005]
to evaluate the accuracy of the predicted wind speed distri-
bution. One method measures the accuracy in terms of ra-
tios between true and actual parameters of the Weibull distri-
bution. That is, true shape versus estimated shape and true
scale versus estimated scale. To completely capture any pos-
sible inaccuracy in the predicted distribution, we measure a
symmetric Kullback-Leibler distance. It is important to note

that this measure is different than the mean-squared error or
mean-absolute error which measure the accuracy in terms of
difference between each predicted value and the true obser-
vation. Methods that minimize these errors would not nec-
essarily accurately express how close the approximation is to
the true distribution. As a measure of predictive accuracy
we compare the final estimated Weibull distribution to the
ground truth distribution using Kullback-Leibler (KL) diver-
gence. The lower this value, the more accurate the prediction:

D(Y ||Ŷ ) = KL(PY (y)||PŶ (ŷ)). (3)

KL divergence derives the distance between two probability
distributions:

DKL(PY (y)‖PŶ (ŷ)) =
∑
i

PY (y = i) ln
PY (y = i)

PŶ (ŷ = i)
(4)

For baseline comparison, we also developed a linear regres-
sion model which is used quite extensively in wind resource
assessment [Bass et al., 2000; Rogers et al., 2005].

We now proceed to describe the our machine learning ap-
proaches for wind resource assessment.

3 A real world scenario and dataset
To evaluate and compare our different algorithms, we ac-
quired wind data collected using anemometers from the
rooftop of Museum of Science in Boston where a wind vane is
also installed. These anemometers are inexpensive and con-
sequently noisy. The museum is located amongst buildings,
a river and is close to a harbor as shown in Figure 1. This
provides us with a site that is topographically challenging.
At this location we have approximately 2 years worth of data
collected at a frequency of 1 sample/second with 10 minute
averages stored in a separate database. To derive the wind
resource assessment we train using data from the first year.
This data is split into three datasets we call D3, D6 and
D8. The split D3 has data for 3 months. The split D6 has
3 additional months for a total of 6 and D8 has yet 2 more
months for a total of 8. We divide each dataset and the second
year’s dataset (to serve as our test data, i.e. ground truth) fur-
ther into 12 directional bins of equal sizes starting at compass
point North (0◦).

We use airport wind data from the public ASOS (Auto-
mated Surface Observing System) database for sources of
neighboring-site data. This data is regularly accessed by the
wind industry for correlation purposes. The airports’ loca-
tions are shown in Figure 1 (right).

4 Multivariate copulas
Previous modeling techniques assume a Gaussian distribu-
tion for wind speed and direction variables and a Gaussian
joint distribution. It is arguable however that Gaussian distri-
butions do not accurately represent the wind speed distribu-
tions. In fact, conventionally a univariate Weibull distribution
[Burton et al., 2001] is used to parametrically describe wind
sensor measurements. A Weibull distribution is likely also
chosen for its flexibility because it can express any one of
multiple distributions, including Rayleigh or Gaussian.
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Figure 1: Left: Red circles show location of anenometers on rooftop of Museum of Science, Boston. Right: Neighboring-site
data from fourteen airports (marked with circles) is used in the MCP correlation step.

To the best of our knowledge, however, joint density func-
tions for non-Gaussian distributions have not been estimated
for wind resource assessment. In this paper, to build a mul-
tivariate model from marginal distributions which are not all
Gaussian, we exploit copula functions. A copula framework
provides a means of inference after modeling a multivariate
joint distribution from training data.

Because copula estimation is less well known, we now
briefly review copula theory. We will then describe how we
construct the individual parametric distributions which are
components of a copula and then, how we couple them to
form a multivariate density function. Finally, we present our
approach to predict the value of y given x1...m.

A copula function C(u1, . . . um+1; θ) with parameter θ
represents a joint distribution function for multiple uniform
random variables U1 . . . Um+1 such that

C(u1, . . . um+1; θ) = F (U1 ≤ u1, . . . Um+1 ≤ um+1). (5)

Let U1 . . . Um represent the cumulative distribution func-
tions (CDF) for variables x1, . . . xm and Um+1 represent the
CDF for y. Hence the copula represents the joint distribution
function of C(F (x1) . . . F (xm), F (y)), where Ui = F (xi).
According to Sklar’s theorem any copula function taking
marginal distributions F (xi) as its arguments, defines a valid
joint distribution with marginals F (xi). Thus we are able to
construct the joint distribution function for x1 . . . xm, y:

F (x1 . . . xm, y) = C(F (x1) . . . F (xm), F (y); θ) (6)

The joint probability density function (PDF) is obtained by
taking the m+ 1th order derivative of eqn. (6)

f(x1 . . . xm, y) =

∂m+1

∂x1 . . . ∂xm∂y
C(F (x1) . . . F (xm), F (y); θ)

=

m∏
i=1

f(xi)f(y)c(F (x1) . . . F (xm), F (y)) (7)

where c(.) is the copula density. Thus the joint density func-
tion is a weighted version of independent density functions,
where the weight is derived via copula density.

4.1 Gaussian copula
First we consider a multivariate Gaussian copula to form a
statistical model for our variables given by

CG(Σ) = FG(F−1(u1) . . . F−1(um), F−1(uy),Σ) (8)

where FG is the CDF of multivariate normal with zero mean
vector and Σ as covariance and F−1 is the inverse of the stan-
dard normal.
Estimation of parameters: There are two sets of parame-
ters to estimate. The first set of parameters for the multi-
variate Gaussian copula is Σ. The second set, denoted by
Ψ = {ψ,ψy} are the parameters for the marginals of x, y.
Given N i.i.d observations of the variables x, y, the log-
likelihood function is:

L(x, y; Σ,Ψ) =

N∑
l=1

log f(xl, yl|Σ,Ψ)

=

N∑
l=1

log

{(
m∏
i=1

f(xil;ψi)f(yl;ψy)

)
c(F (x1) . . . F (xm), F (y); Σ)} (9)

Parameters Ψ are estimated via[Iyengar, 2011]

Ψ̂ = arg max
Ψ∈ψ

N∑
l=1

log

{(
m∏
i=1

f(xil;ψi)f(yl;ψy)

)
c(F (x1) . . . F (xm), F (y); Σ)} (10)

A variety of algorithms are available in literature to es-
timate the MLE in eq. (10). We refer users to [Iyengar,
2011] for a thorough discussion of estimation methods. For
more details about the copula theory readers are referred to
[Nelsen, 2006].

4.2 Vine models
Before giving details of how to construct a vine, we present
three examples of how to derive the factorization of a multi-
variate probability distribution in terms of bivariate copulas.
Consider first only two variables x1 and x2. The joint den-
sity, f12(x1, x2), can be factorized in two ways. First, using
the chain rule:

= f1(x1)f2|1(x2|x1)
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Figure 2: Three examples of 5-dimensional copula constructions: (a) a D-vine; (b) a C-vine with the condition on T1 that u1

connects with every uj for j 6= 1; The n-copula density is written below each graphical model.

and second using copulas due to Sklar’s theorem (7):

= f1(x1)f2(x2)c12(F1(x1), F2(x2)).

From these two, we can derive that

f2|1(x2|x1) = f2(x2) · c12(F1(x1), F2(x2))

by canceling out the first term f1(x1) in both. We can gener-
alize this as

fp|q(xp|xq) = fp(xp)cpq(Fp(xq), Fq(xq)).

For the remaining part of this section variables will be omit-
ted in probability densities and distributions since their sub-
scripts give all the information. Thus, the last expression can
be rewritten as

fp|q = fpcpq. (11)
Next, let us consider three variables x1, x2 and x3. Like be-
fore, there are several factorizations of the joint density, f123,
due to the chain rule. For instance, it could be factorized as:
f1f23|1 or

= f1f2|1f3|21. (12)
Expanding f23|1 using Sklar’s theorem we get

f1f23|1 = f1f2|1f3|1c23|1; (13)

where c23|1 denotes the copula density
c(F2(x2|x1), F3(x3|x1)).

According to (11) f3|1 = f3c31, hence by replacing f(3|1)

in (13) we get:

f1f23|1 = f1f2|1f3c31c23|1. (14)
Since (14) and (12) are both factorizations of the joint f123,

by equating (12) and right hand side of (14) and canceling
terms on both sides we get:

f3|21 = f3c31c23|1. (15)

It is convenient to generalize this last expression, (15), as:

fp|qr = fpcprcpq|r. (16)

Finally consider a last example with four variables and the
two following factorizations:

f1234 = f12f3|12f4|123 = f12f34|12.

Sklar’s theorem applied to f34|12, using (16), and straightfor-
ward manipulation leads to

f4|123 = f34|12/f3|12 = c34|12f4|21 = f4c41c42|1c43|12.

Again, the last expression can be generalised as:

fp|qrs = fpcpqcpr|qcps|qr. (17)

Hence, using (11), (16) and (17), any factorization of the 4
variable joint density can be expressed in terms of bivariate
copulas. For instance:

f1234 = f1f2|1f3|21f4|321 =

(f1f2f3f4)(c12c23c34)(c13|2c24|3)(c14|23). (18)

A vine is a graphical representation of one factorization of
the n-variate probability distribution in terms of n(n − 1)/2
bivariate copulas by means of the chain rule. It consists of a
sequence of levels and as many levels as variables. Each level
consists of a tree (no isolated nodes and no loops) satisfying
that if it has n nodes there must be n− 1 edges. Each node in
tree T1 (level 1 ) is a variable and edges are couplings of vari-
ables constructed with bivariate copulas. Each node in tree
T2 (level 2) is a coupling in T1, expressed by the copula of
the variables; while edges are couplings between two vertices
that must have one variable in common, becoming a condi-
tioning variable in the bivariate copula. Thus, every level has
one node less than the former. Once all the trees are drawn,
the factorization is the product of all the nodes.

An example with 5 variables is given in Figure 2; show-
ing two different vines together with their resulting joint pdf
factorization.

For the sake of clarity we give the details of how to con-
struct the panel of the left and how to derive its expression.

1. Construct T1, the first tree, in two steps:
(a) Draw in a row one node for each variable.
(b) Draw the edges by linking two adjacent nodes with

a copula.
2. Construct T2 as follows:

(a) Draw in a row one node for each edge in T1.
Write the variables of the edges in T1 inside the
nodes. For example in Figure 2 (left), the first edge
in T1 is c1,2 which makes the first node of T2 1, 2.



(b) Draw the edges by linking two adjacent nodes with
a copula.
Write the bivariate copula such that the variables
are those that only appear in one node or another,
conditioning to the variables that are repeated in
both; e.g. if nodes areC(1, 2) andC(2, 3), the con-
ditioning variable is x2 because only 2 appears in
both.

3. Repeat until the last tree, which has only one node.

4. The factorization is the product of every node. �

Vines were initially presented in [Bedford and Cooke,
2001], [Cooke et al., 2007]. A comprehensive compilation
of vine methods can be found in [Kurowicka and Joe, 2011].
In a nutshell, each vertex in Tj with j > 1 is a coupling
in Tj−1 expressed by a bivariate copula with j − 2 condi-
tioning variables which are those in common in the vertices
coupled at Tj−1. Edges in Tj are formed between 2 vertices
of Ti that add another common variable. The factorization
is just the product of all the edges in all the trees, times the
product of all the marginals. Let cj(v1, v2|w) be the den-
sity of an edge in Tj , so that v1, v2 ∈ {u1, . . . , ud} and
v1 6= v2 are the variables of that edge, conditioned by the set
w = {w1, . . . , wj−1} ∈ {u1, . . . , ud}, with wk 6= v1 6= v2

for 1 ≤ k ≤ j − 1. Then, if E is the set of all edges in the
vine, the factorization of the graphical model is:

fx1,...,xn =

(
n∏
i=1

fi(xi)

)∏
j∈E

cj(v1, v2|w)

 . (19)

In practice, however, it is usually recommended to avoid con-
structing all the trees because a full vine will only repre-
sent the actual underlying joint pdf if the bivariate copulas
used are rightly chosen and accurately estimated [Salinas-
Gutiérrez et al., 2010],[Haff et al., 2010].

In this paper we use two vine constructions: Drawable-
vines (D-vines) and Canonical-vines (C-vines), which are
constructed according to different rules. All the models were
fully obtained, in the sense that all the trees are developed, so
that a study of how the depth influences the prediction can be
done. The methodology in all of them is similar:

1. Transform all the variables by means of their marginals.
In other words, compute

ui = Fi(xi), with i = 1, . . . , 15

and compose the matrix u = u1, . . . , un, where ui are
their columns.

2. For the construction of the first tree T1, assign one node
to each variable and then couple them by maximizing
the measure of association considered. Different vines
impose different constraints on this construction. When
those are applied different trees are achieved at this level.
Figure 2 shows that D-Vine and C-Vine lead to different
T1.

3. Select the copula that best fits to the pair of variables
coupled by each edge in T1. Details about how this step
is carried out are given in next subsection.

4. Let Cij(ui, uj) be the copula for a given edge (ui, uj)
in T1. Then for every edge in T1, compute either
v1
j|i = ∂/∂ujCij(ui, uj) or similarly v1

i|j , which are
conditional cdfs. When finished with all the edges, con-
struct the new matrix with v1 that has one less column
u.

5. Set k = 2.

6. Assign one node of Tk to each edge of Tk−1. The struc-
ture of Tk−1 imposes a set of constraints on which edges
of Tk are realizable. Hence the next step is to get a linked
list of the accesible nodes for every node in Tk.

7. As in step 2, nodes of Tk are coupled maximizing the
measure of association considered and satisfying the
constraints impose by the kind of vine employed plus
the set of constraints imposed by tree Tk−1.

8. Select the copula that best fit to each edge created in Tk.

9. Recompute matrix vk as in step 4, but taking Tk and
vk−1 instead of T1 and u.

10. Set k = k + 1 and repeat from 6 until all the trees are
constructed.

The rest of this section is devoted to the selection of the
copula and the particular constraints for each vine.

Copula function selection
In step 4 above, there are multiple options for choosing the
copula between a pair of variables. In this paper we con-
sider three parametric copulas 1 : Clayton, Frank and Gum-
bel because with these we cover a wide range of tail depen-
dences.There is a number of ways to evaluate which one of
the copulas fits better to a dataset. Two of the most pop-
ular methods are to compare the empirical density function
of the copula with the theoretical one [Genest and Rivest,
1993], and to compare the upper or lower tail functions [Ven-
ter, 2001].

In this paper we employ a triple-check fitting based on the
latter. For this, we first compute an empirical Copula (non-
parametric). We then numerically compute upper and lower
tails given this empirical Copula and calculate the area un-
der the tails given by al and au. The upper and lower tail
concentration functions are respectively defined as:

R(z) = [1− 2z + C(z, z)]/(1− z)2 and
L(z) = C(z, z)/z2 (20)

Hence, given out three candidate copulas (Clayton, Frank
and Gumbel), the procedure proposed for selecting the one
that best fit to a dataset of pairs {(uj , vj)}j=1,2,..., is as fol-
lows:

1. Estimate the most likely parameter θ of each copula can-
didate for the given dataset.

2. Construct R(z|θ). Calculate the area under the tail for
each of the copula candidates.

1These are three popular archimedean families that can be found
in many mathematical packages such as R or Matlab.



3. Compare the areas: au achieved using empirical cop-
ula against the ones achieved for the copula candidates.
Score the outcome of the comparison from 3 downto 1,
3 being the best and 1 is the worst.

4. Proceed as in steps 2- 3 with the lower tail and function
L.

5. Finally the sum of empirical upper and lower tail func-
tions is compared against R + L. Scores of the three
comparisons are summed and the candidate with the
highest value is selected.

D-Vine Model.
In a D-Vine every node in tree T1 has degree 2 except two
nodes, with degree 1, which can be seen as the extremes. Fig-
ure 2a shows an example of D-Vine of five variables. The ad-
vantage of D-Vine is that, once T1 is constructed, it uniquely
determines the rest of the trees that compose the vine. Hence,
learning the model is the task of finding the best assignment
of variables to nodes in T1. Throughout this paper, Kendall’s
τ is employed as measure of association to decide how to cou-
ple nodes. The procedure is then as follows.
Let u be the matrix of the marginal cdf values of the dataset
x;

1. Compute Mτ = [τij ], with i > j, the matrix of
Kendall’s τ between every possible coupling of vari-
ables. Notice that Mτ only requires values in its upper
triangular part because it is symmetric.

2. Find τ̂ = max ([τij ]). Let (left,right) be the coor-
dinates of τ̂ .
Then initialize T1 = [left,right].

3. For k = 1 to m-1

(a) Set left = T1(1) and right = T1(end)

(b) Set the leftth and rightth columns of Mτ to
zero.

(c) Find leftNew, the variable that couples with
left with maximum Kendall’s τ = τL. Sim-
ilarly, find rightNew, the variable that couples
with right with maximum Kendall’s τ = τR.

(d) If τL > τR, then T1 = [leftNew, T1]; else T1 =
[T1,rightNew]

C-Vine Model
In a C-Vine, for every tree, one anchor node is connected
with all the others. Figure 2b shows an example with five
variables. If the anchor node of T1 is the variable of the site
of interest, then edges represent its dependence with respect
to the rest of variables. The criterion for selecting the anchor
node of Tk, for k > 1 is the following:

1. Set i = 1 and compute τij , the Kendall’s of the data
associated to node i and node j in Tk, for every j 6= i.

2. Do τ[i] =
∑
j τij

3. Repeat for all i.

4. The anchor node = arg
i

max (τ[i]).

5 Results and discussion
In this section, we present the results obtained using the
described wind resource assessment techniques on data ac-
quired from the roof top anemometers at the Boston Museum
of Science. We also examine the improvement in perfor-
mance of each of the algorithms as more data is made avail-
able in the form of 3, 6 and 8 months of training sets. Ad-
ditionally we study how much benefit is obtained when more
expressive copula models are employed. To this end, we con-
structed the following 5 multivariate copulas and multiple re-
gression (LRR).

Multivariate copulas constructed
n-Gaussian: A multivariate Gaussian copula

4-tree C-Vine: An incomplete C-vine, with depth four.
Full C-Vine: The complete C-vine.

4-tree D-Vine: An incomplete D-vine, with depth four.
Full D-Vine: The complete D-vine.

Results are presented in Tables 1a-c forD3,D6,D8 respec-
tively. Each table shows the KL distance between the ground
truth distribution and the distribution estimated based on the
predictions provided by each technique for the year 2 dataset
(the test dataset) and for every bin. Their right-most column
is the sum of the KL distance per bin, which gives an overall
performance measure for every model. Tables are sorted ac-
cording to this value. In addition, the minimum value of each
bin and the model that attains most of these minimums have
been highlighted.

5.1 Comparison of algorithms
First we compare algorithms when the same amount of data
is available to each one of them for modeling. It is clear from
Tables 1a-c that model LRR is the worst one with a large mar-
gin between it and the second and third worst, which are n-
Gaussian and 4-t D-Vine. The remaining models attain very
good results, with KL distances that range from 0.02 to 0.4.
This result suggests that the model needs to incorporate a va-
riety of dependence structures. Figure 4’s heatmaps make it
easier to extract qualitative conclusions across bins, models
and training set size. Bands corresponding to C-vine models
are, globally, darker than the rest for D3, D6 and D8. The
figure indicates that models are better for west oriented bins
(7-12) than for east oriented ones (1-6).

For a combined comparison, we consider two metrics for
every model: (i) the sum of KL distance for every bin (right-
most column in Tables 1a-c), and (ii) the number of bins with
minimum KL distance vs other models (highlighted cells).
Sometimes the incomplete version of a vine performs better,
or at least, equal to the full version. The most plausible ex-
planation for this is that every tree added to a construction
requires new copula estimations which always introduces an-
other source of possible errors. In the C-Vine model the vari-
able at the site of interest is the anchor node of the first tree.
It influences every node in the whole C-vine which seems to
explain the model’s good performance compared with the in-
complete D-Vine model. Because this variable is much less
influential in D-Vine, one can expect to need more depth in
order to attain similar results, as indeed happens.

As additional result, Figure 3 shows an example of trun-
cated C-Vine; the one that corresponds to 8 month training



KL distance with 3 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Full C-Vine 0.125 0.103 0.033 0.112 0.112 0.090 0.076 0.059 0.034 0.041 0.042 0.063 0.891
4-t C-Vine 0.114 0.119 0.028 0.106 0.130 0.089 0.083 0.059 0.034 0.050 0.035 0.049 0.894
Full D-Vine 0.141 0.106 0.138 0.088 0.086 0.104 0.043 0.058 0.015 0.048 0.055 0.072 0.954
4-t D-Vine 0.162 0.139 0.109 0.101 0.105 0.110 0.051 0.061 0.018 0.071 0.037 0.080 1.043
n-Gaussian 0.093 0.118 0.089 0.197 0.128 0.134 0.108 0.027 0.018 0.057 0.041 0.051 1.059
LRR 0.201 0.268 1.698 3.123 1.291 0.723 0.615 0.427 0.111 0.024 0,128 0,0554 8.664

(a)

KL distance with 6 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
Full D-Vine 0.086 0.051 0.119 0.120 0.116 0.100 0.049 0.036 0.063 0.096 0.062 0.085 0.984
4-t C-Vine 0.059 0.088 0.155 0.143 0.063 0.091 0.066 0.043 0.060 0.093 0.067 0.055 0.985
Full C-Vine 0.071 0.108 0.133 0.149 0.084 0.095 0.068 0.055 0.063 0.097 0.079 0.059 1.061
4-t D-Vine 0.106 0.063 0.147 0.162 0.173 0.098 0.059 0.048 0.062 0.109 0.054 0.087 1.169
n-Gaussian 0.121 0.149 0.141 0.133 0.120 0.096 0.078 0.043 0.047 0.099 0.088 0.092 1.208
LRR 0.236 0.396 0.361 0.963 0.783 0.592 0.528 0.389 0.064 0.036 0.948 0.057 5.355

(b)

KL distance with 8 month training set
Model 1 2 3 4 5 6 7 8 9 10 11 12 Sum
4-t C-Vine 0.064 0.070 0.169 0.071 0.052 0.050 0.066 0.083 0.108 0.090 0.080 0.053 0.955
Full C-Vine 0.067 0.073 0.120 0.087 0.071 0.041 0.058 0.078 0.127 0.091 0.095 0.051 0.959
Full D-Vine 0.103 0.116 0.168 0.158 0.112 0.085 0.077 0.058 0.094 0.110 0.101 0.106 1.288
n-Gaussian 0.136 0.143 0.135 0.110 0.129 0.118 0.099 0.065 0.085 0.122 0.095 0.105 1.342
4-t D-Vine 0.124 0.145 0.203 0.237 0.205 0.134 0.094 0.061 0.101 0.116 0.087 0.094 1.602
LRR 0.357 0.545 0.378 0.523 0.417 0.288 0.364 0.319 0.058 0.035 0.113 0.067 3.468

(c)

Table 1: KL distance for every model and every training set. Each column represents a directional bin but the right-most one,
which is the sum of them. The lower the sum, the better the model overall performance.
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Figure 3: C-Vine truncated in the 4th level constructed out of the data from the 8 month training set and the 1st directional bin.
Numbers represent the fourteen airports, and Y is the site of interest (Museum of Science, Boston). The bold edge in every tree
represents the couple with highest Kendall’s τ , and τ decreases clockwise.

set for the first directional bin; which is highlighted in Table
1c as its best model. The bond between nodes with highest
Kendall’s tau is represented with a bold edge and edges are
deployed clockwise as τ decreases.

5.2 Increasing the data available for modeling

We next examine the robustness of each technique as progres-
sively more data is made available to it for modeling. Fig-
ure 5a compares the sum of KL distances of each model for
training sets D3, D6 and D8. C-Vine does not significantly
change as more/less data is incorporated whereas the other
models get worse with more data. This may indicate overfit-
ting which could be a disadvantage of such sensitive, tunable
models.

When we examine the minimum KL distance attained with
each train set for every bin (not shown),the highest difference
in KL distance is less than 0.1. In other words, there is always
at least one model out that performs similar to the best one in
case of lost data or when more data is available.

D3 D6 D8
0.8

1

1.2

1.4

1.6

Su
m

 o
f K

L 
di

st
.

Comparison of KL distance as more data is provided

 

 
n−Gaussian
4−t C−Vine
Full C−Vine
4−t D−Vine
Full D−Vine

Figure 5: Comparison of performance increasing the data
available for modeling. Sum of KL distances for all bins and
for all models when D3, D6 and D8 are employed.

6 Conclusions

In this paper we presented copula based approaches for Wind
resource estimation. Copula based approach allow us form a
joint distribution with Weibull marginals and allow us capture
non-linear correlations between the variables. In addition,
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Figure 4: Comparison of different techniques when 3 months worth of data is modeled and integrated with longer term historical
data from 14 airports. These results were derived using D3, D6, and D8, and then compared with KL distance to the Weibull
distribution estimate of the second year of measurements at the Boston Museum of Science.

we presented a methodology to construct a variety of cop-
ula models by factorizing the joint in different ways. With its
ability to capture long tails and tail dependencies these mod-
els allowed us to estimate the wind resource at the new site
with as little as 3 months of data. This is a significant achieve-
ment in the wind resource estimation domain where ability to
estimate the wind resource accurately in less amount of time
allows better planning. Such estimation from reduced amount
of time/data is highly beneficial for offshore wind technol-
ogy development where site-measurement campaigns are ex-
tremely expensive.
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Appendix
For the sake of completeness we include below relevant ex-
pressions of the copulas used for constructing vines. All the
following tables include:



• The range of the copula parameter θ.
• The bivariate copula cdf, C(u, v).

• The conditional cdf of v given u, F (v|u) = ∂
∂uC(u, v).

• The bivariate copula pdf, c(u, v) = ∂2

∂u∂vC(u, v).
• The Kendall’s tau given the copula parameter, τ .

In addition, for Frank copulas it is useful to define

gz = e−θz − 1

.

Clayton copula
θ ∈ (0,∞)

C(u, v) =
(
u−θ + v−θ − 1

)−1/θ

F (v|u) = u−θ−1
(
u−θ + v−θ + 1

)− θ+1
θ

c(u, v) = (θ + 1) (uv)
−θ−1(

u−θ + v−θ − 1
)− 2θ+1

θ

τ = θ/(θ + 2)

Frank copula
θ ∈ (−∞,∞)

C(u, v) = − ln(1+gugv/g1)
θ

F (v|u) = gugv+gv
gugv+g1

c(u, v) = −θg1(1+gu+v)

(gugv+g1)2

τ = 1− 4
θ + 4

θ2

∫ θ
0
t/ (et − 1) dt

Gumbel copula
θ ∈ [0,∞)

C(u, v) = exp

(
−
(

(− lnu)
θ

+ (− ln v)
θ
)1/θ

)
F (v|u) = C(u, v)

((− lnu)θ+(− ln v)θ)
1
θ
−1

θ(− lnu)1−θ

c(u, v) = C(u,v)
uv

((− lnu)θ+(− ln v)θ)
2
θ
−2

(lnu ln v)1−θ

τ = (θ − 1)/θ


