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Lots of Data Everywhere

LFA e Knowledge Mining Opportunities Illil-
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The GigaBeats Project

In an ICU environment, physiologic data is collected at MIMIC Waveform database
high frequency but is ignored because of the need for
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GigaBeats Project
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Machine Learning Primer
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Agenda

Distributed Computation
+

Scalable Machine Learning

SCALE
FlexGP
EC-Star
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SCALE System Layer | ™
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DCAP Protocol
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Forecasting ABP

e 10 levels

e 95K exemplars
e 67K/28K training/test split
e 7 dimensions

— Stats, trends on MAP
e 1225 learner tasks (10 fold cross validation)
« 80 nodes, ~2 days, ~4000 node hours
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Classifier Number of Instances Errors
Neural Networks 720 0
Discrete Bayes 18 0
Naive Bayes 64 0
Support Vector Machines 66 34
(SVM)

Decision Trees

324

SCALE Demonstration: WD-1

CSAIL



SCALE: WD-1 Running time
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SCALE: WD-1 Accuracy results

F1 Score over all Classifiers, All Classes
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SCALE

- WD-1 Comparison SVM v DT
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Scaling up: from SCALE to FlexGP

SCALE FlexGP
e Modest 10’s of e 100’s of features
features  Big Data
e Assumes all
Fri'";_:g“:ata fits * Big Data requires
into multidimensional
factoring, filtering
then fusion
L FA |I|||'
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FlexGP ML Layer

Filter = Fusion —>®

FACTORING

1. Probability of feature, objective
function, operator
D: factoring of the data

L]
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FlexGP Learner

Goal: Model y = f(X4,Xy,... X,)

/_\ i’ New trees
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FlexGP Filter and Fusion

M, D M, D 11@

x151n X5 + Xo \/_ \ ﬁ)ﬁ)— + sqrt(x3)
cos(Xy)/sin(xp) + /X3 — X4 i) T XsXs + 3

S Filter to select
diverse models

x1 SIn X + —2-

x18in(xs) + Xa/X ML + sqrt(xs)
I

tMﬂH

Y Fusion to derive
an ensemble prediction

Adaptive Regression Mixing

LFA .. FlexGP Overview Illil-
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Factoring is Better

Distribution of Performance per Learning Process
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FlexGP: Data Factoring Size Study

MSE vs. Size of Training Dataset
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Resource and System Management Layer

Completely decentralized launch
e Start up

— Cascading launch is decentralized and allows elastic retraction and
expansion

Completely decentralized network support
e |P discovery and launch of gossip protocol added to start up

cascade

— Launch Ip discovery and ongoing gossip protocol enables
communication network among nodes at algorithm level

— Support for Monitoring/reporting/harvesting current best
Remarks
 Essential design for resilience to node failure

— Launch or running node loss will not halt computation,

— lost launch branch or node can be integrated seamlessly

— Node loss in a communication network won’t break the network

Statistical oversight of learning algorithm’s execution parms and
data

e distribution for parms and data added to start up cascade,
negotiated between parent and child at launch of child

LEA - FlexGP N
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System Layer: SCALE vs FlexGP

SCALE: FlexGP
— LAMPs pre-defines — Autonomous
the tasks task
— Every learner has to specification
know IP of task — Learners gossip
handler to learn each
— Task handler is a others’ IP
bottleneck and — No central task
central point of handler or point
failure of failure
LFA Mir
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FlexGP System Layer
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FlexGP Launch
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ECStar

 Goal: compute very cost effectively on *VAST*
number of nodes...with a lot of training data

— Runs on thousand to 10°’Ks 100K’s million nodes
— Vast requires cost effective -> volunteer

e Domain: learn from time series
— Finance, medical signals domain

e Solution is strategy or classifier expressed as rule
sets
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EC-Star Paradigm
Digital Directed Evolution of Models

data selection

LFA Use Case #1 Illil-
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EC-Star

- dedicated
- replicable

Migrants Graduates
I =] vy Evoltonary /
Engine compute ¢ DN
\ ——— 5 - | Population ’_,/:
‘Breeding. — ‘Breeding. &)

Training Case

Server,
- dedicated
- replicable
- randomly sampled

LFA EC-Star Divide and Conquer
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BigData factoring
strategy

 Use fewer training

samples and cull
poor models

e Increase training
samples on better
models

e Local and
distributed
randomization

« Oversampling on
superior models

CSAIL



System Layer Comparison

Scale | FlexGP___| EC-Star

ML domain Classification Regression Rule Learning
Classification
RCETNI G IST -0 10°s to 100 100’s to 1000 1073 to 10”6
Resource Type [®{[es[e Cloud Volunteer and
Dedicated

External External Integrated

Local Algorithm QBJji{=I{=1a] Same Same

Server:Client 1: many Decentralized Few: many

ratio
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Scalable Machine Learning Comparison

 |scALE [FlexGP___|EC-Star
Algorithm Algorithm and Data: Under to
Data oversampling
Correlation Layered
Accuracy competition

Non- Migration and
parametric ancestral
output space  properties
approaches

ALFA: i
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Automation

 "In the end, the biggest bottleneck is not data or
CPU cycles, but human cycles.”

LFA . Looking Forward Illil-
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ML requires a lot of Human Effort

Domain Knowledge

_ Algorithm Selection
Analysis and Transfer

Algorithm Customization
Problem Definition

Parameter Selection

Data Preconditioning

&
Feature

|dentification

Feature Extraction ‘

Training and Test Data
Selection

Results Evaluation

Solution Deployment

LFA . Looking Forward Illil-
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Compressing the ML Endeavor

~ - - B - - - - - _ = . - L
Canars ~ likhrary af ~canditinnc
oenerating a library or condition

~> | Modiyorbuid an evaluationfness functon

Specify ML system parms

Run ML system
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e From
desktop

— Multi-core

« To GPU

e To Cloud
Seamlessly!
Rapidly!
Flexibly!
Scalably!
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Wrap Up

DCAP is open source: https://github.com/byterial/dcap

FlexGP is documented in publications and thesis
Owen Derby, MEng, 2013

Thanks to...

e ALFA group members
— Large team of students
— Postdoc: Dr. Erik Hemberg
— Research Scientist: Dr. Kalyan Veeramachaneni
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